]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: idling on deep seeky sync queues
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b
JA
68#define sample_valid(samples) ((samples) > 80)
69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
cc09e299 80};
aa6f6a3d 81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 82
6118b70b
JA
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
b2c18e1e
JM
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
e6c5bc73 129 unsigned long seeky_start;
b2c18e1e 130
6118b70b 131 pid_t pid;
df5fe3e8 132
aa6f6a3d 133 struct cfq_rb_root *service_tree;
df5fe3e8 134 struct cfq_queue *new_cfqq;
6118b70b
JA
135};
136
c0324a02 137/*
718eee05 138 * First index in the service_trees.
c0324a02
CZ
139 * IDLE is handled separately, so it has negative index
140 */
141enum wl_prio_t {
142 IDLE_WORKLOAD = -1,
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1
145};
146
718eee05
CZ
147/*
148 * Second index in the service_trees.
149 */
150enum wl_type_t {
151 ASYNC_WORKLOAD = 0,
152 SYNC_NOIDLE_WORKLOAD = 1,
153 SYNC_WORKLOAD = 2
154};
155
156
22e2c507
JA
157/*
158 * Per block device queue structure
159 */
1da177e4 160struct cfq_data {
165125e1 161 struct request_queue *queue;
22e2c507
JA
162
163 /*
c0324a02
CZ
164 * rr lists of queues with requests, onle rr for each priority class.
165 * Counts are embedded in the cfq_rb_root
166 */
718eee05 167 struct cfq_rb_root service_trees[2][3];
c0324a02
CZ
168 struct cfq_rb_root service_tree_idle;
169 /*
170 * The priority currently being served
22e2c507 171 */
c0324a02 172 enum wl_prio_t serving_prio;
718eee05
CZ
173 enum wl_type_t serving_type;
174 unsigned long workload_expires;
a36e71f9
JA
175
176 /*
177 * Each priority tree is sorted by next_request position. These
178 * trees are used when determining if two or more queues are
179 * interleaving requests (see cfq_close_cooperator).
180 */
181 struct rb_root prio_trees[CFQ_PRIO_LISTS];
182
22e2c507 183 unsigned int busy_queues;
5db5d642 184 unsigned int busy_queues_avg[2];
22e2c507 185
5ad531db 186 int rq_in_driver[2];
3ed9a296 187 int sync_flight;
45333d5a
AC
188
189 /*
190 * queue-depth detection
191 */
192 int rq_queued;
25776e35 193 int hw_tag;
e459dd08
CZ
194 /*
195 * hw_tag can be
196 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
197 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
198 * 0 => no NCQ
199 */
200 int hw_tag_est_depth;
201 unsigned int hw_tag_samples;
1da177e4 202
22e2c507
JA
203 /*
204 * idle window management
205 */
206 struct timer_list idle_slice_timer;
23e018a1 207 struct work_struct unplug_work;
1da177e4 208
22e2c507
JA
209 struct cfq_queue *active_queue;
210 struct cfq_io_context *active_cic;
22e2c507 211
c2dea2d1
VT
212 /*
213 * async queue for each priority case
214 */
215 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
216 struct cfq_queue *async_idle_cfqq;
15c31be4 217
6d048f53 218 sector_t last_position;
1da177e4 219
1da177e4
LT
220 /*
221 * tunables, see top of file
222 */
223 unsigned int cfq_quantum;
22e2c507 224 unsigned int cfq_fifo_expire[2];
1da177e4
LT
225 unsigned int cfq_back_penalty;
226 unsigned int cfq_back_max;
22e2c507
JA
227 unsigned int cfq_slice[2];
228 unsigned int cfq_slice_async_rq;
229 unsigned int cfq_slice_idle;
963b72fc 230 unsigned int cfq_latency;
d9ff4187
AV
231
232 struct list_head cic_list;
1da177e4 233
6118b70b
JA
234 /*
235 * Fallback dummy cfqq for extreme OOM conditions
236 */
237 struct cfq_queue oom_cfqq;
365722bb
VG
238
239 unsigned long last_end_sync_rq;
1da177e4
LT
240};
241
c0324a02 242static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
718eee05 243 enum wl_type_t type,
c0324a02
CZ
244 struct cfq_data *cfqd)
245{
246 if (prio == IDLE_WORKLOAD)
247 return &cfqd->service_tree_idle;
248
718eee05 249 return &cfqd->service_trees[prio][type];
c0324a02
CZ
250}
251
3b18152c 252enum cfqq_state_flags {
b0b8d749
JA
253 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
254 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 255 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 256 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
257 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
258 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
259 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 260 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 261 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 262 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 263 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
264};
265
266#define CFQ_CFQQ_FNS(name) \
267static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
268{ \
fe094d98 269 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
270} \
271static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
272{ \
fe094d98 273 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
274} \
275static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
276{ \
fe094d98 277 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
278}
279
280CFQ_CFQQ_FNS(on_rr);
281CFQ_CFQQ_FNS(wait_request);
b029195d 282CFQ_CFQQ_FNS(must_dispatch);
3b18152c 283CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
284CFQ_CFQQ_FNS(fifo_expire);
285CFQ_CFQQ_FNS(idle_window);
286CFQ_CFQQ_FNS(prio_changed);
44f7c160 287CFQ_CFQQ_FNS(slice_new);
91fac317 288CFQ_CFQQ_FNS(sync);
a36e71f9 289CFQ_CFQQ_FNS(coop);
76280aff 290CFQ_CFQQ_FNS(deep);
3b18152c
JA
291#undef CFQ_CFQQ_FNS
292
7b679138
JA
293#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
294 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
295#define cfq_log(cfqd, fmt, args...) \
296 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
297
c0324a02
CZ
298static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
299{
300 if (cfq_class_idle(cfqq))
301 return IDLE_WORKLOAD;
302 if (cfq_class_rt(cfqq))
303 return RT_WORKLOAD;
304 return BE_WORKLOAD;
305}
306
718eee05
CZ
307
308static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
309{
310 if (!cfq_cfqq_sync(cfqq))
311 return ASYNC_WORKLOAD;
312 if (!cfq_cfqq_idle_window(cfqq))
313 return SYNC_NOIDLE_WORKLOAD;
314 return SYNC_WORKLOAD;
315}
316
c0324a02
CZ
317static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
318{
319 if (wl == IDLE_WORKLOAD)
320 return cfqd->service_tree_idle.count;
321
718eee05
CZ
322 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
323 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
324 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
325}
326
165125e1 327static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 328static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 329 struct io_context *, gfp_t);
4ac845a2 330static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
331 struct io_context *);
332
5ad531db
JA
333static inline int rq_in_driver(struct cfq_data *cfqd)
334{
335 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
336}
337
91fac317 338static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 339 bool is_sync)
91fac317 340{
a6151c3a 341 return cic->cfqq[is_sync];
91fac317
VT
342}
343
344static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 345 struct cfq_queue *cfqq, bool is_sync)
91fac317 346{
a6151c3a 347 cic->cfqq[is_sync] = cfqq;
91fac317
VT
348}
349
350/*
351 * We regard a request as SYNC, if it's either a read or has the SYNC bit
352 * set (in which case it could also be direct WRITE).
353 */
a6151c3a 354static inline bool cfq_bio_sync(struct bio *bio)
91fac317 355{
a6151c3a 356 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 357}
1da177e4 358
99f95e52
AM
359/*
360 * scheduler run of queue, if there are requests pending and no one in the
361 * driver that will restart queueing
362 */
23e018a1 363static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 364{
7b679138
JA
365 if (cfqd->busy_queues) {
366 cfq_log(cfqd, "schedule dispatch");
23e018a1 367 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 368 }
99f95e52
AM
369}
370
165125e1 371static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
372{
373 struct cfq_data *cfqd = q->elevator->elevator_data;
374
b4878f24 375 return !cfqd->busy_queues;
99f95e52
AM
376}
377
44f7c160
JA
378/*
379 * Scale schedule slice based on io priority. Use the sync time slice only
380 * if a queue is marked sync and has sync io queued. A sync queue with async
381 * io only, should not get full sync slice length.
382 */
a6151c3a 383static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 384 unsigned short prio)
44f7c160 385{
d9e7620e 386 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 387
d9e7620e
JA
388 WARN_ON(prio >= IOPRIO_BE_NR);
389
390 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
391}
44f7c160 392
d9e7620e
JA
393static inline int
394cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
395{
396 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
397}
398
5db5d642
CZ
399/*
400 * get averaged number of queues of RT/BE priority.
401 * average is updated, with a formula that gives more weight to higher numbers,
402 * to quickly follows sudden increases and decrease slowly
403 */
404
5869619c
JA
405static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
406{
5db5d642
CZ
407 unsigned min_q, max_q;
408 unsigned mult = cfq_hist_divisor - 1;
409 unsigned round = cfq_hist_divisor / 2;
c0324a02 410 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
411
412 min_q = min(cfqd->busy_queues_avg[rt], busy);
413 max_q = max(cfqd->busy_queues_avg[rt], busy);
414 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
415 cfq_hist_divisor;
416 return cfqd->busy_queues_avg[rt];
417}
418
44f7c160
JA
419static inline void
420cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
421{
5db5d642
CZ
422 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
423 if (cfqd->cfq_latency) {
424 /* interested queues (we consider only the ones with the same
425 * priority class) */
426 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
427 unsigned sync_slice = cfqd->cfq_slice[1];
428 unsigned expect_latency = sync_slice * iq;
429 if (expect_latency > cfq_target_latency) {
430 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
431 /* scale low_slice according to IO priority
432 * and sync vs async */
433 unsigned low_slice =
434 min(slice, base_low_slice * slice / sync_slice);
435 /* the adapted slice value is scaled to fit all iqs
436 * into the target latency */
437 slice = max(slice * cfq_target_latency / expect_latency,
438 low_slice);
439 }
440 }
441 cfqq->slice_end = jiffies + slice;
7b679138 442 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
443}
444
445/*
446 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
447 * isn't valid until the first request from the dispatch is activated
448 * and the slice time set.
449 */
a6151c3a 450static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
451{
452 if (cfq_cfqq_slice_new(cfqq))
453 return 0;
454 if (time_before(jiffies, cfqq->slice_end))
455 return 0;
456
457 return 1;
458}
459
1da177e4 460/*
5e705374 461 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 462 * We choose the request that is closest to the head right now. Distance
e8a99053 463 * behind the head is penalized and only allowed to a certain extent.
1da177e4 464 */
5e705374 465static struct request *
cf7c25cf 466cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 467{
cf7c25cf 468 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 469 unsigned long back_max;
e8a99053
AM
470#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
471#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
472 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 473
5e705374
JA
474 if (rq1 == NULL || rq1 == rq2)
475 return rq2;
476 if (rq2 == NULL)
477 return rq1;
9c2c38a1 478
5e705374
JA
479 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
480 return rq1;
481 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
482 return rq2;
374f84ac
JA
483 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
484 return rq1;
485 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
486 return rq2;
1da177e4 487
83096ebf
TH
488 s1 = blk_rq_pos(rq1);
489 s2 = blk_rq_pos(rq2);
1da177e4 490
1da177e4
LT
491 /*
492 * by definition, 1KiB is 2 sectors
493 */
494 back_max = cfqd->cfq_back_max * 2;
495
496 /*
497 * Strict one way elevator _except_ in the case where we allow
498 * short backward seeks which are biased as twice the cost of a
499 * similar forward seek.
