]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/cfq-iosched.c
fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away
[mirror_ubuntu-zesty-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98 56#define RQ_CIC(rq) \
c186794d
MS
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
30d7b944 99 int ref;
6118b70b
JA
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
c4e7893e
VG
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
6118b70b
JA
151};
152
c0324a02 153/*
718eee05 154 * First index in the service_trees.
c0324a02
CZ
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
c0324a02 158 BE_WORKLOAD = 0,
615f0259
VG
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
b4627321 161 CFQ_PRIO_NR,
c0324a02
CZ
162};
163
718eee05
CZ
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171};
172
cdb16e8f
VG
173/* This is per cgroup per device grouping structure */
174struct cfq_group {
1fa8f6d6
VG
175 /* group service_tree member */
176 struct rb_node rb_node;
177
178 /* group service_tree key */
179 u64 vdisktime;
25bc6b07 180 unsigned int weight;
1fa8f6d6
VG
181
182 /* number of cfqq currently on this group */
183 int nr_cfqq;
184
cdb16e8f 185 /*
b4627321
VG
186 * Per group busy queus average. Useful for workload slice calc. We
187 * create the array for each prio class but at run time it is used
188 * only for RT and BE class and slot for IDLE class remains unused.
189 * This is primarily done to avoid confusion and a gcc warning.
190 */
191 unsigned int busy_queues_avg[CFQ_PRIO_NR];
192 /*
193 * rr lists of queues with requests. We maintain service trees for
194 * RT and BE classes. These trees are subdivided in subclasses
195 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
196 * class there is no subclassification and all the cfq queues go on
197 * a single tree service_tree_idle.
cdb16e8f
VG
198 * Counts are embedded in the cfq_rb_root
199 */
200 struct cfq_rb_root service_trees[2][3];
201 struct cfq_rb_root service_tree_idle;
dae739eb
VG
202
203 unsigned long saved_workload_slice;
204 enum wl_type_t saved_workload;
205 enum wl_prio_t saved_serving_prio;
25fb5169
VG
206 struct blkio_group blkg;
207#ifdef CONFIG_CFQ_GROUP_IOSCHED
208 struct hlist_node cfqd_node;
329a6781 209 int ref;
25fb5169 210#endif
80bdf0c7
VG
211 /* number of requests that are on the dispatch list or inside driver */
212 int dispatched;
cdb16e8f 213};
718eee05 214
22e2c507
JA
215/*
216 * Per block device queue structure
217 */
1da177e4 218struct cfq_data {
165125e1 219 struct request_queue *queue;
1fa8f6d6
VG
220 /* Root service tree for cfq_groups */
221 struct cfq_rb_root grp_service_tree;
cdb16e8f 222 struct cfq_group root_group;
22e2c507 223
c0324a02
CZ
224 /*
225 * The priority currently being served
22e2c507 226 */
c0324a02 227 enum wl_prio_t serving_prio;
718eee05
CZ
228 enum wl_type_t serving_type;
229 unsigned long workload_expires;
cdb16e8f 230 struct cfq_group *serving_group;
a36e71f9
JA
231
232 /*
233 * Each priority tree is sorted by next_request position. These
234 * trees are used when determining if two or more queues are
235 * interleaving requests (see cfq_close_cooperator).
236 */
237 struct rb_root prio_trees[CFQ_PRIO_LISTS];
238
22e2c507 239 unsigned int busy_queues;
ef8a41df 240 unsigned int busy_sync_queues;
22e2c507 241
53c583d2
CZ
242 int rq_in_driver;
243 int rq_in_flight[2];
45333d5a
AC
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
25776e35 249 int hw_tag;
e459dd08
CZ
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
1da177e4 258
22e2c507
JA
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
23e018a1 263 struct work_struct unplug_work;
1da177e4 264
22e2c507
JA
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
22e2c507 267
c2dea2d1
VT
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
15c31be4 273
6d048f53 274 sector_t last_position;
1da177e4 275
1da177e4
LT
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
22e2c507 280 unsigned int cfq_fifo_expire[2];
1da177e4
LT
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
22e2c507
JA
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
80bdf0c7 286 unsigned int cfq_group_idle;
963b72fc 287 unsigned int cfq_latency;
d9ff4187 288
80b15c73 289 unsigned int cic_index;
d9ff4187 290 struct list_head cic_list;
1da177e4 291
6118b70b
JA
292 /*
293 * Fallback dummy cfqq for extreme OOM conditions
294 */
295 struct cfq_queue oom_cfqq;
365722bb 296
573412b2 297 unsigned long last_delayed_sync;
25fb5169
VG
298
299 /* List of cfq groups being managed on this device*/
300 struct hlist_head cfqg_list;
bb729bc9 301 struct rcu_head rcu;
1da177e4
LT
302};
303
25fb5169
VG
304static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
305
cdb16e8f
VG
306static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
307 enum wl_prio_t prio,
65b32a57 308 enum wl_type_t type)
c0324a02 309{
1fa8f6d6
VG
310 if (!cfqg)
311 return NULL;
312
c0324a02 313 if (prio == IDLE_WORKLOAD)
cdb16e8f 314 return &cfqg->service_tree_idle;
c0324a02 315
cdb16e8f 316 return &cfqg->service_trees[prio][type];
c0324a02
CZ
317}
318
3b18152c 319enum cfqq_state_flags {
b0b8d749
JA
320 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
321 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 322 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 323 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
324 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
325 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
326 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 327 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 328 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 329 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 330 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 331 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 332 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
333};
334
335#define CFQ_CFQQ_FNS(name) \
336static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
337{ \
fe094d98 338 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
339} \
340static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
341{ \
fe094d98 342 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
343} \
344static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
345{ \
fe094d98 346 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
347}
348
349CFQ_CFQQ_FNS(on_rr);
350CFQ_CFQQ_FNS(wait_request);
b029195d 351CFQ_CFQQ_FNS(must_dispatch);
3b18152c 352CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
353CFQ_CFQQ_FNS(fifo_expire);
354CFQ_CFQQ_FNS(idle_window);
355CFQ_CFQQ_FNS(prio_changed);
44f7c160 356CFQ_CFQQ_FNS(slice_new);
91fac317 357CFQ_CFQQ_FNS(sync);
a36e71f9 358CFQ_CFQQ_FNS(coop);
ae54abed 359CFQ_CFQQ_FNS(split_coop);
76280aff 360CFQ_CFQQ_FNS(deep);
f75edf2d 361CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
362#undef CFQ_CFQQ_FNS
363
afc24d49 364#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
365#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
367 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
368 blkg_path(&(cfqq)->cfqg->blkg), ##args);
369
370#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
371 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
372 blkg_path(&(cfqg)->blkg), ##args); \
373
374#else
7b679138
JA
375#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
376 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
377#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
378#endif
7b679138
JA
379#define cfq_log(cfqd, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
381
615f0259
VG
382/* Traverses through cfq group service trees */
383#define for_each_cfqg_st(cfqg, i, j, st) \
384 for (i = 0; i <= IDLE_WORKLOAD; i++) \
385 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
386 : &cfqg->service_tree_idle; \
387 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
388 (i == IDLE_WORKLOAD && j == 0); \
389 j++, st = i < IDLE_WORKLOAD ? \
390 &cfqg->service_trees[i][j]: NULL) \
391
392
02b35081
VG
393static inline bool iops_mode(struct cfq_data *cfqd)
394{
395 /*
396 * If we are not idling on queues and it is a NCQ drive, parallel
397 * execution of requests is on and measuring time is not possible
398 * in most of the cases until and unless we drive shallower queue
399 * depths and that becomes a performance bottleneck. In such cases
400 * switch to start providing fairness in terms of number of IOs.
