]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
block, cfq: move io_cq exit/release to blk-ioc.c
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
6e736be7 17#include "blk.h"
e98ef89b 18#include "cfq.h"
1da177e4
LT
19
20/*
21 * tunables
22 */
fe094d98 23/* max queue in one round of service */
abc3c744 24static const int cfq_quantum = 8;
64100099 25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
64100099 30static const int cfq_slice_sync = HZ / 10;
3b18152c 31static int cfq_slice_async = HZ / 25;
64100099 32static const int cfq_slice_async_rq = 2;
caaa5f9f 33static int cfq_slice_idle = HZ / 125;
80bdf0c7 34static int cfq_group_idle = HZ / 125;
5db5d642
CZ
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
22e2c507 37
d9e7620e 38/*
0871714e 39 * offset from end of service tree
d9e7620e 40 */
0871714e 41#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
22e2c507 48#define CFQ_SLICE_SCALE (5)
45333d5a 49#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 50#define CFQ_SERVICE_SHIFT 12
22e2c507 51
3dde36dd 52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 56
a612fddf
TH
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
1da177e4 60
e18b890b 61static struct kmem_cache *cfq_pool;
c5869807 62static struct kmem_cache *cfq_icq_pool;
1da177e4 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b 68#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 69#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 70
c5869807
TH
71struct cfq_ttime {
72 unsigned long last_end_request;
73
74 unsigned long ttime_total;
75 unsigned long ttime_samples;
76 unsigned long ttime_mean;
77};
78
cc09e299
JA
79/*
80 * Most of our rbtree usage is for sorting with min extraction, so
81 * if we cache the leftmost node we don't have to walk down the tree
82 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
83 * move this into the elevator for the rq sorting as well.
84 */
85struct cfq_rb_root {
86 struct rb_root rb;
87 struct rb_node *left;
aa6f6a3d 88 unsigned count;
73e9ffdd 89 unsigned total_weight;
1fa8f6d6 90 u64 min_vdisktime;
f5f2b6ce 91 struct cfq_ttime ttime;
cc09e299 92};
f5f2b6ce
SL
93#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
94 .ttime = {.last_end_request = jiffies,},}
cc09e299 95
6118b70b
JA
96/*
97 * Per process-grouping structure
98 */
99struct cfq_queue {
100 /* reference count */
30d7b944 101 int ref;
6118b70b
JA
102 /* various state flags, see below */
103 unsigned int flags;
104 /* parent cfq_data */
105 struct cfq_data *cfqd;
106 /* service_tree member */
107 struct rb_node rb_node;
108 /* service_tree key */
109 unsigned long rb_key;
110 /* prio tree member */
111 struct rb_node p_node;
112 /* prio tree root we belong to, if any */
113 struct rb_root *p_root;
114 /* sorted list of pending requests */
115 struct rb_root sort_list;
116 /* if fifo isn't expired, next request to serve */
117 struct request *next_rq;
118 /* requests queued in sort_list */
119 int queued[2];
120 /* currently allocated requests */
121 int allocated[2];
122 /* fifo list of requests in sort_list */
123 struct list_head fifo;
124
dae739eb
VG
125 /* time when queue got scheduled in to dispatch first request. */
126 unsigned long dispatch_start;
f75edf2d 127 unsigned int allocated_slice;
c4081ba5 128 unsigned int slice_dispatch;
dae739eb
VG
129 /* time when first request from queue completed and slice started. */
130 unsigned long slice_start;
6118b70b
JA
131 unsigned long slice_end;
132 long slice_resid;
6118b70b 133
65299a3b
CH
134 /* pending priority requests */
135 int prio_pending;
6118b70b
JA
136 /* number of requests that are on the dispatch list or inside driver */
137 int dispatched;
138
139 /* io prio of this group */
140 unsigned short ioprio, org_ioprio;
4aede84b 141 unsigned short ioprio_class;
6118b70b 142
c4081ba5
RK
143 pid_t pid;
144
3dde36dd 145 u32 seek_history;
b2c18e1e
JM
146 sector_t last_request_pos;
147
aa6f6a3d 148 struct cfq_rb_root *service_tree;
df5fe3e8 149 struct cfq_queue *new_cfqq;
cdb16e8f 150 struct cfq_group *cfqg;
c4e7893e
VG
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors;
6118b70b
JA
153};
154
c0324a02 155/*
718eee05 156 * First index in the service_trees.
c0324a02
CZ
157 * IDLE is handled separately, so it has negative index
158 */
159enum wl_prio_t {
c0324a02 160 BE_WORKLOAD = 0,
615f0259
VG
161 RT_WORKLOAD = 1,
162 IDLE_WORKLOAD = 2,
b4627321 163 CFQ_PRIO_NR,
c0324a02
CZ
164};
165
718eee05
CZ
166/*
167 * Second index in the service_trees.
168 */
169enum wl_type_t {
170 ASYNC_WORKLOAD = 0,
171 SYNC_NOIDLE_WORKLOAD = 1,
172 SYNC_WORKLOAD = 2
173};
174
cdb16e8f
VG
175/* This is per cgroup per device grouping structure */
176struct cfq_group {
1fa8f6d6
VG
177 /* group service_tree member */
178 struct rb_node rb_node;
179
180 /* group service_tree key */
181 u64 vdisktime;
25bc6b07 182 unsigned int weight;
8184f93e
JT
183 unsigned int new_weight;
184 bool needs_update;
1fa8f6d6
VG
185
186 /* number of cfqq currently on this group */
187 int nr_cfqq;
188
cdb16e8f 189 /*
4495a7d4 190 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
191 * create the array for each prio class but at run time it is used
192 * only for RT and BE class and slot for IDLE class remains unused.
193 * This is primarily done to avoid confusion and a gcc warning.
194 */
195 unsigned int busy_queues_avg[CFQ_PRIO_NR];
196 /*
197 * rr lists of queues with requests. We maintain service trees for
198 * RT and BE classes. These trees are subdivided in subclasses
199 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
200 * class there is no subclassification and all the cfq queues go on
201 * a single tree service_tree_idle.
cdb16e8f
VG
202 * Counts are embedded in the cfq_rb_root
203 */
204 struct cfq_rb_root service_trees[2][3];
205 struct cfq_rb_root service_tree_idle;
dae739eb
VG
206
207 unsigned long saved_workload_slice;
208 enum wl_type_t saved_workload;
209 enum wl_prio_t saved_serving_prio;
25fb5169
VG
210 struct blkio_group blkg;
211#ifdef CONFIG_CFQ_GROUP_IOSCHED
212 struct hlist_node cfqd_node;
329a6781 213 int ref;
25fb5169 214#endif
80bdf0c7
VG
215 /* number of requests that are on the dispatch list or inside driver */
216 int dispatched;
7700fc4f 217 struct cfq_ttime ttime;
cdb16e8f 218};
718eee05 219
c5869807
TH
220struct cfq_io_cq {
221 struct io_cq icq; /* must be the first member */
222 struct cfq_queue *cfqq[2];
223 struct cfq_ttime ttime;
224};
225
22e2c507
JA
226/*
227 * Per block device queue structure
228 */
1da177e4 229struct cfq_data {
165125e1 230 struct request_queue *queue;
1fa8f6d6
VG
231 /* Root service tree for cfq_groups */
232 struct cfq_rb_root grp_service_tree;
cdb16e8f 233 struct cfq_group root_group;
22e2c507 234
c0324a02
CZ
235 /*
236 * The priority currently being served
22e2c507 237 */
c0324a02 238 enum wl_prio_t serving_prio;
718eee05
CZ
239 enum wl_type_t serving_type;
240 unsigned long workload_expires;
cdb16e8f 241 struct cfq_group *serving_group;
a36e71f9
JA
242
243 /*
244 * Each priority tree is sorted by next_request position. These
245 * trees are used when determining if two or more queues are
246 * interleaving requests (see cfq_close_cooperator).
247 */
248 struct rb_root prio_trees[CFQ_PRIO_LISTS];
249
22e2c507 250 unsigned int busy_queues;
ef8a41df 251 unsigned int busy_sync_queues;
22e2c507 252
53c583d2
CZ
253 int rq_in_driver;
254 int rq_in_flight[2];
45333d5a
AC
255
256 /*
257 * queue-depth detection
258 */
259 int rq_queued;
25776e35 260 int hw_tag;
e459dd08
CZ
261 /*
262 * hw_tag can be
263 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
264 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
265 * 0 => no NCQ
266 */
267 int hw_tag_est_depth;
268 unsigned int hw_tag_samples;
1da177e4 269
22e2c507
JA
270 /*
271 * idle window management
272 */
273 struct timer_list idle_slice_timer;
23e018a1 274 struct work_struct unplug_work;
1da177e4 275
22e2c507 276 struct cfq_queue *active_queue;
c5869807 277 struct cfq_io_cq *active_cic;
22e2c507 278
c2dea2d1
VT
279 /*
280 * async queue for each priority case
281 */
282 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
283 struct cfq_queue *async_idle_cfqq;
15c31be4 284
6d048f53 285 sector_t last_position;
1da177e4 286
1da177e4
LT
287 /*
288 * tunables, see top of file
289 */
290 unsigned int cfq_quantum;
22e2c507 291 unsigned int cfq_fifo_expire[2];
1da177e4
LT
292 unsigned int cfq_back_penalty;
293 unsigned int cfq_back_max;
22e2c507
JA
294 unsigned int cfq_slice[2];
295 unsigned int cfq_slice_async_rq;
296 unsigned int cfq_slice_idle;
80bdf0c7 297 unsigned int cfq_group_idle;
963b72fc 298 unsigned int cfq_latency;
d9ff4187 299
6118b70b
JA
300 /*
301 * Fallback dummy cfqq for extreme OOM conditions
302 */
303 struct cfq_queue oom_cfqq;
365722bb 304
573412b2 305 unsigned long last_delayed_sync;
25fb5169
VG
306
307 /* List of cfq groups being managed on this device*/
308 struct hlist_head cfqg_list;
56edf7d7
VG
309
310 /* Number of groups which are on blkcg->blkg_list */
311 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
312};
313
25fb5169
VG
314static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
315
cdb16e8f
VG
316static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
317 enum wl_prio_t prio,
65b32a57 318 enum wl_type_t type)
c0324a02 319{
1fa8f6d6
VG
320 if (!cfqg)
321 return NULL;
322
c0324a02 323 if (prio == IDLE_WORKLOAD)
cdb16e8f 324 return &cfqg->service_tree_idle;
c0324a02 325
cdb16e8f 326 return &cfqg->service_trees[prio][type];
c0324a02
CZ
327}
328
3b18152c 329enum cfqq_state_flags {
b0b8d749
JA
330 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
331 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 332 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 333 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
334 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
335 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
336 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 337 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 338 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 339 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 340 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 341 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 342 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
343};
344
345#define CFQ_CFQQ_FNS(name) \
346static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
347{ \
fe094d98 348 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
349} \
350static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
351{ \
fe094d98 352 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
353} \
354static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
355{ \
fe094d98 356 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
357}
358
359CFQ_CFQQ_FNS(on_rr);
360CFQ_CFQQ_FNS(wait_request);
b029195d 361CFQ_CFQQ_FNS(must_dispatch);
3b18152c 362CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
363CFQ_CFQQ_FNS(fifo_expire);
364CFQ_CFQQ_FNS(idle_window);
365CFQ_CFQQ_FNS(prio_changed);
44f7c160 366CFQ_CFQQ_FNS(slice_new);
91fac317 367CFQ_CFQQ_FNS(sync);
a36e71f9 368CFQ_CFQQ_FNS(coop);
ae54abed 369CFQ_CFQQ_FNS(split_coop);
76280aff 370CFQ_CFQQ_FNS(deep);
f75edf2d 371CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
372#undef CFQ_CFQQ_FNS
373
afc24d49 374#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
375#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
376 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
377 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 378 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
379
380#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 382 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
383
384#else
7b679138
JA
385#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 387#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 388#endif
7b679138
JA
389#define cfq_log(cfqd, fmt, args...) \
390 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
391
615f0259
VG
392/* Traverses through cfq group service trees */
393#define for_each_cfqg_st(cfqg, i, j, st) \
394 for (i = 0; i <= IDLE_WORKLOAD; i++) \
395 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
396 : &cfqg->service_tree_idle; \
397 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
398 (i == IDLE_WORKLOAD && j == 0); \
399 j++, st = i < IDLE_WORKLOAD ? \
400 &cfqg->service_trees[i][j]: NULL) \
401
f5f2b6ce
SL
402static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
403 struct cfq_ttime *ttime, bool group_idle)
404{
405 unsigned long slice;
406 if (!sample_valid(ttime->ttime_samples))
407 return false;
408 if (group_idle)
409 slice = cfqd->cfq_group_idle;
410 else
411 slice = cfqd->cfq_slice_idle;
412 return ttime->ttime_mean > slice;
413}
615f0259 414
02b35081
VG
415static inline bool iops_mode(struct cfq_data *cfqd)
416{
417 /*
418 * If we are not idling on queues and it is a NCQ drive, parallel
419 * execution of requests is on and measuring time is not possible
420 * in most of the cases until and unless we drive shallower queue
421 * depths and that becomes a performance bottleneck. In such cases
422 * switch to start providing fairness in terms of number of IOs.
423 */
424 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
425 return true;
426 else
427 return false;
428}
429
c0324a02
CZ
430static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
431{
432 if (cfq_class_idle(cfqq))
433 return IDLE_WORKLOAD;
434 if (cfq_class_rt(cfqq))
435 return RT_WORKLOAD;
436 return BE_WORKLOAD;
437}
438
718eee05
CZ
439
440static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
441{
442 if (!cfq_cfqq_sync(cfqq))
443 return ASYNC_WORKLOAD;
444 if (!cfq_cfqq_idle_window(cfqq))
445 return SYNC_NOIDLE_WORKLOAD;
446 return SYNC_WORKLOAD;
447}
448
58ff82f3
VG
449static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
450 struct cfq_data *cfqd,
451 struct cfq_group *cfqg)
c0324a02
CZ
452{
453 if (wl == IDLE_WORKLOAD)
cdb16e8f 454 return cfqg->service_tree_idle.count;
c0324a02 455
cdb16e8f
VG
456 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
457 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
458 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
459}
460
f26bd1f0
VG
461static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
462 struct cfq_group *cfqg)
463{
464 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
465 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
466}
467
165125e1 468static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 469static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 470 struct io_context *, gfp_t);
91fac317 471
c5869807
TH
472static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
473{
474 /* cic->icq is the first member, %NULL will convert to %NULL */
475 return container_of(icq, struct cfq_io_cq, icq);
476}
477
47fdd4ca
TH
478static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
479 struct io_context *ioc)
480{
481 if (ioc)
482 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
483 return NULL;
484}
485
c5869807 486static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
91fac317 487{
a6151c3a 488 return cic->cfqq[is_sync];
91fac317
VT
489}
490
c5869807
TH
491static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
492 bool is_sync)
91fac317 493{
a6151c3a 494 cic->cfqq[is_sync] = cfqq;
91fac317
VT
495}
496
c5869807 497static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
bca4b914 498{
c5869807 499 return cic->icq.q->elevator->elevator_data;
bca4b914
KK
500}
501
91fac317
VT
502/*
503 * We regard a request as SYNC, if it's either a read or has the SYNC bit
504 * set (in which case it could also be direct WRITE).
505 */
a6151c3a 506static inline bool cfq_bio_sync(struct bio *bio)
91fac317 507{
7b6d91da 508 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 509}
1da177e4 510
99f95e52
AM
511/*
512 * scheduler run of queue, if there are requests pending and no one in the
513 * driver that will restart queueing
514 */
23e018a1 515static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 516{
7b679138
JA
517 if (cfqd->busy_queues) {
518 cfq_log(cfqd, "schedule dispatch");
23e018a1 519 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 520 }
99f95e52
AM
521}
522
44f7c160
JA
523/*
524 * Scale schedule slice based on io priority. Use the sync time slice only
525 * if a queue is marked sync and has sync io queued. A sync queue with async
526 * io only, should not get full sync slice length.
