]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
blkio: Changes to IO controller additional stats patches
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98 21/* max queue in one round of service */
abc3c744 22static const int cfq_quantum = 8;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
22e2c507 45#define CFQ_SLICE_SCALE (5)
45333d5a 46#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 47#define CFQ_SERVICE_SHIFT 12
22e2c507 48
3dde36dd 49#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 50#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 51#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 52#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 53
fe094d98
JA
54#define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 56#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 57
e18b890b
CL
58static struct kmem_cache *cfq_pool;
59static struct kmem_cache *cfq_ioc_pool;
1da177e4 60
245b2e70 61static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 62static struct completion *ioc_gone;
9a11b4ed 63static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 64
22e2c507
JA
65#define CFQ_PRIO_LISTS IOPRIO_BE_NR
66#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
67#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
206dc69b 69#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 70#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 71
cc09e299
JA
72/*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
aa6f6a3d 81 unsigned count;
73e9ffdd 82 unsigned total_weight;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
cc09e299 85};
73e9ffdd
RK
86#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
c4081ba5 121 unsigned int slice_dispatch;
dae739eb
VG
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
6118b70b
JA
124 unsigned long slice_end;
125 long slice_resid;
6118b70b
JA
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
c4081ba5
RK
136 pid_t pid;
137
3dde36dd 138 u32 seek_history;
b2c18e1e
JM
139 sector_t last_request_pos;
140
aa6f6a3d 141 struct cfq_rb_root *service_tree;
df5fe3e8 142 struct cfq_queue *new_cfqq;
cdb16e8f 143 struct cfq_group *cfqg;
ae30c286 144 struct cfq_group *orig_cfqg;
6118b70b
JA
145};
146
c0324a02 147/*
718eee05 148 * First index in the service_trees.
c0324a02
CZ
149 * IDLE is handled separately, so it has negative index
150 */
151enum wl_prio_t {
c0324a02 152 BE_WORKLOAD = 0,
615f0259
VG
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
c0324a02
CZ
155};
156
718eee05
CZ
157/*
158 * Second index in the service_trees.
159 */
160enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164};
165
cdb16e8f
VG
166/* This is per cgroup per device grouping structure */
167struct cfq_group {
1fa8f6d6
VG
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
25bc6b07 173 unsigned int weight;
1fa8f6d6
VG
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
58ff82f3
VG
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
cdb16e8f
VG
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
dae739eb
VG
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
25fb5169
VG
191 struct blkio_group blkg;
192#ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
b1c35769 194 atomic_t ref;
25fb5169 195#endif
cdb16e8f 196};
718eee05 197
22e2c507
JA
198/*
199 * Per block device queue structure
200 */
1da177e4 201struct cfq_data {
165125e1 202 struct request_queue *queue;
1fa8f6d6
VG
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
cdb16e8f 205 struct cfq_group root_group;
22e2c507 206
c0324a02
CZ
207 /*
208 * The priority currently being served
22e2c507 209 */
c0324a02 210 enum wl_prio_t serving_prio;
718eee05
CZ
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
cdb16e8f 213 struct cfq_group *serving_group;
8e550632 214 bool noidle_tree_requires_idle;
a36e71f9
JA
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
22e2c507
JA
223 unsigned int busy_queues;
224
53c583d2
CZ
225 int rq_in_driver;
226 int rq_in_flight[2];
45333d5a
AC
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
25776e35 232 int hw_tag;
e459dd08
CZ
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
1da177e4 241
22e2c507
JA
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
23e018a1 246 struct work_struct unplug_work;
1da177e4 247
22e2c507
JA
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
22e2c507 250
c2dea2d1
VT
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
15c31be4 256
6d048f53 257 sector_t last_position;
1da177e4 258
1da177e4
LT
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
22e2c507 263 unsigned int cfq_fifo_expire[2];
1da177e4
LT
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
22e2c507
JA
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
963b72fc 269 unsigned int cfq_latency;
ae30c286 270 unsigned int cfq_group_isolation;
d9ff4187
AV
271
272 struct list_head cic_list;
1da177e4 273
6118b70b
JA
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
365722bb 278
573412b2 279 unsigned long last_delayed_sync;
25fb5169
VG
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
bb729bc9 283 struct rcu_head rcu;
1da177e4
LT
284};
285
25fb5169
VG
286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
cdb16e8f
VG
288static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
65b32a57 290 enum wl_type_t type)
c0324a02 291{
1fa8f6d6
VG
292 if (!cfqg)
293 return NULL;
294
c0324a02 295 if (prio == IDLE_WORKLOAD)
cdb16e8f 296 return &cfqg->service_tree_idle;
c0324a02 297
cdb16e8f 298 return &cfqg->service_trees[prio][type];
c0324a02
CZ
299}
300
3b18152c 301enum cfqq_state_flags {
b0b8d749
JA
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
315};
316
317#define CFQ_CFQQ_FNS(name) \
318static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319{ \
fe094d98 320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
321} \
322static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323{ \
fe094d98 324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
325} \
326static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327{ \
fe094d98 328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
329}
330
331CFQ_CFQQ_FNS(on_rr);
332CFQ_CFQQ_FNS(wait_request);
b029195d 333CFQ_CFQQ_FNS(must_dispatch);
3b18152c 334CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
335CFQ_CFQQ_FNS(fifo_expire);
336CFQ_CFQQ_FNS(idle_window);
337CFQ_CFQQ_FNS(prio_changed);
44f7c160 338CFQ_CFQQ_FNS(slice_new);
91fac317 339CFQ_CFQQ_FNS(sync);
a36e71f9 340CFQ_CFQQ_FNS(coop);
ae54abed 341CFQ_CFQQ_FNS(split_coop);
76280aff 342CFQ_CFQQ_FNS(deep);
f75edf2d 343CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
344#undef CFQ_CFQQ_FNS
345
2868ef7b
VG
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
7b679138
JA
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
7b679138
JA
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
615f0259
VG
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
c0324a02
CZ
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
718eee05
CZ
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
58ff82f3
VG
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
c0324a02
CZ
397{
398 if (wl == IDLE_WORKLOAD)
cdb16e8f 399 return cfqg->service_tree_idle.count;
c0324a02 400
cdb16e8f
VG
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
404}
405
f26bd1f0
VG
406static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408{
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411}
412
165125e1 413static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 414static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 415 struct io_context *, gfp_t);
4ac845a2 416static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
417 struct io_context *);
418
419static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 420 bool is_sync)
91fac317 421{
a6151c3a 422 return cic->cfqq[is_sync];
91fac317
VT
423}
424
425static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 426 struct cfq_queue *cfqq, bool is_sync)
91fac317 427{
a6151c3a 428 cic->cfqq[is_sync] = cfqq;
91fac317
VT
429}
430
431/*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
a6151c3a 435static inline bool cfq_bio_sync(struct bio *bio)
91fac317 436{
a6151c3a 437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 438}
1da177e4 439
99f95e52
AM
440/*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
23e018a1 444static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 445{
7b679138
JA
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
23e018a1 448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 449 }
99f95e52
AM
450}
451
165125e1 452static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
453{
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
f04a6424 456 return !cfqd->rq_queued;
99f95e52
AM
457}
458
44f7c160
JA
459/*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
a6151c3a 464static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 465 unsigned short prio)
44f7c160 466{
d9e7620e 467 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 468
d9e7620e
JA
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472}
44f7c160 473
d9e7620e
JA
474static inline int
475cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476{
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
478}
479
25bc6b07
VG
480static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481{
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487}
488
489static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490{
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496}
497
498static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499{
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505}
506
507static void update_min_vdisktime(struct cfq_rb_root *st)
508{
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523}
524
5db5d642
CZ
525/*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
58ff82f3
VG
531static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
5869619c 533{
5db5d642
CZ
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
58ff82f3 537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 538
58ff82f3
VG
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 542 cfq_hist_divisor;
58ff82f3
VG
543 return cfqg->busy_queues_avg[rt];
544}
545
546static inline unsigned
547cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548{
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
552}
553
44f7c160
JA
554static inline void
555cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556{
5db5d642
CZ
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
58ff82f3
VG
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
5db5d642
CZ
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
5db5d642
CZ
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
58ff82f3 577 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
578 low_slice);
579 }
580 }
dae739eb 581 cfqq->slice_start = jiffies;
5db5d642 582 cfqq->slice_end = jiffies + slice;
f75edf2d 583 cfqq->allocated_slice = slice;
7b679138 584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
585}
586
587/*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
a6151c3a 592static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
593{
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600}
601
1da177e4 602/*
5e705374 603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 604 * We choose the request that is closest to the head right now. Distance
e8a99053 605 * behind the head is penalized and only allowed to a certain extent.
1da177e4 606 */
5e705374 607static struct request *
cf7c25cf 608cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 609{
cf7c25cf 610 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 611 unsigned long back_max;
e8a99053
AM
612#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 615
5e705374
JA
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
9c2c38a1 620
5e705374
JA
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
374f84ac
JA
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
1da177e4 629
83096ebf
TH
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
1da177e4 632
1da177e4
LT
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
e8a99053 648 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
e8a99053 655 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
656
657 /* Found required data */
e8a99053
AM
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
5e705374 664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 665 if (d1 < d2)
5e705374 666 return rq1;
e8a99053 667 else if (d2 < d1)
5e705374 668 return rq2;
e8a99053
AM
669 else {
670 if (s1 >= s2)
5e705374 671 return rq1;
e8a99053 672 else
5e705374 673 return rq2;
e8a99053 674 }
1da177e4 675
e8a99053 676 case CFQ_RQ2_WRAP:
5e705374 677 return rq1;
e8a99053 678 case CFQ_RQ1_WRAP:
5e705374
JA
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
5e705374 689 return rq1;
1da177e4 690 else
5e705374 691 return rq2;
1da177e4
LT
692 }
693}
694
498d3aa2
JA
695/*
696 * The below is leftmost cache rbtree addon
697 */
0871714e 698static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 699{
615f0259
VG
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
cc09e299
JA
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
0871714e
JA
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
cc09e299
JA
711}
712
1fa8f6d6
VG
713static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714{
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722}
723
a36e71f9
JA
724static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725{
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728}
729
cc09e299
JA
730static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731{
732 if (root->left == n)
733 root->left = NULL;
a36e71f9 734 rb_erase_init(n, &root->rb);
aa6f6a3d 735 --root->count;
cc09e299
JA
736}
737
1da177e4
LT
738/*
739 * would be nice to take fifo expire time into account as well
740 */
5e705374
JA
741static struct request *
742cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
1da177e4 744{
21183b07
JA
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 747 struct request *next = NULL, *prev = NULL;
1da177e4 748
21183b07 749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
750
751 if (rbprev)
5e705374 752 prev = rb_entry_rq(rbprev);
1da177e4 753
21183b07 754 if (rbnext)
5e705374 755 next = rb_entry_rq(rbnext);
21183b07
JA
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
5e705374 759 next = rb_entry_rq(rbnext);
21183b07 760 }
1da177e4 761
cf7c25cf 762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
763}
764
d9e7620e
JA
765static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
1da177e4 767{
d9e7620e
JA
768 /*
769 * just an approximation, should be ok.
770 */
cdb16e8f 771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
773}
774
1fa8f6d6
VG
775static inline s64
776cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777{
778 return cfqg->vdisktime - st->min_vdisktime;
779}
780
781static void
782__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783{
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807}
808
809static void
810cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811{
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
58ff82f3 834 st->total_weight += cfqg->weight;
1fa8f6d6
VG
835}
836
837static void
838cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839{
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
25bc6b07
VG
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
1fa8f6d6
VG
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
25bc6b07 847
1fa8f6d6
VG
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
2868ef7b 852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 853 cfqg->on_st = false;
58ff82f3 854 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 857 cfqg->saved_workload_slice = 0;
9195291e 858 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
859}
860
861static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862{
f75edf2d 863 unsigned int slice_used;
dae739eb
VG
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
dae739eb
VG
882 }
883
9a0785b0 884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
885 return slice_used;
886}
887
888static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
889 struct cfq_queue *cfqq)
890{
891 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
892 unsigned int used_sl, charge_sl;
893 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
894 - cfqg->service_tree_idle.count;
895
896 BUG_ON(nr_sync < 0);
897 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 898
f26bd1f0
VG
899 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
900 charge_sl = cfqq->allocated_slice;
dae739eb
VG
901
902 /* Can't update vdisktime while group is on service tree */
903 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 904 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
905 __cfq_group_service_tree_add(st, cfqg);
906
907 /* This group is being expired. Save the context */
908 if (time_after(cfqd->workload_expires, jiffies)) {
909 cfqg->saved_workload_slice = cfqd->workload_expires
910 - jiffies;
911 cfqg->saved_workload = cfqd->serving_type;
912 cfqg->saved_serving_prio = cfqd->serving_prio;
913 } else
914 cfqg->saved_workload_slice = 0;
2868ef7b
VG
915
916 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
917 st->min_vdisktime);
303a3acb 918 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
1fa8f6d6
VG
919}
920
25fb5169
VG
921#ifdef CONFIG_CFQ_GROUP_IOSCHED
922static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
923{
924 if (blkg)
925 return container_of(blkg, struct cfq_group, blkg);
926 return NULL;
927}
928
f8d461d6
VG
929void
930cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
931{
932 cfqg_of_blkg(blkg)->weight = weight;
933}
934
25fb5169
VG
935static struct cfq_group *
936cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
937{
938 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
939 struct cfq_group *cfqg = NULL;
940 void *key = cfqd;
941 int i, j;
942 struct cfq_rb_root *st;
22084190
VG
943 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
944 unsigned int major, minor;
25fb5169 945
25fb5169
VG
946 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947 if (cfqg || !create)
948 goto done;
949
950 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951 if (!cfqg)
952 goto done;
953
954 cfqg->weight = blkcg->weight;
955 for_each_cfqg_st(cfqg, i, j, st)
956 *st = CFQ_RB_ROOT;
957 RB_CLEAR_NODE(&cfqg->rb_node);
84c124da 958 blkio_group_init(&cfqg->blkg);
25fb5169 959
b1c35769
VG
960 /*
961 * Take the initial reference that will be released on destroy
962 * This can be thought of a joint reference by cgroup and
963 * elevator which will be dropped by either elevator exit
964 * or cgroup deletion path depending on who is exiting first.