401 */
402 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
403 return true;
404 else
405 return false;
406}
407
c0324a02
CZ
408static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
409{
410 if (cfq_class_idle(cfqq))
411 return IDLE_WORKLOAD;
412 if (cfq_class_rt(cfqq))
413 return RT_WORKLOAD;
414 return BE_WORKLOAD;
415}
416
718eee05
CZ
417
418static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
419{
420 if (!cfq_cfqq_sync(cfqq))
421 return ASYNC_WORKLOAD;
422 if (!cfq_cfqq_idle_window(cfqq))
423 return SYNC_NOIDLE_WORKLOAD;
424 return SYNC_WORKLOAD;
425}
426
58ff82f3
VG
427static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
428 struct cfq_data *cfqd,
429 struct cfq_group *cfqg)
c0324a02
CZ
430{
431 if (wl == IDLE_WORKLOAD)
cdb16e8f 432 return cfqg->service_tree_idle.count;
c0324a02 433
cdb16e8f
VG
434 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
435 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
436 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
437}
438
f26bd1f0
VG
439static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
440 struct cfq_group *cfqg)
441{
442 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
443 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
444}
445
165125e1 446static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 447static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 448 struct io_context *, gfp_t);
4ac845a2 449static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
450 struct io_context *);
451
452static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 453 bool is_sync)
91fac317 454{
a6151c3a 455 return cic->cfqq[is_sync];
91fac317
VT
456}
457
458static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 459 struct cfq_queue *cfqq, bool is_sync)
91fac317 460{
a6151c3a 461 cic->cfqq[is_sync] = cfqq;
91fac317
VT
462}
463
bca4b914 464#define CIC_DEAD_KEY 1ul
80b15c73 465#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
466
467static inline void *cfqd_dead_key(struct cfq_data *cfqd)
468{
80b15c73 469 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
470}
471
472static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
473{
474 struct cfq_data *cfqd = cic->key;
475
476 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
477 return NULL;
478
479 return cfqd;
480}
481
91fac317
VT
482/*
483 * We regard a request as SYNC, if it's either a read or has the SYNC bit
484 * set (in which case it could also be direct WRITE).
485 */
a6151c3a 486static inline bool cfq_bio_sync(struct bio *bio)
91fac317 487{
7b6d91da 488 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 489}
1da177e4 490
99f95e52
AM
491/*
492 * scheduler run of queue, if there are requests pending and no one in the
493 * driver that will restart queueing
494 */
23e018a1 495static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 496{
7b679138
JA
497 if (cfqd->busy_queues) {
498 cfq_log(cfqd, "schedule dispatch");
23e018a1 499 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 500 }
99f95e52
AM
501}
502
44f7c160
JA
503/*
504 * Scale schedule slice based on io priority. Use the sync time slice only
505 * if a queue is marked sync and has sync io queued. A sync queue with async
506 * io only, should not get full sync slice length.
507 */
a6151c3a 508static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 509 unsigned short prio)
44f7c160 510{
d9e7620e 511 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 512
d9e7620e
JA
513 WARN_ON(prio >= IOPRIO_BE_NR);
514
515 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
516}
44f7c160 517
d9e7620e
JA
518static inline int
519cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
520{
521 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
522}
523
25bc6b07
VG
524static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
525{
526 u64 d = delta << CFQ_SERVICE_SHIFT;
527
528 d = d * BLKIO_WEIGHT_DEFAULT;
529 do_div(d, cfqg->weight);
530 return d;
531}
532
533static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
534{
535 s64 delta = (s64)(vdisktime - min_vdisktime);
536 if (delta > 0)
537 min_vdisktime = vdisktime;
538
539 return min_vdisktime;
540}
541
542static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
543{
544 s64 delta = (s64)(vdisktime - min_vdisktime);
545 if (delta < 0)
546 min_vdisktime = vdisktime;
547
548 return min_vdisktime;
549}
550
551static void update_min_vdisktime(struct cfq_rb_root *st)
552{
25bc6b07
VG
553 struct cfq_group *cfqg;
554
25bc6b07
VG
555 if (st->left) {
556 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
557 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
558 cfqg->vdisktime);
25bc6b07 559 }
25bc6b07
VG
560}
561
5db5d642
CZ
562/*
563 * get averaged number of queues of RT/BE priority.
564 * average is updated, with a formula that gives more weight to higher numbers,
565 * to quickly follows sudden increases and decrease slowly
566 */
567
58ff82f3
VG
568static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
569 struct cfq_group *cfqg, bool rt)
5869619c 570{
5db5d642
CZ
571 unsigned min_q, max_q;
572 unsigned mult = cfq_hist_divisor - 1;
573 unsigned round = cfq_hist_divisor / 2;
58ff82f3 574 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 575
58ff82f3
VG
576 min_q = min(cfqg->busy_queues_avg[rt], busy);
577 max_q = max(cfqg->busy_queues_avg[rt], busy);
578 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 579 cfq_hist_divisor;
58ff82f3
VG
580 return cfqg->busy_queues_avg[rt];
581}
582
583static inline unsigned
584cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
585{
586 struct cfq_rb_root *st = &cfqd->grp_service_tree;
587
588 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
589}
590
c553f8e3 591static inline unsigned
ba5bd520 592cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 593{
5db5d642
CZ
594 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
595 if (cfqd->cfq_latency) {
58ff82f3
VG
596 /*
597 * interested queues (we consider only the ones with the same
598 * priority class in the cfq group)
599 */
600 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
601 cfq_class_rt(cfqq));
5db5d642
CZ
602 unsigned sync_slice = cfqd->cfq_slice[1];
603 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
604 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
605
606 if (expect_latency > group_slice) {
5db5d642
CZ
607 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
608 /* scale low_slice according to IO priority
609 * and sync vs async */
610 unsigned low_slice =
611 min(slice, base_low_slice * slice / sync_slice);
612 /* the adapted slice value is scaled to fit all iqs
613 * into the target latency */
58ff82f3 614 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
615 low_slice);
616 }
617 }
c553f8e3
SL
618 return slice;
619}
620
621static inline void
622cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
623{
ba5bd520 624 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 625
dae739eb 626 cfqq->slice_start = jiffies;
5db5d642 627 cfqq->slice_end = jiffies + slice;
f75edf2d 628 cfqq->allocated_slice = slice;
7b679138 629 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
630}
631
632/*
633 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634 * isn't valid until the first request from the dispatch is activated
635 * and the slice time set.
636 */
a6151c3a 637static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
638{
639 if (cfq_cfqq_slice_new(cfqq))
c1e44756 640 return false;
44f7c160 641 if (time_before(jiffies, cfqq->slice_end))
c1e44756 642 return false;
44f7c160 643
c1e44756 644 return true;
44f7c160
JA
645}
646
1da177e4 647/*
5e705374 648 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 649 * We choose the request that is closest to the head right now. Distance
e8a99053 650 * behind the head is penalized and only allowed to a certain extent.
1da177e4 651 */
5e705374 652static struct request *
cf7c25cf 653cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 654{
cf7c25cf 655 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 656 unsigned long back_max;
e8a99053
AM
657#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
658#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
659 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 660
5e705374
JA
661 if (rq1 == NULL || rq1 == rq2)
662 return rq2;
663 if (rq2 == NULL)
664 return rq1;
9c2c38a1 665
5e705374
JA
666 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
667 return rq1;
668 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
669 return rq2;
7b6d91da 670 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 671 return rq1;
7b6d91da
CH
672 else if ((rq2->cmd_flags & REQ_META) &&
673 !(rq1->cmd_flags & REQ_META))
374f84ac 674 return rq2;
1da177e4 675
83096ebf
TH
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
1da177e4 678
1da177e4
LT
679 /*
680 * by definition, 1KiB is 2 sectors
681 */
682 back_max = cfqd->cfq_back_max * 2;
683
684 /*
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
688 */
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
e8a99053 694 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
695
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
e8a99053 701 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
702
703 /* Found required data */
e8a99053
AM
704
705 /*
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
708 */
709 switch (wrap) {
5e705374 710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 711 if (d1 < d2)
5e705374 712 return rq1;
e8a99053 713 else if (d2 < d1)
5e705374 714 return rq2;
e8a99053
AM
715 else {
716 if (s1 >= s2)
5e705374 717 return rq1;
e8a99053 718 else
5e705374 719 return rq2;
e8a99053 720 }
1da177e4 721
e8a99053 722 case CFQ_RQ2_WRAP:
5e705374 723 return rq1;
e8a99053 724 case CFQ_RQ1_WRAP:
5e705374
JA
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
727 default:
728 /*
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
733 */
734 if (s1 <= s2)
5e705374 735 return rq1;
1da177e4 736 else
5e705374 737 return rq2;
1da177e4
LT
738 }
739}
740
498d3aa2
JA
741/*
742 * The below is leftmost cache rbtree addon
743 */
0871714e 744static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 745{
615f0259
VG
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
749
cc09e299
JA
750 if (!root->left)
751 root->left = rb_first(&root->rb);
752
0871714e
JA
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
755
756 return NULL;
cc09e299
JA
757}
758
1fa8f6d6
VG
759static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760{
761 if (!root->left)
762 root->left = rb_first(&root->rb);
763
764 if (root->left)
765 return rb_entry_cfqg(root->left);
766
767 return NULL;
768}
769
a36e71f9
JA
770static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771{
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
774}
775
cc09e299
JA
776static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777{
778 if (root->left == n)
779 root->left = NULL;
a36e71f9 780 rb_erase_init(n, &root->rb);
aa6f6a3d 781 --root->count;
cc09e299
JA
782}
783
1da177e4
LT
784/*
785 * would be nice to take fifo expire time into account as well
786 */
5e705374
JA
787static struct request *
788cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
1da177e4 790{
21183b07
JA
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 793 struct request *next = NULL, *prev = NULL;
1da177e4 794
21183b07 795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
796
797 if (rbprev)
5e705374 798 prev = rb_entry_rq(rbprev);
1da177e4 799
21183b07 800 if (rbnext)
5e705374 801 next = rb_entry_rq(rbnext);
21183b07
JA
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
5e705374 805 next = rb_entry_rq(rbnext);
21183b07 806 }
1da177e4 807
cf7c25cf 808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
809}
810
d9e7620e
JA
811static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
1da177e4 813{
d9e7620e
JA
814 /*
815 * just an approximation, should be ok.