527 */
a6151c3a 528static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 529 unsigned short prio)
44f7c160 530{
d9e7620e 531 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 532
d9e7620e
JA
533 WARN_ON(prio >= IOPRIO_BE_NR);
534
535 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
536}
44f7c160 537
d9e7620e
JA
538static inline int
539cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
540{
541 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
542}
543
25bc6b07
VG
544static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
545{
546 u64 d = delta << CFQ_SERVICE_SHIFT;
547
548 d = d * BLKIO_WEIGHT_DEFAULT;
549 do_div(d, cfqg->weight);
550 return d;
551}
552
553static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
554{
555 s64 delta = (s64)(vdisktime - min_vdisktime);
556 if (delta > 0)
557 min_vdisktime = vdisktime;
558
559 return min_vdisktime;
560}
561
562static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
563{
564 s64 delta = (s64)(vdisktime - min_vdisktime);
565 if (delta < 0)
566 min_vdisktime = vdisktime;
567
568 return min_vdisktime;
569}
570
571static void update_min_vdisktime(struct cfq_rb_root *st)
572{
25bc6b07
VG
573 struct cfq_group *cfqg;
574
25bc6b07
VG
575 if (st->left) {
576 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
577 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
578 cfqg->vdisktime);
25bc6b07 579 }
25bc6b07
VG
580}
581
5db5d642
CZ
582/*
583 * get averaged number of queues of RT/BE priority.
584 * average is updated, with a formula that gives more weight to higher numbers,
585 * to quickly follows sudden increases and decrease slowly
586 */
587
58ff82f3
VG
588static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
589 struct cfq_group *cfqg, bool rt)
5869619c 590{
5db5d642
CZ
591 unsigned min_q, max_q;
592 unsigned mult = cfq_hist_divisor - 1;
593 unsigned round = cfq_hist_divisor / 2;
58ff82f3 594 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 595
58ff82f3
VG
596 min_q = min(cfqg->busy_queues_avg[rt], busy);
597 max_q = max(cfqg->busy_queues_avg[rt], busy);
598 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 599 cfq_hist_divisor;
58ff82f3
VG
600 return cfqg->busy_queues_avg[rt];
601}
602
603static inline unsigned
604cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
605{
606 struct cfq_rb_root *st = &cfqd->grp_service_tree;
607
608 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
609}
610
c553f8e3 611static inline unsigned
ba5bd520 612cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 613{
5db5d642
CZ
614 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
615 if (cfqd->cfq_latency) {
58ff82f3
VG
616 /*
617 * interested queues (we consider only the ones with the same
618 * priority class in the cfq group)
619 */
620 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
621 cfq_class_rt(cfqq));
5db5d642
CZ
622 unsigned sync_slice = cfqd->cfq_slice[1];
623 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
624 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
625
626 if (expect_latency > group_slice) {
5db5d642
CZ
627 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
628 /* scale low_slice according to IO priority
629 * and sync vs async */
630 unsigned low_slice =
631 min(slice, base_low_slice * slice / sync_slice);
632 /* the adapted slice value is scaled to fit all iqs
633 * into the target latency */
58ff82f3 634 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
635 low_slice);
636 }
637 }
c553f8e3
SL
638 return slice;
639}
640
641static inline void
642cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
643{
ba5bd520 644 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 645
dae739eb 646 cfqq->slice_start = jiffies;
5db5d642 647 cfqq->slice_end = jiffies + slice;
f75edf2d 648 cfqq->allocated_slice = slice;
7b679138 649 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
650}
651
652/*
653 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
654 * isn't valid until the first request from the dispatch is activated
655 * and the slice time set.
656 */
a6151c3a 657static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
658{
659 if (cfq_cfqq_slice_new(cfqq))
c1e44756 660 return false;
44f7c160 661 if (time_before(jiffies, cfqq->slice_end))
c1e44756 662 return false;
44f7c160 663
c1e44756 664 return true;
44f7c160
JA
665}
666
1da177e4 667/*
5e705374 668 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 669 * We choose the request that is closest to the head right now. Distance
e8a99053 670 * behind the head is penalized and only allowed to a certain extent.
1da177e4 671 */
5e705374 672static struct request *
cf7c25cf 673cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 674{
cf7c25cf 675 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 676 unsigned long back_max;
e8a99053
AM
677#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
678#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
679 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 680
5e705374
JA
681 if (rq1 == NULL || rq1 == rq2)
682 return rq2;
683 if (rq2 == NULL)
684 return rq1;
9c2c38a1 685
229836bd
NK
686 if (rq_is_sync(rq1) != rq_is_sync(rq2))
687 return rq_is_sync(rq1) ? rq1 : rq2;
688
65299a3b
CH
689 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
690 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
b53d1ed7 691
83096ebf
TH
692 s1 = blk_rq_pos(rq1);
693 s2 = blk_rq_pos(rq2);
1da177e4 694
1da177e4
LT
695 /*
696 * by definition, 1KiB is 2 sectors
697 */
698 back_max = cfqd->cfq_back_max * 2;
699
700 /*
701 * Strict one way elevator _except_ in the case where we allow
702 * short backward seeks which are biased as twice the cost of a
703 * similar forward seek.
704 */
705 if (s1 >= last)
706 d1 = s1 - last;
707 else if (s1 + back_max >= last)
708 d1 = (last - s1) * cfqd->cfq_back_penalty;
709 else
e8a99053 710 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
711
712 if (s2 >= last)
713 d2 = s2 - last;
714 else if (s2 + back_max >= last)
715 d2 = (last - s2) * cfqd->cfq_back_penalty;
716 else
e8a99053 717 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
718
719 /* Found required data */
e8a99053
AM
720
721 /*
722 * By doing switch() on the bit mask "wrap" we avoid having to
723 * check two variables for all permutations: --> faster!
724 */
725 switch (wrap) {
5e705374 726 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 727 if (d1 < d2)
5e705374 728 return rq1;
e8a99053 729 else if (d2 < d1)
5e705374 730 return rq2;
e8a99053
AM
731 else {
732 if (s1 >= s2)
5e705374 733 return rq1;
e8a99053 734 else
5e705374 735 return rq2;
e8a99053 736 }
1da177e4 737
e8a99053 738 case CFQ_RQ2_WRAP:
5e705374 739 return rq1;
e8a99053 740 case CFQ_RQ1_WRAP:
5e705374
JA
741 return rq2;
742 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
743 default:
744 /*
745 * Since both rqs are wrapped,
746 * start with the one that's further behind head
747 * (--> only *one* back seek required),
748 * since back seek takes more time than forward.
749 */
750 if (s1 <= s2)
5e705374 751 return rq1;
1da177e4 752 else
5e705374 753 return rq2;
1da177e4
LT
754 }
755}
756
498d3aa2
JA
757/*
758 * The below is leftmost cache rbtree addon
759 */
0871714e 760static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 761{
615f0259
VG
762 /* Service tree is empty */
763 if (!root->count)
764 return NULL;
765
cc09e299
JA
766 if (!root->left)
767 root->left = rb_first(&root->rb);
768
0871714e
JA
769 if (root->left)
770 return rb_entry(root->left, struct cfq_queue, rb_node);
771
772 return NULL;
cc09e299
JA
773}
774
1fa8f6d6
VG
775static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
776{
777 if (!root->left)
778 root->left = rb_first(&root->rb);
779
780 if (root->left)
781 return rb_entry_cfqg(root->left);
782
783 return NULL;
784}
785
a36e71f9
JA
786static void rb_erase_init(struct rb_node *n, struct rb_root *root)
787{
788 rb_erase(n, root);
789 RB_CLEAR_NODE(n);
790}
791
cc09e299
JA
792static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
793{
794 if (root->left == n)
795 root->left = NULL;
a36e71f9 796 rb_erase_init(n, &root->rb);
aa6f6a3d 797 --root->count;
cc09e299
JA
798}
799
1da177e4
LT
800/*
801 * would be nice to take fifo expire time into account as well
802 */
5e705374
JA
803static struct request *
804cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
805 struct request *last)
1da177e4 806{
21183b07
JA
807 struct rb_node *rbnext = rb_next(&last->rb_node);
808 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 809 struct request *next = NULL, *prev = NULL;
1da177e4 810
21183b07 811 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
812
813 if (rbprev)
5e705374 814 prev = rb_entry_rq(rbprev);
1da177e4 815
21183b07 816 if (rbnext)
5e705374 817 next = rb_entry_rq(rbnext);
21183b07
JA
818 else {
819 rbnext = rb_first(&cfqq->sort_list);
820 if (rbnext && rbnext != &last->rb_node)
5e705374 821 next = rb_entry_rq(rbnext);
21183b07 822 }
1da177e4 823
cf7c25cf 824 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
825}
826
d9e7620e
JA
827static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
828 struct cfq_queue *cfqq)
1da177e4 829{
d9e7620e
JA
830 /*
831 * just an approximation, should be ok.
832 */
cdb16e8f 833 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 834 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
835}
836
1fa8f6d6
VG
837static inline s64
838cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
839{
840 return cfqg->vdisktime - st->min_vdisktime;
841}
842
843static void
844__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
845{
846 struct rb_node **node = &st->rb.rb_node;
847 struct rb_node *parent = NULL;
848 struct cfq_group *__cfqg;
849 s64 key = cfqg_key(st, cfqg);
850 int left = 1;
851
852 while (*node != NULL) {
853 parent = *node;
854 __cfqg = rb_entry_cfqg(parent);
855
856 if (key < cfqg_key(st, __cfqg))
857 node = &parent->rb_left;
858 else {
859 node = &parent->rb_right;
860 left = 0;
861 }
862 }
863
864 if (left)
865 st->left = &cfqg->rb_node;
866
867 rb_link_node(&cfqg->rb_node, parent, node);
868 rb_insert_color(&cfqg->rb_node, &st->rb);
869}
870
871static void
8184f93e
JT
872cfq_update_group_weight(struct cfq_group *cfqg)
873{
874 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
875 if (cfqg->needs_update) {
876 cfqg->weight = cfqg->new_weight;
877 cfqg->needs_update = false;
878 }
879}
880
881static void
882cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
883{
884 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
885
886 cfq_update_group_weight(cfqg);
887 __cfq_group_service_tree_add(st, cfqg);
888 st->total_weight += cfqg->weight;
889}
890
891static void
892cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
893{
894 struct cfq_rb_root *st = &cfqd->grp_service_tree;
895 struct cfq_group *__cfqg;
896 struct rb_node *n;
897
898 cfqg->nr_cfqq++;
760701bf 899 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
900 return;
901
902 /*
903 * Currently put the group at the end. Later implement something
904 * so that groups get lesser vtime based on their weights, so that
25985edc 905 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
906 */
907 n = rb_last(&st->rb);
908 if (n) {
909 __cfqg = rb_entry_cfqg(n);
910 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
911 } else
912 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
913 cfq_group_service_tree_add(st, cfqg);
914}
1fa8f6d6 915
8184f93e
JT
916static void
917cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
918{
919 st->total_weight -= cfqg->weight;
920 if (!RB_EMPTY_NODE(&cfqg->rb_node))
921 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
922}
923
924static void
8184f93e 925cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
926{
927 struct cfq_rb_root *st = &cfqd->grp_service_tree;
928
929 BUG_ON(cfqg->nr_cfqq < 1);
930 cfqg->nr_cfqq--;
25bc6b07 931
1fa8f6d6
VG
932 /* If there are other cfq queues under this group, don't delete it */
933 if (cfqg->nr_cfqq)
934 return;
935
2868ef7b 936 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 937 cfq_group_service_tree_del(st, cfqg);
dae739eb 938 cfqg->saved_workload_slice = 0;
e98ef89b 939 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
940}
941
167400d3
JT
942static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
943 unsigned int *unaccounted_time)
dae739eb 944{
f75edf2d 945 unsigned int slice_used;
dae739eb
VG
946
947 /*
948 * Queue got expired before even a single request completed or
949 * got expired immediately after first request completion.
950 */
951 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
952 /*
953 * Also charge the seek time incurred to the group, otherwise
954 * if there are mutiple queues in the group, each can dispatch
955 * a single request on seeky media and cause lots of seek time
956 * and group will never know it.
957 */
958 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
959 1);
960 } else {
961 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
962 if (slice_used > cfqq->allocated_slice) {
963 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 964 slice_used = cfqq->allocated_slice;
167400d3
JT
965 }
966 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
967 *unaccounted_time += cfqq->slice_start -
968 cfqq->dispatch_start;
dae739eb
VG
969 }
970
dae739eb
VG
971 return slice_used;
972}
973
974static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 975 struct cfq_queue *cfqq)
dae739eb
VG
976{
977 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 978 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
979 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
980 - cfqg->service_tree_idle.count;
981
982 BUG_ON(nr_sync < 0);
167400d3 983 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 984
02b35081
VG
985 if (iops_mode(cfqd))
986 charge = cfqq->slice_dispatch;
987 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
988 charge = cfqq->allocated_slice;
dae739eb
VG
989
990 /* Can't update vdisktime while group is on service tree */
8184f93e 991 cfq_group_service_tree_del(st, cfqg);
02b35081 992 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
993 /* If a new weight was requested, update now, off tree */
994 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
995
996 /* This group is being expired. Save the context */
997 if (time_after(cfqd->workload_expires, jiffies)) {
998 cfqg->saved_workload_slice = cfqd->workload_expires
999 - jiffies;
1000 cfqg->saved_workload = cfqd->serving_type;
1001 cfqg->saved_serving_prio = cfqd->serving_prio;
1002 } else
1003 cfqg->saved_workload_slice = 0;
2868ef7b
VG
1004
1005 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1006 st->min_vdisktime);
fd16d263
JP
1007 cfq_log_cfqq(cfqq->cfqd, cfqq,
1008 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1009 used_sl, cfqq->slice_dispatch, charge,
1010 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
1011 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1012 unaccounted_sl);
e98ef89b 1013 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
1014}
1015
25fb5169
VG
1016#ifdef CONFIG_CFQ_GROUP_IOSCHED
1017static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1018{
1019 if (blkg)
1020 return container_of(blkg, struct cfq_group, blkg);
1021 return NULL;
1022}
1023
8aea4545
PB
1024static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1025 unsigned int weight)
f8d461d6 1026{
8184f93e
JT
1027 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1028 cfqg->new_weight = weight;
1029 cfqg->needs_update = true;
f8d461d6
VG
1030}
1031
f469a7b4
VG
1032static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1033 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1034{
22084190
VG
1035 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1036 unsigned int major, minor;
25fb5169 1037
f469a7b4
VG
1038 /*
1039 * Add group onto cgroup list. It might happen that bdi->dev is
1040 * not initialized yet. Initialize this new group without major
1041 * and minor info and this info will be filled in once a new thread
1042 * comes for IO.
1043 */
1044 if (bdi->dev) {
a74b2ada 1045 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1046 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1047 (void *)cfqd, MKDEV(major, minor));
1048 } else
1049 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1050 (void *)cfqd, 0);
1051
1052 cfqd->nr_blkcg_linked_grps++;
1053 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1054
1055 /* Add group on cfqd list */
1056 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1057}
1058
1059/*
1060 * Should be called from sleepable context. No request queue lock as per
1061 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1062 * from sleepable context.