965 */
966 atomic_set(&cfqg->ref, 1);
967
25fb5169 968 /* Add group onto cgroup list */
22084190
VG
969 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
970 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
971 MKDEV(major, minor));
25fb5169
VG
972
973 /* Add group on cfqd list */
974 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
975
976done:
25fb5169
VG
977 return cfqg;
978}
979
980/*
981 * Search for the cfq group current task belongs to. If create = 1, then also
982 * create the cfq group if it does not exist. request_queue lock must be held.
983 */
984static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
985{
986 struct cgroup *cgroup;
987 struct cfq_group *cfqg = NULL;
988
989 rcu_read_lock();
990 cgroup = task_cgroup(current, blkio_subsys_id);
991 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
992 if (!cfqg && create)
993 cfqg = &cfqd->root_group;
994 rcu_read_unlock();
995 return cfqg;
996}
997
998static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
999{
1000 /* Currently, all async queues are mapped to root group */
1001 if (!cfq_cfqq_sync(cfqq))
1002 cfqg = &cfqq->cfqd->root_group;
1003
1004 cfqq->cfqg = cfqg;
b1c35769
VG
1005 /* cfqq reference on cfqg */
1006 atomic_inc(&cfqq->cfqg->ref);
1007}
1008
1009static void cfq_put_cfqg(struct cfq_group *cfqg)
1010{
1011 struct cfq_rb_root *st;
1012 int i, j;
1013
1014 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1015 if (!atomic_dec_and_test(&cfqg->ref))
1016 return;
1017 for_each_cfqg_st(cfqg, i, j, st)
1018 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1019 kfree(cfqg);
1020}
1021
1022static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1023{
1024 /* Something wrong if we are trying to remove same group twice */
1025 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1026
1027 hlist_del_init(&cfqg->cfqd_node);
1028
1029 /*
1030 * Put the reference taken at the time of creation so that when all
1031 * queues are gone, group can be destroyed.
1032 */
1033 cfq_put_cfqg(cfqg);
1034}
1035
1036static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1037{
1038 struct hlist_node *pos, *n;
1039 struct cfq_group *cfqg;
1040
1041 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1042 /*
1043 * If cgroup removal path got to blk_group first and removed
1044 * it from cgroup list, then it will take care of destroying
1045 * cfqg also.
1046 */
1047 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1048 cfq_destroy_cfqg(cfqd, cfqg);
1049 }
25fb5169 1050}
b1c35769
VG
1051
1052/*
1053 * Blk cgroup controller notification saying that blkio_group object is being
1054 * delinked as associated cgroup object is going away. That also means that
1055 * no new IO will come in this group. So get rid of this group as soon as
1056 * any pending IO in the group is finished.
1057 *
1058 * This function is called under rcu_read_lock(). key is the rcu protected
1059 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1060 * read lock.
1061 *
1062 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1063 * it should not be NULL as even if elevator was exiting, cgroup deltion
1064 * path got to it first.
1065 */
1066void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1067{
1068 unsigned long flags;
1069 struct cfq_data *cfqd = key;
1070
1071 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1072 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1073 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1074}
1075
25fb5169
VG
1076#else /* GROUP_IOSCHED */
1077static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1078{
1079 return &cfqd->root_group;
1080}
1081static inline void
1082cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1083 cfqq->cfqg = cfqg;
1084}
1085
b1c35769
VG
1086static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1087static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1088
25fb5169
VG
1089#endif /* GROUP_IOSCHED */
1090
498d3aa2 1091/*
c0324a02 1092 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1093 * requests waiting to be processed. It is sorted in the order that
1094 * we will service the queues.
1095 */
a36e71f9 1096static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1097 bool add_front)
d9e7620e 1098{
0871714e
JA
1099 struct rb_node **p, *parent;
1100 struct cfq_queue *__cfqq;
d9e7620e 1101 unsigned long rb_key;
c0324a02 1102 struct cfq_rb_root *service_tree;
498d3aa2 1103 int left;
dae739eb 1104 int new_cfqq = 1;
ae30c286
VG
1105 int group_changed = 0;
1106
1107#ifdef CONFIG_CFQ_GROUP_IOSCHED
1108 if (!cfqd->cfq_group_isolation
1109 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1110 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1111 /* Move this cfq to root group */
1112 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1113 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1114 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1115 cfqq->orig_cfqg = cfqq->cfqg;
1116 cfqq->cfqg = &cfqd->root_group;
1117 atomic_inc(&cfqd->root_group.ref);
1118 group_changed = 1;
1119 } else if (!cfqd->cfq_group_isolation
1120 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1121 /* cfqq is sequential now needs to go to its original group */
1122 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1123 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1124 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1125 cfq_put_cfqg(cfqq->cfqg);
1126 cfqq->cfqg = cfqq->orig_cfqg;
1127 cfqq->orig_cfqg = NULL;
1128 group_changed = 1;
1129 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1130 }
1131#endif
d9e7620e 1132
cdb16e8f 1133 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1134 cfqq_type(cfqq));
0871714e
JA
1135 if (cfq_class_idle(cfqq)) {
1136 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1137 parent = rb_last(&service_tree->rb);
0871714e
JA
1138 if (parent && parent != &cfqq->rb_node) {
1139 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1140 rb_key += __cfqq->rb_key;
1141 } else
1142 rb_key += jiffies;
1143 } else if (!add_front) {
b9c8946b
JA
1144 /*
1145 * Get our rb key offset. Subtract any residual slice
1146 * value carried from last service. A negative resid
1147 * count indicates slice overrun, and this should position
1148 * the next service time further away in the tree.
1149 */
edd75ffd 1150 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1151 rb_key -= cfqq->slice_resid;
edd75ffd 1152 cfqq->slice_resid = 0;
48e025e6
CZ
1153 } else {
1154 rb_key = -HZ;
aa6f6a3d 1155 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1156 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1157 }
1da177e4 1158
d9e7620e 1159 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1160 new_cfqq = 0;
99f9628a 1161 /*
d9e7620e 1162 * same position, nothing more to do
99f9628a 1163 */
c0324a02
CZ
1164 if (rb_key == cfqq->rb_key &&
1165 cfqq->service_tree == service_tree)
d9e7620e 1166 return;
1da177e4 1167
aa6f6a3d
CZ
1168 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1169 cfqq->service_tree = NULL;
1da177e4 1170 }
d9e7620e 1171
498d3aa2 1172 left = 1;
0871714e 1173 parent = NULL;
aa6f6a3d
CZ
1174 cfqq->service_tree = service_tree;
1175 p = &service_tree->rb.rb_node;
d9e7620e 1176 while (*p) {
67060e37 1177 struct rb_node **n;
cc09e299 1178
d9e7620e
JA
1179 parent = *p;
1180 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181
0c534e0a 1182 /*
c0324a02 1183 * sort by key, that represents service time.
0c534e0a 1184 */
c0324a02 1185 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1186 n = &(*p)->rb_left;
c0324a02 1187 else {
67060e37 1188 n = &(*p)->rb_right;
cc09e299 1189 left = 0;
c0324a02 1190 }
67060e37
JA
1191
1192 p = n;
d9e7620e
JA
1193 }
1194
cc09e299 1195 if (left)
aa6f6a3d 1196 service_tree->left = &cfqq->rb_node;
cc09e299 1197
d9e7620e
JA
1198 cfqq->rb_key = rb_key;
1199 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1200 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1201 service_tree->count++;
ae30c286 1202 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1203 return;
1fa8f6d6 1204 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1205}
1206
a36e71f9 1207static struct cfq_queue *
f2d1f0ae
JA
1208cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1209 sector_t sector, struct rb_node **ret_parent,
1210 struct rb_node ***rb_link)
a36e71f9 1211{
a36e71f9
JA
1212 struct rb_node **p, *parent;
1213 struct cfq_queue *cfqq = NULL;
1214
1215 parent = NULL;
1216 p = &root->rb_node;
1217 while (*p) {
1218 struct rb_node **n;
1219
1220 parent = *p;
1221 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1222
1223 /*
1224 * Sort strictly based on sector. Smallest to the left,
1225 * largest to the right.
1226 */
2e46e8b2 1227 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1228 n = &(*p)->rb_right;
2e46e8b2 1229 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1230 n = &(*p)->rb_left;
1231 else
1232 break;
1233 p = n;
3ac6c9f8 1234 cfqq = NULL;
a36e71f9
JA
1235 }
1236
1237 *ret_parent = parent;
1238 if (rb_link)
1239 *rb_link = p;
3ac6c9f8 1240 return cfqq;
a36e71f9
JA
1241}
1242
1243static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1244{
a36e71f9
JA
1245 struct rb_node **p, *parent;
1246 struct cfq_queue *__cfqq;
1247
f2d1f0ae
JA
1248 if (cfqq->p_root) {
1249 rb_erase(&cfqq->p_node, cfqq->p_root);
1250 cfqq->p_root = NULL;
1251 }
a36e71f9
JA
1252
1253 if (cfq_class_idle(cfqq))
1254 return;
1255 if (!cfqq->next_rq)
1256 return;
1257
f2d1f0ae 1258 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1259 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1260 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1261 if (!__cfqq) {
1262 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1263 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1264 } else
1265 cfqq->p_root = NULL;
a36e71f9
JA
1266}
1267
498d3aa2
JA
1268/*
1269 * Update cfqq's position in the service tree.
1270 */
edd75ffd 1271static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1272{
6d048f53
JA
1273 /*
1274 * Resorting requires the cfqq to be on the RR list already.
1275 */
a36e71f9 1276 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1277 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1278 cfq_prio_tree_add(cfqd, cfqq);
1279 }
6d048f53
JA
1280}
1281
1da177e4
LT
1282/*
1283 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1284 * the pending list according to last request service
1da177e4 1285 */
febffd61 1286static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1287{
7b679138 1288 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1289 BUG_ON(cfq_cfqq_on_rr(cfqq));
1290 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1291 cfqd->busy_queues++;
1292
edd75ffd 1293 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1294}
1295
498d3aa2
JA
1296/*
1297 * Called when the cfqq no longer has requests pending, remove it from
1298 * the service tree.
1299 */
febffd61 1300static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1301{
7b679138 1302 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1303 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1304 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1305
aa6f6a3d
CZ
1306 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1307 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1308 cfqq->service_tree = NULL;
1309 }
f2d1f0ae
JA
1310 if (cfqq->p_root) {
1311 rb_erase(&cfqq->p_node, cfqq->p_root);
1312 cfqq->p_root = NULL;
1313 }
d9e7620e 1314
1fa8f6d6 1315 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1316 BUG_ON(!cfqd->busy_queues);
1317 cfqd->busy_queues--;
1318}
1319
1320/*
1321 * rb tree support functions
1322 */
febffd61 1323static void cfq_del_rq_rb(struct request *rq)
1da177e4 1324{
5e705374 1325 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1326 const int sync = rq_is_sync(rq);
1da177e4 1327
b4878f24
JA
1328 BUG_ON(!cfqq->queued[sync]);
1329 cfqq->queued[sync]--;
1da177e4 1330
5e705374 1331 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1332
f04a6424
VG
1333 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1334 /*
1335 * Queue will be deleted from service tree when we actually
1336 * expire it later. Right now just remove it from prio tree
1337 * as it is empty.
1338 */
1339 if (cfqq->p_root) {
1340 rb_erase(&cfqq->p_node, cfqq->p_root);
1341 cfqq->p_root = NULL;
1342 }
1343 }
1da177e4
LT
1344}
1345
5e705374 1346static void cfq_add_rq_rb(struct request *rq)
1da177e4 1347{
5e705374 1348 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1349 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1350 struct request *__alias, *prev;
1da177e4 1351
5380a101 1352 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1353
1354 /*
1355 * looks a little odd, but the first insert might return an alias.