500 */
501 if (s1 >= last)
502 d1 = s1 - last;
503 else if (s1 + back_max >= last)
504 d1 = (last - s1) * cfqd->cfq_back_penalty;
505 else
e8a99053 506 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
507
508 if (s2 >= last)
509 d2 = s2 - last;
510 else if (s2 + back_max >= last)
511 d2 = (last - s2) * cfqd->cfq_back_penalty;
512 else
e8a99053 513 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
514
515 /* Found required data */
e8a99053
AM
516
517 /*
518 * By doing switch() on the bit mask "wrap" we avoid having to
519 * check two variables for all permutations: --> faster!
520 */
521 switch (wrap) {
5e705374 522 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 523 if (d1 < d2)
5e705374 524 return rq1;
e8a99053 525 else if (d2 < d1)
5e705374 526 return rq2;
e8a99053
AM
527 else {
528 if (s1 >= s2)
5e705374 529 return rq1;
e8a99053 530 else
5e705374 531 return rq2;
e8a99053 532 }
1da177e4 533
e8a99053 534 case CFQ_RQ2_WRAP:
5e705374 535 return rq1;
e8a99053 536 case CFQ_RQ1_WRAP:
5e705374
JA
537 return rq2;
538 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
539 default:
540 /*
541 * Since both rqs are wrapped,
542 * start with the one that's further behind head
543 * (--> only *one* back seek required),
544 * since back seek takes more time than forward.
545 */
546 if (s1 <= s2)
5e705374 547 return rq1;
1da177e4 548 else
5e705374 549 return rq2;
1da177e4
LT
550 }
551}
552
498d3aa2
JA
553/*
554 * The below is leftmost cache rbtree addon
555 */
0871714e 556static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
557{
558 if (!root->left)
559 root->left = rb_first(&root->rb);
560
0871714e
JA
561 if (root->left)
562 return rb_entry(root->left, struct cfq_queue, rb_node);
563
564 return NULL;
cc09e299
JA
565}
566
a36e71f9
JA
567static void rb_erase_init(struct rb_node *n, struct rb_root *root)
568{
569 rb_erase(n, root);
570 RB_CLEAR_NODE(n);
571}
572
cc09e299
JA
573static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
574{
575 if (root->left == n)
576 root->left = NULL;
a36e71f9 577 rb_erase_init(n, &root->rb);
aa6f6a3d 578 --root->count;
cc09e299
JA
579}
580
1da177e4
LT
581/*
582 * would be nice to take fifo expire time into account as well
583 */
5e705374
JA
584static struct request *
585cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
586 struct request *last)
1da177e4 587{
21183b07
JA
588 struct rb_node *rbnext = rb_next(&last->rb_node);
589 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 590 struct request *next = NULL, *prev = NULL;
1da177e4 591
21183b07 592 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
593
594 if (rbprev)
5e705374 595 prev = rb_entry_rq(rbprev);
1da177e4 596
21183b07 597 if (rbnext)
5e705374 598 next = rb_entry_rq(rbnext);
21183b07
JA
599 else {
600 rbnext = rb_first(&cfqq->sort_list);
601 if (rbnext && rbnext != &last->rb_node)
5e705374 602 next = rb_entry_rq(rbnext);
21183b07 603 }
1da177e4 604
cf7c25cf 605 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
606}
607
d9e7620e
JA
608static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
609 struct cfq_queue *cfqq)
1da177e4 610{
3586e917
GJ
611 struct cfq_rb_root *service_tree;
612
613 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
614
d9e7620e
JA
615 /*
616 * just an approximation, should be ok.
617 */
3586e917
GJ
618 return service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
619 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
620}
621
498d3aa2 622/*
c0324a02 623 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
624 * requests waiting to be processed. It is sorted in the order that
625 * we will service the queues.
626 */
a36e71f9 627static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 628 bool add_front)
d9e7620e 629{
0871714e
JA
630 struct rb_node **p, *parent;
631 struct cfq_queue *__cfqq;
d9e7620e 632 unsigned long rb_key;
c0324a02 633 struct cfq_rb_root *service_tree;
498d3aa2 634 int left;
d9e7620e 635
718eee05 636 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
0871714e
JA
637 if (cfq_class_idle(cfqq)) {
638 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 639 parent = rb_last(&service_tree->rb);
0871714e
JA
640 if (parent && parent != &cfqq->rb_node) {
641 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
642 rb_key += __cfqq->rb_key;
643 } else
644 rb_key += jiffies;
645 } else if (!add_front) {
b9c8946b
JA
646 /*
647 * Get our rb key offset. Subtract any residual slice
648 * value carried from last service. A negative resid
649 * count indicates slice overrun, and this should position
650 * the next service time further away in the tree.
651 */
edd75ffd 652 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 653 rb_key -= cfqq->slice_resid;
edd75ffd 654 cfqq->slice_resid = 0;
48e025e6
CZ
655 } else {
656 rb_key = -HZ;
aa6f6a3d 657 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
658 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
659 }
1da177e4 660
d9e7620e 661 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 662 /*
d9e7620e 663 * same position, nothing more to do
99f9628a 664 */
c0324a02
CZ
665 if (rb_key == cfqq->rb_key &&
666 cfqq->service_tree == service_tree)
d9e7620e 667 return;
1da177e4 668
aa6f6a3d
CZ
669 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
670 cfqq->service_tree = NULL;
1da177e4 671 }
d9e7620e 672
498d3aa2 673 left = 1;
0871714e 674 parent = NULL;
aa6f6a3d
CZ
675 cfqq->service_tree = service_tree;
676 p = &service_tree->rb.rb_node;
d9e7620e 677 while (*p) {
67060e37 678 struct rb_node **n;
cc09e299 679
d9e7620e
JA
680 parent = *p;
681 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
682
0c534e0a 683 /*
c0324a02 684 * sort by key, that represents service time.
0c534e0a 685 */
c0324a02 686 if (time_before(rb_key, __cfqq->rb_key))
67060e37 687 n = &(*p)->rb_left;
c0324a02 688 else {
67060e37 689 n = &(*p)->rb_right;
cc09e299 690 left = 0;
c0324a02 691 }
67060e37
JA
692
693 p = n;
d9e7620e
JA
694 }
695
cc09e299 696 if (left)
aa6f6a3d 697 service_tree->left = &cfqq->rb_node;
cc09e299 698
d9e7620e
JA
699 cfqq->rb_key = rb_key;
700 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
701 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
702 service_tree->count++;
1da177e4
LT
703}
704
a36e71f9 705static struct cfq_queue *
f2d1f0ae
JA
706cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
707 sector_t sector, struct rb_node **ret_parent,
708 struct rb_node ***rb_link)
a36e71f9 709{
a36e71f9
JA
710 struct rb_node **p, *parent;
711 struct cfq_queue *cfqq = NULL;
712
713 parent = NULL;
714 p = &root->rb_node;
715 while (*p) {
716 struct rb_node **n;
717
718 parent = *p;
719 cfqq = rb_entry(parent, struct cfq_queue, p_node);
720
721 /*
722 * Sort strictly based on sector. Smallest to the left,
723 * largest to the right.
724 */
2e46e8b2 725 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 726 n = &(*p)->rb_right;
2e46e8b2 727 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
728 n = &(*p)->rb_left;
729 else
730 break;
731 p = n;
3ac6c9f8 732 cfqq = NULL;
a36e71f9
JA
733 }
734
735 *ret_parent = parent;
736 if (rb_link)
737 *rb_link = p;
3ac6c9f8 738 return cfqq;
a36e71f9
JA
739}
740
741static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
742{
a36e71f9
JA
743 struct rb_node **p, *parent;
744 struct cfq_queue *__cfqq;
745
f2d1f0ae
JA
746 if (cfqq->p_root) {
747 rb_erase(&cfqq->p_node, cfqq->p_root);
748 cfqq->p_root = NULL;
749 }
a36e71f9
JA
750
751 if (cfq_class_idle(cfqq))
752 return;
753 if (!cfqq->next_rq)
754 return;
755
f2d1f0ae 756 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
757 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
758 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
759 if (!__cfqq) {
760 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
761 rb_insert_color(&cfqq->p_node, cfqq->p_root);
762 } else
763 cfqq->p_root = NULL;
a36e71f9
JA
764}
765
498d3aa2
JA
766/*
767 * Update cfqq's position in the service tree.
768 */
edd75ffd 769static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 770{
6d048f53
JA
771 /*
772 * Resorting requires the cfqq to be on the RR list already.
773 */
a36e71f9 774 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 775 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
776 cfq_prio_tree_add(cfqd, cfqq);
777 }
6d048f53
JA
778}
779
1da177e4
LT
780/*
781 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 782 * the pending list according to last request service
1da177e4 783 */
febffd61 784static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 785{
7b679138 786 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
787 BUG_ON(cfq_cfqq_on_rr(cfqq));
788 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
789 cfqd->busy_queues++;
790
edd75ffd 791 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
792}
793
498d3aa2
JA
794/*
795 * Called when the cfqq no longer has requests pending, remove it from
796 * the service tree.
797 */
febffd61 798static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 799{
7b679138 800 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
801 BUG_ON(!cfq_cfqq_on_rr(cfqq));
802 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 803
aa6f6a3d
CZ
804 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
805 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
806 cfqq->service_tree = NULL;
807 }
f2d1f0ae
JA
808 if (cfqq->p_root) {
809 rb_erase(&cfqq->p_node, cfqq->p_root);
810 cfqq->p_root = NULL;
811 }
d9e7620e 812
1da177e4
LT
813 BUG_ON(!cfqd->busy_queues);
814 cfqd->busy_queues--;
815}
816
817/*
818 * rb tree support functions
819 */
febffd61 820static void cfq_del_rq_rb(struct request *rq)
1da177e4 821{
5e705374 822 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 823 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 824 const int sync = rq_is_sync(rq);
1da177e4 825
b4878f24
JA
826 BUG_ON(!cfqq->queued[sync]);
827 cfqq->queued[sync]--;
1da177e4 828
5e705374 829 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 830
dd67d051 831 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 832 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
833}
834
5e705374 835static void cfq_add_rq_rb(struct request *rq)
1da177e4 836{
5e705374 837 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 838 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 839 struct request *__alias, *prev;
1da177e4 840
5380a101 841 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
842
843 /*
844 * looks a little odd, but the first insert might return an alias.