1063 */
1064static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1065{
1066 struct cfq_group *cfqg = NULL;
5624a4e4 1067 int i, j, ret;
f469a7b4 1068 struct cfq_rb_root *st;
25fb5169
VG
1069
1070 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1071 if (!cfqg)
f469a7b4 1072 return NULL;
25fb5169 1073
25fb5169
VG
1074 for_each_cfqg_st(cfqg, i, j, st)
1075 *st = CFQ_RB_ROOT;
1076 RB_CLEAR_NODE(&cfqg->rb_node);
1077
7700fc4f
SL
1078 cfqg->ttime.last_end_request = jiffies;
1079
b1c35769
VG
1080 /*
1081 * Take the initial reference that will be released on destroy
1082 * This can be thought of a joint reference by cgroup and
1083 * elevator which will be dropped by either elevator exit
1084 * or cgroup deletion path depending on who is exiting first.
1085 */
329a6781 1086 cfqg->ref = 1;
5624a4e4
VG
1087
1088 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1089 if (ret) {
1090 kfree(cfqg);
1091 return NULL;
1092 }
1093
f469a7b4
VG
1094 return cfqg;
1095}
1096
1097static struct cfq_group *
1098cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1099{
1100 struct cfq_group *cfqg = NULL;
1101 void *key = cfqd;
1102 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1103 unsigned int major, minor;
b1c35769 1104
180be2a0 1105 /*
f469a7b4
VG
1106 * This is the common case when there are no blkio cgroups.
1107 * Avoid lookup in this case
180be2a0 1108 */
f469a7b4
VG
1109 if (blkcg == &blkio_root_cgroup)
1110 cfqg = &cfqd->root_group;
1111 else
1112 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1113
f469a7b4
VG
1114 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1115 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1116 cfqg->blkg.dev = MKDEV(major, minor);
1117 }
25fb5169 1118
25fb5169
VG
1119 return cfqg;
1120}
1121
1122/*
3e59cf9d
VG
1123 * Search for the cfq group current task belongs to. request_queue lock must
1124 * be held.
25fb5169 1125 */
3e59cf9d 1126static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1127{
70087dc3 1128 struct blkio_cgroup *blkcg;
f469a7b4
VG
1129 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1130 struct request_queue *q = cfqd->queue;
25fb5169
VG
1131
1132 rcu_read_lock();
70087dc3 1133 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1134 cfqg = cfq_find_cfqg(cfqd, blkcg);
1135 if (cfqg) {
1136 rcu_read_unlock();
1137 return cfqg;
1138 }
1139
1140 /*
1141 * Need to allocate a group. Allocation of group also needs allocation
1142 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1143 * we need to drop rcu lock and queue_lock before we call alloc.
1144 *
1145 * Not taking any queue reference here and assuming that queue is
1146 * around by the time we return. CFQ queue allocation code does
1147 * the same. It might be racy though.
1148 */
1149
1150 rcu_read_unlock();
1151 spin_unlock_irq(q->queue_lock);
1152
1153 cfqg = cfq_alloc_cfqg(cfqd);
1154
1155 spin_lock_irq(q->queue_lock);
1156
1157 rcu_read_lock();
1158 blkcg = task_blkio_cgroup(current);
1159
1160 /*
1161 * If some other thread already allocated the group while we were
1162 * not holding queue lock, free up the group
1163 */
1164 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1165
1166 if (__cfqg) {
1167 kfree(cfqg);
1168 rcu_read_unlock();
1169 return __cfqg;
1170 }
1171
3e59cf9d 1172 if (!cfqg)
25fb5169 1173 cfqg = &cfqd->root_group;
f469a7b4
VG
1174
1175 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1176 rcu_read_unlock();
1177 return cfqg;
1178}
1179
7f1dc8a2
VG
1180static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1181{
329a6781 1182 cfqg->ref++;
7f1dc8a2
VG
1183 return cfqg;
1184}
1185
25fb5169
VG
1186static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1187{
1188 /* Currently, all async queues are mapped to root group */
1189 if (!cfq_cfqq_sync(cfqq))
1190 cfqg = &cfqq->cfqd->root_group;
1191
1192 cfqq->cfqg = cfqg;
b1c35769 1193 /* cfqq reference on cfqg */
329a6781 1194 cfqq->cfqg->ref++;
b1c35769
VG
1195}
1196
1197static void cfq_put_cfqg(struct cfq_group *cfqg)
1198{
1199 struct cfq_rb_root *st;
1200 int i, j;
1201
329a6781
SL
1202 BUG_ON(cfqg->ref <= 0);
1203 cfqg->ref--;
1204 if (cfqg->ref)
b1c35769
VG
1205 return;
1206 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1207 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1208 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1209 kfree(cfqg);
1210}
1211
1212static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1213{
1214 /* Something wrong if we are trying to remove same group twice */
1215 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1216
1217 hlist_del_init(&cfqg->cfqd_node);
1218
a5395b83
VG
1219 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1220 cfqd->nr_blkcg_linked_grps--;
1221
b1c35769
VG
1222 /*
1223 * Put the reference taken at the time of creation so that when all
1224 * queues are gone, group can be destroyed.
1225 */
1226 cfq_put_cfqg(cfqg);
1227}
1228
1229static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1230{
1231 struct hlist_node *pos, *n;
1232 struct cfq_group *cfqg;
1233
1234 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1235 /*
1236 * If cgroup removal path got to blk_group first and removed
1237 * it from cgroup list, then it will take care of destroying
1238 * cfqg also.
1239 */
e98ef89b 1240 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1241 cfq_destroy_cfqg(cfqd, cfqg);
1242 }
25fb5169 1243}
b1c35769
VG
1244
1245/*
1246 * Blk cgroup controller notification saying that blkio_group object is being
1247 * delinked as associated cgroup object is going away. That also means that
1248 * no new IO will come in this group. So get rid of this group as soon as
1249 * any pending IO in the group is finished.
1250 *
1251 * This function is called under rcu_read_lock(). key is the rcu protected
1252 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1253 * read lock.
1254 *
1255 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1256 * it should not be NULL as even if elevator was exiting, cgroup deltion
1257 * path got to it first.
1258 */
8aea4545 1259static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1260{
1261 unsigned long flags;
1262 struct cfq_data *cfqd = key;
1263
1264 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1265 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1266 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1267}
1268
25fb5169 1269#else /* GROUP_IOSCHED */
3e59cf9d 1270static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1271{
1272 return &cfqd->root_group;
1273}
7f1dc8a2
VG
1274
1275static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1276{
50eaeb32 1277 return cfqg;
7f1dc8a2
VG
1278}
1279
25fb5169
VG
1280static inline void
1281cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1282 cfqq->cfqg = cfqg;
1283}
1284
b1c35769
VG
1285static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1286static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1287
25fb5169
VG
1288#endif /* GROUP_IOSCHED */
1289
498d3aa2 1290/*
c0324a02 1291 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1292 * requests waiting to be processed. It is sorted in the order that
1293 * we will service the queues.
1294 */
a36e71f9 1295static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1296 bool add_front)
d9e7620e 1297{
0871714e
JA
1298 struct rb_node **p, *parent;
1299 struct cfq_queue *__cfqq;
d9e7620e 1300 unsigned long rb_key;
c0324a02 1301 struct cfq_rb_root *service_tree;
498d3aa2 1302 int left;
dae739eb 1303 int new_cfqq = 1;
ae30c286 1304
cdb16e8f 1305 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1306 cfqq_type(cfqq));
0871714e
JA
1307 if (cfq_class_idle(cfqq)) {
1308 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1309 parent = rb_last(&service_tree->rb);
0871714e
JA
1310 if (parent && parent != &cfqq->rb_node) {
1311 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1312 rb_key += __cfqq->rb_key;
1313 } else
1314 rb_key += jiffies;
1315 } else if (!add_front) {
b9c8946b
JA
1316 /*
1317 * Get our rb key offset. Subtract any residual slice
1318 * value carried from last service. A negative resid
1319 * count indicates slice overrun, and this should position
1320 * the next service time further away in the tree.
1321 */
edd75ffd 1322 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1323 rb_key -= cfqq->slice_resid;
edd75ffd 1324 cfqq->slice_resid = 0;
48e025e6
CZ
1325 } else {
1326 rb_key = -HZ;
aa6f6a3d 1327 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1328 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1329 }
1da177e4 1330
d9e7620e 1331 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1332 new_cfqq = 0;
99f9628a 1333 /*
d9e7620e 1334 * same position, nothing more to do
99f9628a 1335 */
c0324a02
CZ
1336 if (rb_key == cfqq->rb_key &&
1337 cfqq->service_tree == service_tree)
d9e7620e 1338 return;
1da177e4 1339
aa6f6a3d
CZ
1340 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1341 cfqq->service_tree = NULL;
1da177e4 1342 }
d9e7620e 1343
498d3aa2 1344 left = 1;
0871714e 1345 parent = NULL;
aa6f6a3d
CZ
1346 cfqq->service_tree = service_tree;
1347 p = &service_tree->rb.rb_node;
d9e7620e 1348 while (*p) {
67060e37 1349 struct rb_node **n;
cc09e299 1350
d9e7620e
JA
1351 parent = *p;
1352 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1353
0c534e0a 1354 /*
c0324a02 1355 * sort by key, that represents service time.
0c534e0a 1356 */
c0324a02 1357 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1358 n = &(*p)->rb_left;
c0324a02 1359 else {
67060e37 1360 n = &(*p)->rb_right;
cc09e299 1361 left = 0;
c0324a02 1362 }
67060e37
JA
1363
1364 p = n;
d9e7620e
JA
1365 }
1366
cc09e299 1367 if (left)
aa6f6a3d 1368 service_tree->left = &cfqq->rb_node;
cc09e299 1369
d9e7620e
JA
1370 cfqq->rb_key = rb_key;
1371 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1372 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1373 service_tree->count++;
20359f27 1374 if (add_front || !new_cfqq)
dae739eb 1375 return;
8184f93e 1376 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1377}
1378
a36e71f9 1379static struct cfq_queue *
f2d1f0ae
JA
1380cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1381 sector_t sector, struct rb_node **ret_parent,
1382 struct rb_node ***rb_link)
a36e71f9 1383{
a36e71f9
JA
1384 struct rb_node **p, *parent;
1385 struct cfq_queue *cfqq = NULL;
1386
1387 parent = NULL;
1388 p = &root->rb_node;
1389 while (*p) {
1390 struct rb_node **n;
1391
1392 parent = *p;
1393 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1394
1395 /*
1396 * Sort strictly based on sector. Smallest to the left,
1397 * largest to the right.
1398 */
2e46e8b2 1399 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1400 n = &(*p)->rb_right;
2e46e8b2 1401 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1402 n = &(*p)->rb_left;
1403 else
1404 break;
1405 p = n;
3ac6c9f8 1406 cfqq = NULL;
a36e71f9
JA
1407 }
1408
1409 *ret_parent = parent;
1410 if (rb_link)
1411 *rb_link = p;
3ac6c9f8 1412 return cfqq;
a36e71f9
JA
1413}
1414
1415static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1416{
a36e71f9
JA
1417 struct rb_node **p, *parent;
1418 struct cfq_queue *__cfqq;
1419
f2d1f0ae
JA
1420 if (cfqq->p_root) {
1421 rb_erase(&cfqq->p_node, cfqq->p_root);
1422 cfqq->p_root = NULL;
1423 }
a36e71f9
JA
1424
1425 if (cfq_class_idle(cfqq))
1426 return;
1427 if (!cfqq->next_rq)
1428 return;
1429
f2d1f0ae 1430 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1431 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1432 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1433 if (!__cfqq) {
1434 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1435 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1436 } else
1437 cfqq->p_root = NULL;
a36e71f9
JA
1438}
1439
498d3aa2
JA
1440/*
1441 * Update cfqq's position in the service tree.
1442 */
edd75ffd 1443static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1444{
6d048f53
JA
1445 /*
1446 * Resorting requires the cfqq to be on the RR list already.
1447 */
a36e71f9 1448 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1449 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1450 cfq_prio_tree_add(cfqd, cfqq);
1451 }
6d048f53
JA
1452}
1453
1da177e4
LT
1454/*
1455 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1456 * the pending list according to last request service
1da177e4 1457 */
febffd61 1458static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1459{
7b679138 1460 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1461 BUG_ON(cfq_cfqq_on_rr(cfqq));
1462 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1463 cfqd->busy_queues++;
ef8a41df
SL
1464 if (cfq_cfqq_sync(cfqq))
1465 cfqd->busy_sync_queues++;
1da177e4 1466
edd75ffd 1467 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1468}
1469
498d3aa2
JA
1470/*
1471 * Called when the cfqq no longer has requests pending, remove it from
1472 * the service tree.
1473 */
febffd61 1474static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1475{
7b679138 1476 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1477 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1478 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1479
aa6f6a3d
CZ
1480 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1481 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1482 cfqq->service_tree = NULL;
1483 }
f2d1f0ae
JA
1484 if (cfqq->p_root) {
1485 rb_erase(&cfqq->p_node, cfqq->p_root);
1486 cfqq->p_root = NULL;
1487 }
d9e7620e 1488
8184f93e 1489 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1490 BUG_ON(!cfqd->busy_queues);
1491 cfqd->busy_queues--;
ef8a41df
SL
1492 if (cfq_cfqq_sync(cfqq))
1493 cfqd->busy_sync_queues--;
1da177e4
LT
1494}
1495
1496/*
1497 * rb tree support functions
1498 */
febffd61 1499static void cfq_del_rq_rb(struct request *rq)
1da177e4 1500{
5e705374 1501 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1502 const int sync = rq_is_sync(rq);
1da177e4 1503
b4878f24
JA
1504 BUG_ON(!cfqq->queued[sync]);
1505 cfqq->queued[sync]--;
1da177e4 1506
5e705374 1507 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1508
f04a6424
VG
1509 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1510 /*
1511 * Queue will be deleted from service tree when we actually
1512 * expire it later. Right now just remove it from prio tree
1513 * as it is empty.