1356 * if that happens, put the alias on the dispatch list
1357 */
21183b07 1358 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1359 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1360
1361 if (!cfq_cfqq_on_rr(cfqq))
1362 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1363
1364 /*
1365 * check if this request is a better next-serve candidate
1366 */
a36e71f9 1367 prev = cfqq->next_rq;
cf7c25cf 1368 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1369
1370 /*
1371 * adjust priority tree position, if ->next_rq changes
1372 */
1373 if (prev != cfqq->next_rq)
1374 cfq_prio_tree_add(cfqd, cfqq);
1375
5044eed4 1376 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1377}
1378
febffd61 1379static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1380{
5380a101
JA
1381 elv_rb_del(&cfqq->sort_list, rq);
1382 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1383 cfq_add_rq_rb(rq);
1da177e4
LT
1384}
1385
206dc69b
JA
1386static struct request *
1387cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1388{
206dc69b 1389 struct task_struct *tsk = current;
91fac317 1390 struct cfq_io_context *cic;
206dc69b 1391 struct cfq_queue *cfqq;
1da177e4 1392
4ac845a2 1393 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1394 if (!cic)
1395 return NULL;
1396
1397 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1398 if (cfqq) {
1399 sector_t sector = bio->bi_sector + bio_sectors(bio);
1400
21183b07 1401 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1402 }
1da177e4 1403
1da177e4
LT
1404 return NULL;
1405}
1406
165125e1 1407static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1408{
22e2c507 1409 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1410
53c583d2 1411 cfqd->rq_in_driver++;
7b679138 1412 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1413 cfqd->rq_in_driver);
25776e35 1414
5b93629b 1415 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1416}
1417
165125e1 1418static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1419{
b4878f24
JA
1420 struct cfq_data *cfqd = q->elevator->elevator_data;
1421
53c583d2
CZ
1422 WARN_ON(!cfqd->rq_in_driver);
1423 cfqd->rq_in_driver--;
7b679138 1424 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1425 cfqd->rq_in_driver);
1da177e4
LT
1426}
1427
b4878f24 1428static void cfq_remove_request(struct request *rq)
1da177e4 1429{
5e705374 1430 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1431
5e705374
JA
1432 if (cfqq->next_rq == rq)
1433 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1434
b4878f24 1435 list_del_init(&rq->queuelist);
5e705374 1436 cfq_del_rq_rb(rq);
374f84ac 1437
45333d5a 1438 cfqq->cfqd->rq_queued--;
374f84ac
JA
1439 if (rq_is_meta(rq)) {
1440 WARN_ON(!cfqq->meta_pending);
1441 cfqq->meta_pending--;
1442 }
1da177e4
LT
1443}
1444
165125e1
JA
1445static int cfq_merge(struct request_queue *q, struct request **req,
1446 struct bio *bio)
1da177e4
LT
1447{
1448 struct cfq_data *cfqd = q->elevator->elevator_data;
1449 struct request *__rq;
1da177e4 1450
206dc69b 1451 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1452 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1453 *req = __rq;
1454 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1455 }
1456
1457 return ELEVATOR_NO_MERGE;
1da177e4
LT
1458}
1459
165125e1 1460static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1461 int type)
1da177e4 1462{
21183b07 1463 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1464 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1465
5e705374 1466 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1467 }
1da177e4
LT
1468}
1469
1470static void
165125e1 1471cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1472 struct request *next)
1473{
cf7c25cf 1474 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1475 /*
1476 * reposition in fifo if next is older than rq
1477 */
1478 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1479 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1480 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1481 rq_set_fifo_time(rq, rq_fifo_time(next));
1482 }
22e2c507 1483
cf7c25cf
CZ
1484 if (cfqq->next_rq == next)
1485 cfqq->next_rq = rq;
b4878f24 1486 cfq_remove_request(next);
22e2c507
JA
1487}
1488
165125e1 1489static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1490 struct bio *bio)
1491{
1492 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1493 struct cfq_io_context *cic;
da775265 1494 struct cfq_queue *cfqq;
da775265
JA
1495
1496 /*
ec8acb69 1497 * Disallow merge of a sync bio into an async request.
da775265 1498 */
91fac317 1499 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1500 return false;
da775265
JA
1501
1502 /*
719d3402
JA
1503 * Lookup the cfqq that this bio will be queued with. Allow
1504 * merge only if rq is queued there.
da775265 1505 */
4ac845a2 1506 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1507 if (!cic)
a6151c3a 1508 return false;
719d3402 1509
91fac317 1510 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1511 return cfqq == RQ_CFQQ(rq);
da775265
JA
1512}
1513
febffd61
JA
1514static void __cfq_set_active_queue(struct cfq_data *cfqd,
1515 struct cfq_queue *cfqq)
22e2c507
JA
1516{
1517 if (cfqq) {
b1ffe737
DS
1518 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1519 cfqd->serving_prio, cfqd->serving_type);
dae739eb
VG
1520 cfqq->slice_start = 0;
1521 cfqq->dispatch_start = jiffies;
f75edf2d 1522 cfqq->allocated_slice = 0;
22e2c507 1523 cfqq->slice_end = 0;
2f5cb738
JA
1524 cfqq->slice_dispatch = 0;
1525
2f5cb738 1526 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1527 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1528 cfq_clear_cfqq_must_alloc_slice(cfqq);
1529 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1530 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1531
1532 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1533 }
1534
1535 cfqd->active_queue = cfqq;
1536}
1537
7b14e3b5
JA
1538/*
1539 * current cfqq expired its slice (or was too idle), select new one
1540 */
1541static void
1542__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1543 bool timed_out)
7b14e3b5 1544{
7b679138
JA
1545 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1546
7b14e3b5
JA
1547 if (cfq_cfqq_wait_request(cfqq))
1548 del_timer(&cfqd->idle_slice_timer);
1549
7b14e3b5 1550 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1551 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1552
ae54abed
SL
1553 /*
1554 * If this cfqq is shared between multiple processes, check to
1555 * make sure that those processes are still issuing I/Os within
1556 * the mean seek distance. If not, it may be time to break the
1557 * queues apart again.
1558 */
1559 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1560 cfq_mark_cfqq_split_coop(cfqq);
1561
7b14e3b5 1562 /*
6084cdda 1563 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1564 */
7b679138 1565 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1566 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1567 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1568 }
7b14e3b5 1569
dae739eb
VG
1570 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1571
f04a6424
VG
1572 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1573 cfq_del_cfqq_rr(cfqd, cfqq);
1574
edd75ffd 1575 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1576
1577 if (cfqq == cfqd->active_queue)
1578 cfqd->active_queue = NULL;
1579
dae739eb
VG
1580 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1581 cfqd->grp_service_tree.active = NULL;
1582
7b14e3b5
JA
1583 if (cfqd->active_cic) {
1584 put_io_context(cfqd->active_cic->ioc);
1585 cfqd->active_cic = NULL;
1586 }
7b14e3b5
JA
1587}
1588
a6151c3a 1589static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1590{
1591 struct cfq_queue *cfqq = cfqd->active_queue;
1592
1593 if (cfqq)
6084cdda 1594 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1595}
1596
498d3aa2
JA
1597/*
1598 * Get next queue for service. Unless we have a queue preemption,
1599 * we'll simply select the first cfqq in the service tree.
1600 */
6d048f53 1601static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1602{
c0324a02 1603 struct cfq_rb_root *service_tree =
cdb16e8f 1604 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1605 cfqd->serving_type);
d9e7620e 1606
f04a6424
VG
1607 if (!cfqd->rq_queued)
1608 return NULL;
1609
1fa8f6d6
VG
1610 /* There is nothing to dispatch */
1611 if (!service_tree)
1612 return NULL;
c0324a02
CZ
1613 if (RB_EMPTY_ROOT(&service_tree->rb))
1614 return NULL;
1615 return cfq_rb_first(service_tree);
6d048f53
JA
1616}
1617
f04a6424
VG
1618static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1619{
25fb5169 1620 struct cfq_group *cfqg;
f04a6424
VG
1621 struct cfq_queue *cfqq;
1622 int i, j;
1623 struct cfq_rb_root *st;
1624
1625 if (!cfqd->rq_queued)
1626 return NULL;
1627
25fb5169
VG
1628 cfqg = cfq_get_next_cfqg(cfqd);
1629 if (!cfqg)
1630 return NULL;
1631
f04a6424
VG
1632 for_each_cfqg_st(cfqg, i, j, st)
1633 if ((cfqq = cfq_rb_first(st)) != NULL)
1634 return cfqq;
1635 return NULL;
1636}
1637
498d3aa2
JA
1638/*
1639 * Get and set a new active queue for service.
1640 */
a36e71f9
JA
1641static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1642 struct cfq_queue *cfqq)
6d048f53 1643{
e00ef799 1644 if (!cfqq)
a36e71f9 1645 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1646
22e2c507 1647 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1648 return cfqq;
22e2c507
JA
1649}
1650
d9e7620e
JA
1651static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1652 struct request *rq)
1653{
83096ebf
TH
1654 if (blk_rq_pos(rq) >= cfqd->last_position)
1655 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1656 else
83096ebf 1657 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1658}
1659
b2c18e1e 1660static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1661 struct request *rq)
6d048f53 1662{
e9ce335d 1663 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1664}
1665
a36e71f9
JA
1666static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1667 struct cfq_queue *cur_cfqq)
1668{
f2d1f0ae 1669 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1670 struct rb_node *parent, *node;
1671 struct cfq_queue *__cfqq;
1672 sector_t sector = cfqd->last_position;
1673
1674 if (RB_EMPTY_ROOT(root))
1675 return NULL;
1676
1677 /*
1678 * First, if we find a request starting at the end of the last
1679 * request, choose it.
1680 */
f2d1f0ae 1681 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1682 if (__cfqq)
1683 return __cfqq;
1684
1685 /*
1686 * If the exact sector wasn't found, the parent of the NULL leaf
1687 * will contain the closest sector.
1688 */
1689 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1690 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1691 return __cfqq;
1692
2e46e8b2 1693 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1694 node = rb_next(&__cfqq->p_node);
1695 else
1696 node = rb_prev(&__cfqq->p_node);
1697 if (!node)
1698 return NULL;
1699
1700 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1701 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1702 return __cfqq;
1703
1704 return NULL;
1705}
1706
1707/*
1708 * cfqd - obvious
1709 * cur_cfqq - passed in so that we don't decide that the current queue is
1710 * closely cooperating with itself.
1711 *
1712 * So, basically we're assuming that that cur_cfqq has dispatched at least
1713 * one request, and that cfqd->last_position reflects a position on the disk
1714 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1715 * assumption.
1716 */
1717static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1718 struct cfq_queue *cur_cfqq)
6d048f53 1719{
a36e71f9
JA
1720 struct cfq_queue *cfqq;
1721
39c01b21
DS
1722 if (cfq_class_idle(cur_cfqq))
1723 return NULL;
e6c5bc73
JM
1724 if (!cfq_cfqq_sync(cur_cfqq))
1725 return NULL;
1726 if (CFQQ_SEEKY(cur_cfqq))
1727 return NULL;
1728
b9d8f4c7
GJ
1729 /*
1730 * Don't search priority tree if it's the only queue in the group.
1731 */
1732 if (cur_cfqq->cfqg->nr_cfqq == 1)
1733 return NULL;
1734
6d048f53 1735 /*
d9e7620e
JA
1736 * We should notice if some of the queues are cooperating, eg
1737 * working closely on the same area of the disk. In that case,
1738 * we can group them together and don't waste time idling.
6d048f53 1739 */
a36e71f9
JA
1740 cfqq = cfqq_close(cfqd, cur_cfqq);
1741 if (!cfqq)
1742 return NULL;
1743
8682e1f1
VG
1744 /* If new queue belongs to different cfq_group, don't choose it */
1745 if (cur_cfqq->cfqg != cfqq->cfqg)
1746 return NULL;
1747
df5fe3e8
JM
1748 /*
1749 * It only makes sense to merge sync queues.
1750 */
1751 if (!cfq_cfqq_sync(cfqq))
1752 return NULL;
e6c5bc73
JM
1753 if (CFQQ_SEEKY(cfqq))
1754 return NULL;
df5fe3e8 1755
c0324a02
CZ
1756 /*
1757 * Do not merge queues of different priority classes
1758 */
1759 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1760 return NULL;
1761
a36e71f9 1762 return cfqq;
6d048f53
JA
1763}
1764
a6d44e98
CZ
1765/*
1766 * Determine whether we should enforce idle window for this queue.
1767 */
1768
1769static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1770{
1771 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1772 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1773
f04a6424
VG
1774 BUG_ON(!service_tree);
1775 BUG_ON(!service_tree->count);
1776
a6d44e98
CZ
1777 /* We never do for idle class queues. */
1778 if (prio == IDLE_WORKLOAD)
1779 return false;
1780
1781 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1782 if (cfq_cfqq_idle_window(cfqq) &&
1783 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1784 return true;
1785
1786 /*
1787 * Otherwise, we do only if they are the last ones
1788 * in their service tree.