816 */
cdb16e8f 817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
819}
820
1fa8f6d6
VG
821static inline s64
822cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823{
824 return cfqg->vdisktime - st->min_vdisktime;
825}
826
827static void
828__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829{
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
835
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
839
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
845 }
846 }
847
848 if (left)
849 st->left = &cfqg->rb_node;
850
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
853}
854
855static void
856cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
857{
858 struct cfq_rb_root *st = &cfqd->grp_service_tree;
859 struct cfq_group *__cfqg;
860 struct rb_node *n;
861
862 cfqg->nr_cfqq++;
760701bf 863 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
864 return;
865
866 /*
867 * Currently put the group at the end. Later implement something
868 * so that groups get lesser vtime based on their weights, so that
869 * if group does not loose all if it was not continously backlogged.
870 */
871 n = rb_last(&st->rb);
872 if (n) {
873 __cfqg = rb_entry_cfqg(n);
874 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
875 } else
876 cfqg->vdisktime = st->min_vdisktime;
877
878 __cfq_group_service_tree_add(st, cfqg);
58ff82f3 879 st->total_weight += cfqg->weight;
1fa8f6d6
VG
880}
881
882static void
883cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
884{
885 struct cfq_rb_root *st = &cfqd->grp_service_tree;
886
887 BUG_ON(cfqg->nr_cfqq < 1);
888 cfqg->nr_cfqq--;
25bc6b07 889
1fa8f6d6
VG
890 /* If there are other cfq queues under this group, don't delete it */
891 if (cfqg->nr_cfqq)
892 return;
893
2868ef7b 894 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
58ff82f3 895 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
896 if (!RB_EMPTY_NODE(&cfqg->rb_node))
897 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 898 cfqg->saved_workload_slice = 0;
e98ef89b 899 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
900}
901
167400d3
JT
902static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
903 unsigned int *unaccounted_time)
dae739eb 904{
f75edf2d 905 unsigned int slice_used;
dae739eb
VG
906
907 /*
908 * Queue got expired before even a single request completed or
909 * got expired immediately after first request completion.
910 */
911 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
912 /*
913 * Also charge the seek time incurred to the group, otherwise
914 * if there are mutiple queues in the group, each can dispatch
915 * a single request on seeky media and cause lots of seek time
916 * and group will never know it.
917 */
918 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
919 1);
920 } else {
921 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
922 if (slice_used > cfqq->allocated_slice) {
923 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 924 slice_used = cfqq->allocated_slice;
167400d3
JT
925 }
926 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
927 *unaccounted_time += cfqq->slice_start -
928 cfqq->dispatch_start;
dae739eb
VG
929 }
930
dae739eb
VG
931 return slice_used;
932}
933
934static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 935 struct cfq_queue *cfqq)
dae739eb
VG
936{
937 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 938 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
939 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
940 - cfqg->service_tree_idle.count;
941
942 BUG_ON(nr_sync < 0);
167400d3 943 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 944
02b35081
VG
945 if (iops_mode(cfqd))
946 charge = cfqq->slice_dispatch;
947 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
948 charge = cfqq->allocated_slice;
dae739eb
VG
949
950 /* Can't update vdisktime while group is on service tree */
951 cfq_rb_erase(&cfqg->rb_node, st);
02b35081 952 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
dae739eb
VG
953 __cfq_group_service_tree_add(st, cfqg);
954
955 /* This group is being expired. Save the context */
956 if (time_after(cfqd->workload_expires, jiffies)) {
957 cfqg->saved_workload_slice = cfqd->workload_expires
958 - jiffies;
959 cfqg->saved_workload = cfqd->serving_type;
960 cfqg->saved_serving_prio = cfqd->serving_prio;
961 } else
962 cfqg->saved_workload_slice = 0;
2868ef7b
VG
963
964 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
965 st->min_vdisktime);
c4e7893e
VG
966 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
967 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
968 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
969 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
970 unaccounted_sl);
e98ef89b 971 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
972}
973
25fb5169
VG
974#ifdef CONFIG_CFQ_GROUP_IOSCHED
975static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
976{
977 if (blkg)
978 return container_of(blkg, struct cfq_group, blkg);
979 return NULL;
980}
981
fe071437
VG
982void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
983 unsigned int weight)
f8d461d6
VG
984{
985 cfqg_of_blkg(blkg)->weight = weight;
986}
987
25fb5169
VG
988static struct cfq_group *
989cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
990{
991 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
992 struct cfq_group *cfqg = NULL;
993 void *key = cfqd;
994 int i, j;
995 struct cfq_rb_root *st;
22084190
VG
996 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
997 unsigned int major, minor;
25fb5169 998
25fb5169 999 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
1000 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1001 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1002 cfqg->blkg.dev = MKDEV(major, minor);
1003 goto done;
1004 }
25fb5169
VG
1005 if (cfqg || !create)
1006 goto done;
1007
1008 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1009 if (!cfqg)
1010 goto done;
1011
25fb5169
VG
1012 for_each_cfqg_st(cfqg, i, j, st)
1013 *st = CFQ_RB_ROOT;
1014 RB_CLEAR_NODE(&cfqg->rb_node);
1015
b1c35769
VG
1016 /*
1017 * Take the initial reference that will be released on destroy
1018 * This can be thought of a joint reference by cgroup and
1019 * elevator which will be dropped by either elevator exit
1020 * or cgroup deletion path depending on who is exiting first.
1021 */
329a6781 1022 cfqg->ref = 1;
b1c35769 1023
180be2a0
VG
1024 /*
1025 * Add group onto cgroup list. It might happen that bdi->dev is
b595076a 1026 * not initialized yet. Initialize this new group without major
180be2a0
VG
1027 * and minor info and this info will be filled in once a new thread
1028 * comes for IO. See code above.
1029 */
1030 if (bdi->dev) {
1031 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1032 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1033 MKDEV(major, minor));
180be2a0
VG
1034 } else
1035 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1036 0);
1037
34d0f179 1038 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1039
1040 /* Add group on cfqd list */
1041 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1042
1043done:
25fb5169
VG
1044 return cfqg;
1045}
1046
1047/*
1048 * Search for the cfq group current task belongs to. If create = 1, then also
1049 * create the cfq group if it does not exist. request_queue lock must be held.