1514 */
1515 if (cfqq->p_root) {
1516 rb_erase(&cfqq->p_node, cfqq->p_root);
1517 cfqq->p_root = NULL;
1518 }
1519 }
1da177e4
LT
1520}
1521
5e705374 1522static void cfq_add_rq_rb(struct request *rq)
1da177e4 1523{
5e705374 1524 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1525 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1526 struct request *prev;
1da177e4 1527
5380a101 1528 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1529
796d5116 1530 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1531
1532 if (!cfq_cfqq_on_rr(cfqq))
1533 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1534
1535 /*
1536 * check if this request is a better next-serve candidate
1537 */
a36e71f9 1538 prev = cfqq->next_rq;
cf7c25cf 1539 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1540
1541 /*
1542 * adjust priority tree position, if ->next_rq changes
1543 */
1544 if (prev != cfqq->next_rq)
1545 cfq_prio_tree_add(cfqd, cfqq);
1546
5044eed4 1547 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1548}
1549
febffd61 1550static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1551{
5380a101
JA
1552 elv_rb_del(&cfqq->sort_list, rq);
1553 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1554 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1555 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1556 cfq_add_rq_rb(rq);
e98ef89b 1557 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1558 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1559 rq_is_sync(rq));
1da177e4
LT
1560}
1561
206dc69b
JA
1562static struct request *
1563cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1564{
206dc69b 1565 struct task_struct *tsk = current;
c5869807 1566 struct cfq_io_cq *cic;
206dc69b 1567 struct cfq_queue *cfqq;
1da177e4 1568
4ac845a2 1569 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1570 if (!cic)
1571 return NULL;
1572
1573 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1574 if (cfqq) {
1575 sector_t sector = bio->bi_sector + bio_sectors(bio);
1576
21183b07 1577 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1578 }
1da177e4 1579
1da177e4
LT
1580 return NULL;
1581}
1582
165125e1 1583static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1584{
22e2c507 1585 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1586
53c583d2 1587 cfqd->rq_in_driver++;
7b679138 1588 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1589 cfqd->rq_in_driver);
25776e35 1590
5b93629b 1591 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1592}
1593
165125e1 1594static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1595{
b4878f24
JA
1596 struct cfq_data *cfqd = q->elevator->elevator_data;
1597
53c583d2
CZ
1598 WARN_ON(!cfqd->rq_in_driver);
1599 cfqd->rq_in_driver--;
7b679138 1600 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1601 cfqd->rq_in_driver);
1da177e4
LT
1602}
1603
b4878f24 1604static void cfq_remove_request(struct request *rq)
1da177e4 1605{
5e705374 1606 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1607
5e705374
JA
1608 if (cfqq->next_rq == rq)
1609 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1610
b4878f24 1611 list_del_init(&rq->queuelist);
5e705374 1612 cfq_del_rq_rb(rq);
374f84ac 1613
45333d5a 1614 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1615 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1616 rq_data_dir(rq), rq_is_sync(rq));
65299a3b
CH
1617 if (rq->cmd_flags & REQ_PRIO) {
1618 WARN_ON(!cfqq->prio_pending);
1619 cfqq->prio_pending--;
b53d1ed7 1620 }
1da177e4
LT
1621}
1622
165125e1
JA
1623static int cfq_merge(struct request_queue *q, struct request **req,
1624 struct bio *bio)
1da177e4
LT
1625{
1626 struct cfq_data *cfqd = q->elevator->elevator_data;
1627 struct request *__rq;
1da177e4 1628
206dc69b 1629 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1630 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1631 *req = __rq;
1632 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1633 }
1634
1635 return ELEVATOR_NO_MERGE;
1da177e4
LT
1636}
1637
165125e1 1638static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1639 int type)
1da177e4 1640{
21183b07 1641 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1642 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1643
5e705374 1644 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1645 }
1da177e4
LT
1646}
1647
812d4026
DS
1648static void cfq_bio_merged(struct request_queue *q, struct request *req,
1649 struct bio *bio)
1650{
e98ef89b
VG
1651 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1652 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1653}
1654
1da177e4 1655static void
165125e1 1656cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1657 struct request *next)
1658{
cf7c25cf 1659 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1660 /*
1661 * reposition in fifo if next is older than rq
1662 */
1663 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1664 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1665 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1666 rq_set_fifo_time(rq, rq_fifo_time(next));
1667 }
22e2c507 1668
cf7c25cf
CZ
1669 if (cfqq->next_rq == next)
1670 cfqq->next_rq = rq;
b4878f24 1671 cfq_remove_request(next);
e98ef89b
VG
1672 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1673 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1674}
1675
165125e1 1676static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1677 struct bio *bio)
1678{
1679 struct cfq_data *cfqd = q->elevator->elevator_data;
c5869807 1680 struct cfq_io_cq *cic;
da775265 1681 struct cfq_queue *cfqq;
da775265
JA
1682
1683 /*
ec8acb69 1684 * Disallow merge of a sync bio into an async request.
da775265 1685 */
91fac317 1686 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1687 return false;
da775265
JA
1688
1689 /*
f1a4f4d3
TH
1690 * Lookup the cfqq that this bio will be queued with and allow
1691 * merge only if rq is queued there. This function can be called
1692 * from plug merge without queue_lock. In such cases, ioc of @rq
1693 * and %current are guaranteed to be equal. Avoid lookup which
1694 * requires queue_lock by using @rq's cic.
1695 */
c5869807 1696 if (current->io_context == RQ_CIC(rq)->icq.ioc) {
f1a4f4d3
TH
1697 cic = RQ_CIC(rq);
1698 } else {
1699 cic = cfq_cic_lookup(cfqd, current->io_context);
1700 if (!cic)
1701 return false;
1702 }
719d3402 1703
91fac317 1704 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1705 return cfqq == RQ_CFQQ(rq);
da775265
JA
1706}
1707
812df48d
DS
1708static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1709{
1710 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1711 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1712}
1713
febffd61
JA
1714static void __cfq_set_active_queue(struct cfq_data *cfqd,
1715 struct cfq_queue *cfqq)
22e2c507
JA
1716{
1717 if (cfqq) {
b1ffe737
DS
1718 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1719 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1720 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1721 cfqq->slice_start = 0;
1722 cfqq->dispatch_start = jiffies;
1723 cfqq->allocated_slice = 0;
1724 cfqq->slice_end = 0;
1725 cfqq->slice_dispatch = 0;
1726 cfqq->nr_sectors = 0;
1727
1728 cfq_clear_cfqq_wait_request(cfqq);
1729 cfq_clear_cfqq_must_dispatch(cfqq);
1730 cfq_clear_cfqq_must_alloc_slice(cfqq);
1731 cfq_clear_cfqq_fifo_expire(cfqq);
1732 cfq_mark_cfqq_slice_new(cfqq);
1733
1734 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1735 }
1736
1737 cfqd->active_queue = cfqq;
1738}
1739
7b14e3b5
JA
1740/*
1741 * current cfqq expired its slice (or was too idle), select new one
1742 */
1743static void
1744__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1745 bool timed_out)
7b14e3b5 1746{
7b679138
JA
1747 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1748
7b14e3b5 1749 if (cfq_cfqq_wait_request(cfqq))
812df48d 1750 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1751
7b14e3b5 1752 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1753 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1754
ae54abed
SL
1755 /*
1756 * If this cfqq is shared between multiple processes, check to
1757 * make sure that those processes are still issuing I/Os within
1758 * the mean seek distance. If not, it may be time to break the
1759 * queues apart again.
1760 */
1761 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1762 cfq_mark_cfqq_split_coop(cfqq);
1763
7b14e3b5 1764 /*
6084cdda 1765 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1766 */
c553f8e3
SL
1767 if (timed_out) {
1768 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1769 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1770 else
1771 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1772 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1773 }
7b14e3b5 1774
e5ff082e 1775 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1776
f04a6424
VG
1777 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1778 cfq_del_cfqq_rr(cfqd, cfqq);
1779
edd75ffd 1780 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1781
1782 if (cfqq == cfqd->active_queue)
1783 cfqd->active_queue = NULL;
1784
1785 if (cfqd->active_cic) {
c5869807 1786 put_io_context(cfqd->active_cic->icq.ioc, cfqd->queue);
7b14e3b5
JA
1787 cfqd->active_cic = NULL;
1788 }
7b14e3b5
JA
1789}
1790
e5ff082e 1791static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1792{
1793 struct cfq_queue *cfqq = cfqd->active_queue;
1794
1795 if (cfqq)
e5ff082e 1796 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1797}
1798
498d3aa2
JA
1799/*
1800 * Get next queue for service. Unless we have a queue preemption,
1801 * we'll simply select the first cfqq in the service tree.
1802 */
6d048f53 1803static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1804{
c0324a02 1805 struct cfq_rb_root *service_tree =
cdb16e8f 1806 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1807 cfqd->serving_type);
d9e7620e 1808
f04a6424
VG
1809 if (!cfqd->rq_queued)
1810 return NULL;
1811
1fa8f6d6
VG
1812 /* There is nothing to dispatch */
1813 if (!service_tree)
1814 return NULL;
c0324a02
CZ
1815 if (RB_EMPTY_ROOT(&service_tree->rb))
1816 return NULL;
1817 return cfq_rb_first(service_tree);
6d048f53
JA
1818}
1819
f04a6424
VG
1820static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1821{
25fb5169 1822 struct cfq_group *cfqg;
f04a6424
VG
1823 struct cfq_queue *cfqq;
1824 int i, j;
1825 struct cfq_rb_root *st;
1826
1827 if (!cfqd->rq_queued)
1828 return NULL;
1829
25fb5169
VG
1830 cfqg = cfq_get_next_cfqg(cfqd);
1831 if (!cfqg)
1832 return NULL;
1833
f04a6424
VG
1834 for_each_cfqg_st(cfqg, i, j, st)
1835 if ((cfqq = cfq_rb_first(st)) != NULL)
1836 return cfqq;
1837 return NULL;
1838}
1839
498d3aa2
JA
1840/*
1841 * Get and set a new active queue for service.
1842 */
a36e71f9
JA
1843static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1844 struct cfq_queue *cfqq)
6d048f53 1845{
e00ef799 1846 if (!cfqq)
a36e71f9 1847 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1848
22e2c507 1849 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1850 return cfqq;
22e2c507
JA
1851}
1852
d9e7620e
JA
1853static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1854 struct request *rq)
1855{
83096ebf
TH
1856 if (blk_rq_pos(rq) >= cfqd->last_position)
1857 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1858 else
83096ebf 1859 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1860}
1861
b2c18e1e 1862static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1863 struct request *rq)
6d048f53 1864{
e9ce335d 1865 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1866}
1867
a36e71f9
JA
1868static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1869 struct cfq_queue *cur_cfqq)
1870{
f2d1f0ae 1871 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1872 struct rb_node *parent, *node;
1873 struct cfq_queue *__cfqq;
1874 sector_t sector = cfqd->last_position;
1875
1876 if (RB_EMPTY_ROOT(root))
1877 return NULL;
1878
1879 /*
1880 * First, if we find a request starting at the end of the last
1881 * request, choose it.
1882 */
f2d1f0ae 1883 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1884 if (__cfqq)
1885 return __cfqq;
1886
1887 /*
1888 * If the exact sector wasn't found, the parent of the NULL leaf
1889 * will contain the closest sector.
1890 */
1891 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1892 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1893 return __cfqq;
1894
2e46e8b2 1895 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1896 node = rb_next(&__cfqq->p_node);
1897 else
1898 node = rb_prev(&__cfqq->p_node);
1899 if (!node)
1900 return NULL;
1901
1902 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1903 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1904 return __cfqq;
1905
1906 return NULL;
1907}
1908
1909/*
1910 * cfqd - obvious
1911 * cur_cfqq - passed in so that we don't decide that the current queue is
1912 * closely cooperating with itself.
1913 *
1914 * So, basically we're assuming that that cur_cfqq has dispatched at least
1915 * one request, and that cfqd->last_position reflects a position on the disk
1916 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1917 * assumption.
1918 */
1919static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1920 struct cfq_queue *cur_cfqq)
6d048f53 1921{
a36e71f9
JA
1922 struct cfq_queue *cfqq;
1923
39c01b21
DS
1924 if (cfq_class_idle(cur_cfqq))
1925 return NULL;
e6c5bc73
JM
1926 if (!cfq_cfqq_sync(cur_cfqq))
1927 return NULL;
1928 if (CFQQ_SEEKY(cur_cfqq))
1929 return NULL;
1930
b9d8f4c7
GJ
1931 /*
1932 * Don't search priority tree if it's the only queue in the group.
1933 */
1934 if (cur_cfqq->cfqg->nr_cfqq == 1)
1935 return NULL;
1936
6d048f53 1937 /*
d9e7620e
JA
1938 * We should notice if some of the queues are cooperating, eg
1939 * working closely on the same area of the disk. In that case,
1940 * we can group them together and don't waste time idling.
6d048f53 1941 */
a36e71f9
JA
1942 cfqq = cfqq_close(cfqd, cur_cfqq);
1943 if (!cfqq)
1944 return NULL;
1945
8682e1f1
VG
1946 /* If new queue belongs to different cfq_group, don't choose it */
1947 if (cur_cfqq->cfqg != cfqq->cfqg)
1948 return NULL;
1949
df5fe3e8
JM
1950 /*
1951 * It only makes sense to merge sync queues.
1952 */
1953 if (!cfq_cfqq_sync(cfqq))
1954 return NULL;
e6c5bc73
JM
1955 if (CFQQ_SEEKY(cfqq))
1956 return NULL;
df5fe3e8 1957
c0324a02
CZ
1958 /*
1959 * Do not merge queues of different priority classes
1960 */
1961 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1962 return NULL;
1963
a36e71f9 1964 return cfqq;
6d048f53
JA
1965}
1966
a6d44e98
CZ
1967/*
1968 * Determine whether we should enforce idle window for this queue.
1969 */
1970
1971static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1972{
1973 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1974 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1975
f04a6424
VG
1976 BUG_ON(!service_tree);
1977 BUG_ON(!service_tree->count);
1978
b6508c16
VG
1979 if (!cfqd->cfq_slice_idle)
1980 return false;
1981
a6d44e98
CZ
1982 /* We never do for idle class queues. */
1983 if (prio == IDLE_WORKLOAD)
1984 return false;
1985
1986 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1987 if (cfq_cfqq_idle_window(cfqq) &&
1988 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1989 return true;
1990
1991 /*
1992 * Otherwise, we do only if they are the last ones
1993 * in their service tree.
1994 */
f5f2b6ce
SL
1995 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1996 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
c1e44756 1997 return true;
b1ffe737
DS
1998 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1999 service_tree->count);
c1e44756 2000 return false;
a6d44e98
CZ
2001}
2002
6d048f53 2003static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 2004{
1792669c 2005 struct cfq_queue *cfqq = cfqd->active_queue;
c5869807 2006 struct cfq_io_cq *cic;
80bdf0c7 2007 unsigned long sl, group_idle = 0;
7b14e3b5 2008
a68bbddb 2009 /*
f7d7b7a7
JA
2010 * SSD device without seek penalty, disable idling. But only do so
2011 * for devices that support queuing, otherwise we still have a problem
2012 * with sync vs async workloads.
a68bbddb 2013 */
f7d7b7a7 2014 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
2015 return;
2016
dd67d051 2017 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 2018 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
2019
2020 /*
2021 * idle is disabled, either manually or by past process history
2022 */
80bdf0c7
VG
2023 if (!cfq_should_idle(cfqd, cfqq)) {
2024 /* no queue idling. Check for group idling */
2025 if (cfqd->cfq_group_idle)
2026 group_idle = cfqd->cfq_group_idle;
2027 else
2028 return;
2029 }
6d048f53 2030
7b679138 2031 /*
8e550632 2032 * still active requests from this queue, don't idle
7b679138 2033 */
8e550632 2034 if (cfqq->dispatched)
7b679138
JA
2035 return;
2036
22e2c507
JA
2037 /*
2038 * task has exited, don't wait
2039 */
206dc69b 2040 cic = cfqd->active_cic;
c5869807 2041 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
6d048f53
JA
2042 return;
2043
355b659c
CZ
2044 /*
2045 * If our average think time is larger than the remaining time
2046 * slice, then don't idle. This avoids overrunning the allotted
2047 * time slice.
2048 */
383cd721
SL
2049 if (sample_valid(cic->ttime.ttime_samples) &&
2050 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
fd16d263 2051 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
383cd721 2052 cic->ttime.ttime_mean);
355b659c 2053 return;
b1ffe737 2054 }
355b659c 2055
80bdf0c7
VG
2056 /* There are other queues in the group, don't do group idle */
2057 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2058 return;
2059
3b18152c 2060 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2061
80bdf0c7
VG
2062 if (group_idle)
2063 sl = cfqd->cfq_group_idle;
2064 else
2065 sl = cfqd->cfq_slice_idle;
206dc69b 2066
7b14e3b5 2067 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2068 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2069 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2070 group_idle ? 1 : 0);
1da177e4
LT
2071}
2072
498d3aa2
JA
2073/*
2074 * Move request from internal lists to the request queue dispatch list.
2075 */
165125e1 2076static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2077{
3ed9a296 2078 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2079 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2080
7b679138
JA
2081 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2082
06d21886 2083 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2084 cfq_remove_request(rq);
6d048f53 2085 cfqq->dispatched++;
80bdf0c7 2086 (RQ_CFQG(rq))->dispatched++;
5380a101 2087 elv_dispatch_sort(q, rq);
3ed9a296 2088
53c583d2 2089 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2090 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2091 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2092 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2093}
2094
2095/*
2096 * return expired entry, or NULL to just start from scratch in rbtree
2097 */
febffd61 2098static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2099{
30996f40 2100 struct request *rq = NULL;
1da177e4 2101
3b18152c 2102 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2103 return NULL;
cb887411
JA
2104
2105 cfq_mark_cfqq_fifo_expire(cfqq);
2106
89850f7e
JA
2107 if (list_empty(&cfqq->fifo))
2108 return NULL;
1da177e4 2109
89850f7e 2110 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2111 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2112 rq = NULL;
1da177e4 2113
30996f40 2114 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2115 return rq;
1da177e4
LT
2116}
2117
22e2c507
JA
2118static inline int
2119cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2120{
2121 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2122
22e2c507 2123 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2124
b9f8ce05 2125 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2126}
2127
df5fe3e8
JM
2128/*
2129 * Must be called with the queue_lock held.