1789 */
b1ffe737
DS
1790 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1791 return 1;
1792 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1793 service_tree->count);
1794 return 0;
a6d44e98
CZ
1795}
1796
6d048f53 1797static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1798{
1792669c 1799 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1800 struct cfq_io_context *cic;
7b14e3b5
JA
1801 unsigned long sl;
1802
a68bbddb 1803 /*
f7d7b7a7
JA
1804 * SSD device without seek penalty, disable idling. But only do so
1805 * for devices that support queuing, otherwise we still have a problem
1806 * with sync vs async workloads.
a68bbddb 1807 */
f7d7b7a7 1808 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1809 return;
1810
dd67d051 1811 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1812 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1813
1814 /*
1815 * idle is disabled, either manually or by past process history
1816 */
a6d44e98 1817 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1818 return;
1819
7b679138 1820 /*
8e550632 1821 * still active requests from this queue, don't idle
7b679138 1822 */
8e550632 1823 if (cfqq->dispatched)
7b679138
JA
1824 return;
1825
22e2c507
JA
1826 /*
1827 * task has exited, don't wait
1828 */
206dc69b 1829 cic = cfqd->active_cic;
66dac98e 1830 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1831 return;
1832
355b659c
CZ
1833 /*
1834 * If our average think time is larger than the remaining time
1835 * slice, then don't idle. This avoids overrunning the allotted
1836 * time slice.
1837 */
1838 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1839 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1840 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1841 cic->ttime_mean);
355b659c 1842 return;
b1ffe737 1843 }
355b659c 1844
3b18152c 1845 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1846
6d048f53 1847 sl = cfqd->cfq_slice_idle;
206dc69b 1848
7b14e3b5 1849 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1850 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1851}
1852
498d3aa2
JA
1853/*
1854 * Move request from internal lists to the request queue dispatch list.
1855 */
165125e1 1856static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1857{
3ed9a296 1858 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1859 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1860
7b679138
JA
1861 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1862
06d21886 1863 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1864 cfq_remove_request(rq);
6d048f53 1865 cfqq->dispatched++;
5380a101 1866 elv_dispatch_sort(q, rq);
3ed9a296 1867
53c583d2 1868 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
84c124da
DS
1869 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1870 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1871}
1872
1873/*
1874 * return expired entry, or NULL to just start from scratch in rbtree
1875 */
febffd61 1876static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1877{
30996f40 1878 struct request *rq = NULL;
1da177e4 1879
3b18152c 1880 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1881 return NULL;
cb887411
JA
1882
1883 cfq_mark_cfqq_fifo_expire(cfqq);
1884
89850f7e
JA
1885 if (list_empty(&cfqq->fifo))
1886 return NULL;
1da177e4 1887
89850f7e 1888 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1889 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1890 rq = NULL;
1da177e4 1891
30996f40 1892 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1893 return rq;
1da177e4
LT
1894}
1895
22e2c507
JA
1896static inline int
1897cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1898{
1899 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1900
22e2c507 1901 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1902
22e2c507 1903 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1904}
1905
df5fe3e8
JM
1906/*
1907 * Must be called with the queue_lock held.
1908 */
1909static int cfqq_process_refs(struct cfq_queue *cfqq)
1910{
1911 int process_refs, io_refs;
1912
1913 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1914 process_refs = atomic_read(&cfqq->ref) - io_refs;
1915 BUG_ON(process_refs < 0);
1916 return process_refs;
1917}
1918
1919static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1920{
e6c5bc73 1921 int process_refs, new_process_refs;
df5fe3e8
JM
1922 struct cfq_queue *__cfqq;
1923
1924 /* Avoid a circular list and skip interim queue merges */
1925 while ((__cfqq = new_cfqq->new_cfqq)) {
1926 if (__cfqq == cfqq)
1927 return;
1928 new_cfqq = __cfqq;
1929 }
1930
1931 process_refs = cfqq_process_refs(cfqq);
1932 /*
1933 * If the process for the cfqq has gone away, there is no
1934 * sense in merging the queues.
1935 */
1936 if (process_refs == 0)
1937 return;
1938
e6c5bc73
JM
1939 /*
1940 * Merge in the direction of the lesser amount of work.
1941 */
1942 new_process_refs = cfqq_process_refs(new_cfqq);
1943 if (new_process_refs >= process_refs) {
1944 cfqq->new_cfqq = new_cfqq;
1945 atomic_add(process_refs, &new_cfqq->ref);
1946 } else {
1947 new_cfqq->new_cfqq = cfqq;
1948 atomic_add(new_process_refs, &cfqq->ref);
1949 }
df5fe3e8
JM
1950}
1951
cdb16e8f 1952static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1953 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1954{
1955 struct cfq_queue *queue;
1956 int i;
1957 bool key_valid = false;
1958 unsigned long lowest_key = 0;
1959 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1960
65b32a57
VG
1961 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1962 /* select the one with lowest rb_key */
1963 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1964 if (queue &&
1965 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1966 lowest_key = queue->rb_key;
1967 cur_best = i;
1968 key_valid = true;
1969 }
1970 }
1971
1972 return cur_best;
1973}
1974
cdb16e8f 1975static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1976{
718eee05
CZ
1977 unsigned slice;
1978 unsigned count;
cdb16e8f 1979 struct cfq_rb_root *st;
58ff82f3 1980 unsigned group_slice;
718eee05 1981
1fa8f6d6
VG
1982 if (!cfqg) {
1983 cfqd->serving_prio = IDLE_WORKLOAD;
1984 cfqd->workload_expires = jiffies + 1;
1985 return;
1986 }
1987
718eee05 1988 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1989 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1990 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1991 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1992 cfqd->serving_prio = BE_WORKLOAD;
1993 else {
1994 cfqd->serving_prio = IDLE_WORKLOAD;
1995 cfqd->workload_expires = jiffies + 1;
1996 return;
1997 }
1998
1999 /*
2000 * For RT and BE, we have to choose also the type
2001 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2002 * expiration time
2003 */
65b32a57 2004 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2005 count = st->count;
718eee05
CZ
2006
2007 /*
65b32a57 2008 * check workload expiration, and that we still have other queues ready
718eee05 2009 */
65b32a57 2010 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2011 return;
2012
2013 /* otherwise select new workload type */
2014 cfqd->serving_type =
65b32a57
VG
2015 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2016 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2017 count = st->count;
718eee05
CZ
2018
2019 /*
2020 * the workload slice is computed as a fraction of target latency
2021 * proportional to the number of queues in that workload, over
2022 * all the queues in the same priority class
2023 */
58ff82f3
VG
2024 group_slice = cfq_group_slice(cfqd, cfqg);
2025
2026 slice = group_slice * count /
2027 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2028 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2029
f26bd1f0
VG
2030 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2031 unsigned int tmp;
2032
2033 /*
2034 * Async queues are currently system wide. Just taking
2035 * proportion of queues with-in same group will lead to higher
2036 * async ratio system wide as generally root group is going
2037 * to have higher weight. A more accurate thing would be to
2038 * calculate system wide asnc/sync ratio.
2039 */
2040 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2041 tmp = tmp/cfqd->busy_queues;
2042 slice = min_t(unsigned, slice, tmp);
2043
718eee05
CZ
2044 /* async workload slice is scaled down according to
2045 * the sync/async slice ratio. */
2046 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2047 } else
718eee05
CZ
2048 /* sync workload slice is at least 2 * cfq_slice_idle */
2049 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2050
2051 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2052 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2053 cfqd->workload_expires = jiffies + slice;
8e550632 2054 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2055}
2056
1fa8f6d6
VG
2057static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2058{
2059 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2060 struct cfq_group *cfqg;
1fa8f6d6
VG
2061
2062 if (RB_EMPTY_ROOT(&st->rb))
2063 return NULL;
25bc6b07
VG
2064 cfqg = cfq_rb_first_group(st);
2065 st->active = &cfqg->rb_node;
2066 update_min_vdisktime(st);
2067 return cfqg;
1fa8f6d6
VG
2068}
2069
cdb16e8f
VG
2070static void cfq_choose_cfqg(struct cfq_data *cfqd)
2071{
1fa8f6d6
VG
2072 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2073
2074 cfqd->serving_group = cfqg;
dae739eb
VG
2075
2076 /* Restore the workload type data */
2077 if (cfqg->saved_workload_slice) {
2078 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2079 cfqd->serving_type = cfqg->saved_workload;
2080 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2081 } else
2082 cfqd->workload_expires = jiffies - 1;
2083
1fa8f6d6 2084 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2085}
2086
22e2c507 2087/*
498d3aa2
JA
2088 * Select a queue for service. If we have a current active queue,
2089 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2090 */
1b5ed5e1 2091static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2092{
a36e71f9 2093 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2094
22e2c507
JA
2095 cfqq = cfqd->active_queue;
2096 if (!cfqq)
2097 goto new_queue;
1da177e4 2098
f04a6424
VG
2099 if (!cfqd->rq_queued)
2100 return NULL;
c244bb50
VG
2101
2102 /*
2103 * We were waiting for group to get backlogged. Expire the queue
2104 */
2105 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2106 goto expire;
2107
22e2c507 2108 /*
6d048f53 2109 * The active queue has run out of time, expire it and select new.
22e2c507 2110 */
7667aa06
VG
2111 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2112 /*
2113 * If slice had not expired at the completion of last request
2114 * we might not have turned on wait_busy flag. Don't expire
2115 * the queue yet. Allow the group to get backlogged.
2116 *
2117 * The very fact that we have used the slice, that means we
2118 * have been idling all along on this queue and it should be
2119 * ok to wait for this request to complete.
2120 */
82bbbf28
VG
2121 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2122 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2123 cfqq = NULL;
7667aa06 2124 goto keep_queue;
82bbbf28 2125 } else
7667aa06
VG
2126 goto expire;
2127 }
1da177e4 2128
22e2c507 2129 /*
6d048f53
JA
2130 * The active queue has requests and isn't expired, allow it to
2131 * dispatch.
22e2c507 2132 */
dd67d051 2133 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2134 goto keep_queue;
6d048f53 2135
a36e71f9
JA
2136 /*
2137 * If another queue has a request waiting within our mean seek
2138 * distance, let it run. The expire code will check for close
2139 * cooperators and put the close queue at the front of the service
df5fe3e8 2140 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2141 */
b3b6d040 2142 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2143 if (new_cfqq) {
2144 if (!cfqq->new_cfqq)
2145 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2146 goto expire;
df5fe3e8 2147 }
a36e71f9 2148
6d048f53
JA
2149 /*
2150 * No requests pending. If the active queue still has requests in
2151 * flight or is idling for a new request, allow either of these
2152 * conditions to happen (or time out) before selecting a new queue.
2153 */
cc197479 2154 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2155 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2156 cfqq = NULL;
2157 goto keep_queue;
22e2c507
JA
2158 }
2159
3b18152c 2160expire:
6084cdda 2161 cfq_slice_expired(cfqd, 0);
3b18152c 2162new_queue:
718eee05
CZ
2163 /*
2164 * Current queue expired. Check if we have to switch to a new
2165 * service tree
2166 */
2167 if (!new_cfqq)
cdb16e8f 2168 cfq_choose_cfqg(cfqd);
718eee05 2169
a36e71f9 2170 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2171keep_queue:
3b18152c 2172 return cfqq;
22e2c507
JA
2173}
2174
febffd61 2175static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2176{
2177 int dispatched = 0;
2178
2179 while (cfqq->next_rq) {
2180 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2181 dispatched++;
2182 }
2183
2184 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2185
2186 /* By default cfqq is not expired if it is empty. Do it explicitly */
2187 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2188 return dispatched;
2189}
2190
498d3aa2
JA
2191/*
2192 * Drain our current requests. Used for barriers and when switching
2193 * io schedulers on-the-fly.
2194 */
d9e7620e 2195static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2196{
0871714e 2197 struct cfq_queue *cfqq;
d9e7620e 2198 int dispatched = 0;
cdb16e8f 2199
f04a6424
VG
2200 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2201 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2202
6084cdda 2203 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2204 BUG_ON(cfqd->busy_queues);
2205
6923715a 2206 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2207 return dispatched;
2208}
2209
abc3c744
SL
2210static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2211 struct cfq_queue *cfqq)
2212{
2213 /* the queue hasn't finished any request, can't estimate */
2214 if (cfq_cfqq_slice_new(cfqq))
2215 return 1;
2216 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2217 cfqq->slice_end))
2218 return 1;
2219
2220 return 0;
2221}
2222
0b182d61 2223static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2224{
2f5cb738 2225 unsigned int max_dispatch;
22e2c507 2226
5ad531db
JA
2227 /*
2228 * Drain async requests before we start sync IO
2229 */
53c583d2 2230 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2231 return false;
5ad531db 2232
2f5cb738
JA
2233 /*
2234 * If this is an async queue and we have sync IO in flight, let it wait
2235 */
53c583d2 2236 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2237 return false;
2f5cb738 2238
abc3c744 2239 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2240 if (cfq_class_idle(cfqq))
2241 max_dispatch = 1;
b4878f24 2242
2f5cb738
JA
2243 /*
2244 * Does this cfqq already have too much IO in flight?