845 * if that happens, put the alias on the dispatch list
846 */
21183b07 847 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 848 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
849
850 if (!cfq_cfqq_on_rr(cfqq))
851 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
852
853 /*
854 * check if this request is a better next-serve candidate
855 */
a36e71f9 856 prev = cfqq->next_rq;
cf7c25cf 857 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
858
859 /*
860 * adjust priority tree position, if ->next_rq changes
861 */
862 if (prev != cfqq->next_rq)
863 cfq_prio_tree_add(cfqd, cfqq);
864
5044eed4 865 BUG_ON(!cfqq->next_rq);
1da177e4
LT
866}
867
febffd61 868static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 869{
5380a101
JA
870 elv_rb_del(&cfqq->sort_list, rq);
871 cfqq->queued[rq_is_sync(rq)]--;
5e705374 872 cfq_add_rq_rb(rq);
1da177e4
LT
873}
874
206dc69b
JA
875static struct request *
876cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 877{
206dc69b 878 struct task_struct *tsk = current;
91fac317 879 struct cfq_io_context *cic;
206dc69b 880 struct cfq_queue *cfqq;
1da177e4 881
4ac845a2 882 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
883 if (!cic)
884 return NULL;
885
886 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
887 if (cfqq) {
888 sector_t sector = bio->bi_sector + bio_sectors(bio);
889
21183b07 890 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 891 }
1da177e4 892
1da177e4
LT
893 return NULL;
894}
895
165125e1 896static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 897{
22e2c507 898 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 899
5ad531db 900 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 901 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 902 rq_in_driver(cfqd));
25776e35 903
5b93629b 904 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
905}
906
165125e1 907static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 908{
b4878f24 909 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 910 const int sync = rq_is_sync(rq);
b4878f24 911
5ad531db
JA
912 WARN_ON(!cfqd->rq_in_driver[sync]);
913 cfqd->rq_in_driver[sync]--;
7b679138 914 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 915 rq_in_driver(cfqd));
1da177e4
LT
916}
917
b4878f24 918static void cfq_remove_request(struct request *rq)
1da177e4 919{
5e705374 920 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 921
5e705374
JA
922 if (cfqq->next_rq == rq)
923 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 924
b4878f24 925 list_del_init(&rq->queuelist);
5e705374 926 cfq_del_rq_rb(rq);
374f84ac 927
45333d5a 928 cfqq->cfqd->rq_queued--;
374f84ac
JA
929 if (rq_is_meta(rq)) {
930 WARN_ON(!cfqq->meta_pending);
931 cfqq->meta_pending--;
932 }
1da177e4
LT
933}
934
165125e1
JA
935static int cfq_merge(struct request_queue *q, struct request **req,
936 struct bio *bio)
1da177e4
LT
937{
938 struct cfq_data *cfqd = q->elevator->elevator_data;
939 struct request *__rq;
1da177e4 940
206dc69b 941 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 942 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
943 *req = __rq;
944 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
945 }
946
947 return ELEVATOR_NO_MERGE;
1da177e4
LT
948}
949
165125e1 950static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 951 int type)
1da177e4 952{
21183b07 953 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 954 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 955
5e705374 956 cfq_reposition_rq_rb(cfqq, req);
1da177e4 957 }
1da177e4
LT
958}
959
960static void
165125e1 961cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
962 struct request *next)
963{
cf7c25cf 964 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
965 /*
966 * reposition in fifo if next is older than rq
967 */
968 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 969 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 970 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
971 rq_set_fifo_time(rq, rq_fifo_time(next));
972 }
22e2c507 973
cf7c25cf
CZ
974 if (cfqq->next_rq == next)
975 cfqq->next_rq = rq;
b4878f24 976 cfq_remove_request(next);
22e2c507
JA
977}
978
165125e1 979static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
980 struct bio *bio)
981{
982 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 983 struct cfq_io_context *cic;
da775265 984 struct cfq_queue *cfqq;
da775265
JA
985
986 /*
ec8acb69 987 * Disallow merge of a sync bio into an async request.
da775265 988 */
91fac317 989 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 990 return false;
da775265
JA
991
992 /*
719d3402
JA
993 * Lookup the cfqq that this bio will be queued with. Allow
994 * merge only if rq is queued there.
da775265 995 */
4ac845a2 996 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 997 if (!cic)
a6151c3a 998 return false;
719d3402 999
91fac317 1000 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1001 return cfqq == RQ_CFQQ(rq);
da775265
JA
1002}
1003
febffd61
JA
1004static void __cfq_set_active_queue(struct cfq_data *cfqd,
1005 struct cfq_queue *cfqq)
22e2c507
JA
1006{
1007 if (cfqq) {
7b679138 1008 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1009 cfqq->slice_end = 0;
2f5cb738
JA
1010 cfqq->slice_dispatch = 0;
1011
2f5cb738 1012 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1013 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1014 cfq_clear_cfqq_must_alloc_slice(cfqq);
1015 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1016 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1017
1018 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1019 }
1020
1021 cfqd->active_queue = cfqq;
1022}
1023
7b14e3b5
JA
1024/*
1025 * current cfqq expired its slice (or was too idle), select new one
1026 */
1027static void
1028__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1029 bool timed_out)
7b14e3b5 1030{
7b679138
JA
1031 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1032
7b14e3b5
JA
1033 if (cfq_cfqq_wait_request(cfqq))
1034 del_timer(&cfqd->idle_slice_timer);
1035
7b14e3b5
JA
1036 cfq_clear_cfqq_wait_request(cfqq);
1037
1038 /*
6084cdda 1039 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1040 */
7b679138 1041 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1042 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1043 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1044 }
7b14e3b5 1045
edd75ffd 1046 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1047
1048 if (cfqq == cfqd->active_queue)
1049 cfqd->active_queue = NULL;
1050
1051 if (cfqd->active_cic) {
1052 put_io_context(cfqd->active_cic->ioc);
1053 cfqd->active_cic = NULL;
1054 }
7b14e3b5
JA
1055}
1056
a6151c3a 1057static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1058{
1059 struct cfq_queue *cfqq = cfqd->active_queue;
1060
1061 if (cfqq)
6084cdda 1062 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1063}
1064
498d3aa2
JA
1065/*
1066 * Get next queue for service. Unless we have a queue preemption,
1067 * we'll simply select the first cfqq in the service tree.
1068 */
6d048f53 1069static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1070{
c0324a02 1071 struct cfq_rb_root *service_tree =
718eee05 1072 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
d9e7620e 1073
c0324a02
CZ
1074 if (RB_EMPTY_ROOT(&service_tree->rb))
1075 return NULL;
1076 return cfq_rb_first(service_tree);
6d048f53
JA
1077}
1078
498d3aa2
JA
1079/*
1080 * Get and set a new active queue for service.
1081 */
a36e71f9
JA
1082static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1083 struct cfq_queue *cfqq)
6d048f53 1084{
e00ef799 1085 if (!cfqq)
a36e71f9 1086 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1087
22e2c507 1088 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1089 return cfqq;
22e2c507
JA
1090}
1091
d9e7620e
JA
1092static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1093 struct request *rq)
1094{
83096ebf
TH
1095 if (blk_rq_pos(rq) >= cfqd->last_position)
1096 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1097 else
83096ebf 1098 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1099}
1100
b2c18e1e
JM
1101#define CFQQ_SEEK_THR 8 * 1024
1102#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1103
b2c18e1e
JM
1104static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1105 struct request *rq)
6d048f53 1106{
b2c18e1e 1107 sector_t sdist = cfqq->seek_mean;
6d048f53 1108
b2c18e1e
JM
1109 if (!sample_valid(cfqq->seek_samples))
1110 sdist = CFQQ_SEEK_THR;
6d048f53 1111
04dc6e71 1112 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1113}
1114
a36e71f9
JA
1115static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1116 struct cfq_queue *cur_cfqq)
1117{
f2d1f0ae 1118 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1119 struct rb_node *parent, *node;
1120 struct cfq_queue *__cfqq;
1121 sector_t sector = cfqd->last_position;
1122
1123 if (RB_EMPTY_ROOT(root))
1124 return NULL;
1125
1126 /*
1127 * First, if we find a request starting at the end of the last
1128 * request, choose it.
1129 */
f2d1f0ae 1130 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1131 if (__cfqq)
1132 return __cfqq;
1133
1134 /*
1135 * If the exact sector wasn't found, the parent of the NULL leaf
1136 * will contain the closest sector.
1137 */
1138 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1139 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1140 return __cfqq;
1141
2e46e8b2 1142 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1143 node = rb_next(&__cfqq->p_node);
1144 else
1145 node = rb_prev(&__cfqq->p_node);
1146 if (!node)
1147 return NULL;
1148
1149 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1150 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1151 return __cfqq;
1152
1153 return NULL;
1154}
1155
1156/*
1157 * cfqd - obvious
1158 * cur_cfqq - passed in so that we don't decide that the current queue is
1159 * closely cooperating with itself.
1160 *
1161 * So, basically we're assuming that that cur_cfqq has dispatched at least
1162 * one request, and that cfqd->last_position reflects a position on the disk
1163 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1164 * assumption.
1165 */
1166static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1167 struct cfq_queue *cur_cfqq)
6d048f53 1168{
a36e71f9
JA
1169 struct cfq_queue *cfqq;
1170
e6c5bc73
JM
1171 if (!cfq_cfqq_sync(cur_cfqq))
1172 return NULL;
1173 if (CFQQ_SEEKY(cur_cfqq))
1174 return NULL;
1175
6d048f53 1176 /*
d9e7620e
JA
1177 * We should notice if some of the queues are cooperating, eg
1178 * working closely on the same area of the disk. In that case,
1179 * we can group them together and don't waste time idling.
6d048f53 1180 */
a36e71f9
JA
1181 cfqq = cfqq_close(cfqd, cur_cfqq);
1182 if (!cfqq)
1183 return NULL;
1184
df5fe3e8
JM
1185 /*
1186 * It only makes sense to merge sync queues.
1187 */
1188 if (!cfq_cfqq_sync(cfqq))
1189 return NULL;
e6c5bc73
JM
1190 if (CFQQ_SEEKY(cfqq))
1191 return NULL;
df5fe3e8 1192
c0324a02
CZ
1193 /*
1194 * Do not merge queues of different priority classes
1195 */
1196 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1197 return NULL;
1198
a36e71f9 1199 return cfqq;
6d048f53
JA
1200}
1201
a6d44e98
CZ
1202/*
1203 * Determine whether we should enforce idle window for this queue.
1204 */
1205
1206static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1207{
1208 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1209 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98
CZ
1210
1211 /* We never do for idle class queues. */
1212 if (prio == IDLE_WORKLOAD)
1213 return false;
1214
1215 /* We do for queues that were marked with idle window flag. */
1216 if (cfq_cfqq_idle_window(cfqq))
1217 return true;
1218
1219 /*
1220 * Otherwise, we do only if they are the last ones
1221 * in their service tree.
1222 */
718eee05
CZ
1223 if (!service_tree)
1224 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1225
a6d44e98
CZ
1226 if (service_tree->count == 0)
1227 return true;
1228
1229 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1230}
1231
6d048f53 1232static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1233{
1792669c 1234 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1235 struct cfq_io_context *cic;
7b14e3b5
JA
1236 unsigned long sl;
1237
a68bbddb 1238 /*
f7d7b7a7
JA
1239 * SSD device without seek penalty, disable idling. But only do so
1240 * for devices that support queuing, otherwise we still have a problem
1241 * with sync vs async workloads.
a68bbddb 1242 */
f7d7b7a7 1243 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1244 return;
1245
dd67d051 1246 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1247 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1248
1249 /*
1250 * idle is disabled, either manually or by past process history
1251 */
a6d44e98 1252 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1253 return;
1254
7b679138
JA
1255 /*
1256 * still requests with the driver, don't idle
1257 */
5ad531db 1258 if (rq_in_driver(cfqd))
7b679138
JA
1259 return;
1260
22e2c507
JA
1261 /*
1262 * task has exited, don't wait
1263 */
206dc69b 1264 cic = cfqd->active_cic;
66dac98e 1265 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1266 return;
1267
355b659c
CZ
1268 /*
1269 * If our average think time is larger than the remaining time
1270 * slice, then don't idle. This avoids overrunning the allotted
1271 * time slice.
1272 */
1273 if (sample_valid(cic->ttime_samples) &&
1274 (cfqq->slice_end - jiffies < cic->ttime_mean))
1275 return;
1276
3b18152c 1277 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1278
6d048f53 1279 sl = cfqd->cfq_slice_idle;
206dc69b 1280
7b14e3b5 1281 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1282 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1283}
1284
498d3aa2
JA
1285/*
1286 * Move request from internal lists to the request queue dispatch list.