2130 */
2131static int cfqq_process_refs(struct cfq_queue *cfqq)
2132{
2133 int process_refs, io_refs;
2134
2135 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2136 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2137 BUG_ON(process_refs < 0);
2138 return process_refs;
2139}
2140
2141static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2142{
e6c5bc73 2143 int process_refs, new_process_refs;
df5fe3e8
JM
2144 struct cfq_queue *__cfqq;
2145
c10b61f0
JM
2146 /*
2147 * If there are no process references on the new_cfqq, then it is
2148 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2149 * chain may have dropped their last reference (not just their
2150 * last process reference).
2151 */
2152 if (!cfqq_process_refs(new_cfqq))
2153 return;
2154
df5fe3e8
JM
2155 /* Avoid a circular list and skip interim queue merges */
2156 while ((__cfqq = new_cfqq->new_cfqq)) {
2157 if (__cfqq == cfqq)
2158 return;
2159 new_cfqq = __cfqq;
2160 }
2161
2162 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2163 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2164 /*
2165 * If the process for the cfqq has gone away, there is no
2166 * sense in merging the queues.
2167 */
c10b61f0 2168 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2169 return;
2170
e6c5bc73
JM
2171 /*
2172 * Merge in the direction of the lesser amount of work.
2173 */
e6c5bc73
JM
2174 if (new_process_refs >= process_refs) {
2175 cfqq->new_cfqq = new_cfqq;
30d7b944 2176 new_cfqq->ref += process_refs;
e6c5bc73
JM
2177 } else {
2178 new_cfqq->new_cfqq = cfqq;
30d7b944 2179 cfqq->ref += new_process_refs;
e6c5bc73 2180 }
df5fe3e8
JM
2181}
2182
cdb16e8f 2183static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2184 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2185{
2186 struct cfq_queue *queue;
2187 int i;
2188 bool key_valid = false;
2189 unsigned long lowest_key = 0;
2190 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2191
65b32a57
VG
2192 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2193 /* select the one with lowest rb_key */
2194 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2195 if (queue &&
2196 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2197 lowest_key = queue->rb_key;
2198 cur_best = i;
2199 key_valid = true;
2200 }
2201 }
2202
2203 return cur_best;
2204}
2205
cdb16e8f 2206static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2207{
718eee05
CZ
2208 unsigned slice;
2209 unsigned count;
cdb16e8f 2210 struct cfq_rb_root *st;
58ff82f3 2211 unsigned group_slice;
e4ea0c16 2212 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2213
718eee05 2214 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2215 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2216 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2217 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2218 cfqd->serving_prio = BE_WORKLOAD;
2219 else {
2220 cfqd->serving_prio = IDLE_WORKLOAD;
2221 cfqd->workload_expires = jiffies + 1;
2222 return;
2223 }
2224
e4ea0c16
SL
2225 if (original_prio != cfqd->serving_prio)
2226 goto new_workload;
2227
718eee05
CZ
2228 /*
2229 * For RT and BE, we have to choose also the type
2230 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2231 * expiration time
2232 */
65b32a57 2233 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2234 count = st->count;
718eee05
CZ
2235
2236 /*
65b32a57 2237 * check workload expiration, and that we still have other queues ready
718eee05 2238 */
65b32a57 2239 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2240 return;
2241
e4ea0c16 2242new_workload:
718eee05
CZ
2243 /* otherwise select new workload type */
2244 cfqd->serving_type =
65b32a57
VG
2245 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2246 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2247 count = st->count;
718eee05
CZ
2248
2249 /*
2250 * the workload slice is computed as a fraction of target latency
2251 * proportional to the number of queues in that workload, over
2252 * all the queues in the same priority class
2253 */
58ff82f3
VG
2254 group_slice = cfq_group_slice(cfqd, cfqg);
2255
2256 slice = group_slice * count /
2257 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2258 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2259
f26bd1f0
VG
2260 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2261 unsigned int tmp;
2262
2263 /*
2264 * Async queues are currently system wide. Just taking
2265 * proportion of queues with-in same group will lead to higher
2266 * async ratio system wide as generally root group is going
2267 * to have higher weight. A more accurate thing would be to
2268 * calculate system wide asnc/sync ratio.
2269 */
2270 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2271 tmp = tmp/cfqd->busy_queues;
2272 slice = min_t(unsigned, slice, tmp);
2273
718eee05
CZ
2274 /* async workload slice is scaled down according to
2275 * the sync/async slice ratio. */
2276 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2277 } else
718eee05
CZ
2278 /* sync workload slice is at least 2 * cfq_slice_idle */
2279 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2280
2281 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2282 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2283 cfqd->workload_expires = jiffies + slice;
2284}
2285
1fa8f6d6
VG
2286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2287{
2288 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2289 struct cfq_group *cfqg;
1fa8f6d6
VG
2290
2291 if (RB_EMPTY_ROOT(&st->rb))
2292 return NULL;
25bc6b07 2293 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2294 update_min_vdisktime(st);
2295 return cfqg;
1fa8f6d6
VG
2296}
2297
cdb16e8f
VG
2298static void cfq_choose_cfqg(struct cfq_data *cfqd)
2299{
1fa8f6d6
VG
2300 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2301
2302 cfqd->serving_group = cfqg;
dae739eb
VG
2303
2304 /* Restore the workload type data */
2305 if (cfqg->saved_workload_slice) {
2306 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2307 cfqd->serving_type = cfqg->saved_workload;
2308 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2309 } else
2310 cfqd->workload_expires = jiffies - 1;
2311
1fa8f6d6 2312 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2313}
2314
22e2c507 2315/*
498d3aa2
JA
2316 * Select a queue for service. If we have a current active queue,
2317 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2318 */
1b5ed5e1 2319static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2320{
a36e71f9 2321 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2322
22e2c507
JA
2323 cfqq = cfqd->active_queue;
2324 if (!cfqq)
2325 goto new_queue;
1da177e4 2326
f04a6424
VG
2327 if (!cfqd->rq_queued)
2328 return NULL;
c244bb50
VG
2329
2330 /*
2331 * We were waiting for group to get backlogged. Expire the queue
2332 */
2333 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2334 goto expire;
2335
22e2c507 2336 /*
6d048f53 2337 * The active queue has run out of time, expire it and select new.
22e2c507 2338 */
7667aa06
VG
2339 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2340 /*
2341 * If slice had not expired at the completion of last request
2342 * we might not have turned on wait_busy flag. Don't expire
2343 * the queue yet. Allow the group to get backlogged.
2344 *
2345 * The very fact that we have used the slice, that means we
2346 * have been idling all along on this queue and it should be
2347 * ok to wait for this request to complete.
2348 */
82bbbf28
VG
2349 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2350 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2351 cfqq = NULL;
7667aa06 2352 goto keep_queue;
82bbbf28 2353 } else
80bdf0c7 2354 goto check_group_idle;
7667aa06 2355 }
1da177e4 2356
22e2c507 2357 /*
6d048f53
JA
2358 * The active queue has requests and isn't expired, allow it to
2359 * dispatch.
22e2c507 2360 */
dd67d051 2361 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2362 goto keep_queue;
6d048f53 2363
a36e71f9
JA
2364 /*
2365 * If another queue has a request waiting within our mean seek
2366 * distance, let it run. The expire code will check for close
2367 * cooperators and put the close queue at the front of the service
df5fe3e8 2368 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2369 */
b3b6d040 2370 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2371 if (new_cfqq) {
2372 if (!cfqq->new_cfqq)
2373 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2374 goto expire;
df5fe3e8 2375 }
a36e71f9 2376
6d048f53
JA
2377 /*
2378 * No requests pending. If the active queue still has requests in
2379 * flight or is idling for a new request, allow either of these
2380 * conditions to happen (or time out) before selecting a new queue.
2381 */
80bdf0c7
VG
2382 if (timer_pending(&cfqd->idle_slice_timer)) {
2383 cfqq = NULL;
2384 goto keep_queue;
2385 }
2386
8e1ac665
SL
2387 /*
2388 * This is a deep seek queue, but the device is much faster than
2389 * the queue can deliver, don't idle
2390 **/
2391 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2392 (cfq_cfqq_slice_new(cfqq) ||
2393 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2394 cfq_clear_cfqq_deep(cfqq);
2395 cfq_clear_cfqq_idle_window(cfqq);
2396 }
2397
80bdf0c7
VG
2398 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2399 cfqq = NULL;
2400 goto keep_queue;
2401 }
2402
2403 /*
2404 * If group idle is enabled and there are requests dispatched from
2405 * this group, wait for requests to complete.
2406 */
2407check_group_idle:
7700fc4f
SL
2408 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2409 cfqq->cfqg->dispatched &&
2410 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
caaa5f9f
JA
2411 cfqq = NULL;
2412 goto keep_queue;
22e2c507
JA
2413 }
2414
3b18152c 2415expire:
e5ff082e 2416 cfq_slice_expired(cfqd, 0);
3b18152c 2417new_queue:
718eee05
CZ
2418 /*
2419 * Current queue expired. Check if we have to switch to a new
2420 * service tree
2421 */
2422 if (!new_cfqq)
cdb16e8f 2423 cfq_choose_cfqg(cfqd);
718eee05 2424
a36e71f9 2425 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2426keep_queue:
3b18152c 2427 return cfqq;
22e2c507
JA
2428}
2429
febffd61 2430static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2431{
2432 int dispatched = 0;
2433
2434 while (cfqq->next_rq) {
2435 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2436 dispatched++;
2437 }
2438
2439 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2440
2441 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2442 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2443 return dispatched;
2444}
2445
498d3aa2
JA
2446/*
2447 * Drain our current requests. Used for barriers and when switching
2448 * io schedulers on-the-fly.
2449 */
d9e7620e 2450static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2451{
0871714e 2452 struct cfq_queue *cfqq;
d9e7620e 2453 int dispatched = 0;
cdb16e8f 2454
3440c49f 2455 /* Expire the timeslice of the current active queue first */
e5ff082e 2456 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2457 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2458 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2459 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2460 }
1b5ed5e1 2461
1b5ed5e1
TH
2462 BUG_ON(cfqd->busy_queues);
2463
6923715a 2464 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2465 return dispatched;
2466}
2467
abc3c744
SL
2468static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2469 struct cfq_queue *cfqq)
2470{
2471 /* the queue hasn't finished any request, can't estimate */
2472 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2473 return true;
abc3c744
SL
2474 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2475 cfqq->slice_end))
c1e44756 2476 return true;
abc3c744 2477
c1e44756 2478 return false;
abc3c744
SL
2479}
2480
0b182d61 2481static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2482{
2f5cb738 2483 unsigned int max_dispatch;
22e2c507 2484
5ad531db
JA
2485 /*
2486 * Drain async requests before we start sync IO
2487 */
53c583d2 2488 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2489 return false;
5ad531db 2490
2f5cb738
JA
2491 /*
2492 * If this is an async queue and we have sync IO in flight, let it wait
2493 */
53c583d2 2494 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2495 return false;
2f5cb738 2496
abc3c744 2497 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2498 if (cfq_class_idle(cfqq))
2499 max_dispatch = 1;
b4878f24 2500
2f5cb738
JA
2501 /*
2502 * Does this cfqq already have too much IO in flight?
2503 */
2504 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2505 bool promote_sync = false;
2f5cb738
JA
2506 /*
2507 * idle queue must always only have a single IO in flight
2508 */
3ed9a296 2509 if (cfq_class_idle(cfqq))
0b182d61 2510 return false;
3ed9a296 2511
ef8a41df 2512 /*
c4ade94f
LS
2513 * If there is only one sync queue
2514 * we can ignore async queue here and give the sync
ef8a41df
SL
2515 * queue no dispatch limit. The reason is a sync queue can
2516 * preempt async queue, limiting the sync queue doesn't make
2517 * sense. This is useful for aiostress test.
2518 */
c4ade94f
LS
2519 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2520 promote_sync = true;
ef8a41df 2521
2f5cb738
JA
2522 /*
2523 * We have other queues, don't allow more IO from this one
2524 */
ef8a41df
SL
2525 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2526 !promote_sync)
0b182d61 2527 return false;
9ede209e 2528
365722bb 2529 /*
474b18cc 2530 * Sole queue user, no limit
365722bb 2531 */
ef8a41df 2532 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2533 max_dispatch = -1;
2534 else
2535 /*
2536 * Normally we start throttling cfqq when cfq_quantum/2
2537 * requests have been dispatched. But we can drive
2538 * deeper queue depths at the beginning of slice
2539 * subjected to upper limit of cfq_quantum.
2540 * */
2541 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2542 }
2543
2544 /*
2545 * Async queues must wait a bit before being allowed dispatch.
2546 * We also ramp up the dispatch depth gradually for async IO,
2547 * based on the last sync IO we serviced
2548 */
963b72fc 2549 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2550 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2551 unsigned int depth;
365722bb 2552
61f0c1dc 2553 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2554 if (!depth && !cfqq->dispatched)
2555 depth = 1;
8e296755
JA
2556 if (depth < max_dispatch)
2557 max_dispatch = depth;
2f5cb738 2558 }
3ed9a296 2559
0b182d61
JA
2560 /*
2561 * If we're below the current max, allow a dispatch
2562 */
2563 return cfqq->dispatched < max_dispatch;
2564}
2565
2566/*
2567 * Dispatch a request from cfqq, moving them to the request queue
2568 * dispatch list.
2569 */
2570static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2571{
2572 struct request *rq;
2573
2574 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2575
2576 if (!cfq_may_dispatch(cfqd, cfqq))
2577 return false;
2578
2579 /*
2580 * follow expired path, else get first next available
2581 */
2582 rq = cfq_check_fifo(cfqq);
2583 if (!rq)
2584 rq = cfqq->next_rq;
2585
2586 /*
2587 * insert request into driver dispatch list
2588 */
2589 cfq_dispatch_insert(cfqd->queue, rq);
2590
2591 if (!cfqd->active_cic) {
c5869807 2592 struct cfq_io_cq *cic = RQ_CIC(rq);
0b182d61 2593
c5869807 2594 atomic_long_inc(&cic->icq.ioc->refcount);
0b182d61
JA
2595 cfqd->active_cic = cic;
2596 }
2597
2598 return true;
2599}
2600
2601/*
2602 * Find the cfqq that we need to service and move a request from that to the
2603 * dispatch list
2604 */
2605static int cfq_dispatch_requests(struct request_queue *q, int force)
2606{
2607 struct cfq_data *cfqd = q->elevator->elevator_data;
2608 struct cfq_queue *cfqq;
2609
2610 if (!cfqd->busy_queues)
2611 return 0;
2612
2613 if (unlikely(force))
2614 return cfq_forced_dispatch(cfqd);
2615
2616 cfqq = cfq_select_queue(cfqd);
2617 if (!cfqq)
8e296755
JA
2618 return 0;
2619
2f5cb738 2620 /*
0b182d61 2621 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2622 */
0b182d61
JA
2623 if (!cfq_dispatch_request(cfqd, cfqq))
2624 return 0;
2625
2f5cb738 2626 cfqq->slice_dispatch++;
b029195d 2627 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2628
2f5cb738
JA
2629 /*
2630 * expire an async queue immediately if it has used up its slice. idle
2631 * queue always expire after 1 dispatch round.