2245 */
2246 if (cfqq->dispatched >= max_dispatch) {
2247 /*
2248 * idle queue must always only have a single IO in flight
2249 */
3ed9a296 2250 if (cfq_class_idle(cfqq))
0b182d61 2251 return false;
3ed9a296 2252
2f5cb738
JA
2253 /*
2254 * We have other queues, don't allow more IO from this one
2255 */
abc3c744 2256 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2257 return false;
9ede209e 2258
365722bb 2259 /*
474b18cc 2260 * Sole queue user, no limit
365722bb 2261 */
abc3c744
SL
2262 if (cfqd->busy_queues == 1)
2263 max_dispatch = -1;
2264 else
2265 /*
2266 * Normally we start throttling cfqq when cfq_quantum/2
2267 * requests have been dispatched. But we can drive
2268 * deeper queue depths at the beginning of slice
2269 * subjected to upper limit of cfq_quantum.
2270 * */
2271 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2272 }
2273
2274 /*
2275 * Async queues must wait a bit before being allowed dispatch.
2276 * We also ramp up the dispatch depth gradually for async IO,
2277 * based on the last sync IO we serviced
2278 */
963b72fc 2279 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2280 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2281 unsigned int depth;
365722bb 2282
61f0c1dc 2283 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2284 if (!depth && !cfqq->dispatched)
2285 depth = 1;
8e296755
JA
2286 if (depth < max_dispatch)
2287 max_dispatch = depth;
2f5cb738 2288 }
3ed9a296 2289
0b182d61
JA
2290 /*
2291 * If we're below the current max, allow a dispatch
2292 */
2293 return cfqq->dispatched < max_dispatch;
2294}
2295
2296/*
2297 * Dispatch a request from cfqq, moving them to the request queue
2298 * dispatch list.
2299 */
2300static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2301{
2302 struct request *rq;
2303
2304 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2305
2306 if (!cfq_may_dispatch(cfqd, cfqq))
2307 return false;
2308
2309 /*
2310 * follow expired path, else get first next available
2311 */
2312 rq = cfq_check_fifo(cfqq);
2313 if (!rq)
2314 rq = cfqq->next_rq;
2315
2316 /*
2317 * insert request into driver dispatch list
2318 */
2319 cfq_dispatch_insert(cfqd->queue, rq);
2320
2321 if (!cfqd->active_cic) {
2322 struct cfq_io_context *cic = RQ_CIC(rq);
2323
2324 atomic_long_inc(&cic->ioc->refcount);
2325 cfqd->active_cic = cic;
2326 }
2327
2328 return true;
2329}
2330
2331/*
2332 * Find the cfqq that we need to service and move a request from that to the
2333 * dispatch list
2334 */
2335static int cfq_dispatch_requests(struct request_queue *q, int force)
2336{
2337 struct cfq_data *cfqd = q->elevator->elevator_data;
2338 struct cfq_queue *cfqq;
2339
2340 if (!cfqd->busy_queues)
2341 return 0;
2342
2343 if (unlikely(force))
2344 return cfq_forced_dispatch(cfqd);
2345
2346 cfqq = cfq_select_queue(cfqd);
2347 if (!cfqq)
8e296755
JA
2348 return 0;
2349
2f5cb738 2350 /*
0b182d61 2351 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2352 */
0b182d61
JA
2353 if (!cfq_dispatch_request(cfqd, cfqq))
2354 return 0;
2355
2f5cb738 2356 cfqq->slice_dispatch++;
b029195d 2357 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2358
2f5cb738
JA
2359 /*
2360 * expire an async queue immediately if it has used up its slice. idle
2361 * queue always expire after 1 dispatch round.
2362 */
2363 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2364 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2365 cfq_class_idle(cfqq))) {
2366 cfqq->slice_end = jiffies + 1;
2367 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2368 }
2369
b217a903 2370 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2371 return 1;
1da177e4
LT
2372}
2373
1da177e4 2374/*
5e705374
JA
2375 * task holds one reference to the queue, dropped when task exits. each rq
2376 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2377 *
b1c35769 2378 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2379 * queue lock must be held here.
2380 */
2381static void cfq_put_queue(struct cfq_queue *cfqq)
2382{
22e2c507 2383 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2384 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2385
2386 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2387
2388 if (!atomic_dec_and_test(&cfqq->ref))
2389 return;
2390
7b679138 2391 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2392 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2393 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2394 cfqg = cfqq->cfqg;
878eaddd 2395 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2396
28f95cbc 2397 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2398 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2399 cfq_schedule_dispatch(cfqd);
28f95cbc 2400 }
22e2c507 2401
f04a6424 2402 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2403 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2404 cfq_put_cfqg(cfqg);
878eaddd
VG
2405 if (orig_cfqg)
2406 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2407}
2408
d6de8be7
JA
2409/*
2410 * Must always be called with the rcu_read_lock() held
2411 */
07416d29
JA
2412static void
2413__call_for_each_cic(struct io_context *ioc,
2414 void (*func)(struct io_context *, struct cfq_io_context *))
2415{
2416 struct cfq_io_context *cic;
2417 struct hlist_node *n;
2418
2419 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2420 func(ioc, cic);
2421}
2422
4ac845a2 2423/*
34e6bbf2 2424 * Call func for each cic attached to this ioc.
4ac845a2 2425 */
34e6bbf2 2426static void
4ac845a2
JA
2427call_for_each_cic(struct io_context *ioc,
2428 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2429{
4ac845a2 2430 rcu_read_lock();
07416d29 2431 __call_for_each_cic(ioc, func);
4ac845a2 2432 rcu_read_unlock();
34e6bbf2
FC
2433}
2434
2435static void cfq_cic_free_rcu(struct rcu_head *head)
2436{
2437 struct cfq_io_context *cic;
2438
2439 cic = container_of(head, struct cfq_io_context, rcu_head);
2440
2441 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2442 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2443
9a11b4ed
JA
2444 if (ioc_gone) {
2445 /*
2446 * CFQ scheduler is exiting, grab exit lock and check
2447 * the pending io context count. If it hits zero,
2448 * complete ioc_gone and set it back to NULL
2449 */
2450 spin_lock(&ioc_gone_lock);
245b2e70 2451 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2452 complete(ioc_gone);
2453 ioc_gone = NULL;
2454 }
2455 spin_unlock(&ioc_gone_lock);
2456 }
34e6bbf2 2457}
4ac845a2 2458
34e6bbf2
FC
2459static void cfq_cic_free(struct cfq_io_context *cic)
2460{
2461 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2462}
2463
2464static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2465{
2466 unsigned long flags;
2467
2468 BUG_ON(!cic->dead_key);
2469
2470 spin_lock_irqsave(&ioc->lock, flags);
2471 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2472 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2473 spin_unlock_irqrestore(&ioc->lock, flags);
2474
34e6bbf2 2475 cfq_cic_free(cic);
4ac845a2
JA
2476}
2477
d6de8be7
JA
2478/*
2479 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2480 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2481 * and ->trim() which is called with the task lock held
2482 */
4ac845a2
JA
2483static void cfq_free_io_context(struct io_context *ioc)
2484{
4ac845a2 2485 /*
34e6bbf2
FC
2486 * ioc->refcount is zero here, or we are called from elv_unregister(),
2487 * so no more cic's are allowed to be linked into this ioc. So it
2488 * should be ok to iterate over the known list, we will see all cic's
2489 * since no new ones are added.
4ac845a2 2490 */
07416d29 2491 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2492}
2493
89850f7e 2494static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2495{
df5fe3e8
JM
2496 struct cfq_queue *__cfqq, *next;
2497
28f95cbc 2498 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2499 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2500 cfq_schedule_dispatch(cfqd);
28f95cbc 2501 }
22e2c507 2502
df5fe3e8
JM
2503 /*
2504 * If this queue was scheduled to merge with another queue, be
2505 * sure to drop the reference taken on that queue (and others in
2506 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2507 */
2508 __cfqq = cfqq->new_cfqq;
2509 while (__cfqq) {
2510 if (__cfqq == cfqq) {
2511 WARN(1, "cfqq->new_cfqq loop detected\n");
2512 break;
2513 }
2514 next = __cfqq->new_cfqq;
2515 cfq_put_queue(__cfqq);
2516 __cfqq = next;
2517 }
2518
89850f7e
JA
2519 cfq_put_queue(cfqq);
2520}
22e2c507 2521
89850f7e
JA
2522static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2523 struct cfq_io_context *cic)
2524{
4faa3c81
FC
2525 struct io_context *ioc = cic->ioc;
2526
fc46379d 2527 list_del_init(&cic->queue_list);
4ac845a2
JA
2528
2529 /*
2530 * Make sure key == NULL is seen for dead queues
2531 */
fc46379d 2532 smp_wmb();
4ac845a2 2533 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2534 cic->key = NULL;
2535
4faa3c81
FC
2536 if (ioc->ioc_data == cic)
2537 rcu_assign_pointer(ioc->ioc_data, NULL);
2538
ff6657c6
JA
2539 if (cic->cfqq[BLK_RW_ASYNC]) {
2540 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2541 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2542 }
2543
ff6657c6
JA
2544 if (cic->cfqq[BLK_RW_SYNC]) {
2545 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2546 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2547 }
89850f7e
JA
2548}
2549
4ac845a2
JA
2550static void cfq_exit_single_io_context(struct io_context *ioc,
2551 struct cfq_io_context *cic)
89850f7e
JA
2552{
2553 struct cfq_data *cfqd = cic->key;
2554
89850f7e 2555 if (cfqd) {
165125e1 2556 struct request_queue *q = cfqd->queue;
4ac845a2 2557 unsigned long flags;
89850f7e 2558
4ac845a2 2559 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2560
2561 /*
2562 * Ensure we get a fresh copy of the ->key to prevent
2563 * race between exiting task and queue
2564 */
2565 smp_read_barrier_depends();
2566 if (cic->key)
2567 __cfq_exit_single_io_context(cfqd, cic);
2568
4ac845a2 2569 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2570 }
1da177e4
LT
2571}
2572
498d3aa2
JA
2573/*
2574 * The process that ioc belongs to has exited, we need to clean up
2575 * and put the internal structures we have that belongs to that process.
2576 */
e2d74ac0 2577static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2578{
4ac845a2 2579 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2580}
2581
22e2c507 2582static struct cfq_io_context *
8267e268 2583cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2584{
b5deef90 2585 struct cfq_io_context *cic;
1da177e4 2586
94f6030c
CL
2587 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2588 cfqd->queue->node);
1da177e4 2589 if (cic) {
22e2c507 2590 cic->last_end_request = jiffies;
553698f9 2591 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2592 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2593 cic->dtor = cfq_free_io_context;
2594 cic->exit = cfq_exit_io_context;
245b2e70 2595 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2596 }
2597
2598 return cic;
2599}
2600
fd0928df 2601static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2602{
2603 struct task_struct *tsk = current;
2604 int ioprio_class;
2605
3b18152c 2606 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2607 return;
2608
fd0928df 2609 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2610 switch (ioprio_class) {
fe094d98
JA
2611 default:
2612 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2613 case IOPRIO_CLASS_NONE:
2614 /*
6d63c275 2615 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2616 */
2617 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2618 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2619 break;
2620 case IOPRIO_CLASS_RT:
2621 cfqq->ioprio = task_ioprio(ioc);
2622 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2623 break;
2624 case IOPRIO_CLASS_BE:
2625 cfqq->ioprio = task_ioprio(ioc);
2626 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2627 break;
2628 case IOPRIO_CLASS_IDLE:
2629 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2630 cfqq->ioprio = 7;
2631 cfq_clear_cfqq_idle_window(cfqq);
2632 break;
22e2c507
JA
2633 }
2634
2635 /*
2636 * keep track of original prio settings in case we have to temporarily
2637 * elevate the priority of this queue
2638 */
2639 cfqq->org_ioprio = cfqq->ioprio;
2640 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2641 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2642}
2643
febffd61 2644static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2645{
478a82b0
AV
2646 struct cfq_data *cfqd = cic->key;
2647 struct cfq_queue *cfqq;
c1b707d2 2648 unsigned long flags;
35e6077c 2649
caaa5f9f
JA
2650 if (unlikely(!cfqd))
2651 return;
2652
c1b707d2 2653 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2654
ff6657c6 2655 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2656 if (cfqq) {
2657 struct cfq_queue *new_cfqq;
ff6657c6
JA
2658 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2659 GFP_ATOMIC);
caaa5f9f 2660 if (new_cfqq) {
ff6657c6 2661 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2662 cfq_put_queue(cfqq);
2663 }
22e2c507 2664 }
caaa5f9f 2665
ff6657c6 2666 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2667 if (cfqq)
2668 cfq_mark_cfqq_prio_changed(cfqq);
2669
c1b707d2 2670 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2671}
2672
fc46379d 2673static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2674{
4ac845a2 2675 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2676 ioc->ioprio_changed = 0;
22e2c507
JA
2677}
2678
d5036d77 2679static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2680 pid_t pid, bool is_sync)
d5036d77
JA
2681{
2682 RB_CLEAR_NODE(&cfqq->rb_node);
2683 RB_CLEAR_NODE(&cfqq->p_node);
2684 INIT_LIST_HEAD(&cfqq->fifo);
2685
2686 atomic_set(&cfqq->ref, 0);
2687 cfqq->cfqd = cfqd;
2688
2689 cfq_mark_cfqq_prio_changed(cfqq);
2690
2691 if (is_sync) {
2692 if (!cfq_class_idle(cfqq))
2693 cfq_mark_cfqq_idle_window(cfqq);
2694 cfq_mark_cfqq_sync(cfqq);
2695 }
2696 cfqq->pid = pid;
2697}
2698
24610333
VG
2699#ifdef CONFIG_CFQ_GROUP_IOSCHED
2700static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2701{
2702 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2703 struct cfq_data *cfqd = cic->key;
2704 unsigned long flags;
2705 struct request_queue *q;
2706
2707 if (unlikely(!cfqd))
2708 return;
2709
2710 q = cfqd->queue;
2711
2712 spin_lock_irqsave(q->queue_lock, flags);
2713
2714 if (sync_cfqq) {
2715 /*
2716 * Drop reference to sync queue. A new sync queue will be
2717 * assigned in new group upon arrival of a fresh request.