1287 */
165125e1 1288static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1289{
3ed9a296 1290 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1291 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1292
7b679138
JA
1293 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1294
06d21886 1295 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1296 cfq_remove_request(rq);
6d048f53 1297 cfqq->dispatched++;
5380a101 1298 elv_dispatch_sort(q, rq);
3ed9a296
JA
1299
1300 if (cfq_cfqq_sync(cfqq))
1301 cfqd->sync_flight++;
1da177e4
LT
1302}
1303
1304/*
1305 * return expired entry, or NULL to just start from scratch in rbtree
1306 */
febffd61 1307static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1308{
30996f40 1309 struct request *rq = NULL;
1da177e4 1310
3b18152c 1311 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1312 return NULL;
cb887411
JA
1313
1314 cfq_mark_cfqq_fifo_expire(cfqq);
1315
89850f7e
JA
1316 if (list_empty(&cfqq->fifo))
1317 return NULL;
1da177e4 1318
89850f7e 1319 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1320 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1321 rq = NULL;
1da177e4 1322
30996f40 1323 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1324 return rq;
1da177e4
LT
1325}
1326
22e2c507
JA
1327static inline int
1328cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1329{
1330 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1331
22e2c507 1332 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1333
22e2c507 1334 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1335}
1336
df5fe3e8
JM
1337/*
1338 * Must be called with the queue_lock held.
1339 */
1340static int cfqq_process_refs(struct cfq_queue *cfqq)
1341{
1342 int process_refs, io_refs;
1343
1344 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1345 process_refs = atomic_read(&cfqq->ref) - io_refs;
1346 BUG_ON(process_refs < 0);
1347 return process_refs;
1348}
1349
1350static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1351{
e6c5bc73 1352 int process_refs, new_process_refs;
df5fe3e8
JM
1353 struct cfq_queue *__cfqq;
1354
1355 /* Avoid a circular list and skip interim queue merges */
1356 while ((__cfqq = new_cfqq->new_cfqq)) {
1357 if (__cfqq == cfqq)
1358 return;
1359 new_cfqq = __cfqq;
1360 }
1361
1362 process_refs = cfqq_process_refs(cfqq);
1363 /*
1364 * If the process for the cfqq has gone away, there is no
1365 * sense in merging the queues.
1366 */
1367 if (process_refs == 0)
1368 return;
1369
e6c5bc73
JM
1370 /*
1371 * Merge in the direction of the lesser amount of work.
1372 */
1373 new_process_refs = cfqq_process_refs(new_cfqq);
1374 if (new_process_refs >= process_refs) {
1375 cfqq->new_cfqq = new_cfqq;
1376 atomic_add(process_refs, &new_cfqq->ref);
1377 } else {
1378 new_cfqq->new_cfqq = cfqq;
1379 atomic_add(new_process_refs, &cfqq->ref);
1380 }
df5fe3e8
JM
1381}
1382
718eee05
CZ
1383static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1384 bool prio_changed)
1385{
1386 struct cfq_queue *queue;
1387 int i;
1388 bool key_valid = false;
1389 unsigned long lowest_key = 0;
1390 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1391
1392 if (prio_changed) {
1393 /*
1394 * When priorities switched, we prefer starting
1395 * from SYNC_NOIDLE (first choice), or just SYNC
1396 * over ASYNC
1397 */
1398 if (service_tree_for(prio, cur_best, cfqd)->count)
1399 return cur_best;
1400 cur_best = SYNC_WORKLOAD;
1401 if (service_tree_for(prio, cur_best, cfqd)->count)
1402 return cur_best;
1403
1404 return ASYNC_WORKLOAD;
1405 }
1406
1407 for (i = 0; i < 3; ++i) {
1408 /* otherwise, select the one with lowest rb_key */
1409 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1410 if (queue &&
1411 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1412 lowest_key = queue->rb_key;
1413 cur_best = i;
1414 key_valid = true;
1415 }
1416 }
1417
1418 return cur_best;
1419}
1420
1421static void choose_service_tree(struct cfq_data *cfqd)
1422{
1423 enum wl_prio_t previous_prio = cfqd->serving_prio;
1424 bool prio_changed;
1425 unsigned slice;
1426 unsigned count;
1427
1428 /* Choose next priority. RT > BE > IDLE */
1429 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1430 cfqd->serving_prio = RT_WORKLOAD;
1431 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1432 cfqd->serving_prio = BE_WORKLOAD;
1433 else {
1434 cfqd->serving_prio = IDLE_WORKLOAD;
1435 cfqd->workload_expires = jiffies + 1;
1436 return;
1437 }
1438
1439 /*
1440 * For RT and BE, we have to choose also the type
1441 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1442 * expiration time
1443 */
1444 prio_changed = (cfqd->serving_prio != previous_prio);
1445 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1446 ->count;
1447
1448 /*
1449 * If priority didn't change, check workload expiration,
1450 * and that we still have other queues ready
1451 */
1452 if (!prio_changed && count &&
1453 !time_after(jiffies, cfqd->workload_expires))
1454 return;
1455
1456 /* otherwise select new workload type */
1457 cfqd->serving_type =
1458 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1459 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1460 ->count;
1461
1462 /*
1463 * the workload slice is computed as a fraction of target latency
1464 * proportional to the number of queues in that workload, over
1465 * all the queues in the same priority class
1466 */
1467 slice = cfq_target_latency * count /
1468 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1469 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1470
1471 if (cfqd->serving_type == ASYNC_WORKLOAD)
1472 /* async workload slice is scaled down according to
1473 * the sync/async slice ratio. */
1474 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1475 else
1476 /* sync workload slice is at least 2 * cfq_slice_idle */
1477 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1478
1479 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1480 cfqd->workload_expires = jiffies + slice;
1481}
1482
22e2c507 1483/*
498d3aa2
JA
1484 * Select a queue for service. If we have a current active queue,
1485 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1486 */
1b5ed5e1 1487static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1488{
a36e71f9 1489 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1490
22e2c507
JA
1491 cfqq = cfqd->active_queue;
1492 if (!cfqq)
1493 goto new_queue;
1da177e4 1494
22e2c507 1495 /*
6d048f53 1496 * The active queue has run out of time, expire it and select new.
22e2c507 1497 */
b029195d 1498 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1499 goto expire;
1da177e4 1500
22e2c507 1501 /*
6d048f53
JA
1502 * The active queue has requests and isn't expired, allow it to
1503 * dispatch.
22e2c507 1504 */
dd67d051 1505 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1506 goto keep_queue;
6d048f53 1507
a36e71f9
JA
1508 /*
1509 * If another queue has a request waiting within our mean seek
1510 * distance, let it run. The expire code will check for close
1511 * cooperators and put the close queue at the front of the service
df5fe3e8 1512 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1513 */
b3b6d040 1514 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1515 if (new_cfqq) {
1516 if (!cfqq->new_cfqq)
1517 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1518 goto expire;
df5fe3e8 1519 }
a36e71f9 1520
6d048f53
JA
1521 /*
1522 * No requests pending. If the active queue still has requests in
1523 * flight or is idling for a new request, allow either of these
1524 * conditions to happen (or time out) before selecting a new queue.
1525 */
cc197479 1526 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1527 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1528 cfqq = NULL;
1529 goto keep_queue;
22e2c507
JA
1530 }
1531
3b18152c 1532expire:
6084cdda 1533 cfq_slice_expired(cfqd, 0);
3b18152c 1534new_queue:
718eee05
CZ
1535 /*
1536 * Current queue expired. Check if we have to switch to a new
1537 * service tree
1538 */
1539 if (!new_cfqq)
1540 choose_service_tree(cfqd);
1541
a36e71f9 1542 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1543keep_queue:
3b18152c 1544 return cfqq;
22e2c507
JA
1545}
1546
febffd61 1547static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1548{
1549 int dispatched = 0;
1550
1551 while (cfqq->next_rq) {
1552 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1553 dispatched++;
1554 }
1555
1556 BUG_ON(!list_empty(&cfqq->fifo));
1557 return dispatched;
1558}
1559
498d3aa2
JA
1560/*
1561 * Drain our current requests. Used for barriers and when switching
1562 * io schedulers on-the-fly.
1563 */
d9e7620e 1564static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1565{
0871714e 1566 struct cfq_queue *cfqq;
d9e7620e 1567 int dispatched = 0;
718eee05 1568 int i, j;
c0324a02 1569 for (i = 0; i < 2; ++i)
718eee05
CZ
1570 for (j = 0; j < 3; ++j)
1571 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1572 != NULL)
1573 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1574
c0324a02 1575 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
d9e7620e 1576 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1577
6084cdda 1578 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1579
1580 BUG_ON(cfqd->busy_queues);
1581
6923715a 1582 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1583 return dispatched;
1584}
1585
0b182d61 1586static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1587{
2f5cb738 1588 unsigned int max_dispatch;
22e2c507 1589
5ad531db
JA
1590 /*
1591 * Drain async requests before we start sync IO
1592 */
a6d44e98 1593 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1594 return false;
5ad531db 1595
2f5cb738
JA
1596 /*
1597 * If this is an async queue and we have sync IO in flight, let it wait
1598 */
1599 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1600 return false;
2f5cb738
JA
1601
1602 max_dispatch = cfqd->cfq_quantum;
1603 if (cfq_class_idle(cfqq))
1604 max_dispatch = 1;
b4878f24 1605
2f5cb738
JA
1606 /*
1607 * Does this cfqq already have too much IO in flight?
1608 */
1609 if (cfqq->dispatched >= max_dispatch) {
1610 /*
1611 * idle queue must always only have a single IO in flight
1612 */
3ed9a296 1613 if (cfq_class_idle(cfqq))
0b182d61 1614 return false;
3ed9a296 1615
2f5cb738
JA
1616 /*
1617 * We have other queues, don't allow more IO from this one
1618 */
1619 if (cfqd->busy_queues > 1)
0b182d61 1620 return false;
9ede209e 1621
365722bb 1622 /*
8e296755 1623 * Sole queue user, allow bigger slice
365722bb 1624 */
8e296755
JA
1625 max_dispatch *= 4;
1626 }
1627
1628 /*
1629 * Async queues must wait a bit before being allowed dispatch.
1630 * We also ramp up the dispatch depth gradually for async IO,
1631 * based on the last sync IO we serviced
1632 */
963b72fc 1633 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1634 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1635 unsigned int depth;
365722bb 1636
61f0c1dc 1637 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1638 if (!depth && !cfqq->dispatched)
1639 depth = 1;
8e296755
JA
1640 if (depth < max_dispatch)
1641 max_dispatch = depth;
2f5cb738 1642 }
3ed9a296 1643
0b182d61
JA
1644 /*
1645 * If we're below the current max, allow a dispatch
1646 */
1647 return cfqq->dispatched < max_dispatch;
1648}
1649
1650/*
1651 * Dispatch a request from cfqq, moving them to the request queue
1652 * dispatch list.