2632 */
2633 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2634 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2635 cfq_class_idle(cfqq))) {
2636 cfqq->slice_end = jiffies + 1;
e5ff082e 2637 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2638 }
2639
b217a903 2640 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2641 return 1;
1da177e4
LT
2642}
2643
1da177e4 2644/*
5e705374
JA
2645 * task holds one reference to the queue, dropped when task exits. each rq
2646 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2647 *
b1c35769 2648 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2649 * queue lock must be held here.
2650 */
2651static void cfq_put_queue(struct cfq_queue *cfqq)
2652{
22e2c507 2653 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2654 struct cfq_group *cfqg;
22e2c507 2655
30d7b944 2656 BUG_ON(cfqq->ref <= 0);
1da177e4 2657
30d7b944
SL
2658 cfqq->ref--;
2659 if (cfqq->ref)
1da177e4
LT
2660 return;
2661
7b679138 2662 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2663 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2664 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2665 cfqg = cfqq->cfqg;
1da177e4 2666
28f95cbc 2667 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2668 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2669 cfq_schedule_dispatch(cfqd);
28f95cbc 2670 }
22e2c507 2671
f04a6424 2672 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2673 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2674 cfq_put_cfqg(cfqg);
1da177e4
LT
2675}
2676
d02a2c07 2677static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2678{
df5fe3e8
JM
2679 struct cfq_queue *__cfqq, *next;
2680
df5fe3e8
JM
2681 /*
2682 * If this queue was scheduled to merge with another queue, be
2683 * sure to drop the reference taken on that queue (and others in
2684 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2685 */
2686 __cfqq = cfqq->new_cfqq;
2687 while (__cfqq) {
2688 if (__cfqq == cfqq) {
2689 WARN(1, "cfqq->new_cfqq loop detected\n");
2690 break;
2691 }
2692 next = __cfqq->new_cfqq;
2693 cfq_put_queue(__cfqq);
2694 __cfqq = next;
2695 }
d02a2c07
SL
2696}
2697
2698static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2699{
2700 if (unlikely(cfqq == cfqd->active_queue)) {
2701 __cfq_slice_expired(cfqd, cfqq, 0);
2702 cfq_schedule_dispatch(cfqd);
2703 }
2704
2705 cfq_put_cooperator(cfqq);
df5fe3e8 2706
89850f7e
JA
2707 cfq_put_queue(cfqq);
2708}
22e2c507 2709
c5869807 2710static void cfq_exit_icq(struct io_cq *icq)
89850f7e 2711{
c5869807 2712 struct cfq_io_cq *cic = icq_to_cic(icq);
283287a5 2713 struct cfq_data *cfqd = cic_to_cfqd(cic);
4faa3c81 2714
ff6657c6
JA
2715 if (cic->cfqq[BLK_RW_ASYNC]) {
2716 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2717 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2718 }
2719
ff6657c6
JA
2720 if (cic->cfqq[BLK_RW_SYNC]) {
2721 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2722 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2723 }
89850f7e
JA
2724}
2725
c5869807 2726static struct cfq_io_cq *cfq_alloc_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2727{
c5869807 2728 struct cfq_io_cq *cic;
1da177e4 2729
c5869807 2730 cic = kmem_cache_alloc_node(cfq_icq_pool, gfp_mask | __GFP_ZERO,
94f6030c 2731 cfqd->queue->node);
1da177e4 2732 if (cic) {
383cd721 2733 cic->ttime.last_end_request = jiffies;
c5869807
TH
2734 INIT_LIST_HEAD(&cic->icq.q_node);
2735 INIT_HLIST_NODE(&cic->icq.ioc_node);
1da177e4
LT
2736 }
2737
2738 return cic;
2739}
2740
fd0928df 2741static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2742{
2743 struct task_struct *tsk = current;
2744 int ioprio_class;
2745
3b18152c 2746 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2747 return;
2748
fd0928df 2749 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2750 switch (ioprio_class) {
fe094d98
JA
2751 default:
2752 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2753 case IOPRIO_CLASS_NONE:
2754 /*
6d63c275 2755 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2756 */
2757 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2758 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2759 break;
2760 case IOPRIO_CLASS_RT:
2761 cfqq->ioprio = task_ioprio(ioc);
2762 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2763 break;
2764 case IOPRIO_CLASS_BE:
2765 cfqq->ioprio = task_ioprio(ioc);
2766 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2767 break;
2768 case IOPRIO_CLASS_IDLE:
2769 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2770 cfqq->ioprio = 7;
2771 cfq_clear_cfqq_idle_window(cfqq);
2772 break;
22e2c507
JA
2773 }
2774
2775 /*
2776 * keep track of original prio settings in case we have to temporarily
2777 * elevate the priority of this queue
2778 */
2779 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2780 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2781}
2782
c5869807 2783static void changed_ioprio(struct cfq_io_cq *cic)
22e2c507 2784{
bca4b914 2785 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2786 struct cfq_queue *cfqq;
35e6077c 2787
caaa5f9f
JA
2788 if (unlikely(!cfqd))
2789 return;
2790
ff6657c6 2791 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2792 if (cfqq) {
2793 struct cfq_queue *new_cfqq;
c5869807 2794 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
ff6657c6 2795 GFP_ATOMIC);
caaa5f9f 2796 if (new_cfqq) {
ff6657c6 2797 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2798 cfq_put_queue(cfqq);
2799 }
22e2c507 2800 }
caaa5f9f 2801
ff6657c6 2802 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2803 if (cfqq)
2804 cfq_mark_cfqq_prio_changed(cfqq);
22e2c507
JA
2805}
2806
d5036d77 2807static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2808 pid_t pid, bool is_sync)
d5036d77
JA
2809{
2810 RB_CLEAR_NODE(&cfqq->rb_node);
2811 RB_CLEAR_NODE(&cfqq->p_node);
2812 INIT_LIST_HEAD(&cfqq->fifo);
2813
30d7b944 2814 cfqq->ref = 0;
d5036d77
JA
2815 cfqq->cfqd = cfqd;
2816
2817 cfq_mark_cfqq_prio_changed(cfqq);
2818
2819 if (is_sync) {
2820 if (!cfq_class_idle(cfqq))
2821 cfq_mark_cfqq_idle_window(cfqq);
2822 cfq_mark_cfqq_sync(cfqq);
2823 }
2824 cfqq->pid = pid;
2825}
2826
24610333 2827#ifdef CONFIG_CFQ_GROUP_IOSCHED
c5869807 2828static void changed_cgroup(struct cfq_io_cq *cic)
24610333
VG
2829{
2830 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2831 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2832 struct request_queue *q;
2833
2834 if (unlikely(!cfqd))
2835 return;
2836
2837 q = cfqd->queue;
2838
24610333
VG
2839 if (sync_cfqq) {
2840 /*
2841 * Drop reference to sync queue. A new sync queue will be
2842 * assigned in new group upon arrival of a fresh request.
2843 */
2844 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2845 cic_set_cfqq(cic, NULL, 1);
2846 cfq_put_queue(sync_cfqq);
2847 }
24610333 2848}
24610333
VG
2849#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2850
22e2c507 2851static struct cfq_queue *
a6151c3a 2852cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2853 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2854{
22e2c507 2855 struct cfq_queue *cfqq, *new_cfqq = NULL;
c5869807 2856 struct cfq_io_cq *cic;
cdb16e8f 2857 struct cfq_group *cfqg;
22e2c507
JA
2858
2859retry:
3e59cf9d 2860 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2861 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2862 /* cic always exists here */
2863 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2864
6118b70b
JA
2865 /*
2866 * Always try a new alloc if we fell back to the OOM cfqq
2867 * originally, since it should just be a temporary situation.
2868 */
2869 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2870 cfqq = NULL;
22e2c507
JA
2871 if (new_cfqq) {
2872 cfqq = new_cfqq;
2873 new_cfqq = NULL;
2874 } else if (gfp_mask & __GFP_WAIT) {
2875 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2876 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2877 gfp_mask | __GFP_ZERO,
94f6030c 2878 cfqd->queue->node);
22e2c507 2879 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2880 if (new_cfqq)
2881 goto retry;
22e2c507 2882 } else {
94f6030c
CL
2883 cfqq = kmem_cache_alloc_node(cfq_pool,
2884 gfp_mask | __GFP_ZERO,
2885 cfqd->queue->node);
22e2c507
JA
2886 }
2887
6118b70b
JA
2888 if (cfqq) {
2889 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2890 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2891 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2892 cfq_log_cfqq(cfqd, cfqq, "alloced");
2893 } else
2894 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2895 }
2896
2897 if (new_cfqq)
2898 kmem_cache_free(cfq_pool, new_cfqq);
2899
22e2c507
JA
2900 return cfqq;
2901}
2902
c2dea2d1
VT
2903static struct cfq_queue **
2904cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2905{
fe094d98 2906 switch (ioprio_class) {
c2dea2d1
VT
2907 case IOPRIO_CLASS_RT:
2908 return &cfqd->async_cfqq[0][ioprio];
2909 case IOPRIO_CLASS_BE:
2910 return &cfqd->async_cfqq[1][ioprio];
2911 case IOPRIO_CLASS_IDLE:
2912 return &cfqd->async_idle_cfqq;
2913 default:
2914 BUG();
2915 }
2916}
2917
15c31be4 2918static struct cfq_queue *
a6151c3a 2919cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2920 gfp_t gfp_mask)
2921{
fd0928df
JA
2922 const int ioprio = task_ioprio(ioc);
2923 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2924 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2925 struct cfq_queue *cfqq = NULL;
2926
c2dea2d1
VT
2927 if (!is_sync) {
2928 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2929 cfqq = *async_cfqq;
2930 }
2931
6118b70b 2932 if (!cfqq)
fd0928df 2933 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2934
2935 /*
2936 * pin the queue now that it's allocated, scheduler exit will prune it
2937 */
c2dea2d1 2938 if (!is_sync && !(*async_cfqq)) {
30d7b944 2939 cfqq->ref++;
c2dea2d1 2940 *async_cfqq = cfqq;
15c31be4
JA
2941 }
2942
30d7b944 2943 cfqq->ref++;
15c31be4
JA
2944 return cfqq;
2945}
2946
216284c3 2947/**
c5869807 2948 * cfq_create_cic - create and link a cfq_io_cq
216284c3
TH
2949 * @cfqd: cfqd of interest
2950 * @gfp_mask: allocation mask
2951 *
c5869807
TH
2952 * Make sure cfq_io_cq linking %current->io_context and @cfqd exists. If
2953 * ioc and/or cic doesn't exist, they will be created using @gfp_mask.
4ac845a2 2954 */
216284c3 2955static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
e2d74ac0 2956{
216284c3 2957 struct request_queue *q = cfqd->queue;
c5869807
TH
2958 struct io_cq *icq = NULL;
2959 struct cfq_io_cq *cic;
216284c3
TH
2960 struct io_context *ioc;
2961 int ret = -ENOMEM;
2962
2963 might_sleep_if(gfp_mask & __GFP_WAIT);
2964
2965 /* allocate stuff */
f2dbd76a 2966 ioc = create_io_context(current, gfp_mask, q->node);
216284c3
TH
2967 if (!ioc)
2968 goto out;
2969
c5869807 2970 cic = cfq_alloc_cic(cfqd, gfp_mask);
216284c3
TH
2971 if (!cic)
2972 goto out;
c5869807 2973 icq = &cic->icq;
e2d74ac0 2974
4ac845a2 2975 ret = radix_tree_preload(gfp_mask);
283287a5
TH
2976 if (ret)
2977 goto out;
e2d74ac0 2978
c5869807
TH
2979 icq->ioc = ioc;
2980 icq->q = cfqd->queue;
283287a5 2981
c5869807 2982 /* lock both q and ioc and try to link @icq */
216284c3
TH
2983 spin_lock_irq(q->queue_lock);
2984 spin_lock(&ioc->lock);
4ac845a2 2985
c5869807 2986 ret = radix_tree_insert(&ioc->icq_tree, q->id, icq);
216284c3 2987 if (likely(!ret)) {
c5869807 2988 hlist_add_head(&icq->ioc_node, &ioc->icq_list);
a612fddf 2989 list_add(&icq->q_node, &q->icq_list);
c5869807 2990 icq = NULL;
216284c3
TH
2991 } else if (ret == -EEXIST) {
2992 /* someone else already did it */
2993 ret = 0;
e2d74ac0 2994 }
216284c3
TH
2995
2996 spin_unlock(&ioc->lock);
2997 spin_unlock_irq(q->queue_lock);
2998
2999 radix_tree_preload_end();
283287a5 3000out:
4ac845a2 3001 if (ret)
c5869807
TH
3002 printk(KERN_ERR "cfq: icq link failed!\n");
3003 if (icq)
7e5a8794 3004 kmem_cache_free(cfq_icq_pool, icq);
4ac845a2 3005 return ret;
e2d74ac0
JA
3006}
3007
216284c3 3008/**
c5869807 3009 * cfq_get_cic - acquire cfq_io_cq and bump refcnt on io_context
216284c3
TH
3010 * @cfqd: cfqd to setup cic for
3011 * @gfp_mask: allocation mask
3012 *
c5869807 3013 * Return cfq_io_cq associating @cfqd and %current->io_context and
216284c3
TH
3014 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3015 * using @gfp_mask.
3016 *
3017 * Must be called under queue_lock which may be released and re-acquired.
3018 * This function also may sleep depending on @gfp_mask.
1da177e4 3019 */
c5869807 3020static struct cfq_io_cq *cfq_get_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3021{
216284c3 3022 struct request_queue *q = cfqd->queue;
c5869807 3023 struct cfq_io_cq *cic = NULL;
216284c3
TH
3024 struct io_context *ioc;
3025 int err;
3026
3027 lockdep_assert_held(q->queue_lock);
3028
3029 while (true) {
3030 /* fast path */
3031 ioc = current->io_context;
3032 if (likely(ioc)) {
3033 cic = cfq_cic_lookup(cfqd, ioc);
3034 if (likely(cic))
3035 break;
3036 }
1da177e4 3037
216284c3
TH
3038 /* slow path - unlock, create missing ones and retry */
3039 spin_unlock_irq(q->queue_lock);
3040 err = cfq_create_cic(cfqd, gfp_mask);
3041 spin_lock_irq(q->queue_lock);
3042 if (err)
3043 return NULL;
3044 }
1da177e4 3045
216284c3 3046 /* bump @ioc's refcnt and handle changed notifications */
6e736be7
TH
3047 get_io_context(ioc);
3048
c5869807
TH
3049 if (unlikely(cic->icq.changed)) {
3050 if (test_and_clear_bit(ICQ_IOPRIO_CHANGED, &cic->icq.changed))
dc86900e 3051 changed_ioprio(cic);
24610333 3052#ifdef CONFIG_CFQ_GROUP_IOSCHED
c5869807 3053 if (test_and_clear_bit(ICQ_CGROUP_CHANGED, &cic->icq.changed))
dc86900e 3054 changed_cgroup(cic);
24610333 3055#endif
dc86900e
TH
3056 }
3057
1da177e4 3058 return cic;
1da177e4
LT
3059}
3060
22e2c507 3061static void
383cd721 3062__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
1da177e4 3063{
383cd721
SL
3064 unsigned long elapsed = jiffies - ttime->last_end_request;
3065 elapsed = min(elapsed, 2UL * slice_idle);
db3b5848 3066
383cd721
SL
3067 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3068 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3069 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3070}
3071
3072static void
3073cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
c5869807 3074 struct cfq_io_cq *cic)
383cd721 3075{
f5f2b6ce 3076 if (cfq_cfqq_sync(cfqq)) {
383cd721 3077 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
f5f2b6ce
SL
3078 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3079 cfqd->cfq_slice_idle);
3080 }
7700fc4f
SL
3081#ifdef CONFIG_CFQ_GROUP_IOSCHED
3082 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3083#endif
22e2c507 3084}
1da177e4 3085
206dc69b 3086static void
b2c18e1e 3087cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3088 struct request *rq)
206dc69b 3089{
3dde36dd 3090 sector_t sdist = 0;
41647e7a 3091 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3092 if (cfqq->last_request_pos) {
3093 if (cfqq->last_request_pos < blk_rq_pos(rq))
3094 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3095 else
3096 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3097 }
206dc69b 3098
3dde36dd 3099 cfqq->seek_history <<= 1;
41647e7a
CZ
3100 if (blk_queue_nonrot(cfqd->queue))
3101 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3102 else
3103 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3104}
1da177e4 3105
22e2c507
JA
3106/*
3107 * Disable idle window if the process thinks too long or seeks so much that
3108 * it doesn't matter
3109 */
3110static void
3111cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
c5869807 3112 struct cfq_io_cq *cic)
22e2c507 3113{
7b679138 3114 int old_idle, enable_idle;
1be92f2f 3115
0871714e
JA
3116 /*
3117 * Don't idle for async or idle io prio class
3118 */
3119 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3120 return;
3121
c265a7f4 3122 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3123
76280aff
CZ
3124 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3125 cfq_mark_cfqq_deep(cfqq);
3126
749ef9f8
CZ
3127 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3128 enable_idle = 0;
c5869807
TH
3129 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3130 !cfqd->cfq_slice_idle ||
3131 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507 3132 enable_idle = 0;
383cd721
SL
3133 else if (sample_valid(cic->ttime.ttime_samples)) {
3134 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3135 enable_idle = 0;
3136 else
3137 enable_idle = 1;
1da177e4
LT
3138 }
3139
7b679138
JA
3140 if (old_idle != enable_idle) {
3141 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3142 if (enable_idle)
3143 cfq_mark_cfqq_idle_window(cfqq);
3144 else
3145 cfq_clear_cfqq_idle_window(cfqq);
3146 }
22e2c507 3147}
1da177e4 3148
22e2c507
JA
3149/*
3150 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3151 * no or if we aren't sure, a 1 will cause a preempt.