2718 */
2719 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2720 cic_set_cfqq(cic, NULL, 1);
2721 cfq_put_queue(sync_cfqq);
2722 }
2723
2724 spin_unlock_irqrestore(q->queue_lock, flags);
2725}
2726
2727static void cfq_ioc_set_cgroup(struct io_context *ioc)
2728{
2729 call_for_each_cic(ioc, changed_cgroup);
2730 ioc->cgroup_changed = 0;
2731}
2732#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2733
22e2c507 2734static struct cfq_queue *
a6151c3a 2735cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2736 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2737{
22e2c507 2738 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2739 struct cfq_io_context *cic;
cdb16e8f 2740 struct cfq_group *cfqg;
22e2c507
JA
2741
2742retry:
cdb16e8f 2743 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2744 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2745 /* cic always exists here */
2746 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2747
6118b70b
JA
2748 /*
2749 * Always try a new alloc if we fell back to the OOM cfqq
2750 * originally, since it should just be a temporary situation.
2751 */
2752 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2753 cfqq = NULL;
22e2c507
JA
2754 if (new_cfqq) {
2755 cfqq = new_cfqq;
2756 new_cfqq = NULL;
2757 } else if (gfp_mask & __GFP_WAIT) {
2758 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2759 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2760 gfp_mask | __GFP_ZERO,
94f6030c 2761 cfqd->queue->node);
22e2c507 2762 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2763 if (new_cfqq)
2764 goto retry;
22e2c507 2765 } else {
94f6030c
CL
2766 cfqq = kmem_cache_alloc_node(cfq_pool,
2767 gfp_mask | __GFP_ZERO,
2768 cfqd->queue->node);
22e2c507
JA
2769 }
2770
6118b70b
JA
2771 if (cfqq) {
2772 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2773 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2774 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2775 cfq_log_cfqq(cfqd, cfqq, "alloced");
2776 } else
2777 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2778 }
2779
2780 if (new_cfqq)
2781 kmem_cache_free(cfq_pool, new_cfqq);
2782
22e2c507
JA
2783 return cfqq;
2784}
2785
c2dea2d1
VT
2786static struct cfq_queue **
2787cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2788{
fe094d98 2789 switch (ioprio_class) {
c2dea2d1
VT
2790 case IOPRIO_CLASS_RT:
2791 return &cfqd->async_cfqq[0][ioprio];
2792 case IOPRIO_CLASS_BE:
2793 return &cfqd->async_cfqq[1][ioprio];
2794 case IOPRIO_CLASS_IDLE:
2795 return &cfqd->async_idle_cfqq;
2796 default:
2797 BUG();
2798 }
2799}
2800
15c31be4 2801static struct cfq_queue *
a6151c3a 2802cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2803 gfp_t gfp_mask)
2804{
fd0928df
JA
2805 const int ioprio = task_ioprio(ioc);
2806 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2807 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2808 struct cfq_queue *cfqq = NULL;
2809
c2dea2d1
VT
2810 if (!is_sync) {
2811 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2812 cfqq = *async_cfqq;
2813 }
2814
6118b70b 2815 if (!cfqq)
fd0928df 2816 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2817
2818 /*
2819 * pin the queue now that it's allocated, scheduler exit will prune it
2820 */
c2dea2d1 2821 if (!is_sync && !(*async_cfqq)) {
15c31be4 2822 atomic_inc(&cfqq->ref);
c2dea2d1 2823 *async_cfqq = cfqq;
15c31be4
JA
2824 }
2825
2826 atomic_inc(&cfqq->ref);
2827 return cfqq;
2828}
2829
498d3aa2
JA
2830/*
2831 * We drop cfq io contexts lazily, so we may find a dead one.
2832 */
dbecf3ab 2833static void
4ac845a2
JA
2834cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2835 struct cfq_io_context *cic)
dbecf3ab 2836{
4ac845a2
JA
2837 unsigned long flags;
2838
fc46379d 2839 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2840
4ac845a2
JA
2841 spin_lock_irqsave(&ioc->lock, flags);
2842
4faa3c81 2843 BUG_ON(ioc->ioc_data == cic);
597bc485 2844
4ac845a2 2845 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2846 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2847 spin_unlock_irqrestore(&ioc->lock, flags);
2848
2849 cfq_cic_free(cic);
dbecf3ab
OH
2850}
2851
e2d74ac0 2852static struct cfq_io_context *
4ac845a2 2853cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2854{
e2d74ac0 2855 struct cfq_io_context *cic;
d6de8be7 2856 unsigned long flags;
4ac845a2 2857 void *k;
e2d74ac0 2858
91fac317
VT
2859 if (unlikely(!ioc))
2860 return NULL;
2861
d6de8be7
JA
2862 rcu_read_lock();
2863
597bc485
JA
2864 /*
2865 * we maintain a last-hit cache, to avoid browsing over the tree
2866 */
4ac845a2 2867 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2868 if (cic && cic->key == cfqd) {
2869 rcu_read_unlock();
597bc485 2870 return cic;
d6de8be7 2871 }
597bc485 2872
4ac845a2 2873 do {
4ac845a2
JA
2874 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2875 rcu_read_unlock();
2876 if (!cic)
2877 break;
be3b0753
OH
2878 /* ->key must be copied to avoid race with cfq_exit_queue() */
2879 k = cic->key;
2880 if (unlikely(!k)) {
4ac845a2 2881 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2882 rcu_read_lock();
4ac845a2 2883 continue;
dbecf3ab 2884 }
e2d74ac0 2885
d6de8be7 2886 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2887 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2888 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2889 break;
2890 } while (1);
e2d74ac0 2891
4ac845a2 2892 return cic;
e2d74ac0
JA
2893}
2894
4ac845a2
JA
2895/*
2896 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2897 * the process specific cfq io context when entered from the block layer.
2898 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2899 */
febffd61
JA
2900static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2901 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2902{
0261d688 2903 unsigned long flags;
4ac845a2 2904 int ret;
e2d74ac0 2905
4ac845a2
JA
2906 ret = radix_tree_preload(gfp_mask);
2907 if (!ret) {
2908 cic->ioc = ioc;
2909 cic->key = cfqd;
e2d74ac0 2910
4ac845a2
JA
2911 spin_lock_irqsave(&ioc->lock, flags);
2912 ret = radix_tree_insert(&ioc->radix_root,
2913 (unsigned long) cfqd, cic);
ffc4e759
JA
2914 if (!ret)
2915 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2916 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2917
4ac845a2
JA
2918 radix_tree_preload_end();
2919
2920 if (!ret) {
2921 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2922 list_add(&cic->queue_list, &cfqd->cic_list);
2923 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2924 }
e2d74ac0
JA
2925 }
2926
4ac845a2
JA
2927 if (ret)
2928 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2929
4ac845a2 2930 return ret;
e2d74ac0
JA
2931}
2932
1da177e4
LT
2933/*
2934 * Setup general io context and cfq io context. There can be several cfq
2935 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2936 * than one device managed by cfq.
1da177e4
LT
2937 */
2938static struct cfq_io_context *
e2d74ac0 2939cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2940{
22e2c507 2941 struct io_context *ioc = NULL;
1da177e4 2942 struct cfq_io_context *cic;
1da177e4 2943
22e2c507 2944 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2945
b5deef90 2946 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2947 if (!ioc)
2948 return NULL;
2949
4ac845a2 2950 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2951 if (cic)
2952 goto out;
1da177e4 2953
e2d74ac0
JA
2954 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2955 if (cic == NULL)
2956 goto err;
1da177e4 2957
4ac845a2
JA
2958 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2959 goto err_free;
2960
1da177e4 2961out:
fc46379d
JA
2962 smp_read_barrier_depends();
2963 if (unlikely(ioc->ioprio_changed))
2964 cfq_ioc_set_ioprio(ioc);
2965
24610333
VG
2966#ifdef CONFIG_CFQ_GROUP_IOSCHED
2967 if (unlikely(ioc->cgroup_changed))
2968 cfq_ioc_set_cgroup(ioc);
2969#endif
1da177e4 2970 return cic;
4ac845a2
JA
2971err_free:
2972 cfq_cic_free(cic);
1da177e4
LT
2973err:
2974 put_io_context(ioc);
2975 return NULL;
2976}
2977
22e2c507
JA
2978static void
2979cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2980{
aaf1228d
JA
2981 unsigned long elapsed = jiffies - cic->last_end_request;
2982 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2983
22e2c507
JA
2984 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2985 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2986 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2987}
1da177e4 2988
206dc69b 2989static void
b2c18e1e 2990cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2991 struct request *rq)
206dc69b 2992{
3dde36dd 2993 sector_t sdist = 0;
41647e7a 2994 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
2995 if (cfqq->last_request_pos) {
2996 if (cfqq->last_request_pos < blk_rq_pos(rq))
2997 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2998 else
2999 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3000 }
206dc69b 3001
3dde36dd 3002 cfqq->seek_history <<= 1;
41647e7a
CZ
3003 if (blk_queue_nonrot(cfqd->queue))
3004 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3005 else
3006 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3007}
1da177e4 3008
22e2c507
JA
3009/*
3010 * Disable idle window if the process thinks too long or seeks so much that
3011 * it doesn't matter
3012 */
3013static void
3014cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3015 struct cfq_io_context *cic)
3016{
7b679138 3017 int old_idle, enable_idle;
1be92f2f 3018
0871714e
JA
3019 /*
3020 * Don't idle for async or idle io prio class
3021 */
3022 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3023 return;
3024
c265a7f4 3025 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3026
76280aff
CZ
3027 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3028 cfq_mark_cfqq_deep(cfqq);
3029
66dac98e 3030 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3031 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3032 enable_idle = 0;
3033 else if (sample_valid(cic->ttime_samples)) {
718eee05 3034 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3035 enable_idle = 0;
3036 else
3037 enable_idle = 1;
1da177e4
LT
3038 }
3039
7b679138
JA
3040 if (old_idle != enable_idle) {
3041 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3042 if (enable_idle)
3043 cfq_mark_cfqq_idle_window(cfqq);
3044 else
3045 cfq_clear_cfqq_idle_window(cfqq);
3046 }
22e2c507 3047}
1da177e4 3048
22e2c507
JA
3049/*
3050 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3051 * no or if we aren't sure, a 1 will cause a preempt.
3052 */
a6151c3a 3053static bool
22e2c507 3054cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3055 struct request *rq)
22e2c507 3056{
6d048f53 3057 struct cfq_queue *cfqq;
22e2c507 3058
6d048f53
JA
3059 cfqq = cfqd->active_queue;
3060 if (!cfqq)
a6151c3a 3061 return false;
22e2c507 3062
6d048f53 3063 if (cfq_class_idle(new_cfqq))
a6151c3a 3064 return false;
22e2c507
JA
3065
3066 if (cfq_class_idle(cfqq))
a6151c3a 3067 return true;
1e3335de 3068
875feb63
DS
3069 /*
3070 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3071 */
3072 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3073 return false;
3074
374f84ac
JA
3075 /*
3076 * if the new request is sync, but the currently running queue is
3077 * not, let the sync request have priority.