1050 */
1051static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1052{
1053 struct cgroup *cgroup;
1054 struct cfq_group *cfqg = NULL;
1055
1056 rcu_read_lock();
1057 cgroup = task_cgroup(current, blkio_subsys_id);
1058 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1059 if (!cfqg && create)
1060 cfqg = &cfqd->root_group;
1061 rcu_read_unlock();
1062 return cfqg;
1063}
1064
7f1dc8a2
VG
1065static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1066{
329a6781 1067 cfqg->ref++;
7f1dc8a2
VG
1068 return cfqg;
1069}
1070
25fb5169
VG
1071static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1072{
1073 /* Currently, all async queues are mapped to root group */
1074 if (!cfq_cfqq_sync(cfqq))
1075 cfqg = &cfqq->cfqd->root_group;
1076
1077 cfqq->cfqg = cfqg;
b1c35769 1078 /* cfqq reference on cfqg */
329a6781 1079 cfqq->cfqg->ref++;
b1c35769
VG
1080}
1081
1082static void cfq_put_cfqg(struct cfq_group *cfqg)
1083{
1084 struct cfq_rb_root *st;
1085 int i, j;
1086
329a6781
SL
1087 BUG_ON(cfqg->ref <= 0);
1088 cfqg->ref--;
1089 if (cfqg->ref)
b1c35769
VG
1090 return;
1091 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1092 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
b1c35769
VG
1093 kfree(cfqg);
1094}
1095
1096static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1097{
1098 /* Something wrong if we are trying to remove same group twice */
1099 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1100
1101 hlist_del_init(&cfqg->cfqd_node);
1102
1103 /*
1104 * Put the reference taken at the time of creation so that when all
1105 * queues are gone, group can be destroyed.
1106 */
1107 cfq_put_cfqg(cfqg);
1108}
1109
1110static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1111{
1112 struct hlist_node *pos, *n;
1113 struct cfq_group *cfqg;
1114
1115 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1116 /*
1117 * If cgroup removal path got to blk_group first and removed
1118 * it from cgroup list, then it will take care of destroying
1119 * cfqg also.
1120 */
e98ef89b 1121 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1122 cfq_destroy_cfqg(cfqd, cfqg);
1123 }
25fb5169 1124}
b1c35769
VG
1125
1126/*
1127 * Blk cgroup controller notification saying that blkio_group object is being
1128 * delinked as associated cgroup object is going away. That also means that
1129 * no new IO will come in this group. So get rid of this group as soon as
1130 * any pending IO in the group is finished.
1131 *
1132 * This function is called under rcu_read_lock(). key is the rcu protected
1133 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1134 * read lock.
1135 *
1136 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1137 * it should not be NULL as even if elevator was exiting, cgroup deltion
1138 * path got to it first.
1139 */
1140void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1141{
1142 unsigned long flags;
1143 struct cfq_data *cfqd = key;
1144
1145 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1146 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1147 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1148}
1149
25fb5169
VG
1150#else /* GROUP_IOSCHED */
1151static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1152{
1153 return &cfqd->root_group;
1154}
7f1dc8a2
VG
1155
1156static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1157{
50eaeb32 1158 return cfqg;
7f1dc8a2
VG
1159}
1160
25fb5169
VG
1161static inline void
1162cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1163 cfqq->cfqg = cfqg;
1164}
1165
b1c35769
VG
1166static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1167static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1168
25fb5169
VG
1169#endif /* GROUP_IOSCHED */
1170
498d3aa2 1171/*
c0324a02 1172 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1173 * requests waiting to be processed. It is sorted in the order that
1174 * we will service the queues.
1175 */
a36e71f9 1176static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1177 bool add_front)
d9e7620e 1178{
0871714e
JA
1179 struct rb_node **p, *parent;
1180 struct cfq_queue *__cfqq;
d9e7620e 1181 unsigned long rb_key;
c0324a02 1182 struct cfq_rb_root *service_tree;
498d3aa2 1183 int left;
dae739eb 1184 int new_cfqq = 1;
ae30c286
VG
1185 int group_changed = 0;
1186
cdb16e8f 1187 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1188 cfqq_type(cfqq));
0871714e
JA
1189 if (cfq_class_idle(cfqq)) {
1190 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1191 parent = rb_last(&service_tree->rb);
0871714e
JA
1192 if (parent && parent != &cfqq->rb_node) {
1193 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1194 rb_key += __cfqq->rb_key;
1195 } else
1196 rb_key += jiffies;
1197 } else if (!add_front) {
b9c8946b
JA
1198 /*
1199 * Get our rb key offset. Subtract any residual slice
1200 * value carried from last service. A negative resid
1201 * count indicates slice overrun, and this should position
1202 * the next service time further away in the tree.
1203 */
edd75ffd 1204 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1205 rb_key -= cfqq->slice_resid;
edd75ffd 1206 cfqq->slice_resid = 0;
48e025e6
CZ
1207 } else {
1208 rb_key = -HZ;
aa6f6a3d 1209 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1210 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1211 }
1da177e4 1212
d9e7620e 1213 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1214 new_cfqq = 0;
99f9628a 1215 /*
d9e7620e 1216 * same position, nothing more to do
99f9628a 1217 */
c0324a02
CZ
1218 if (rb_key == cfqq->rb_key &&
1219 cfqq->service_tree == service_tree)
d9e7620e 1220 return;
1da177e4 1221
aa6f6a3d
CZ
1222 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1223 cfqq->service_tree = NULL;
1da177e4 1224 }
d9e7620e 1225
498d3aa2 1226 left = 1;
0871714e 1227 parent = NULL;
aa6f6a3d
CZ
1228 cfqq->service_tree = service_tree;
1229 p = &service_tree->rb.rb_node;
d9e7620e 1230 while (*p) {
67060e37 1231 struct rb_node **n;
cc09e299 1232
d9e7620e
JA
1233 parent = *p;
1234 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1235
0c534e0a 1236 /*
c0324a02 1237 * sort by key, that represents service time.
0c534e0a 1238 */
c0324a02 1239 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1240 n = &(*p)->rb_left;
c0324a02 1241 else {
67060e37 1242 n = &(*p)->rb_right;
cc09e299 1243 left = 0;
c0324a02 1244 }
67060e37
JA
1245
1246 p = n;
d9e7620e
JA
1247 }
1248
cc09e299 1249 if (left)
aa6f6a3d 1250 service_tree->left = &cfqq->rb_node;
cc09e299 1251
d9e7620e
JA
1252 cfqq->rb_key = rb_key;
1253 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1254 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1255 service_tree->count++;
ae30c286 1256 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1257 return;
1fa8f6d6 1258 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1259}
1260
a36e71f9 1261static struct cfq_queue *
f2d1f0ae
JA
1262cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1263 sector_t sector, struct rb_node **ret_parent,
1264 struct rb_node ***rb_link)
a36e71f9 1265{
a36e71f9
JA
1266 struct rb_node **p, *parent;
1267 struct cfq_queue *cfqq = NULL;
1268
1269 parent = NULL;
1270 p = &root->rb_node;
1271 while (*p) {
1272 struct rb_node **n;
1273
1274 parent = *p;
1275 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1276
1277 /*
1278 * Sort strictly based on sector. Smallest to the left,
1279 * largest to the right.
1280 */
2e46e8b2 1281 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1282 n = &(*p)->rb_right;
2e46e8b2 1283 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1284 n = &(*p)->rb_left;
1285 else
1286 break;
1287 p = n;
3ac6c9f8 1288 cfqq = NULL;
a36e71f9
JA
1289 }
1290
1291 *ret_parent = parent;
1292 if (rb_link)
1293 *rb_link = p;
3ac6c9f8 1294 return cfqq;
a36e71f9
JA
1295}
1296
1297static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1298{
a36e71f9
JA
1299 struct rb_node **p, *parent;
1300 struct cfq_queue *__cfqq;
1301
f2d1f0ae
JA
1302 if (cfqq->p_root) {
1303 rb_erase(&cfqq->p_node, cfqq->p_root);
1304 cfqq->p_root = NULL;
1305 }
a36e71f9
JA
1306
1307 if (cfq_class_idle(cfqq))
1308 return;
1309 if (!cfqq->next_rq)
1310 return;
1311
f2d1f0ae 1312 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1313 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1314 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1315 if (!__cfqq) {
1316 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1317 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1318 } else
1319 cfqq->p_root = NULL;
a36e71f9
JA
1320}
1321
498d3aa2
JA
1322/*
1323 * Update cfqq's position in the service tree.
1324 */
edd75ffd 1325static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1326{
6d048f53
JA
1327 /*
1328 * Resorting requires the cfqq to be on the RR list already.
1329 */
a36e71f9 1330 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1331 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1332 cfq_prio_tree_add(cfqd, cfqq);
1333 }
6d048f53
JA
1334}
1335
1da177e4
LT
1336/*
1337 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1338 * the pending list according to last request service
1da177e4 1339 */
febffd61 1340static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1341{
7b679138 1342 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1343 BUG_ON(cfq_cfqq_on_rr(cfqq));
1344 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1345 cfqd->busy_queues++;
ef8a41df
SL
1346 if (cfq_cfqq_sync(cfqq))
1347 cfqd->busy_sync_queues++;
1da177e4 1348
edd75ffd 1349 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1350}
1351
498d3aa2
JA
1352/*
1353 * Called when the cfqq no longer has requests pending, remove it from
1354 * the service tree.