3152 */
a6151c3a 3153static bool
22e2c507 3154cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3155 struct request *rq)
22e2c507 3156{
6d048f53 3157 struct cfq_queue *cfqq;
22e2c507 3158
6d048f53
JA
3159 cfqq = cfqd->active_queue;
3160 if (!cfqq)
a6151c3a 3161 return false;
22e2c507 3162
6d048f53 3163 if (cfq_class_idle(new_cfqq))
a6151c3a 3164 return false;
22e2c507
JA
3165
3166 if (cfq_class_idle(cfqq))
a6151c3a 3167 return true;
1e3335de 3168
875feb63
DS
3169 /*
3170 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3171 */
3172 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3173 return false;
3174
374f84ac
JA
3175 /*
3176 * if the new request is sync, but the currently running queue is
3177 * not, let the sync request have priority.
3178 */
5e705374 3179 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3180 return true;
1e3335de 3181
8682e1f1
VG
3182 if (new_cfqq->cfqg != cfqq->cfqg)
3183 return false;
3184
3185 if (cfq_slice_used(cfqq))
3186 return true;
3187
3188 /* Allow preemption only if we are idling on sync-noidle tree */
3189 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3190 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3191 new_cfqq->service_tree->count == 2 &&
3192 RB_EMPTY_ROOT(&cfqq->sort_list))
3193 return true;
3194
b53d1ed7
JA
3195 /*
3196 * So both queues are sync. Let the new request get disk time if
3197 * it's a metadata request and the current queue is doing regular IO.
3198 */
65299a3b 3199 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
b53d1ed7
JA
3200 return true;
3201
3a9a3f6c
DS
3202 /*
3203 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3204 */
3205 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3206 return true;
3a9a3f6c 3207
d2d59e18
SL
3208 /* An idle queue should not be idle now for some reason */
3209 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3210 return true;
3211
1e3335de 3212 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3213 return false;
1e3335de
JA
3214
3215 /*
3216 * if this request is as-good as one we would expect from the
3217 * current cfqq, let it preempt
3218 */
e9ce335d 3219 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3220 return true;
1e3335de 3221
a6151c3a 3222 return false;
22e2c507
JA
3223}
3224
3225/*
3226 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3227 * let it have half of its nominal slice.
3228 */
3229static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3230{
f8ae6e3e
SL
3231 struct cfq_queue *old_cfqq = cfqd->active_queue;
3232
7b679138 3233 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3234 cfq_slice_expired(cfqd, 1);
22e2c507 3235
f8ae6e3e
SL
3236 /*
3237 * workload type is changed, don't save slice, otherwise preempt
3238 * doesn't happen
3239 */
3240 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3241 cfqq->cfqg->saved_workload_slice = 0;
3242
bf572256
JA
3243 /*
3244 * Put the new queue at the front of the of the current list,
3245 * so we know that it will be selected next.
3246 */
3247 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3248
3249 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3250
62a37f6b
JT
3251 cfqq->slice_end = 0;
3252 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3253}
3254
22e2c507 3255/*
5e705374 3256 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3257 * something we should do about it
3258 */
3259static void
5e705374
JA
3260cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3261 struct request *rq)
22e2c507 3262{
c5869807 3263 struct cfq_io_cq *cic = RQ_CIC(rq);
12e9fddd 3264
45333d5a 3265 cfqd->rq_queued++;
65299a3b
CH
3266 if (rq->cmd_flags & REQ_PRIO)
3267 cfqq->prio_pending++;
374f84ac 3268
383cd721 3269 cfq_update_io_thinktime(cfqd, cfqq, cic);
b2c18e1e 3270 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3271 cfq_update_idle_window(cfqd, cfqq, cic);
3272
b2c18e1e 3273 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3274
3275 if (cfqq == cfqd->active_queue) {
3276 /*
b029195d
JA
3277 * Remember that we saw a request from this process, but
3278 * don't start queuing just yet. Otherwise we risk seeing lots
3279 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3280 * and merging. If the request is already larger than a single
3281 * page, let it rip immediately. For that case we assume that
2d870722
JA
3282 * merging is already done. Ditto for a busy system that
3283 * has other work pending, don't risk delaying until the
3284 * idle timer unplug to continue working.
22e2c507 3285 */
d6ceb25e 3286 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3287 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3288 cfqd->busy_queues > 1) {
812df48d 3289 cfq_del_timer(cfqd, cfqq);
554554f6 3290 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3291 __blk_run_queue(cfqd->queue);
a11cdaa7 3292 } else {
e98ef89b 3293 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3294 &cfqq->cfqg->blkg);
bf791937 3295 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3296 }
d6ceb25e 3297 }
5e705374 3298 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3299 /*
3300 * not the active queue - expire current slice if it is
3301 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3302 * has some old slice time left and is of higher priority or
3303 * this new queue is RT and the current one is BE
22e2c507
JA
3304 */
3305 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3306 __blk_run_queue(cfqd->queue);
22e2c507 3307 }
1da177e4
LT
3308}
3309
165125e1 3310static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3311{
b4878f24 3312 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3313 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3314
7b679138 3315 cfq_log_cfqq(cfqd, cfqq, "insert_request");
c5869807 3316 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
1da177e4 3317
30996f40 3318 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3319 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3320 cfq_add_rq_rb(rq);
e98ef89b 3321 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3322 &cfqd->serving_group->blkg, rq_data_dir(rq),
3323 rq_is_sync(rq));
5e705374 3324 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3325}
3326
45333d5a
AC
3327/*
3328 * Update hw_tag based on peak queue depth over 50 samples under
3329 * sufficient load.
3330 */
3331static void cfq_update_hw_tag(struct cfq_data *cfqd)
3332{
1a1238a7
SL
3333 struct cfq_queue *cfqq = cfqd->active_queue;
3334
53c583d2
CZ
3335 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3336 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3337
3338 if (cfqd->hw_tag == 1)
3339 return;
45333d5a
AC
3340
3341 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3342 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3343 return;
3344
1a1238a7
SL
3345 /*
3346 * If active queue hasn't enough requests and can idle, cfq might not
3347 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3348 * case
3349 */
3350 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3351 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3352 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3353 return;
3354
45333d5a
AC
3355 if (cfqd->hw_tag_samples++ < 50)
3356 return;
3357
e459dd08 3358 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3359 cfqd->hw_tag = 1;
3360 else
3361 cfqd->hw_tag = 0;
45333d5a
AC
3362}
3363
7667aa06
VG
3364static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3365{
c5869807 3366 struct cfq_io_cq *cic = cfqd->active_cic;
7667aa06 3367
02a8f01b
JT
3368 /* If the queue already has requests, don't wait */
3369 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3370 return false;
3371
7667aa06
VG
3372 /* If there are other queues in the group, don't wait */
3373 if (cfqq->cfqg->nr_cfqq > 1)
3374 return false;
3375
7700fc4f
SL
3376 /* the only queue in the group, but think time is big */
3377 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3378 return false;
3379
7667aa06
VG
3380 if (cfq_slice_used(cfqq))
3381 return true;
3382
3383 /* if slice left is less than think time, wait busy */
383cd721
SL
3384 if (cic && sample_valid(cic->ttime.ttime_samples)
3385 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
7667aa06
VG
3386 return true;
3387
3388 /*
3389 * If think times is less than a jiffy than ttime_mean=0 and above
3390 * will not be true. It might happen that slice has not expired yet
3391 * but will expire soon (4-5 ns) during select_queue(). To cover the
3392 * case where think time is less than a jiffy, mark the queue wait
3393 * busy if only 1 jiffy is left in the slice.
3394 */
3395 if (cfqq->slice_end - jiffies == 1)
3396 return true;
3397
3398 return false;
3399}
3400
165125e1 3401static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3402{
5e705374 3403 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3404 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3405 const int sync = rq_is_sync(rq);
b4878f24 3406 unsigned long now;
1da177e4 3407
b4878f24 3408 now = jiffies;
33659ebb
CH
3409 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3410 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3411
45333d5a
AC
3412 cfq_update_hw_tag(cfqd);
3413
53c583d2 3414 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3415 WARN_ON(!cfqq->dispatched);
53c583d2 3416 cfqd->rq_in_driver--;
6d048f53 3417 cfqq->dispatched--;
80bdf0c7 3418 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3419 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3420 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3421 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3422
53c583d2 3423 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3424
365722bb 3425 if (sync) {
f5f2b6ce
SL
3426 struct cfq_rb_root *service_tree;
3427
383cd721 3428 RQ_CIC(rq)->ttime.last_end_request = now;
f5f2b6ce
SL
3429
3430 if (cfq_cfqq_on_rr(cfqq))
3431 service_tree = cfqq->service_tree;
3432 else
3433 service_tree = service_tree_for(cfqq->cfqg,
3434 cfqq_prio(cfqq), cfqq_type(cfqq));
3435 service_tree->ttime.last_end_request = now;
573412b2
CZ
3436 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3437 cfqd->last_delayed_sync = now;
365722bb 3438 }
caaa5f9f 3439
7700fc4f
SL
3440#ifdef CONFIG_CFQ_GROUP_IOSCHED
3441 cfqq->cfqg->ttime.last_end_request = now;
3442#endif
3443
caaa5f9f
JA
3444 /*
3445 * If this is the active queue, check if it needs to be expired,
3446 * or if we want to idle in case it has no pending requests.
3447 */
3448 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3449 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3450
44f7c160
JA
3451 if (cfq_cfqq_slice_new(cfqq)) {
3452 cfq_set_prio_slice(cfqd, cfqq);
3453 cfq_clear_cfqq_slice_new(cfqq);
3454 }
f75edf2d
VG
3455
3456 /*
7667aa06
VG
3457 * Should we wait for next request to come in before we expire
3458 * the queue.
f75edf2d 3459 */
7667aa06 3460 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3461 unsigned long extend_sl = cfqd->cfq_slice_idle;
3462 if (!cfqd->cfq_slice_idle)
3463 extend_sl = cfqd->cfq_group_idle;
3464 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3465 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3466 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3467 }
3468
a36e71f9 3469 /*
8e550632
CZ
3470 * Idling is not enabled on:
3471 * - expired queues
3472 * - idle-priority queues
3473 * - async queues
3474 * - queues with still some requests queued
3475 * - when there is a close cooperator
a36e71f9 3476 */
0871714e 3477 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3478 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3479 else if (sync && cfqq_empty &&
3480 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3481 cfq_arm_slice_timer(cfqd);
8e550632 3482 }
caaa5f9f 3483 }
6d048f53 3484
53c583d2 3485 if (!cfqd->rq_in_driver)
23e018a1 3486 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3487}
3488
89850f7e 3489static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3490{
1b379d8d 3491 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3492 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3493 return ELV_MQUEUE_MUST;
3b18152c 3494 }
1da177e4 3495
22e2c507 3496 return ELV_MQUEUE_MAY;
22e2c507
JA
3497}
3498
165125e1 3499static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3500{
3501 struct cfq_data *cfqd = q->elevator->elevator_data;
3502 struct task_struct *tsk = current;
c5869807 3503 struct cfq_io_cq *cic;
22e2c507
JA
3504 struct cfq_queue *cfqq;
3505
3506 /*
3507 * don't force setup of a queue from here, as a call to may_queue
3508 * does not necessarily imply that a request actually will be queued.
3509 * so just lookup a possibly existing queue, or return 'may queue'
3510 * if that fails
3511 */
4ac845a2 3512 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3513 if (!cic)
3514 return ELV_MQUEUE_MAY;
3515
b0b78f81 3516 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3517 if (cfqq) {
c5869807 3518 cfq_init_prio_data(cfqq, cic->icq.ioc);
22e2c507 3519
89850f7e 3520 return __cfq_may_queue(cfqq);
22e2c507
JA
3521 }
3522
3523 return ELV_MQUEUE_MAY;
1da177e4
LT
3524}
3525
1da177e4
LT
3526/*
3527 * queue lock held here
3528 */
bb37b94c 3529static void cfq_put_request(struct request *rq)
1da177e4 3530{
5e705374 3531 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3532
5e705374 3533 if (cfqq) {
22e2c507 3534 const int rw = rq_data_dir(rq);
1da177e4 3535
22e2c507
JA
3536 BUG_ON(!cfqq->allocated[rw]);
3537 cfqq->allocated[rw]--;
1da177e4 3538
c5869807 3539 put_io_context(RQ_CIC(rq)->icq.ioc, cfqq->cfqd->queue);
1da177e4 3540
7f1dc8a2
VG
3541 /* Put down rq reference on cfqg */
3542 cfq_put_cfqg(RQ_CFQG(rq));
a612fddf
TH
3543 rq->elv.priv[0] = NULL;
3544 rq->elv.priv[1] = NULL;
7f1dc8a2 3545
1da177e4
LT
3546 cfq_put_queue(cfqq);
3547 }
3548}
3549
df5fe3e8 3550static struct cfq_queue *
c5869807 3551cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
df5fe3e8
JM
3552 struct cfq_queue *cfqq)
3553{
3554 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3555 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3556 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3557 cfq_put_queue(cfqq);
3558 return cic_to_cfqq(cic, 1);
3559}
3560
e6c5bc73
JM
3561/*
3562 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3563 * was the last process referring to said cfqq.
3564 */
3565static struct cfq_queue *
c5869807 3566split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
e6c5bc73
JM
3567{
3568 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3569 cfqq->pid = current->pid;
3570 cfq_clear_cfqq_coop(cfqq);
ae54abed 3571 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3572 return cfqq;
3573 }
3574
3575 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3576
3577 cfq_put_cooperator(cfqq);
3578
e6c5bc73
JM
3579 cfq_put_queue(cfqq);
3580 return NULL;
3581}
1da177e4 3582/*
22e2c507 3583 * Allocate cfq data structures associated with this request.