1653 */
1654static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1655{
1656 struct request *rq;
1657
1658 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1659
1660 if (!cfq_may_dispatch(cfqd, cfqq))
1661 return false;
1662
1663 /*
1664 * follow expired path, else get first next available
1665 */
1666 rq = cfq_check_fifo(cfqq);
1667 if (!rq)
1668 rq = cfqq->next_rq;
1669
1670 /*
1671 * insert request into driver dispatch list
1672 */
1673 cfq_dispatch_insert(cfqd->queue, rq);
1674
1675 if (!cfqd->active_cic) {
1676 struct cfq_io_context *cic = RQ_CIC(rq);
1677
1678 atomic_long_inc(&cic->ioc->refcount);
1679 cfqd->active_cic = cic;
1680 }
1681
1682 return true;
1683}
1684
1685/*
1686 * Find the cfqq that we need to service and move a request from that to the
1687 * dispatch list
1688 */
1689static int cfq_dispatch_requests(struct request_queue *q, int force)
1690{
1691 struct cfq_data *cfqd = q->elevator->elevator_data;
1692 struct cfq_queue *cfqq;
1693
1694 if (!cfqd->busy_queues)
1695 return 0;
1696
1697 if (unlikely(force))
1698 return cfq_forced_dispatch(cfqd);
1699
1700 cfqq = cfq_select_queue(cfqd);
1701 if (!cfqq)
8e296755
JA
1702 return 0;
1703
2f5cb738 1704 /*
0b182d61 1705 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1706 */
0b182d61
JA
1707 if (!cfq_dispatch_request(cfqd, cfqq))
1708 return 0;
1709
2f5cb738 1710 cfqq->slice_dispatch++;
b029195d 1711 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1712
2f5cb738
JA
1713 /*
1714 * expire an async queue immediately if it has used up its slice. idle
1715 * queue always expire after 1 dispatch round.
1716 */
1717 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1718 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1719 cfq_class_idle(cfqq))) {
1720 cfqq->slice_end = jiffies + 1;
1721 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1722 }
1723
b217a903 1724 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1725 return 1;
1da177e4
LT
1726}
1727
1da177e4 1728/*
5e705374
JA
1729 * task holds one reference to the queue, dropped when task exits. each rq
1730 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1731 *
1732 * queue lock must be held here.
1733 */
1734static void cfq_put_queue(struct cfq_queue *cfqq)
1735{
22e2c507
JA
1736 struct cfq_data *cfqd = cfqq->cfqd;
1737
1738 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1739
1740 if (!atomic_dec_and_test(&cfqq->ref))
1741 return;
1742
7b679138 1743 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1744 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1745 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1746 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1747
28f95cbc 1748 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1749 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1750 cfq_schedule_dispatch(cfqd);
28f95cbc 1751 }
22e2c507 1752
1da177e4
LT
1753 kmem_cache_free(cfq_pool, cfqq);
1754}
1755
d6de8be7
JA
1756/*
1757 * Must always be called with the rcu_read_lock() held
1758 */
07416d29
JA
1759static void
1760__call_for_each_cic(struct io_context *ioc,
1761 void (*func)(struct io_context *, struct cfq_io_context *))
1762{
1763 struct cfq_io_context *cic;
1764 struct hlist_node *n;
1765
1766 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1767 func(ioc, cic);
1768}
1769
4ac845a2 1770/*
34e6bbf2 1771 * Call func for each cic attached to this ioc.
4ac845a2 1772 */
34e6bbf2 1773static void
4ac845a2
JA
1774call_for_each_cic(struct io_context *ioc,
1775 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1776{
4ac845a2 1777 rcu_read_lock();
07416d29 1778 __call_for_each_cic(ioc, func);
4ac845a2 1779 rcu_read_unlock();
34e6bbf2
FC
1780}
1781
1782static void cfq_cic_free_rcu(struct rcu_head *head)
1783{
1784 struct cfq_io_context *cic;
1785
1786 cic = container_of(head, struct cfq_io_context, rcu_head);
1787
1788 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1789 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1790
9a11b4ed
JA
1791 if (ioc_gone) {
1792 /*
1793 * CFQ scheduler is exiting, grab exit lock and check
1794 * the pending io context count. If it hits zero,
1795 * complete ioc_gone and set it back to NULL
1796 */
1797 spin_lock(&ioc_gone_lock);
245b2e70 1798 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1799 complete(ioc_gone);
1800 ioc_gone = NULL;
1801 }
1802 spin_unlock(&ioc_gone_lock);
1803 }
34e6bbf2 1804}
4ac845a2 1805
34e6bbf2
FC
1806static void cfq_cic_free(struct cfq_io_context *cic)
1807{
1808 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1809}
1810
1811static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1812{
1813 unsigned long flags;
1814
1815 BUG_ON(!cic->dead_key);
1816
1817 spin_lock_irqsave(&ioc->lock, flags);
1818 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1819 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1820 spin_unlock_irqrestore(&ioc->lock, flags);
1821
34e6bbf2 1822 cfq_cic_free(cic);
4ac845a2
JA
1823}
1824
d6de8be7
JA
1825/*
1826 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1827 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1828 * and ->trim() which is called with the task lock held
1829 */
4ac845a2
JA
1830static void cfq_free_io_context(struct io_context *ioc)
1831{
4ac845a2 1832 /*
34e6bbf2
FC
1833 * ioc->refcount is zero here, or we are called from elv_unregister(),
1834 * so no more cic's are allowed to be linked into this ioc. So it
1835 * should be ok to iterate over the known list, we will see all cic's
1836 * since no new ones are added.
4ac845a2 1837 */
07416d29 1838 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1839}
1840
89850f7e 1841static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1842{
df5fe3e8
JM
1843 struct cfq_queue *__cfqq, *next;
1844
28f95cbc 1845 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1846 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1847 cfq_schedule_dispatch(cfqd);
28f95cbc 1848 }
22e2c507 1849
df5fe3e8
JM
1850 /*
1851 * If this queue was scheduled to merge with another queue, be
1852 * sure to drop the reference taken on that queue (and others in
1853 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1854 */
1855 __cfqq = cfqq->new_cfqq;
1856 while (__cfqq) {
1857 if (__cfqq == cfqq) {
1858 WARN(1, "cfqq->new_cfqq loop detected\n");
1859 break;
1860 }
1861 next = __cfqq->new_cfqq;
1862 cfq_put_queue(__cfqq);
1863 __cfqq = next;
1864 }
1865
89850f7e
JA
1866 cfq_put_queue(cfqq);
1867}
22e2c507 1868
89850f7e
JA
1869static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1870 struct cfq_io_context *cic)
1871{
4faa3c81
FC
1872 struct io_context *ioc = cic->ioc;
1873
fc46379d 1874 list_del_init(&cic->queue_list);
4ac845a2
JA
1875
1876 /*
1877 * Make sure key == NULL is seen for dead queues
1878 */
fc46379d 1879 smp_wmb();
4ac845a2 1880 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1881 cic->key = NULL;
1882
4faa3c81
FC
1883 if (ioc->ioc_data == cic)
1884 rcu_assign_pointer(ioc->ioc_data, NULL);
1885
ff6657c6
JA
1886 if (cic->cfqq[BLK_RW_ASYNC]) {
1887 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1888 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1889 }
1890
ff6657c6
JA
1891 if (cic->cfqq[BLK_RW_SYNC]) {
1892 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1893 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1894 }
89850f7e
JA
1895}
1896
4ac845a2
JA
1897static void cfq_exit_single_io_context(struct io_context *ioc,
1898 struct cfq_io_context *cic)
89850f7e
JA
1899{
1900 struct cfq_data *cfqd = cic->key;
1901
89850f7e 1902 if (cfqd) {
165125e1 1903 struct request_queue *q = cfqd->queue;
4ac845a2 1904 unsigned long flags;
89850f7e 1905
4ac845a2 1906 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1907
1908 /*
1909 * Ensure we get a fresh copy of the ->key to prevent
1910 * race between exiting task and queue
1911 */
1912 smp_read_barrier_depends();
1913 if (cic->key)
1914 __cfq_exit_single_io_context(cfqd, cic);
1915
4ac845a2 1916 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1917 }
1da177e4
LT
1918}
1919
498d3aa2
JA
1920/*
1921 * The process that ioc belongs to has exited, we need to clean up
1922 * and put the internal structures we have that belongs to that process.
1923 */
e2d74ac0 1924static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1925{
4ac845a2 1926 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1927}
1928
22e2c507 1929static struct cfq_io_context *
8267e268 1930cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1931{
b5deef90 1932 struct cfq_io_context *cic;
1da177e4 1933
94f6030c
CL
1934 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1935 cfqd->queue->node);
1da177e4 1936 if (cic) {
22e2c507 1937 cic->last_end_request = jiffies;
553698f9 1938 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1939 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1940 cic->dtor = cfq_free_io_context;
1941 cic->exit = cfq_exit_io_context;
245b2e70 1942 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1943 }
1944
1945 return cic;
1946}
1947
fd0928df 1948static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1949{
1950 struct task_struct *tsk = current;
1951 int ioprio_class;
1952
3b18152c 1953 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1954 return;
1955
fd0928df 1956 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1957 switch (ioprio_class) {
fe094d98
JA
1958 default:
1959 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1960 case IOPRIO_CLASS_NONE:
1961 /*
6d63c275 1962 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1963 */
1964 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1965 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1966 break;
1967 case IOPRIO_CLASS_RT:
1968 cfqq->ioprio = task_ioprio(ioc);
1969 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1970 break;
1971 case IOPRIO_CLASS_BE:
1972 cfqq->ioprio = task_ioprio(ioc);
1973 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1974 break;
1975 case IOPRIO_CLASS_IDLE:
1976 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1977 cfqq->ioprio = 7;
1978 cfq_clear_cfqq_idle_window(cfqq);
1979 break;
22e2c507
JA
1980 }
1981
1982 /*
1983 * keep track of original prio settings in case we have to temporarily
1984 * elevate the priority of this queue
1985 */
1986 cfqq->org_ioprio = cfqq->ioprio;
1987 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1988 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1989}
1990
febffd61 1991static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1992{
478a82b0
AV
1993 struct cfq_data *cfqd = cic->key;
1994 struct cfq_queue *cfqq;
c1b707d2 1995 unsigned long flags;
35e6077c 1996
caaa5f9f
JA
1997 if (unlikely(!cfqd))
1998 return;
1999
c1b707d2 2000 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2001
ff6657c6 2002 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2003 if (cfqq) {
2004 struct cfq_queue *new_cfqq;
ff6657c6
JA
2005 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2006 GFP_ATOMIC);
caaa5f9f 2007 if (new_cfqq) {
ff6657c6 2008 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2009 cfq_put_queue(cfqq);
2010 }
22e2c507 2011 }
caaa5f9f 2012
ff6657c6 2013 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2014 if (cfqq)
2015 cfq_mark_cfqq_prio_changed(cfqq);
2016
c1b707d2 2017 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2018}
2019
fc46379d 2020static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2021{
4ac845a2 2022 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2023 ioc->ioprio_changed = 0;
22e2c507
JA
2024}
2025
d5036d77 2026static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2027 pid_t pid, bool is_sync)
d5036d77
JA
2028{
2029 RB_CLEAR_NODE(&cfqq->rb_node);
2030 RB_CLEAR_NODE(&cfqq->p_node);
2031 INIT_LIST_HEAD(&cfqq->fifo);
2032
2033 atomic_set(&cfqq->ref, 0);
2034 cfqq->cfqd = cfqd;
2035
2036 cfq_mark_cfqq_prio_changed(cfqq);
2037
2038 if (is_sync) {
2039 if (!cfq_class_idle(cfqq))
2040 cfq_mark_cfqq_idle_window(cfqq);
2041 cfq_mark_cfqq_sync(cfqq);
2042 }
2043 cfqq->pid = pid;
2044}
2045
22e2c507 2046static struct cfq_queue *
a6151c3a 2047cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2048 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2049{
22e2c507 2050 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2051 struct cfq_io_context *cic;
22e2c507
JA
2052
2053retry:
4ac845a2 2054 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2055 /* cic always exists here */
2056 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2057
6118b70b
JA
2058 /*
2059 * Always try a new alloc if we fell back to the OOM cfqq
2060 * originally, since it should just be a temporary situation.