3078 */
5e705374 3079 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3080 return true;
1e3335de 3081
8682e1f1
VG
3082 if (new_cfqq->cfqg != cfqq->cfqg)
3083 return false;
3084
3085 if (cfq_slice_used(cfqq))
3086 return true;
3087
3088 /* Allow preemption only if we are idling on sync-noidle tree */
3089 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3090 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3091 new_cfqq->service_tree->count == 2 &&
3092 RB_EMPTY_ROOT(&cfqq->sort_list))
3093 return true;
3094
374f84ac
JA
3095 /*
3096 * So both queues are sync. Let the new request get disk time if
3097 * it's a metadata request and the current queue is doing regular IO.
3098 */
3099 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3100 return true;
22e2c507 3101
3a9a3f6c
DS
3102 /*
3103 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3104 */
3105 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3106 return true;
3a9a3f6c 3107
1e3335de 3108 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3109 return false;
1e3335de
JA
3110
3111 /*
3112 * if this request is as-good as one we would expect from the
3113 * current cfqq, let it preempt
3114 */
e9ce335d 3115 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3116 return true;
1e3335de 3117
a6151c3a 3118 return false;
22e2c507
JA
3119}
3120
3121/*
3122 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3123 * let it have half of its nominal slice.
3124 */
3125static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3126{
7b679138 3127 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3128 cfq_slice_expired(cfqd, 1);
22e2c507 3129
bf572256
JA
3130 /*
3131 * Put the new queue at the front of the of the current list,
3132 * so we know that it will be selected next.
3133 */
3134 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3135
3136 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3137
44f7c160
JA
3138 cfqq->slice_end = 0;
3139 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3140}
3141
22e2c507 3142/*
5e705374 3143 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3144 * something we should do about it
3145 */
3146static void
5e705374
JA
3147cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3148 struct request *rq)
22e2c507 3149{
5e705374 3150 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3151
45333d5a 3152 cfqd->rq_queued++;
374f84ac
JA
3153 if (rq_is_meta(rq))
3154 cfqq->meta_pending++;
3155
9c2c38a1 3156 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3157 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3158 cfq_update_idle_window(cfqd, cfqq, cic);
3159
b2c18e1e 3160 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3161
3162 if (cfqq == cfqd->active_queue) {
3163 /*
b029195d
JA
3164 * Remember that we saw a request from this process, but
3165 * don't start queuing just yet. Otherwise we risk seeing lots
3166 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3167 * and merging. If the request is already larger than a single
3168 * page, let it rip immediately. For that case we assume that
2d870722
JA
3169 * merging is already done. Ditto for a busy system that
3170 * has other work pending, don't risk delaying until the
3171 * idle timer unplug to continue working.
22e2c507 3172 */
d6ceb25e 3173 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3174 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3175 cfqd->busy_queues > 1) {
d6ceb25e 3176 del_timer(&cfqd->idle_slice_timer);
554554f6 3177 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3178 __blk_run_queue(cfqd->queue);
3179 } else
3180 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3181 }
5e705374 3182 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3183 /*
3184 * not the active queue - expire current slice if it is
3185 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3186 * has some old slice time left and is of higher priority or
3187 * this new queue is RT and the current one is BE
22e2c507
JA
3188 */
3189 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3190 __blk_run_queue(cfqd->queue);
22e2c507 3191 }
1da177e4
LT
3192}
3193
165125e1 3194static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3195{
b4878f24 3196 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3197 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3198
7b679138 3199 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3200 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3201
30996f40 3202 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3203 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3204 cfq_add_rq_rb(rq);
22e2c507 3205
5e705374 3206 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3207}
3208
45333d5a
AC
3209/*
3210 * Update hw_tag based on peak queue depth over 50 samples under
3211 * sufficient load.
3212 */
3213static void cfq_update_hw_tag(struct cfq_data *cfqd)
3214{
1a1238a7
SL
3215 struct cfq_queue *cfqq = cfqd->active_queue;
3216
53c583d2
CZ
3217 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3218 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3219
3220 if (cfqd->hw_tag == 1)
3221 return;
45333d5a
AC
3222
3223 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3224 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3225 return;
3226
1a1238a7
SL
3227 /*
3228 * If active queue hasn't enough requests and can idle, cfq might not
3229 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3230 * case
3231 */
3232 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3233 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3234 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3235 return;
3236
45333d5a
AC
3237 if (cfqd->hw_tag_samples++ < 50)
3238 return;
3239
e459dd08 3240 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3241 cfqd->hw_tag = 1;
3242 else
3243 cfqd->hw_tag = 0;
45333d5a
AC
3244}
3245
7667aa06
VG
3246static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3247{
3248 struct cfq_io_context *cic = cfqd->active_cic;
3249
3250 /* If there are other queues in the group, don't wait */
3251 if (cfqq->cfqg->nr_cfqq > 1)
3252 return false;
3253
3254 if (cfq_slice_used(cfqq))
3255 return true;
3256
3257 /* if slice left is less than think time, wait busy */
3258 if (cic && sample_valid(cic->ttime_samples)
3259 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3260 return true;
3261
3262 /*
3263 * If think times is less than a jiffy than ttime_mean=0 and above
3264 * will not be true. It might happen that slice has not expired yet
3265 * but will expire soon (4-5 ns) during select_queue(). To cover the
3266 * case where think time is less than a jiffy, mark the queue wait
3267 * busy if only 1 jiffy is left in the slice.
3268 */
3269 if (cfqq->slice_end - jiffies == 1)
3270 return true;
3271
3272 return false;
3273}
3274
165125e1 3275static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3276{
5e705374 3277 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3278 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3279 const int sync = rq_is_sync(rq);
b4878f24 3280 unsigned long now;
1da177e4 3281
b4878f24 3282 now = jiffies;
2868ef7b 3283 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3284
45333d5a
AC
3285 cfq_update_hw_tag(cfqd);
3286
53c583d2 3287 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3288 WARN_ON(!cfqq->dispatched);
53c583d2 3289 cfqd->rq_in_driver--;
6d048f53 3290 cfqq->dispatched--;
84c124da
DS
3291 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3292 rq_io_start_time_ns(rq), rq_data_dir(rq),
3293 rq_is_sync(rq));
1da177e4 3294
53c583d2 3295 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3296
365722bb 3297 if (sync) {
5e705374 3298 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3299 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3300 cfqd->last_delayed_sync = now;
365722bb 3301 }
caaa5f9f
JA
3302
3303 /*
3304 * If this is the active queue, check if it needs to be expired,
3305 * or if we want to idle in case it has no pending requests.
3306 */
3307 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3308 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3309
44f7c160
JA
3310 if (cfq_cfqq_slice_new(cfqq)) {
3311 cfq_set_prio_slice(cfqd, cfqq);
3312 cfq_clear_cfqq_slice_new(cfqq);
3313 }
f75edf2d
VG
3314
3315 /*
7667aa06
VG
3316 * Should we wait for next request to come in before we expire
3317 * the queue.
f75edf2d 3318 */
7667aa06 3319 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3320 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3321 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3322 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3323 }
3324
a36e71f9 3325 /*
8e550632
CZ
3326 * Idling is not enabled on:
3327 * - expired queues
3328 * - idle-priority queues
3329 * - async queues
3330 * - queues with still some requests queued
3331 * - when there is a close cooperator
a36e71f9 3332 */
0871714e 3333 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3334 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3335 else if (sync && cfqq_empty &&
3336 !cfq_close_cooperator(cfqd, cfqq)) {
3337 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3338 /*
3339 * Idling is enabled for SYNC_WORKLOAD.
3340 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3341 * only if we processed at least one !rq_noidle request
3342 */
3343 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3344 || cfqd->noidle_tree_requires_idle
3345 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3346 cfq_arm_slice_timer(cfqd);
3347 }
caaa5f9f 3348 }
6d048f53 3349
53c583d2 3350 if (!cfqd->rq_in_driver)
23e018a1 3351 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3352}
3353
22e2c507
JA
3354/*
3355 * we temporarily boost lower priority queues if they are holding fs exclusive
3356 * resources. they are boosted to normal prio (CLASS_BE/4)
3357 */
3358static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3359{
22e2c507
JA
3360 if (has_fs_excl()) {
3361 /*
3362 * boost idle prio on transactions that would lock out other
3363 * users of the filesystem
3364 */
3365 if (cfq_class_idle(cfqq))
3366 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3367 if (cfqq->ioprio > IOPRIO_NORM)
3368 cfqq->ioprio = IOPRIO_NORM;
3369 } else {
3370 /*
dddb7451 3371 * unboost the queue (if needed)
22e2c507 3372 */
dddb7451
CZ
3373 cfqq->ioprio_class = cfqq->org_ioprio_class;
3374 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3375 }
22e2c507 3376}
1da177e4 3377
89850f7e 3378static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3379{
1b379d8d 3380 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3381 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3382 return ELV_MQUEUE_MUST;
3b18152c 3383 }
1da177e4 3384
22e2c507 3385 return ELV_MQUEUE_MAY;
22e2c507
JA
3386}
3387
165125e1 3388static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3389{
3390 struct cfq_data *cfqd = q->elevator->elevator_data;
3391 struct task_struct *tsk = current;
91fac317 3392 struct cfq_io_context *cic;
22e2c507
JA
3393 struct cfq_queue *cfqq;
3394
3395 /*
3396 * don't force setup of a queue from here, as a call to may_queue
3397 * does not necessarily imply that a request actually will be queued.
3398 * so just lookup a possibly existing queue, or return 'may queue'
3399 * if that fails
3400 */
4ac845a2 3401 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3402 if (!cic)
3403 return ELV_MQUEUE_MAY;
3404
b0b78f81 3405 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3406 if (cfqq) {
fd0928df 3407 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3408 cfq_prio_boost(cfqq);
3409
89850f7e 3410 return __cfq_may_queue(cfqq);
22e2c507
JA
3411 }
3412
3413 return ELV_MQUEUE_MAY;
1da177e4
LT
3414}
3415
1da177e4
LT
3416/*
3417 * queue lock held here
3418 */
bb37b94c 3419static void cfq_put_request(struct request *rq)
1da177e4 3420{
5e705374 3421 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3422
5e705374 3423 if (cfqq) {
22e2c507 3424 const int rw = rq_data_dir(rq);
1da177e4 3425
22e2c507
JA
3426 BUG_ON(!cfqq->allocated[rw]);
3427 cfqq->allocated[rw]--;
1da177e4 3428
5e705374 3429 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3430
1da177e4 3431 rq->elevator_private = NULL;
5e705374 3432 rq->elevator_private2 = NULL;
1da177e4 3433
1da177e4
LT
3434 cfq_put_queue(cfqq);
3435 }
3436}
3437
df5fe3e8
JM
3438static struct cfq_queue *
3439cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3440 struct cfq_queue *cfqq)
3441{
3442 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3443 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3444 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3445 cfq_put_queue(cfqq);
3446 return cic_to_cfqq(cic, 1);
3447}
3448
e6c5bc73
JM
3449/*
3450 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3451 * was the last process referring to said cfqq.
3452 */
3453static struct cfq_queue *
3454split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3455{
3456 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3457 cfqq->pid = current->pid;
3458 cfq_clear_cfqq_coop(cfqq);
ae54abed 3459 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3460 return cfqq;
3461 }
3462
3463 cic_set_cfqq(cic, NULL, 1);
3464 cfq_put_queue(cfqq);
3465 return NULL;
3466}
1da177e4 3467/*
22e2c507 3468 * Allocate cfq data structures associated with this request.
1da177e4 3469 */
22e2c507 3470static int
165125e1 3471cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3472{
3473 struct cfq_data *cfqd = q->elevator->elevator_data;
3474 struct cfq_io_context *cic;
3475 const int rw = rq_data_dir(rq);
a6151c3a 3476 const bool is_sync = rq_is_sync(rq);
22e2c507 3477 struct cfq_queue *cfqq;
1da177e4
LT
3478 unsigned long flags;
3479
3480 might_sleep_if(gfp_mask & __GFP_WAIT);
3481
e2d74ac0 3482 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3483
1da177e4
LT
3484 spin_lock_irqsave(q->queue_lock, flags);
3485
22e2c507
JA
3486 if (!cic)
3487 goto queue_fail;
3488
e6c5bc73 3489new_queue:
91fac317 3490 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3491 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3492 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3493 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3494 } else {
e6c5bc73
JM
3495 /*
3496 * If the queue was seeky for too long, break it apart.
3497 */
ae54abed 3498 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3499 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3500 cfqq = split_cfqq(cic, cfqq);
3501 if (!cfqq)
3502 goto new_queue;
3503 }
3504
df5fe3e8
JM
3505 /*
3506 * Check to see if this queue is scheduled to merge with
3507 * another, closely cooperating queue. The merging of
3508 * queues happens here as it must be done in process context.
3509 * The reference on new_cfqq was taken in merge_cfqqs.