1da177e4 3584 */
22e2c507 3585static int
165125e1 3586cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3587{
3588 struct cfq_data *cfqd = q->elevator->elevator_data;
c5869807 3589 struct cfq_io_cq *cic;
1da177e4 3590 const int rw = rq_data_dir(rq);
a6151c3a 3591 const bool is_sync = rq_is_sync(rq);
22e2c507 3592 struct cfq_queue *cfqq;
1da177e4
LT
3593
3594 might_sleep_if(gfp_mask & __GFP_WAIT);
3595
216284c3 3596 spin_lock_irq(q->queue_lock);
c5869807 3597 cic = cfq_get_cic(cfqd, gfp_mask);
22e2c507
JA
3598 if (!cic)
3599 goto queue_fail;
3600
e6c5bc73 3601new_queue:
91fac317 3602 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3603 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
c5869807 3604 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
91fac317 3605 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3606 } else {
e6c5bc73
JM
3607 /*
3608 * If the queue was seeky for too long, break it apart.
3609 */
ae54abed 3610 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3611 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3612 cfqq = split_cfqq(cic, cfqq);
3613 if (!cfqq)
3614 goto new_queue;
3615 }
3616
df5fe3e8
JM
3617 /*
3618 * Check to see if this queue is scheduled to merge with
3619 * another, closely cooperating queue. The merging of
3620 * queues happens here as it must be done in process context.
3621 * The reference on new_cfqq was taken in merge_cfqqs.
3622 */
3623 if (cfqq->new_cfqq)
3624 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3625 }
1da177e4
LT
3626
3627 cfqq->allocated[rw]++;
1da177e4 3628
6fae9c25 3629 cfqq->ref++;
a612fddf
TH
3630 rq->elv.icq = &cic->icq;
3631 rq->elv.priv[0] = cfqq;
3632 rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
216284c3 3633 spin_unlock_irq(q->queue_lock);
5e705374 3634 return 0;
1da177e4 3635
22e2c507 3636queue_fail:
23e018a1 3637 cfq_schedule_dispatch(cfqd);
216284c3 3638 spin_unlock_irq(q->queue_lock);
7b679138 3639 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3640 return 1;
3641}
3642
65f27f38 3643static void cfq_kick_queue(struct work_struct *work)
22e2c507 3644{
65f27f38 3645 struct cfq_data *cfqd =
23e018a1 3646 container_of(work, struct cfq_data, unplug_work);
165125e1 3647 struct request_queue *q = cfqd->queue;
22e2c507 3648
40bb54d1 3649 spin_lock_irq(q->queue_lock);
24ecfbe2 3650 __blk_run_queue(cfqd->queue);
40bb54d1 3651 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3652}
3653
3654/*
3655 * Timer running if the active_queue is currently idling inside its time slice
3656 */
3657static void cfq_idle_slice_timer(unsigned long data)
3658{
3659 struct cfq_data *cfqd = (struct cfq_data *) data;
3660 struct cfq_queue *cfqq;
3661 unsigned long flags;
3c6bd2f8 3662 int timed_out = 1;
22e2c507 3663
7b679138
JA
3664 cfq_log(cfqd, "idle timer fired");
3665
22e2c507
JA
3666 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3667
fe094d98
JA
3668 cfqq = cfqd->active_queue;
3669 if (cfqq) {
3c6bd2f8
JA
3670 timed_out = 0;
3671
b029195d
JA
3672 /*
3673 * We saw a request before the queue expired, let it through
3674 */
3675 if (cfq_cfqq_must_dispatch(cfqq))
3676 goto out_kick;
3677
22e2c507
JA
3678 /*
3679 * expired
3680 */
44f7c160 3681 if (cfq_slice_used(cfqq))
22e2c507
JA
3682 goto expire;
3683
3684 /*
3685 * only expire and reinvoke request handler, if there are
3686 * other queues with pending requests
3687 */
caaa5f9f 3688 if (!cfqd->busy_queues)
22e2c507 3689 goto out_cont;
22e2c507
JA
3690
3691 /*
3692 * not expired and it has a request pending, let it dispatch
3693 */
75e50984 3694 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3695 goto out_kick;
76280aff
CZ
3696
3697 /*
3698 * Queue depth flag is reset only when the idle didn't succeed
3699 */
3700 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3701 }
3702expire:
e5ff082e 3703 cfq_slice_expired(cfqd, timed_out);
22e2c507 3704out_kick:
23e018a1 3705 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3706out_cont:
3707 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3708}
3709
3b18152c
JA
3710static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3711{
3712 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3713 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3714}
22e2c507 3715
c2dea2d1
VT
3716static void cfq_put_async_queues(struct cfq_data *cfqd)
3717{
3718 int i;
3719
3720 for (i = 0; i < IOPRIO_BE_NR; i++) {
3721 if (cfqd->async_cfqq[0][i])
3722 cfq_put_queue(cfqd->async_cfqq[0][i]);
3723 if (cfqd->async_cfqq[1][i])
3724 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3725 }
2389d1ef
ON
3726
3727 if (cfqd->async_idle_cfqq)
3728 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3729}
3730
b374d18a 3731static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3732{
22e2c507 3733 struct cfq_data *cfqd = e->elevator_data;
165125e1 3734 struct request_queue *q = cfqd->queue;
56edf7d7 3735 bool wait = false;
22e2c507 3736
3b18152c 3737 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3738
d9ff4187 3739 spin_lock_irq(q->queue_lock);
e2d74ac0 3740
d9ff4187 3741 if (cfqd->active_queue)
e5ff082e 3742 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0 3743
c2dea2d1 3744 cfq_put_async_queues(cfqd);
b1c35769 3745 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3746
3747 /*
3748 * If there are groups which we could not unlink from blkcg list,
3749 * wait for a rcu period for them to be freed.
3750 */
3751 if (cfqd->nr_blkcg_linked_grps)
3752 wait = true;
15c31be4 3753
d9ff4187 3754 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3755
3756 cfq_shutdown_timer_wq(cfqd);
3757
56edf7d7
VG
3758 /*
3759 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3760 * Do this wait only if there are other unlinked groups out
3761 * there. This can happen if cgroup deletion path claimed the
3762 * responsibility of cleaning up a group before queue cleanup code
3763 * get to the group.
3764 *
3765 * Do not call synchronize_rcu() unconditionally as there are drivers
3766 * which create/delete request queue hundreds of times during scan/boot
3767 * and synchronize_rcu() can take significant time and slow down boot.
3768 */
3769 if (wait)
3770 synchronize_rcu();
2abae55f
VG
3771
3772#ifdef CONFIG_CFQ_GROUP_IOSCHED
3773 /* Free up per cpu stats for root group */
3774 free_percpu(cfqd->root_group.blkg.stats_cpu);
3775#endif
56edf7d7 3776 kfree(cfqd);
1da177e4
LT
3777}
3778
165125e1 3779static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3780{
3781 struct cfq_data *cfqd;
718eee05 3782 int i, j;
cdb16e8f 3783 struct cfq_group *cfqg;
615f0259 3784 struct cfq_rb_root *st;
1da177e4 3785
94f6030c 3786 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
a73f730d 3787 if (!cfqd)
bc1c1169 3788 return NULL;
80b15c73 3789
1fa8f6d6
VG
3790 /* Init root service tree */
3791 cfqd->grp_service_tree = CFQ_RB_ROOT;
3792
cdb16e8f
VG
3793 /* Init root group */
3794 cfqg = &cfqd->root_group;
615f0259
VG
3795 for_each_cfqg_st(cfqg, i, j, st)
3796 *st = CFQ_RB_ROOT;
1fa8f6d6 3797 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3798
25bc6b07
VG
3799 /* Give preference to root group over other groups */
3800 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3801
25fb5169 3802#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 3803 /*
56edf7d7
VG
3804 * Set root group reference to 2. One reference will be dropped when
3805 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3806 * Other reference will remain there as we don't want to delete this
3807 * group as it is statically allocated and gets destroyed when
3808 * throtl_data goes away.
b1c35769 3809 */
56edf7d7 3810 cfqg->ref = 2;
5624a4e4
VG
3811
3812 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3813 kfree(cfqg);
3814 kfree(cfqd);
3815 return NULL;
3816 }
3817
dcf097b2 3818 rcu_read_lock();
5624a4e4 3819
e98ef89b
VG
3820 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3821 (void *)cfqd, 0);
dcf097b2 3822 rcu_read_unlock();
56edf7d7
VG
3823 cfqd->nr_blkcg_linked_grps++;
3824
3825 /* Add group on cfqd->cfqg_list */
3826 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 3827#endif
26a2ac00
JA
3828 /*
3829 * Not strictly needed (since RB_ROOT just clears the node and we
3830 * zeroed cfqd on alloc), but better be safe in case someone decides
3831 * to add magic to the rb code
3832 */
3833 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3834 cfqd->prio_trees[i] = RB_ROOT;
3835
6118b70b
JA
3836 /*
3837 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3838 * Grab a permanent reference to it, so that the normal code flow
3839 * will not attempt to free it.
3840 */
3841 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3842 cfqd->oom_cfqq.ref++;
cdb16e8f 3843 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3844
1da177e4 3845 cfqd->queue = q;
1da177e4 3846
22e2c507
JA
3847 init_timer(&cfqd->idle_slice_timer);
3848 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3849 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3850
23e018a1 3851 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3852
1da177e4 3853 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3854 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3855 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3856 cfqd->cfq_back_max = cfq_back_max;
3857 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3858 cfqd->cfq_slice[0] = cfq_slice_async;
3859 cfqd->cfq_slice[1] = cfq_slice_sync;
3860 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3861 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3862 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3863 cfqd->cfq_latency = 1;
e459dd08 3864 cfqd->hw_tag = -1;
edc71131
CZ
3865 /*
3866 * we optimistically start assuming sync ops weren't delayed in last
3867 * second, in order to have larger depth for async operations.
3868 */
573412b2 3869 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3870 return cfqd;
1da177e4
LT
3871}
3872
1da177e4
LT
3873/*
3874 * sysfs parts below -->
3875 */
1da177e4
LT
3876static ssize_t
3877cfq_var_show(unsigned int var, char *page)
3878{
3879 return sprintf(page, "%d\n", var);
3880}
3881
3882static ssize_t
3883cfq_var_store(unsigned int *var, const char *page, size_t count)
3884{
3885 char *p = (char *) page;
3886
3887 *var = simple_strtoul(p, &p, 10);
3888 return count;
3889}
3890
1da177e4 3891#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3892static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3893{ \
3d1ab40f 3894 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3895 unsigned int __data = __VAR; \
3896 if (__CONV) \
3897 __data = jiffies_to_msecs(__data); \
3898 return cfq_var_show(__data, (page)); \
3899}
3900SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3901SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3902SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3903SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3904SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 3905SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 3906SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
3907SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3908SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3909SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3910SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3911#undef SHOW_FUNCTION
3912
3913#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3914static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3915{ \
3d1ab40f 3916 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3917 unsigned int __data; \
3918 int ret = cfq_var_store(&__data, (page), count); \
3919 if (__data < (MIN)) \
3920 __data = (MIN); \
3921 else if (__data > (MAX)) \
3922 __data = (MAX); \
3923 if (__CONV) \
3924 *(__PTR) = msecs_to_jiffies(__data); \
3925 else \
3926 *(__PTR) = __data; \
3927 return ret; \
3928}
3929STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3930STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3931 UINT_MAX, 1);
3932STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3933 UINT_MAX, 1);
e572ec7e 3934STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3935STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3936 UINT_MAX, 0);
22e2c507 3937STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 3938STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
3939STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3940STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3941STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3942 UINT_MAX, 0);
963b72fc 3943STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3944#undef STORE_FUNCTION
3945
e572ec7e
AV
3946#define CFQ_ATTR(name) \
3947 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3948
3949static struct elv_fs_entry cfq_attrs[] = {
3950 CFQ_ATTR(quantum),
e572ec7e
AV
3951 CFQ_ATTR(fifo_expire_sync),
3952 CFQ_ATTR(fifo_expire_async),
3953 CFQ_ATTR(back_seek_max),
3954 CFQ_ATTR(back_seek_penalty),
3955 CFQ_ATTR(slice_sync),
3956 CFQ_ATTR(slice_async),
3957 CFQ_ATTR(slice_async_rq),
3958 CFQ_ATTR(slice_idle),
80bdf0c7 3959 CFQ_ATTR(group_idle),
963b72fc 3960 CFQ_ATTR(low_latency),
e572ec7e 3961 __ATTR_NULL
1da177e4
LT
3962};
3963
1da177e4
LT
3964static struct elevator_type iosched_cfq = {
3965 .ops = {
3966 .elevator_merge_fn = cfq_merge,
3967 .elevator_merged_fn = cfq_merged_request,
3968 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3969 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3970 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3971 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3972 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3973 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 3974 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 3975 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3976 .elevator_former_req_fn = elv_rb_former_request,
3977 .elevator_latter_req_fn = elv_rb_latter_request,
7e5a8794 3978 .elevator_exit_icq_fn = cfq_exit_icq,
1da177e4
LT
3979 .elevator_set_req_fn = cfq_set_request,
3980 .elevator_put_req_fn = cfq_put_request,
3981 .elevator_may_queue_fn = cfq_may_queue,
3982 .elevator_init_fn = cfq_init_queue,
3983 .elevator_exit_fn = cfq_exit_queue,
3984 },
3d3c2379
TH
3985 .icq_size = sizeof(struct cfq_io_cq),
3986 .icq_align = __alignof__(struct cfq_io_cq),
3d1ab40f 3987 .elevator_attrs = cfq_attrs,
3d3c2379 3988 .elevator_name = "cfq",
1da177e4
LT
3989 .elevator_owner = THIS_MODULE,
3990};
3991
3e252066
VG
3992#ifdef CONFIG_CFQ_GROUP_IOSCHED
3993static struct blkio_policy_type blkio_policy_cfq = {
3994 .ops = {
3995 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3996 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3997 },
062a644d 3998 .plid = BLKIO_POLICY_PROP,
3e252066
VG
3999};
4000#else
4001static struct blkio_policy_type blkio_policy_cfq;
4002#endif
4003
1da177e4
LT
4004static int __init cfq_init(void)
4005{
3d3c2379
TH
4006 int ret;
4007
22e2c507
JA
4008 /*
4009 * could be 0 on HZ < 1000 setups
4010 */
4011 if (!cfq_slice_async)
4012 cfq_slice_async = 1;
4013 if (!cfq_slice_idle)
4014 cfq_slice_idle = 1;
4015
80bdf0c7
VG
4016#ifdef CONFIG_CFQ_GROUP_IOSCHED
4017 if (!cfq_group_idle)
4018 cfq_group_idle = 1;
4019#else
4020 cfq_group_idle = 0;
4021#endif
3d3c2379
TH
4022 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4023 if (!cfq_pool)
1da177e4
LT
4024 return -ENOMEM;
4025
3d3c2379
TH
4026 ret = elv_register(&iosched_cfq);
4027 if (ret) {
4028 kmem_cache_destroy(cfq_pool);
4029 return ret;
4030 }
4031 cfq_icq_pool = iosched_cfq.icq_cache;
4032
3e252066 4033 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4034
2fdd82bd 4035 return 0;
1da177e4
LT
4036}
4037
4038static void __exit cfq_exit(void)
4039{
3e252066 4040 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4041 elv_unregister(&iosched_cfq);
3d3c2379 4042 kmem_cache_destroy(cfq_pool);
1da177e4
LT
4043}
4044
4045module_init(cfq_init);
4046module_exit(cfq_exit);
4047
4048MODULE_AUTHOR("Jens Axboe");
4049MODULE_LICENSE("GPL");
4050MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");