2061 */
2062 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2063 cfqq = NULL;
22e2c507
JA
2064 if (new_cfqq) {
2065 cfqq = new_cfqq;
2066 new_cfqq = NULL;
2067 } else if (gfp_mask & __GFP_WAIT) {
2068 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2069 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2070 gfp_mask | __GFP_ZERO,
94f6030c 2071 cfqd->queue->node);
22e2c507 2072 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2073 if (new_cfqq)
2074 goto retry;
22e2c507 2075 } else {
94f6030c
CL
2076 cfqq = kmem_cache_alloc_node(cfq_pool,
2077 gfp_mask | __GFP_ZERO,
2078 cfqd->queue->node);
22e2c507
JA
2079 }
2080
6118b70b
JA
2081 if (cfqq) {
2082 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2083 cfq_init_prio_data(cfqq, ioc);
2084 cfq_log_cfqq(cfqd, cfqq, "alloced");
2085 } else
2086 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2087 }
2088
2089 if (new_cfqq)
2090 kmem_cache_free(cfq_pool, new_cfqq);
2091
22e2c507
JA
2092 return cfqq;
2093}
2094
c2dea2d1
VT
2095static struct cfq_queue **
2096cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2097{
fe094d98 2098 switch (ioprio_class) {
c2dea2d1
VT
2099 case IOPRIO_CLASS_RT:
2100 return &cfqd->async_cfqq[0][ioprio];
2101 case IOPRIO_CLASS_BE:
2102 return &cfqd->async_cfqq[1][ioprio];
2103 case IOPRIO_CLASS_IDLE:
2104 return &cfqd->async_idle_cfqq;
2105 default:
2106 BUG();
2107 }
2108}
2109
15c31be4 2110static struct cfq_queue *
a6151c3a 2111cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2112 gfp_t gfp_mask)
2113{
fd0928df
JA
2114 const int ioprio = task_ioprio(ioc);
2115 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2116 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2117 struct cfq_queue *cfqq = NULL;
2118
c2dea2d1
VT
2119 if (!is_sync) {
2120 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2121 cfqq = *async_cfqq;
2122 }
2123
6118b70b 2124 if (!cfqq)
fd0928df 2125 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2126
2127 /*
2128 * pin the queue now that it's allocated, scheduler exit will prune it
2129 */
c2dea2d1 2130 if (!is_sync && !(*async_cfqq)) {
15c31be4 2131 atomic_inc(&cfqq->ref);
c2dea2d1 2132 *async_cfqq = cfqq;
15c31be4
JA
2133 }
2134
2135 atomic_inc(&cfqq->ref);
2136 return cfqq;
2137}
2138
498d3aa2
JA
2139/*
2140 * We drop cfq io contexts lazily, so we may find a dead one.
2141 */
dbecf3ab 2142static void
4ac845a2
JA
2143cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2144 struct cfq_io_context *cic)
dbecf3ab 2145{
4ac845a2
JA
2146 unsigned long flags;
2147
fc46379d 2148 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2149
4ac845a2
JA
2150 spin_lock_irqsave(&ioc->lock, flags);
2151
4faa3c81 2152 BUG_ON(ioc->ioc_data == cic);
597bc485 2153
4ac845a2 2154 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2155 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2156 spin_unlock_irqrestore(&ioc->lock, flags);
2157
2158 cfq_cic_free(cic);
dbecf3ab
OH
2159}
2160
e2d74ac0 2161static struct cfq_io_context *
4ac845a2 2162cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2163{
e2d74ac0 2164 struct cfq_io_context *cic;
d6de8be7 2165 unsigned long flags;
4ac845a2 2166 void *k;
e2d74ac0 2167
91fac317
VT
2168 if (unlikely(!ioc))
2169 return NULL;
2170
d6de8be7
JA
2171 rcu_read_lock();
2172
597bc485
JA
2173 /*
2174 * we maintain a last-hit cache, to avoid browsing over the tree
2175 */
4ac845a2 2176 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2177 if (cic && cic->key == cfqd) {
2178 rcu_read_unlock();
597bc485 2179 return cic;
d6de8be7 2180 }
597bc485 2181
4ac845a2 2182 do {
4ac845a2
JA
2183 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2184 rcu_read_unlock();
2185 if (!cic)
2186 break;
be3b0753
OH
2187 /* ->key must be copied to avoid race with cfq_exit_queue() */
2188 k = cic->key;
2189 if (unlikely(!k)) {
4ac845a2 2190 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2191 rcu_read_lock();
4ac845a2 2192 continue;
dbecf3ab 2193 }
e2d74ac0 2194
d6de8be7 2195 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2196 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2197 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2198 break;
2199 } while (1);
e2d74ac0 2200
4ac845a2 2201 return cic;
e2d74ac0
JA
2202}
2203
4ac845a2
JA
2204/*
2205 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2206 * the process specific cfq io context when entered from the block layer.
2207 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2208 */
febffd61
JA
2209static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2210 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2211{
0261d688 2212 unsigned long flags;
4ac845a2 2213 int ret;
e2d74ac0 2214
4ac845a2
JA
2215 ret = radix_tree_preload(gfp_mask);
2216 if (!ret) {
2217 cic->ioc = ioc;
2218 cic->key = cfqd;
e2d74ac0 2219
4ac845a2
JA
2220 spin_lock_irqsave(&ioc->lock, flags);
2221 ret = radix_tree_insert(&ioc->radix_root,
2222 (unsigned long) cfqd, cic);
ffc4e759
JA
2223 if (!ret)
2224 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2225 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2226
4ac845a2
JA
2227 radix_tree_preload_end();
2228
2229 if (!ret) {
2230 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2231 list_add(&cic->queue_list, &cfqd->cic_list);
2232 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2233 }
e2d74ac0
JA
2234 }
2235
4ac845a2
JA
2236 if (ret)
2237 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2238
4ac845a2 2239 return ret;
e2d74ac0
JA
2240}
2241
1da177e4
LT
2242/*
2243 * Setup general io context and cfq io context. There can be several cfq
2244 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2245 * than one device managed by cfq.
1da177e4
LT
2246 */
2247static struct cfq_io_context *
e2d74ac0 2248cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2249{
22e2c507 2250 struct io_context *ioc = NULL;
1da177e4 2251 struct cfq_io_context *cic;
1da177e4 2252
22e2c507 2253 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2254
b5deef90 2255 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2256 if (!ioc)
2257 return NULL;
2258
4ac845a2 2259 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2260 if (cic)
2261 goto out;
1da177e4 2262
e2d74ac0
JA
2263 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2264 if (cic == NULL)
2265 goto err;
1da177e4 2266
4ac845a2
JA
2267 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2268 goto err_free;
2269
1da177e4 2270out:
fc46379d
JA
2271 smp_read_barrier_depends();
2272 if (unlikely(ioc->ioprio_changed))
2273 cfq_ioc_set_ioprio(ioc);
2274
1da177e4 2275 return cic;
4ac845a2
JA
2276err_free:
2277 cfq_cic_free(cic);
1da177e4
LT
2278err:
2279 put_io_context(ioc);
2280 return NULL;
2281}
2282
22e2c507
JA
2283static void
2284cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2285{
aaf1228d
JA
2286 unsigned long elapsed = jiffies - cic->last_end_request;
2287 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2288
22e2c507
JA
2289 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2290 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2291 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2292}
1da177e4 2293
206dc69b 2294static void
b2c18e1e 2295cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2296 struct request *rq)
206dc69b
JA
2297{
2298 sector_t sdist;
2299 u64 total;
2300
b2c18e1e 2301 if (!cfqq->last_request_pos)
4d00aa47 2302 sdist = 0;
b2c18e1e
JM
2303 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2304 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2305 else
b2c18e1e 2306 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2307
2308 /*
2309 * Don't allow the seek distance to get too large from the
2310 * odd fragment, pagein, etc
2311 */
b2c18e1e
JM
2312 if (cfqq->seek_samples <= 60) /* second&third seek */
2313 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2314 else
b2c18e1e 2315 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2316
b2c18e1e
JM
2317 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2318 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2319 total = cfqq->seek_total + (cfqq->seek_samples/2);
2320 do_div(total, cfqq->seek_samples);
2321 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2322
2323 /*
2324 * If this cfqq is shared between multiple processes, check to
2325 * make sure that those processes are still issuing I/Os within
2326 * the mean seek distance. If not, it may be time to break the
2327 * queues apart again.
2328 */
2329 if (cfq_cfqq_coop(cfqq)) {
2330 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2331 cfqq->seeky_start = jiffies;
2332 else if (!CFQQ_SEEKY(cfqq))
2333 cfqq->seeky_start = 0;
2334 }
206dc69b 2335}
1da177e4 2336
22e2c507
JA
2337/*
2338 * Disable idle window if the process thinks too long or seeks so much that
2339 * it doesn't matter
2340 */
2341static void
2342cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2343 struct cfq_io_context *cic)
2344{
7b679138 2345 int old_idle, enable_idle;
1be92f2f 2346
0871714e
JA
2347 /*
2348 * Don't idle for async or idle io prio class
2349 */
2350 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2351 return;
2352
c265a7f4 2353 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2354
76280aff
CZ
2355 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2356 cfq_mark_cfqq_deep(cfqq);
2357
66dac98e 2358 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2359 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2360 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2361 enable_idle = 0;
2362 else if (sample_valid(cic->ttime_samples)) {
718eee05 2363 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2364 enable_idle = 0;
2365 else
2366 enable_idle = 1;
1da177e4
LT
2367 }
2368
7b679138
JA
2369 if (old_idle != enable_idle) {
2370 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2371 if (enable_idle)
2372 cfq_mark_cfqq_idle_window(cfqq);
2373 else
2374 cfq_clear_cfqq_idle_window(cfqq);
2375 }
22e2c507 2376}
1da177e4 2377
22e2c507
JA
2378/*
2379 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2380 * no or if we aren't sure, a 1 will cause a preempt.
2381 */
a6151c3a 2382static bool
22e2c507 2383cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2384 struct request *rq)
22e2c507 2385{
6d048f53 2386 struct cfq_queue *cfqq;
22e2c507 2387
6d048f53
JA
2388 cfqq = cfqd->active_queue;
2389 if (!cfqq)
a6151c3a 2390 return false;
22e2c507 2391
6d048f53 2392 if (cfq_slice_used(cfqq))
a6151c3a 2393 return true;
6d048f53
JA
2394
2395 if (cfq_class_idle(new_cfqq))
a6151c3a 2396 return false;
22e2c507
JA
2397
2398 if (cfq_class_idle(cfqq))
a6151c3a 2399 return true;
1e3335de 2400
e4a22919
CZ
2401 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2402 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2403 new_cfqq->service_tree->count == 1)
718eee05
CZ
2404 return true;
2405
374f84ac
JA
2406 /*
2407 * if the new request is sync, but the currently running queue is
2408 * not, let the sync request have priority.
2409 */
5e705374 2410 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2411 return true;
1e3335de 2412
374f84ac
JA
2413 /*
2414 * So both queues are sync. Let the new request get disk time if
2415 * it's a metadata request and the current queue is doing regular IO.