1355 */
febffd61 1356static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1357{
7b679138 1358 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1359 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1360 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1361
aa6f6a3d
CZ
1362 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1363 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1364 cfqq->service_tree = NULL;
1365 }
f2d1f0ae
JA
1366 if (cfqq->p_root) {
1367 rb_erase(&cfqq->p_node, cfqq->p_root);
1368 cfqq->p_root = NULL;
1369 }
d9e7620e 1370
1fa8f6d6 1371 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1372 BUG_ON(!cfqd->busy_queues);
1373 cfqd->busy_queues--;
ef8a41df
SL
1374 if (cfq_cfqq_sync(cfqq))
1375 cfqd->busy_sync_queues--;
1da177e4
LT
1376}
1377
1378/*
1379 * rb tree support functions
1380 */
febffd61 1381static void cfq_del_rq_rb(struct request *rq)
1da177e4 1382{
5e705374 1383 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1384 const int sync = rq_is_sync(rq);
1da177e4 1385
b4878f24
JA
1386 BUG_ON(!cfqq->queued[sync]);
1387 cfqq->queued[sync]--;
1da177e4 1388
5e705374 1389 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1390
f04a6424
VG
1391 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1392 /*
1393 * Queue will be deleted from service tree when we actually
1394 * expire it later. Right now just remove it from prio tree
1395 * as it is empty.
1396 */
1397 if (cfqq->p_root) {
1398 rb_erase(&cfqq->p_node, cfqq->p_root);
1399 cfqq->p_root = NULL;
1400 }
1401 }
1da177e4
LT
1402}
1403
5e705374 1404static void cfq_add_rq_rb(struct request *rq)
1da177e4 1405{
5e705374 1406 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1407 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1408 struct request *__alias, *prev;
1da177e4 1409
5380a101 1410 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1411
1412 /*
1413 * looks a little odd, but the first insert might return an alias.
1414 * if that happens, put the alias on the dispatch list
1415 */
21183b07 1416 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1417 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1418
1419 if (!cfq_cfqq_on_rr(cfqq))
1420 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1421
1422 /*
1423 * check if this request is a better next-serve candidate
1424 */
a36e71f9 1425 prev = cfqq->next_rq;
cf7c25cf 1426 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1427
1428 /*
1429 * adjust priority tree position, if ->next_rq changes
1430 */
1431 if (prev != cfqq->next_rq)
1432 cfq_prio_tree_add(cfqd, cfqq);
1433
5044eed4 1434 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1435}
1436
febffd61 1437static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1438{
5380a101
JA
1439 elv_rb_del(&cfqq->sort_list, rq);
1440 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1441 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1442 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1443 cfq_add_rq_rb(rq);
e98ef89b 1444 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1445 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1446 rq_is_sync(rq));
1da177e4
LT
1447}
1448
206dc69b
JA
1449static struct request *
1450cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1451{
206dc69b 1452 struct task_struct *tsk = current;
91fac317 1453 struct cfq_io_context *cic;
206dc69b 1454 struct cfq_queue *cfqq;
1da177e4 1455
4ac845a2 1456 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1457 if (!cic)
1458 return NULL;
1459
1460 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1461 if (cfqq) {
1462 sector_t sector = bio->bi_sector + bio_sectors(bio);
1463
21183b07 1464 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1465 }
1da177e4 1466
1da177e4
LT
1467 return NULL;
1468}
1469
165125e1 1470static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1471{
22e2c507 1472 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1473
53c583d2 1474 cfqd->rq_in_driver++;
7b679138 1475 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1476 cfqd->rq_in_driver);
25776e35 1477
5b93629b 1478 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1479}
1480
165125e1 1481static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1482{
b4878f24
JA
1483 struct cfq_data *cfqd = q->elevator->elevator_data;
1484
53c583d2
CZ
1485 WARN_ON(!cfqd->rq_in_driver);
1486 cfqd->rq_in_driver--;
7b679138 1487 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1488 cfqd->rq_in_driver);
1da177e4
LT
1489}
1490
b4878f24 1491static void cfq_remove_request(struct request *rq)
1da177e4 1492{
5e705374 1493 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1494
5e705374
JA
1495 if (cfqq->next_rq == rq)
1496 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1497
b4878f24 1498 list_del_init(&rq->queuelist);
5e705374 1499 cfq_del_rq_rb(rq);
374f84ac 1500
45333d5a 1501 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1502 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1503 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1504 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1505 WARN_ON(!cfqq->meta_pending);
1506 cfqq->meta_pending--;
1507 }
1da177e4
LT
1508}
1509
165125e1
JA
1510static int cfq_merge(struct request_queue *q, struct request **req,
1511 struct bio *bio)
1da177e4
LT
1512{
1513 struct cfq_data *cfqd = q->elevator->elevator_data;
1514 struct request *__rq;
1da177e4 1515
206dc69b 1516 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1517 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1518 *req = __rq;
1519 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1520 }
1521
1522 return ELEVATOR_NO_MERGE;
1da177e4
LT
1523}
1524
165125e1 1525static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1526 int type)
1da177e4 1527{
21183b07 1528 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1529 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1530
5e705374 1531 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1532 }
1da177e4
LT
1533}
1534
812d4026
DS
1535static void cfq_bio_merged(struct request_queue *q, struct request *req,
1536 struct bio *bio)
1537{
e98ef89b
VG
1538 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1539 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1540}
1541
1da177e4 1542static void
165125e1 1543cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1544 struct request *next)
1545{
cf7c25cf 1546 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1547 /*
1548 * reposition in fifo if next is older than rq
1549 */
1550 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1551 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1552 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1553 rq_set_fifo_time(rq, rq_fifo_time(next));
1554 }
22e2c507 1555
cf7c25cf
CZ
1556 if (cfqq->next_rq == next)
1557 cfqq->next_rq = rq;
b4878f24 1558 cfq_remove_request(next);
e98ef89b
VG
1559 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1560 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1561}
1562
165125e1 1563static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1564 struct bio *bio)
1565{
1566 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1567 struct cfq_io_context *cic;
da775265 1568 struct cfq_queue *cfqq;
da775265
JA
1569
1570 /*
ec8acb69 1571 * Disallow merge of a sync bio into an async request.
da775265 1572 */
91fac317 1573 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1574 return false;
da775265
JA
1575
1576 /*
719d3402
JA
1577 * Lookup the cfqq that this bio will be queued with. Allow
1578 * merge only if rq is queued there.
da775265 1579 */
4ac845a2 1580 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1581 if (!cic)
a6151c3a 1582 return false;
719d3402 1583
91fac317 1584 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1585 return cfqq == RQ_CFQQ(rq);
da775265
JA
1586}
1587
812df48d
DS
1588static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1589{
1590 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1591 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1592}
1593
febffd61
JA
1594static void __cfq_set_active_queue(struct cfq_data *cfqd,
1595 struct cfq_queue *cfqq)
22e2c507
JA
1596{
1597 if (cfqq) {
b1ffe737
DS
1598 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1599 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1600 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1601 cfqq->slice_start = 0;
1602 cfqq->dispatch_start = jiffies;
f75edf2d 1603 cfqq->allocated_slice = 0;
22e2c507 1604 cfqq->slice_end = 0;
2f5cb738 1605 cfqq->slice_dispatch = 0;
c4e7893e 1606 cfqq->nr_sectors = 0;
2f5cb738 1607
2f5cb738 1608 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1609 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1610 cfq_clear_cfqq_must_alloc_slice(cfqq);
1611 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1612 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1613
812df48d 1614 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1615 }
1616
1617 cfqd->active_queue = cfqq;
1618}
1619
7b14e3b5
JA
1620/*
1621 * current cfqq expired its slice (or was too idle), select new one
1622 */
1623static void
1624__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1625 bool timed_out)
7b14e3b5 1626{
7b679138
JA
1627 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1628
7b14e3b5 1629 if (cfq_cfqq_wait_request(cfqq))
812df48d 1630 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1631
7b14e3b5 1632 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1633 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1634
ae54abed
SL
1635 /*
1636 * If this cfqq is shared between multiple processes, check to
1637 * make sure that those processes are still issuing I/Os within
1638 * the mean seek distance. If not, it may be time to break the
1639 * queues apart again.