3510 */
3511 if (cfqq->new_cfqq)
3512 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3513 }
1da177e4
LT
3514
3515 cfqq->allocated[rw]++;
22e2c507 3516 atomic_inc(&cfqq->ref);
1da177e4 3517
5e705374 3518 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3519
5e705374
JA
3520 rq->elevator_private = cic;
3521 rq->elevator_private2 = cfqq;
3522 return 0;
1da177e4 3523
22e2c507
JA
3524queue_fail:
3525 if (cic)
3526 put_io_context(cic->ioc);
89850f7e 3527
23e018a1 3528 cfq_schedule_dispatch(cfqd);
1da177e4 3529 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3530 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3531 return 1;
3532}
3533
65f27f38 3534static void cfq_kick_queue(struct work_struct *work)
22e2c507 3535{
65f27f38 3536 struct cfq_data *cfqd =
23e018a1 3537 container_of(work, struct cfq_data, unplug_work);
165125e1 3538 struct request_queue *q = cfqd->queue;
22e2c507 3539
40bb54d1 3540 spin_lock_irq(q->queue_lock);
a7f55792 3541 __blk_run_queue(cfqd->queue);
40bb54d1 3542 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3543}
3544
3545/*
3546 * Timer running if the active_queue is currently idling inside its time slice
3547 */
3548static void cfq_idle_slice_timer(unsigned long data)
3549{
3550 struct cfq_data *cfqd = (struct cfq_data *) data;
3551 struct cfq_queue *cfqq;
3552 unsigned long flags;
3c6bd2f8 3553 int timed_out = 1;
22e2c507 3554
7b679138
JA
3555 cfq_log(cfqd, "idle timer fired");
3556
22e2c507
JA
3557 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3558
fe094d98
JA
3559 cfqq = cfqd->active_queue;
3560 if (cfqq) {
3c6bd2f8
JA
3561 timed_out = 0;
3562
b029195d
JA
3563 /*
3564 * We saw a request before the queue expired, let it through
3565 */
3566 if (cfq_cfqq_must_dispatch(cfqq))
3567 goto out_kick;
3568
22e2c507
JA
3569 /*
3570 * expired
3571 */
44f7c160 3572 if (cfq_slice_used(cfqq))
22e2c507
JA
3573 goto expire;
3574
3575 /*
3576 * only expire and reinvoke request handler, if there are
3577 * other queues with pending requests
3578 */
caaa5f9f 3579 if (!cfqd->busy_queues)
22e2c507 3580 goto out_cont;
22e2c507
JA
3581
3582 /*
3583 * not expired and it has a request pending, let it dispatch
3584 */
75e50984 3585 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3586 goto out_kick;
76280aff
CZ
3587
3588 /*
3589 * Queue depth flag is reset only when the idle didn't succeed
3590 */
3591 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3592 }
3593expire:
6084cdda 3594 cfq_slice_expired(cfqd, timed_out);
22e2c507 3595out_kick:
23e018a1 3596 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3597out_cont:
3598 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3599}
3600
3b18152c
JA
3601static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3602{
3603 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3604 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3605}
22e2c507 3606
c2dea2d1
VT
3607static void cfq_put_async_queues(struct cfq_data *cfqd)
3608{
3609 int i;
3610
3611 for (i = 0; i < IOPRIO_BE_NR; i++) {
3612 if (cfqd->async_cfqq[0][i])
3613 cfq_put_queue(cfqd->async_cfqq[0][i]);
3614 if (cfqd->async_cfqq[1][i])
3615 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3616 }
2389d1ef
ON
3617
3618 if (cfqd->async_idle_cfqq)
3619 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3620}
3621
bb729bc9
JA
3622static void cfq_cfqd_free(struct rcu_head *head)
3623{
3624 kfree(container_of(head, struct cfq_data, rcu));
3625}
3626
b374d18a 3627static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3628{
22e2c507 3629 struct cfq_data *cfqd = e->elevator_data;
165125e1 3630 struct request_queue *q = cfqd->queue;
22e2c507 3631
3b18152c 3632 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3633
d9ff4187 3634 spin_lock_irq(q->queue_lock);
e2d74ac0 3635
d9ff4187 3636 if (cfqd->active_queue)
6084cdda 3637 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3638
3639 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3640 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3641 struct cfq_io_context,
3642 queue_list);
89850f7e
JA
3643
3644 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3645 }
e2d74ac0 3646
c2dea2d1 3647 cfq_put_async_queues(cfqd);
b1c35769
VG
3648 cfq_release_cfq_groups(cfqd);
3649 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3650
d9ff4187 3651 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3652
3653 cfq_shutdown_timer_wq(cfqd);
3654
b1c35769 3655 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3656 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3657}
3658
165125e1 3659static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3660{
3661 struct cfq_data *cfqd;
718eee05 3662 int i, j;
cdb16e8f 3663 struct cfq_group *cfqg;
615f0259 3664 struct cfq_rb_root *st;
1da177e4 3665
94f6030c 3666 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3667 if (!cfqd)
bc1c1169 3668 return NULL;
1da177e4 3669
1fa8f6d6
VG
3670 /* Init root service tree */
3671 cfqd->grp_service_tree = CFQ_RB_ROOT;
3672
cdb16e8f
VG
3673 /* Init root group */
3674 cfqg = &cfqd->root_group;
615f0259
VG
3675 for_each_cfqg_st(cfqg, i, j, st)
3676 *st = CFQ_RB_ROOT;
1fa8f6d6 3677 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3678
25bc6b07
VG
3679 /* Give preference to root group over other groups */
3680 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3681
25fb5169 3682#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3683 /*
3684 * Take a reference to root group which we never drop. This is just
3685 * to make sure that cfq_put_cfqg() does not try to kfree root group
3686 */
3687 atomic_set(&cfqg->ref, 1);
22084190
VG
3688 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3689 0);
25fb5169 3690#endif
26a2ac00
JA
3691 /*
3692 * Not strictly needed (since RB_ROOT just clears the node and we
3693 * zeroed cfqd on alloc), but better be safe in case someone decides
3694 * to add magic to the rb code
3695 */
3696 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3697 cfqd->prio_trees[i] = RB_ROOT;
3698
6118b70b
JA
3699 /*
3700 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3701 * Grab a permanent reference to it, so that the normal code flow
3702 * will not attempt to free it.
3703 */
3704 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3705 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3706 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3707
d9ff4187 3708 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3709
1da177e4 3710 cfqd->queue = q;
1da177e4 3711
22e2c507
JA
3712 init_timer(&cfqd->idle_slice_timer);
3713 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3714 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3715
23e018a1 3716 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3717
1da177e4 3718 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3719 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3720 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3721 cfqd->cfq_back_max = cfq_back_max;
3722 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3723 cfqd->cfq_slice[0] = cfq_slice_async;
3724 cfqd->cfq_slice[1] = cfq_slice_sync;
3725 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3726 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3727 cfqd->cfq_latency = 1;
ae30c286 3728 cfqd->cfq_group_isolation = 0;
e459dd08 3729 cfqd->hw_tag = -1;
edc71131
CZ
3730 /*
3731 * we optimistically start assuming sync ops weren't delayed in last
3732 * second, in order to have larger depth for async operations.
3733 */
573412b2 3734 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3735 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3736 return cfqd;
1da177e4
LT
3737}
3738
3739static void cfq_slab_kill(void)
3740{
d6de8be7
JA
3741 /*
3742 * Caller already ensured that pending RCU callbacks are completed,
3743 * so we should have no busy allocations at this point.
3744 */
1da177e4
LT
3745 if (cfq_pool)
3746 kmem_cache_destroy(cfq_pool);
3747 if (cfq_ioc_pool)
3748 kmem_cache_destroy(cfq_ioc_pool);
3749}
3750
3751static int __init cfq_slab_setup(void)
3752{
0a31bd5f 3753 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3754 if (!cfq_pool)
3755 goto fail;
3756
34e6bbf2 3757 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3758 if (!cfq_ioc_pool)
3759 goto fail;
3760
3761 return 0;
3762fail:
3763 cfq_slab_kill();
3764 return -ENOMEM;
3765}
3766
1da177e4
LT
3767/*
3768 * sysfs parts below -->
3769 */
1da177e4
LT
3770static ssize_t
3771cfq_var_show(unsigned int var, char *page)
3772{
3773 return sprintf(page, "%d\n", var);
3774}
3775
3776static ssize_t
3777cfq_var_store(unsigned int *var, const char *page, size_t count)
3778{
3779 char *p = (char *) page;
3780
3781 *var = simple_strtoul(p, &p, 10);
3782 return count;
3783}
3784
1da177e4 3785#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3786static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3787{ \
3d1ab40f 3788 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3789 unsigned int __data = __VAR; \
3790 if (__CONV) \
3791 __data = jiffies_to_msecs(__data); \
3792 return cfq_var_show(__data, (page)); \
3793}
3794SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3795SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3796SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3797SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3798SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3799SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3800SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3801SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3802SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3803SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3804SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3805#undef SHOW_FUNCTION
3806
3807#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3808static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3809{ \
3d1ab40f 3810 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3811 unsigned int __data; \
3812 int ret = cfq_var_store(&__data, (page), count); \
3813 if (__data < (MIN)) \
3814 __data = (MIN); \
3815 else if (__data > (MAX)) \
3816 __data = (MAX); \
3817 if (__CONV) \
3818 *(__PTR) = msecs_to_jiffies(__data); \
3819 else \
3820 *(__PTR) = __data; \
3821 return ret; \
3822}
3823STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3824STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3825 UINT_MAX, 1);
3826STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3827 UINT_MAX, 1);
e572ec7e 3828STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3829STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3830 UINT_MAX, 0);
22e2c507
JA
3831STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3832STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3833STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3834STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3835 UINT_MAX, 0);
963b72fc 3836STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3837STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3838#undef STORE_FUNCTION
3839
e572ec7e
AV
3840#define CFQ_ATTR(name) \
3841 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3842
3843static struct elv_fs_entry cfq_attrs[] = {
3844 CFQ_ATTR(quantum),
e572ec7e
AV
3845 CFQ_ATTR(fifo_expire_sync),
3846 CFQ_ATTR(fifo_expire_async),
3847 CFQ_ATTR(back_seek_max),
3848 CFQ_ATTR(back_seek_penalty),
3849 CFQ_ATTR(slice_sync),
3850 CFQ_ATTR(slice_async),
3851 CFQ_ATTR(slice_async_rq),
3852 CFQ_ATTR(slice_idle),
963b72fc 3853 CFQ_ATTR(low_latency),
ae30c286 3854 CFQ_ATTR(group_isolation),
e572ec7e 3855 __ATTR_NULL
1da177e4
LT
3856};
3857
1da177e4
LT
3858static struct elevator_type iosched_cfq = {
3859 .ops = {
3860 .elevator_merge_fn = cfq_merge,
3861 .elevator_merged_fn = cfq_merged_request,
3862 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3863 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3864 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3865 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3866 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3867 .elevator_deactivate_req_fn = cfq_deactivate_request,
3868 .elevator_queue_empty_fn = cfq_queue_empty,
3869 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3870 .elevator_former_req_fn = elv_rb_former_request,
3871 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3872 .elevator_set_req_fn = cfq_set_request,
3873 .elevator_put_req_fn = cfq_put_request,
3874 .elevator_may_queue_fn = cfq_may_queue,
3875 .elevator_init_fn = cfq_init_queue,
3876 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3877 .trim = cfq_free_io_context,
1da177e4 3878 },
3d1ab40f 3879 .elevator_attrs = cfq_attrs,
1da177e4
LT
3880 .elevator_name = "cfq",
3881 .elevator_owner = THIS_MODULE,
3882};
3883
3e252066
VG
3884#ifdef CONFIG_CFQ_GROUP_IOSCHED
3885static struct blkio_policy_type blkio_policy_cfq = {
3886 .ops = {
3887 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3888 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3889 },
3890};
3891#else
3892static struct blkio_policy_type blkio_policy_cfq;
3893#endif
3894
1da177e4
LT
3895static int __init cfq_init(void)
3896{
22e2c507
JA
3897 /*
3898 * could be 0 on HZ < 1000 setups
3899 */
3900 if (!cfq_slice_async)
3901 cfq_slice_async = 1;
3902 if (!cfq_slice_idle)
3903 cfq_slice_idle = 1;
3904
1da177e4
LT
3905 if (cfq_slab_setup())
3906 return -ENOMEM;
3907
2fdd82bd 3908 elv_register(&iosched_cfq);
3e252066 3909 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3910
2fdd82bd 3911 return 0;
1da177e4
LT
3912}
3913
3914static void __exit cfq_exit(void)
3915{
6e9a4738 3916 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3917 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3918 elv_unregister(&iosched_cfq);
334e94de 3919 ioc_gone = &all_gone;
fba82272
OH
3920 /* ioc_gone's update must be visible before reading ioc_count */
3921 smp_wmb();
d6de8be7
JA
3922
3923 /*
3924 * this also protects us from entering cfq_slab_kill() with
3925 * pending RCU callbacks
3926 */
245b2e70 3927 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3928 wait_for_completion(&all_gone);
83521d3e 3929 cfq_slab_kill();
1da177e4
LT
3930}
3931
3932module_init(cfq_init);
3933module_exit(cfq_exit);
3934
3935MODULE_AUTHOR("Jens Axboe");
3936MODULE_LICENSE("GPL");
3937MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");