2416 */
2417 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2418 return true;
22e2c507 2419
3a9a3f6c
DS
2420 /*
2421 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2422 */
2423 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2424 return true;
3a9a3f6c 2425
1e3335de 2426 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2427 return false;
1e3335de
JA
2428
2429 /*
2430 * if this request is as-good as one we would expect from the
2431 * current cfqq, let it preempt
2432 */
e00ef799 2433 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2434 return true;
1e3335de 2435
a6151c3a 2436 return false;
22e2c507
JA
2437}
2438
2439/*
2440 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2441 * let it have half of its nominal slice.
2442 */
2443static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2444{
7b679138 2445 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2446 cfq_slice_expired(cfqd, 1);
22e2c507 2447
bf572256
JA
2448 /*
2449 * Put the new queue at the front of the of the current list,
2450 * so we know that it will be selected next.
2451 */
2452 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2453
2454 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2455
44f7c160
JA
2456 cfqq->slice_end = 0;
2457 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2458}
2459
22e2c507 2460/*
5e705374 2461 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2462 * something we should do about it
2463 */
2464static void
5e705374
JA
2465cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2466 struct request *rq)
22e2c507 2467{
5e705374 2468 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2469
45333d5a 2470 cfqd->rq_queued++;
374f84ac
JA
2471 if (rq_is_meta(rq))
2472 cfqq->meta_pending++;
2473
9c2c38a1 2474 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2475 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2476 cfq_update_idle_window(cfqd, cfqq, cic);
2477
b2c18e1e 2478 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2479
2480 if (cfqq == cfqd->active_queue) {
2481 /*
b029195d
JA
2482 * Remember that we saw a request from this process, but
2483 * don't start queuing just yet. Otherwise we risk seeing lots
2484 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2485 * and merging. If the request is already larger than a single
2486 * page, let it rip immediately. For that case we assume that
2d870722
JA
2487 * merging is already done. Ditto for a busy system that
2488 * has other work pending, don't risk delaying until the
2489 * idle timer unplug to continue working.
22e2c507 2490 */
d6ceb25e 2491 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2492 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2493 cfqd->busy_queues > 1) {
d6ceb25e 2494 del_timer(&cfqd->idle_slice_timer);
a7f55792 2495 __blk_run_queue(cfqd->queue);
d6ceb25e 2496 }
b029195d 2497 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2498 }
5e705374 2499 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2500 /*
2501 * not the active queue - expire current slice if it is
2502 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2503 * has some old slice time left and is of higher priority or
2504 * this new queue is RT and the current one is BE
22e2c507
JA
2505 */
2506 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2507 __blk_run_queue(cfqd->queue);
22e2c507 2508 }
1da177e4
LT
2509}
2510
165125e1 2511static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2512{
b4878f24 2513 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2514 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2515
7b679138 2516 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2517 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2518
30996f40 2519 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2520 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2521 cfq_add_rq_rb(rq);
22e2c507 2522
5e705374 2523 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2524}
2525
45333d5a
AC
2526/*
2527 * Update hw_tag based on peak queue depth over 50 samples under
2528 * sufficient load.
2529 */
2530static void cfq_update_hw_tag(struct cfq_data *cfqd)
2531{
1a1238a7
SL
2532 struct cfq_queue *cfqq = cfqd->active_queue;
2533
e459dd08
CZ
2534 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2535 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2536
2537 if (cfqd->hw_tag == 1)
2538 return;
45333d5a
AC
2539
2540 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2541 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2542 return;
2543
1a1238a7
SL
2544 /*
2545 * If active queue hasn't enough requests and can idle, cfq might not
2546 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2547 * case
2548 */
2549 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2550 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2551 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2552 return;
2553
45333d5a
AC
2554 if (cfqd->hw_tag_samples++ < 50)
2555 return;
2556
e459dd08 2557 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2558 cfqd->hw_tag = 1;
2559 else
2560 cfqd->hw_tag = 0;
45333d5a
AC
2561}
2562
165125e1 2563static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2564{
5e705374 2565 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2566 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2567 const int sync = rq_is_sync(rq);
b4878f24 2568 unsigned long now;
1da177e4 2569
b4878f24 2570 now = jiffies;
7b679138 2571 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2572
45333d5a
AC
2573 cfq_update_hw_tag(cfqd);
2574
5ad531db 2575 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2576 WARN_ON(!cfqq->dispatched);
5ad531db 2577 cfqd->rq_in_driver[sync]--;
6d048f53 2578 cfqq->dispatched--;
1da177e4 2579
3ed9a296
JA
2580 if (cfq_cfqq_sync(cfqq))
2581 cfqd->sync_flight--;
2582
365722bb 2583 if (sync) {
5e705374 2584 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2585 cfqd->last_end_sync_rq = now;
2586 }
caaa5f9f
JA
2587
2588 /*
2589 * If this is the active queue, check if it needs to be expired,
2590 * or if we want to idle in case it has no pending requests.
2591 */
2592 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2593 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2594
44f7c160
JA
2595 if (cfq_cfqq_slice_new(cfqq)) {
2596 cfq_set_prio_slice(cfqd, cfqq);
2597 cfq_clear_cfqq_slice_new(cfqq);
2598 }
a36e71f9
JA
2599 /*
2600 * If there are no requests waiting in this queue, and
2601 * there are other queues ready to issue requests, AND
2602 * those other queues are issuing requests within our
2603 * mean seek distance, give them a chance to run instead
2604 * of idling.
2605 */
0871714e 2606 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2607 cfq_slice_expired(cfqd, 1);
b3b6d040 2608 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2609 sync && !rq_noidle(rq))
6d048f53 2610 cfq_arm_slice_timer(cfqd);
caaa5f9f 2611 }
6d048f53 2612
5ad531db 2613 if (!rq_in_driver(cfqd))
23e018a1 2614 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2615}
2616
22e2c507
JA
2617/*
2618 * we temporarily boost lower priority queues if they are holding fs exclusive
2619 * resources. they are boosted to normal prio (CLASS_BE/4)
2620 */
2621static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2622{
22e2c507
JA
2623 if (has_fs_excl()) {
2624 /*
2625 * boost idle prio on transactions that would lock out other
2626 * users of the filesystem
2627 */
2628 if (cfq_class_idle(cfqq))
2629 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2630 if (cfqq->ioprio > IOPRIO_NORM)
2631 cfqq->ioprio = IOPRIO_NORM;
2632 } else {
2633 /*
dddb7451 2634 * unboost the queue (if needed)
22e2c507 2635 */
dddb7451
CZ
2636 cfqq->ioprio_class = cfqq->org_ioprio_class;
2637 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2638 }
22e2c507 2639}
1da177e4 2640
89850f7e 2641static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2642{
1b379d8d 2643 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2644 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2645 return ELV_MQUEUE_MUST;
3b18152c 2646 }
1da177e4 2647
22e2c507 2648 return ELV_MQUEUE_MAY;
22e2c507
JA
2649}
2650
165125e1 2651static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2652{
2653 struct cfq_data *cfqd = q->elevator->elevator_data;
2654 struct task_struct *tsk = current;
91fac317 2655 struct cfq_io_context *cic;
22e2c507
JA
2656 struct cfq_queue *cfqq;
2657
2658 /*
2659 * don't force setup of a queue from here, as a call to may_queue
2660 * does not necessarily imply that a request actually will be queued.
2661 * so just lookup a possibly existing queue, or return 'may queue'
2662 * if that fails
2663 */
4ac845a2 2664 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2665 if (!cic)
2666 return ELV_MQUEUE_MAY;
2667
b0b78f81 2668 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2669 if (cfqq) {
fd0928df 2670 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2671 cfq_prio_boost(cfqq);
2672
89850f7e 2673 return __cfq_may_queue(cfqq);
22e2c507
JA
2674 }
2675
2676 return ELV_MQUEUE_MAY;
1da177e4
LT
2677}
2678
1da177e4
LT
2679/*
2680 * queue lock held here
2681 */
bb37b94c 2682static void cfq_put_request(struct request *rq)
1da177e4 2683{
5e705374 2684 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2685
5e705374 2686 if (cfqq) {
22e2c507 2687 const int rw = rq_data_dir(rq);
1da177e4 2688
22e2c507
JA
2689 BUG_ON(!cfqq->allocated[rw]);
2690 cfqq->allocated[rw]--;
1da177e4 2691
5e705374 2692 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2693
1da177e4 2694 rq->elevator_private = NULL;
5e705374 2695 rq->elevator_private2 = NULL;
1da177e4 2696
1da177e4
LT
2697 cfq_put_queue(cfqq);
2698 }
2699}
2700
df5fe3e8
JM
2701static struct cfq_queue *
2702cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2703 struct cfq_queue *cfqq)
2704{
2705 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2706 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2707 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2708 cfq_put_queue(cfqq);
2709 return cic_to_cfqq(cic, 1);
2710}
2711
e6c5bc73
JM
2712static int should_split_cfqq(struct cfq_queue *cfqq)
2713{
2714 if (cfqq->seeky_start &&
2715 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2716 return 1;
2717 return 0;
2718}
2719
2720/*
2721 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2722 * was the last process referring to said cfqq.
2723 */
2724static struct cfq_queue *
2725split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2726{
2727 if (cfqq_process_refs(cfqq) == 1) {
2728 cfqq->seeky_start = 0;
2729 cfqq->pid = current->pid;
2730 cfq_clear_cfqq_coop(cfqq);
2731 return cfqq;
2732 }
2733
2734 cic_set_cfqq(cic, NULL, 1);
2735 cfq_put_queue(cfqq);
2736 return NULL;
2737}
1da177e4 2738/*
22e2c507 2739 * Allocate cfq data structures associated with this request.
1da177e4 2740 */
22e2c507 2741static int
165125e1 2742cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2743{
2744 struct cfq_data *cfqd = q->elevator->elevator_data;
2745 struct cfq_io_context *cic;
2746 const int rw = rq_data_dir(rq);
a6151c3a 2747 const bool is_sync = rq_is_sync(rq);
22e2c507 2748 struct cfq_queue *cfqq;
1da177e4
LT
2749 unsigned long flags;
2750
2751 might_sleep_if(gfp_mask & __GFP_WAIT);
2752
e2d74ac0 2753 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2754
1da177e4
LT
2755 spin_lock_irqsave(q->queue_lock, flags);
2756
22e2c507
JA
2757 if (!cic)
2758 goto queue_fail;
2759
e6c5bc73 2760new_queue:
91fac317 2761 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2762 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2763 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2764 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2765 } else {
e6c5bc73
JM
2766 /*
2767 * If the queue was seeky for too long, break it apart.
2768 */
2769 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2770 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2771 cfqq = split_cfqq(cic, cfqq);
2772 if (!cfqq)
2773 goto new_queue;
2774 }
2775
df5fe3e8
JM
2776 /*
2777 * Check to see if this queue is scheduled to merge with
2778 * another, closely cooperating queue. The merging of
2779 * queues happens here as it must be done in process context.
2780 * The reference on new_cfqq was taken in merge_cfqqs.