1640 */
1641 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1642 cfq_mark_cfqq_split_coop(cfqq);
1643
7b14e3b5 1644 /*
6084cdda 1645 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1646 */
c553f8e3
SL
1647 if (timed_out) {
1648 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1649 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1650 else
1651 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1652 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1653 }
7b14e3b5 1654
e5ff082e 1655 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1656
f04a6424
VG
1657 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1658 cfq_del_cfqq_rr(cfqd, cfqq);
1659
edd75ffd 1660 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1661
1662 if (cfqq == cfqd->active_queue)
1663 cfqd->active_queue = NULL;
1664
1665 if (cfqd->active_cic) {
1666 put_io_context(cfqd->active_cic->ioc);
1667 cfqd->active_cic = NULL;
1668 }
7b14e3b5
JA
1669}
1670
e5ff082e 1671static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1672{
1673 struct cfq_queue *cfqq = cfqd->active_queue;
1674
1675 if (cfqq)
e5ff082e 1676 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1677}
1678
498d3aa2
JA
1679/*
1680 * Get next queue for service. Unless we have a queue preemption,
1681 * we'll simply select the first cfqq in the service tree.
1682 */
6d048f53 1683static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1684{
c0324a02 1685 struct cfq_rb_root *service_tree =
cdb16e8f 1686 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1687 cfqd->serving_type);
d9e7620e 1688
f04a6424
VG
1689 if (!cfqd->rq_queued)
1690 return NULL;
1691
1fa8f6d6
VG
1692 /* There is nothing to dispatch */
1693 if (!service_tree)
1694 return NULL;
c0324a02
CZ
1695 if (RB_EMPTY_ROOT(&service_tree->rb))
1696 return NULL;
1697 return cfq_rb_first(service_tree);
6d048f53
JA
1698}
1699
f04a6424
VG
1700static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1701{
25fb5169 1702 struct cfq_group *cfqg;
f04a6424
VG
1703 struct cfq_queue *cfqq;
1704 int i, j;
1705 struct cfq_rb_root *st;
1706
1707 if (!cfqd->rq_queued)
1708 return NULL;
1709
25fb5169
VG
1710 cfqg = cfq_get_next_cfqg(cfqd);
1711 if (!cfqg)
1712 return NULL;
1713
f04a6424
VG
1714 for_each_cfqg_st(cfqg, i, j, st)
1715 if ((cfqq = cfq_rb_first(st)) != NULL)
1716 return cfqq;
1717 return NULL;
1718}
1719
498d3aa2
JA
1720/*
1721 * Get and set a new active queue for service.
1722 */
a36e71f9
JA
1723static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1724 struct cfq_queue *cfqq)
6d048f53 1725{
e00ef799 1726 if (!cfqq)
a36e71f9 1727 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1728
22e2c507 1729 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1730 return cfqq;
22e2c507
JA
1731}
1732
d9e7620e
JA
1733static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1734 struct request *rq)
1735{
83096ebf
TH
1736 if (blk_rq_pos(rq) >= cfqd->last_position)
1737 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1738 else
83096ebf 1739 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1740}
1741
b2c18e1e 1742static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1743 struct request *rq)
6d048f53 1744{
e9ce335d 1745 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1746}
1747
a36e71f9
JA
1748static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1749 struct cfq_queue *cur_cfqq)
1750{
f2d1f0ae 1751 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1752 struct rb_node *parent, *node;
1753 struct cfq_queue *__cfqq;
1754 sector_t sector = cfqd->last_position;
1755
1756 if (RB_EMPTY_ROOT(root))
1757 return NULL;
1758
1759 /*
1760 * First, if we find a request starting at the end of the last
1761 * request, choose it.
1762 */
f2d1f0ae 1763 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1764 if (__cfqq)
1765 return __cfqq;
1766
1767 /*
1768 * If the exact sector wasn't found, the parent of the NULL leaf
1769 * will contain the closest sector.
1770 */
1771 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1772 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1773 return __cfqq;
1774
2e46e8b2 1775 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1776 node = rb_next(&__cfqq->p_node);
1777 else
1778 node = rb_prev(&__cfqq->p_node);
1779 if (!node)
1780 return NULL;
1781
1782 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1783 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1784 return __cfqq;
1785
1786 return NULL;
1787}
1788
1789/*
1790 * cfqd - obvious
1791 * cur_cfqq - passed in so that we don't decide that the current queue is
1792 * closely cooperating with itself.
1793 *
1794 * So, basically we're assuming that that cur_cfqq has dispatched at least
1795 * one request, and that cfqd->last_position reflects a position on the disk
1796 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1797 * assumption.
1798 */
1799static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1800 struct cfq_queue *cur_cfqq)
6d048f53 1801{
a36e71f9
JA
1802 struct cfq_queue *cfqq;
1803
39c01b21
DS
1804 if (cfq_class_idle(cur_cfqq))
1805 return NULL;
e6c5bc73
JM
1806 if (!cfq_cfqq_sync(cur_cfqq))
1807 return NULL;
1808 if (CFQQ_SEEKY(cur_cfqq))
1809 return NULL;
1810
b9d8f4c7
GJ
1811 /*
1812 * Don't search priority tree if it's the only queue in the group.
1813 */
1814 if (cur_cfqq->cfqg->nr_cfqq == 1)
1815 return NULL;
1816
6d048f53 1817 /*
d9e7620e
JA
1818 * We should notice if some of the queues are cooperating, eg
1819 * working closely on the same area of the disk. In that case,
1820 * we can group them together and don't waste time idling.
6d048f53 1821 */
a36e71f9
JA
1822 cfqq = cfqq_close(cfqd, cur_cfqq);
1823 if (!cfqq)
1824 return NULL;
1825
8682e1f1
VG
1826 /* If new queue belongs to different cfq_group, don't choose it */
1827 if (cur_cfqq->cfqg != cfqq->cfqg)
1828 return NULL;
1829
df5fe3e8
JM
1830 /*
1831 * It only makes sense to merge sync queues.
1832 */
1833 if (!cfq_cfqq_sync(cfqq))
1834 return NULL;
e6c5bc73
JM
1835 if (CFQQ_SEEKY(cfqq))
1836 return NULL;
df5fe3e8 1837
c0324a02
CZ
1838 /*
1839 * Do not merge queues of different priority classes
1840 */
1841 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1842 return NULL;
1843
a36e71f9 1844 return cfqq;
6d048f53
JA
1845}
1846
a6d44e98
CZ
1847/*
1848 * Determine whether we should enforce idle window for this queue.
1849 */
1850
1851static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1852{
1853 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1854 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1855
f04a6424
VG
1856 BUG_ON(!service_tree);
1857 BUG_ON(!service_tree->count);
1858
b6508c16
VG
1859 if (!cfqd->cfq_slice_idle)
1860 return false;
1861
a6d44e98
CZ
1862 /* We never do for idle class queues. */
1863 if (prio == IDLE_WORKLOAD)
1864 return false;
1865
1866 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1867 if (cfq_cfqq_idle_window(cfqq) &&
1868 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1869 return true;
1870
1871 /*
1872 * Otherwise, we do only if they are the last ones
1873 * in their service tree.
1874 */
b1ffe737 1875 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1876 return true;
b1ffe737
DS
1877 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1878 service_tree->count);
c1e44756 1879 return false;
a6d44e98
CZ
1880}
1881
6d048f53 1882static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1883{
1792669c 1884 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1885 struct cfq_io_context *cic;
80bdf0c7 1886 unsigned long sl, group_idle = 0;
7b14e3b5 1887
a68bbddb 1888 /*
f7d7b7a7
JA
1889 * SSD device without seek penalty, disable idling. But only do so
1890 * for devices that support queuing, otherwise we still have a problem
1891 * with sync vs async workloads.
a68bbddb 1892 */
f7d7b7a7 1893 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1894 return;
1895
dd67d051 1896 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1897 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1898
1899 /*
1900 * idle is disabled, either manually or by past process history
1901 */
80bdf0c7
VG
1902 if (!cfq_should_idle(cfqd, cfqq)) {
1903 /* no queue idling. Check for group idling */
1904 if (cfqd->cfq_group_idle)
1905 group_idle = cfqd->cfq_group_idle;
1906 else
1907 return;
1908 }
6d048f53 1909
7b679138 1910 /*
8e550632 1911 * still active requests from this queue, don't idle
7b679138 1912 */
8e550632 1913 if (cfqq->dispatched)
7b679138
JA
1914 return;
1915
22e2c507
JA
1916 /*
1917 * task has exited, don't wait
1918 */
206dc69b 1919 cic = cfqd->active_cic;
66dac98e 1920 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1921 return;
1922
355b659c
CZ
1923 /*
1924 * If our average think time is larger than the remaining time
1925 * slice, then don't idle. This avoids overrunning the allotted
1926 * time slice.