2781 */
2782 if (cfqq->new_cfqq)
2783 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2784 }
1da177e4
LT
2785
2786 cfqq->allocated[rw]++;
22e2c507 2787 atomic_inc(&cfqq->ref);
1da177e4 2788
5e705374 2789 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2790
5e705374
JA
2791 rq->elevator_private = cic;
2792 rq->elevator_private2 = cfqq;
2793 return 0;
1da177e4 2794
22e2c507
JA
2795queue_fail:
2796 if (cic)
2797 put_io_context(cic->ioc);
89850f7e 2798
23e018a1 2799 cfq_schedule_dispatch(cfqd);
1da177e4 2800 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2801 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2802 return 1;
2803}
2804
65f27f38 2805static void cfq_kick_queue(struct work_struct *work)
22e2c507 2806{
65f27f38 2807 struct cfq_data *cfqd =
23e018a1 2808 container_of(work, struct cfq_data, unplug_work);
165125e1 2809 struct request_queue *q = cfqd->queue;
22e2c507 2810
40bb54d1 2811 spin_lock_irq(q->queue_lock);
a7f55792 2812 __blk_run_queue(cfqd->queue);
40bb54d1 2813 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2814}
2815
2816/*
2817 * Timer running if the active_queue is currently idling inside its time slice
2818 */
2819static void cfq_idle_slice_timer(unsigned long data)
2820{
2821 struct cfq_data *cfqd = (struct cfq_data *) data;
2822 struct cfq_queue *cfqq;
2823 unsigned long flags;
3c6bd2f8 2824 int timed_out = 1;
22e2c507 2825
7b679138
JA
2826 cfq_log(cfqd, "idle timer fired");
2827
22e2c507
JA
2828 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2829
fe094d98
JA
2830 cfqq = cfqd->active_queue;
2831 if (cfqq) {
3c6bd2f8
JA
2832 timed_out = 0;
2833
b029195d
JA
2834 /*
2835 * We saw a request before the queue expired, let it through
2836 */
2837 if (cfq_cfqq_must_dispatch(cfqq))
2838 goto out_kick;
2839
22e2c507
JA
2840 /*
2841 * expired
2842 */
44f7c160 2843 if (cfq_slice_used(cfqq))
22e2c507
JA
2844 goto expire;
2845
2846 /*
2847 * only expire and reinvoke request handler, if there are
2848 * other queues with pending requests
2849 */
caaa5f9f 2850 if (!cfqd->busy_queues)
22e2c507 2851 goto out_cont;
22e2c507
JA
2852
2853 /*
2854 * not expired and it has a request pending, let it dispatch
2855 */
75e50984 2856 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2857 goto out_kick;
76280aff
CZ
2858
2859 /*
2860 * Queue depth flag is reset only when the idle didn't succeed
2861 */
2862 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
2863 }
2864expire:
6084cdda 2865 cfq_slice_expired(cfqd, timed_out);
22e2c507 2866out_kick:
23e018a1 2867 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2868out_cont:
2869 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2870}
2871
3b18152c
JA
2872static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2873{
2874 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2875 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2876}
22e2c507 2877
c2dea2d1
VT
2878static void cfq_put_async_queues(struct cfq_data *cfqd)
2879{
2880 int i;
2881
2882 for (i = 0; i < IOPRIO_BE_NR; i++) {
2883 if (cfqd->async_cfqq[0][i])
2884 cfq_put_queue(cfqd->async_cfqq[0][i]);
2885 if (cfqd->async_cfqq[1][i])
2886 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2887 }
2389d1ef
ON
2888
2889 if (cfqd->async_idle_cfqq)
2890 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2891}
2892
b374d18a 2893static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2894{
22e2c507 2895 struct cfq_data *cfqd = e->elevator_data;
165125e1 2896 struct request_queue *q = cfqd->queue;
22e2c507 2897
3b18152c 2898 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2899
d9ff4187 2900 spin_lock_irq(q->queue_lock);
e2d74ac0 2901
d9ff4187 2902 if (cfqd->active_queue)
6084cdda 2903 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2904
2905 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2906 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2907 struct cfq_io_context,
2908 queue_list);
89850f7e
JA
2909
2910 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2911 }
e2d74ac0 2912
c2dea2d1 2913 cfq_put_async_queues(cfqd);
15c31be4 2914
d9ff4187 2915 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2916
2917 cfq_shutdown_timer_wq(cfqd);
2918
a90d742e 2919 kfree(cfqd);
1da177e4
LT
2920}
2921
165125e1 2922static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2923{
2924 struct cfq_data *cfqd;
718eee05 2925 int i, j;
1da177e4 2926
94f6030c 2927 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2928 if (!cfqd)
bc1c1169 2929 return NULL;
1da177e4 2930
c0324a02 2931 for (i = 0; i < 2; ++i)
718eee05
CZ
2932 for (j = 0; j < 3; ++j)
2933 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
c0324a02 2934 cfqd->service_tree_idle = CFQ_RB_ROOT;
26a2ac00
JA
2935
2936 /*
2937 * Not strictly needed (since RB_ROOT just clears the node and we
2938 * zeroed cfqd on alloc), but better be safe in case someone decides
2939 * to add magic to the rb code
2940 */
2941 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2942 cfqd->prio_trees[i] = RB_ROOT;
2943
6118b70b
JA
2944 /*
2945 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2946 * Grab a permanent reference to it, so that the normal code flow
2947 * will not attempt to free it.
2948 */
2949 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2950 atomic_inc(&cfqd->oom_cfqq.ref);
2951
d9ff4187 2952 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2953
1da177e4 2954 cfqd->queue = q;
1da177e4 2955
22e2c507
JA
2956 init_timer(&cfqd->idle_slice_timer);
2957 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2958 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2959
23e018a1 2960 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2961
1da177e4 2962 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2963 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2964 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2965 cfqd->cfq_back_max = cfq_back_max;
2966 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2967 cfqd->cfq_slice[0] = cfq_slice_async;
2968 cfqd->cfq_slice[1] = cfq_slice_sync;
2969 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2970 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2971 cfqd->cfq_latency = 1;
e459dd08 2972 cfqd->hw_tag = -1;
365722bb 2973 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2974 return cfqd;
1da177e4
LT
2975}
2976
2977static void cfq_slab_kill(void)
2978{
d6de8be7
JA
2979 /*
2980 * Caller already ensured that pending RCU callbacks are completed,
2981 * so we should have no busy allocations at this point.
2982 */
1da177e4
LT
2983 if (cfq_pool)
2984 kmem_cache_destroy(cfq_pool);
2985 if (cfq_ioc_pool)
2986 kmem_cache_destroy(cfq_ioc_pool);
2987}
2988
2989static int __init cfq_slab_setup(void)
2990{
0a31bd5f 2991 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2992 if (!cfq_pool)
2993 goto fail;
2994
34e6bbf2 2995 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2996 if (!cfq_ioc_pool)
2997 goto fail;
2998
2999 return 0;
3000fail:
3001 cfq_slab_kill();
3002 return -ENOMEM;
3003}
3004
1da177e4
LT
3005/*
3006 * sysfs parts below -->
3007 */
1da177e4
LT
3008static ssize_t
3009cfq_var_show(unsigned int var, char *page)
3010{
3011 return sprintf(page, "%d\n", var);
3012}
3013
3014static ssize_t
3015cfq_var_store(unsigned int *var, const char *page, size_t count)
3016{
3017 char *p = (char *) page;
3018
3019 *var = simple_strtoul(p, &p, 10);
3020 return count;
3021}
3022
1da177e4 3023#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3024static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3025{ \
3d1ab40f 3026 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3027 unsigned int __data = __VAR; \
3028 if (__CONV) \
3029 __data = jiffies_to_msecs(__data); \
3030 return cfq_var_show(__data, (page)); \
3031}
3032SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3033SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3034SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3035SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3036SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3037SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3038SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3039SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3040SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3041SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3042#undef SHOW_FUNCTION
3043
3044#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3045static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3046{ \
3d1ab40f 3047 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3048 unsigned int __data; \
3049 int ret = cfq_var_store(&__data, (page), count); \
3050 if (__data < (MIN)) \
3051 __data = (MIN); \
3052 else if (__data > (MAX)) \
3053 __data = (MAX); \
3054 if (__CONV) \
3055 *(__PTR) = msecs_to_jiffies(__data); \
3056 else \
3057 *(__PTR) = __data; \
3058 return ret; \
3059}
3060STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3061STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3062 UINT_MAX, 1);
3063STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3064 UINT_MAX, 1);
e572ec7e 3065STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3066STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3067 UINT_MAX, 0);
22e2c507
JA
3068STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3069STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3070STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3071STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3072 UINT_MAX, 0);
963b72fc 3073STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3074#undef STORE_FUNCTION
3075
e572ec7e
AV
3076#define CFQ_ATTR(name) \
3077 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3078
3079static struct elv_fs_entry cfq_attrs[] = {
3080 CFQ_ATTR(quantum),
e572ec7e
AV
3081 CFQ_ATTR(fifo_expire_sync),
3082 CFQ_ATTR(fifo_expire_async),
3083 CFQ_ATTR(back_seek_max),
3084 CFQ_ATTR(back_seek_penalty),
3085 CFQ_ATTR(slice_sync),
3086 CFQ_ATTR(slice_async),
3087 CFQ_ATTR(slice_async_rq),
3088 CFQ_ATTR(slice_idle),
963b72fc 3089 CFQ_ATTR(low_latency),
e572ec7e 3090 __ATTR_NULL
1da177e4
LT
3091};
3092
1da177e4
LT
3093static struct elevator_type iosched_cfq = {
3094 .ops = {
3095 .elevator_merge_fn = cfq_merge,
3096 .elevator_merged_fn = cfq_merged_request,
3097 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3098 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3099 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3100 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3101 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3102 .elevator_deactivate_req_fn = cfq_deactivate_request,
3103 .elevator_queue_empty_fn = cfq_queue_empty,
3104 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3105 .elevator_former_req_fn = elv_rb_former_request,
3106 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3107 .elevator_set_req_fn = cfq_set_request,
3108 .elevator_put_req_fn = cfq_put_request,
3109 .elevator_may_queue_fn = cfq_may_queue,
3110 .elevator_init_fn = cfq_init_queue,
3111 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3112 .trim = cfq_free_io_context,
1da177e4 3113 },
3d1ab40f 3114 .elevator_attrs = cfq_attrs,
1da177e4
LT
3115 .elevator_name = "cfq",
3116 .elevator_owner = THIS_MODULE,
3117};
3118
3119static int __init cfq_init(void)
3120{
22e2c507
JA
3121 /*
3122 * could be 0 on HZ < 1000 setups
3123 */
3124 if (!cfq_slice_async)
3125 cfq_slice_async = 1;
3126 if (!cfq_slice_idle)
3127 cfq_slice_idle = 1;
3128
1da177e4
LT
3129 if (cfq_slab_setup())
3130 return -ENOMEM;
3131
2fdd82bd 3132 elv_register(&iosched_cfq);
1da177e4 3133
2fdd82bd 3134 return 0;
1da177e4
LT
3135}
3136
3137static void __exit cfq_exit(void)
3138{
6e9a4738 3139 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3140 elv_unregister(&iosched_cfq);
334e94de 3141 ioc_gone = &all_gone;
fba82272
OH
3142 /* ioc_gone's update must be visible before reading ioc_count */
3143 smp_wmb();
d6de8be7
JA
3144
3145 /*
3146 * this also protects us from entering cfq_slab_kill() with
3147 * pending RCU callbacks
3148 */
245b2e70 3149 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3150 wait_for_completion(&all_gone);
83521d3e 3151 cfq_slab_kill();
1da177e4
LT
3152}
3153
3154module_init(cfq_init);
3155module_exit(cfq_exit);
3156
3157MODULE_AUTHOR("Jens Axboe");
3158MODULE_LICENSE("GPL");
3159MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");