1927 */
1928 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1929 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1930 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1931 cic->ttime_mean);
355b659c 1932 return;
b1ffe737 1933 }
355b659c 1934
80bdf0c7
VG
1935 /* There are other queues in the group, don't do group idle */
1936 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1937 return;
1938
3b18152c 1939 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1940
80bdf0c7
VG
1941 if (group_idle)
1942 sl = cfqd->cfq_group_idle;
1943 else
1944 sl = cfqd->cfq_slice_idle;
206dc69b 1945
7b14e3b5 1946 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1947 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
1948 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1949 group_idle ? 1 : 0);
1da177e4
LT
1950}
1951
498d3aa2
JA
1952/*
1953 * Move request from internal lists to the request queue dispatch list.
1954 */
165125e1 1955static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1956{
3ed9a296 1957 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1958 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1959
7b679138
JA
1960 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1961
06d21886 1962 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1963 cfq_remove_request(rq);
6d048f53 1964 cfqq->dispatched++;
80bdf0c7 1965 (RQ_CFQG(rq))->dispatched++;
5380a101 1966 elv_dispatch_sort(q, rq);
3ed9a296 1967
53c583d2 1968 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 1969 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 1970 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1971 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1972}
1973
1974/*
1975 * return expired entry, or NULL to just start from scratch in rbtree
1976 */
febffd61 1977static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1978{
30996f40 1979 struct request *rq = NULL;
1da177e4 1980
3b18152c 1981 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1982 return NULL;
cb887411
JA
1983
1984 cfq_mark_cfqq_fifo_expire(cfqq);
1985
89850f7e
JA
1986 if (list_empty(&cfqq->fifo))
1987 return NULL;
1da177e4 1988
89850f7e 1989 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1990 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1991 rq = NULL;
1da177e4 1992
30996f40 1993 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1994 return rq;
1da177e4
LT
1995}
1996
22e2c507
JA
1997static inline int
1998cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1999{
2000 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2001
22e2c507 2002 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2003
22e2c507 2004 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
2005}
2006
df5fe3e8
JM
2007/*
2008 * Must be called with the queue_lock held.
2009 */
2010static int cfqq_process_refs(struct cfq_queue *cfqq)
2011{
2012 int process_refs, io_refs;
2013
2014 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2015 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2016 BUG_ON(process_refs < 0);
2017 return process_refs;
2018}
2019
2020static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2021{
e6c5bc73 2022 int process_refs, new_process_refs;
df5fe3e8
JM
2023 struct cfq_queue *__cfqq;
2024
c10b61f0
JM
2025 /*
2026 * If there are no process references on the new_cfqq, then it is
2027 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2028 * chain may have dropped their last reference (not just their
2029 * last process reference).
2030 */
2031 if (!cfqq_process_refs(new_cfqq))
2032 return;
2033
df5fe3e8
JM
2034 /* Avoid a circular list and skip interim queue merges */
2035 while ((__cfqq = new_cfqq->new_cfqq)) {
2036 if (__cfqq == cfqq)
2037 return;
2038 new_cfqq = __cfqq;
2039 }
2040
2041 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2042 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2043 /*
2044 * If the process for the cfqq has gone away, there is no
2045 * sense in merging the queues.
2046 */
c10b61f0 2047 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2048 return;
2049
e6c5bc73
JM
2050 /*
2051 * Merge in the direction of the lesser amount of work.
2052 */
e6c5bc73
JM
2053 if (new_process_refs >= process_refs) {
2054 cfqq->new_cfqq = new_cfqq;
30d7b944 2055 new_cfqq->ref += process_refs;
e6c5bc73
JM
2056 } else {
2057 new_cfqq->new_cfqq = cfqq;
30d7b944 2058 cfqq->ref += new_process_refs;
e6c5bc73 2059 }
df5fe3e8
JM
2060}
2061
cdb16e8f 2062static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2063 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2064{
2065 struct cfq_queue *queue;
2066 int i;
2067 bool key_valid = false;
2068 unsigned long lowest_key = 0;
2069 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2070
65b32a57
VG
2071 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2072 /* select the one with lowest rb_key */
2073 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2074 if (queue &&
2075 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2076 lowest_key = queue->rb_key;
2077 cur_best = i;
2078 key_valid = true;
2079 }
2080 }
2081
2082 return cur_best;
2083}
2084
cdb16e8f 2085static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2086{
718eee05
CZ
2087 unsigned slice;
2088 unsigned count;
cdb16e8f 2089 struct cfq_rb_root *st;
58ff82f3 2090 unsigned group_slice;
e4ea0c16 2091 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2092
718eee05 2093 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2094 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2095 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2096 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2097 cfqd->serving_prio = BE_WORKLOAD;
2098 else {
2099 cfqd->serving_prio = IDLE_WORKLOAD;
2100 cfqd->workload_expires = jiffies + 1;
2101 return;
2102 }
2103
e4ea0c16
SL
2104 if (original_prio != cfqd->serving_prio)
2105 goto new_workload;
2106
718eee05
CZ
2107 /*
2108 * For RT and BE, we have to choose also the type
2109 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2110 * expiration time
2111 */
65b32a57 2112 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2113 count = st->count;
718eee05
CZ
2114
2115 /*
65b32a57 2116 * check workload expiration, and that we still have other queues ready
718eee05 2117 */
65b32a57 2118 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2119 return;
2120
e4ea0c16 2121new_workload:
718eee05
CZ
2122 /* otherwise select new workload type */
2123 cfqd->serving_type =
65b32a57
VG
2124 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2125 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2126 count = st->count;
718eee05
CZ
2127
2128 /*
2129 * the workload slice is computed as a fraction of target latency
2130 * proportional to the number of queues in that workload, over
2131 * all the queues in the same priority class
2132 */
58ff82f3
VG
2133 group_slice = cfq_group_slice(cfqd, cfqg);
2134
2135 slice = group_slice * count /
2136 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2137 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2138
f26bd1f0
VG
2139 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2140 unsigned int tmp;
2141
2142 /*
2143 * Async queues are currently system wide. Just taking
2144 * proportion of queues with-in same group will lead to higher
2145 * async ratio system wide as generally root group is going
2146 * to have higher weight. A more accurate thing would be to
2147 * calculate system wide asnc/sync ratio.
2148 */
2149 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2150 tmp = tmp/cfqd->busy_queues;
2151 slice = min_t(unsigned, slice, tmp);
2152
718eee05
CZ
2153 /* async workload slice is scaled down according to
2154 * the sync/async slice ratio. */
2155 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2156 } else
718eee05
CZ
2157 /* sync workload slice is at least 2 * cfq_slice_idle */
2158 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2159
2160 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2161 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2162 cfqd->workload_expires = jiffies + slice;
2163}
2164
1fa8f6d6
VG
2165static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2166{
2167 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2168 struct cfq_group *cfqg;
1fa8f6d6
VG
2169
2170 if (RB_EMPTY_ROOT(&st->rb))
2171 return NULL;
25bc6b07 2172 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2173 update_min_vdisktime(st);
2174 return cfqg;
1fa8f6d6
VG
2175}
2176
cdb16e8f
VG
2177static void cfq_choose_cfqg(struct cfq_data *cfqd)
2178{
1fa8f6d6
VG
2179 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2180
2181 cfqd->serving_group = cfqg;
dae739eb
VG
2182
2183 /* Restore the workload type data */
2184 if (cfqg->saved_workload_slice) {
2185 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2186 cfqd->serving_type = cfqg->saved_workload;
2187 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2188 } else
2189 cfqd->workload_expires = jiffies - 1;
2190
1fa8f6d6 2191 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2192}
2193
22e2c507 2194/*
498d3aa2
JA
2195 * Select a queue for service. If we have a current active queue,
2196 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2197 */
1b5ed5e1 2198static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2199{
a36e71f9 2200 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2201
22e2c507
JA
2202 cfqq = cfqd->active_queue;
2203 if (!cfqq)
2204 goto new_queue;
1da177e4 2205
f04a6424
VG
2206 if (!cfqd->rq_queued)
2207 return NULL;
c244bb50
VG
2208
2209 /*
2210 * We were waiting for group to get backlogged. Expire the queue
2211 */
2212 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2213 goto expire;
2214
22e2c507 2215 /*
6d048f53 2216 * The active queue has run out of time, expire it and select new.
22e2c507 2217 */
7667aa06
VG
2218 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2219 /*
2220 * If slice had not expired at the completion of last request
2221 * we might not have turned on wait_busy flag. Don't expire
2222 * the queue yet. Allow the group to get backlogged.
2223 *
2224 * The very fact that we have used the slice, that means we
2225 * have been idling all along on this queue and it should be
2226 * ok to wait for this request to complete.
2227 */
82bbbf28
VG
2228 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2229 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2230 cfqq = NULL;
7667aa06 2231 goto keep_queue;
82bbbf28 2232 } else
80bdf0c7 2233 goto check_group_idle;
7667aa06 2234 }
1da177e4 2235
22e2c507 2236 /*
6d048f53
JA
2237 * The active queue has requests and isn't expired, allow it to
2238 * dispatch.
22e2c507 2239 */
dd67d051 2240 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2241 goto keep_queue;
6d048f53 2242
a36e71f9
JA
2243 /*
2244 * If another queue has a request waiting within our mean seek
2245 * distance, let it run. The expire code will check for close
2246 * cooperators and put the close queue at the front of the service
df5fe3e8 2247 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2248 */
b3b6d040 2249 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2250 if (new_cfqq) {
2251 if (!cfqq->new_cfqq)
2252 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2253 goto expire;
df5fe3e8 2254 }
a36e71f9 2255
6d048f53
JA
2256 /*
2257 * No requests pending. If the active queue still has requests in
2258 * flight or is idling for a new request, allow either of these
2259 * conditions to happen (or time out) before selecting a new queue.
2260 */
80bdf0c7
VG
2261 if (timer_pending(&cfqd->idle_slice_timer)) {
2262 cfqq = NULL;
2263 goto keep_queue;
2264 }
2265
8e1ac665
SL
2266 /*
2267 * This is a deep seek queue, but the device is much faster than
2268 * the queue can deliver, don't idle
2269 **/
2270 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2271 (cfq_cfqq_slice_new(cfqq) ||
2272 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2273 cfq_clear_cfqq_deep(cfqq);
2274 cfq_clear_cfqq_idle_window(cfqq);
2275 }
2276
80bdf0c7
VG
2277 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2278 cfqq = NULL;
2279 goto keep_queue;
2280 }
2281
2282 /*
2283 * If group idle is enabled and there are requests dispatched from
2284 * this group, wait for requests to complete.
2285 */
2286check_group_idle:
2287 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2288 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2289 cfqq = NULL;
2290 goto keep_queue;
22e2c507
JA
2291 }
2292
3b18152c 2293expire:
e5ff082e 2294 cfq_slice_expired(cfqd, 0);
3b18152c 2295new_queue:
718eee05
CZ
2296 /*
2297 * Current queue expired. Check if we have to switch to a new
2298 * service tree
2299 */
2300 if (!new_cfqq)
cdb16e8f 2301 cfq_choose_cfqg(cfqd);
718eee05 2302
a36e71f9 2303 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2304keep_queue:
3b18152c 2305 return cfqq;
22e2c507
JA
2306}
2307
febffd61 2308static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2309{
2310 int dispatched = 0;
2311
2312 while (cfqq->next_rq) {
2313 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2314 dispatched++;
2315 }
2316
2317 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2318
2319 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2320 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2321 return dispatched;
2322}
2323
498d3aa2
JA
2324/*
2325 * Drain our current requests. Used for barriers and when switching
2326 * io schedulers on-the-fly.
2327 */
d9e7620e 2328static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2329{
0871714e 2330 struct cfq_queue *cfqq;
d9e7620e 2331 int dispatched = 0;
cdb16e8f 2332
3440c49f 2333 /* Expire the timeslice of the current active queue first */
e5ff082e 2334 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2335 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2336 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2337 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2338 }
1b5ed5e1 2339
1b5ed5e1
TH
2340 BUG_ON(cfqd->busy_queues);
2341
6923715a 2342 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2343 return dispatched;
2344}
2345
abc3c744
SL
2346static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2347 struct cfq_queue *cfqq)
2348{
2349 /* the queue hasn't finished any request, can't estimate */
2350 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2351 return true;
abc3c744
SL
2352 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2353 cfqq->slice_end))
c1e44756 2354 return true;
abc3c744 2355
c1e44756 2356 return false;
abc3c744
SL
2357}
2358
0b182d61 2359static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2360{
2f5cb738 2361 unsigned int max_dispatch;
22e2c507 2362
5ad531db
JA
2363 /*
2364 * Drain async requests before we start sync IO
2365 */
53c583d2 2366 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2367 return false;
5ad531db 2368
2f5cb738
JA
2369 /*
2370 * If this is an async queue and we have sync IO in flight, let it wait
2371 */
53c583d2 2372 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2373 return false;
2f5cb738 2374
abc3c744 2375 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2376 if (cfq_class_idle(cfqq))
2377 max_dispatch = 1;
b4878f24 2378
2f5cb738
JA
2379 /*
2380 * Does this cfqq already have too much IO in flight?
2381 */
2382 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2383 bool promote_sync = false;
2f5cb738
JA
2384 /*
2385 * idle queue must always only have a single IO in flight
2386 */
3ed9a296 2387 if (cfq_class_idle(cfqq))
0b182d61 2388 return false;
3ed9a296 2389
ef8a41df
SL
2390 /*
2391 * If there is only one sync queue, and its think time is
2392 * small, we can ignore async queue here and give the sync
2393 * queue no dispatch limit. The reason is a sync queue can
2394 * preempt async queue, limiting the sync queue doesn't make
2395 * sense. This is useful for aiostress test.
2396 */
2397 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) {
2398 struct cfq_io_context *cic = RQ_CIC(cfqq->next_rq);
2399
2400 if (sample_valid(cic->ttime_samples) &&
2401 cic->ttime_mean < cfqd->cfq_slice_idle)
2402 promote_sync = true;
2403 }
2404
2f5cb738
JA
2405 /*
2406 * We have other queues, don't allow more IO from this one
2407 */
ef8a41df
SL
2408 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2409 !promote_sync)
0b182d61 2410 return false;
9ede209e 2411
365722bb 2412 /*
474b18cc 2413 * Sole queue user, no limit
365722bb 2414 */
ef8a41df 2415 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2416 max_dispatch = -1;
2417 else
2418 /*
2419 * Normally we start throttling cfqq when cfq_quantum/2
2420 * requests have been dispatched. But we can drive
2421 * deeper queue depths at the beginning of slice
2422 * subjected to upper limit of cfq_quantum.
2423 * */
2424 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2425 }
2426
2427 /*
2428 * Async queues must wait a bit before being allowed dispatch.
2429 * We also ramp up the dispatch depth gradually for async IO,
2430 * based on the last sync IO we serviced
2431 */
963b72fc 2432 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2433 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2434 unsigned int depth;
365722bb 2435
61f0c1dc 2436 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2437 if (!depth && !cfqq->dispatched)
2438 depth = 1;
8e296755
JA
2439 if (depth < max_dispatch)
2440 max_dispatch = depth;
2f5cb738 2441 }
3ed9a296 2442
0b182d61
JA
2443 /*
2444 * If we're below the current max, allow a dispatch
2445 */
2446 return cfqq->dispatched < max_dispatch;
2447}
2448
2449/*
2450 * Dispatch a request from cfqq, moving them to the request queue
2451 * dispatch list.
2452 */
2453static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2454{
2455 struct request *rq;
2456
2457 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2458
2459 if (!cfq_may_dispatch(cfqd, cfqq))
2460 return false;
2461
2462 /*
2463 * follow expired path, else get first next available
2464 */
2465 rq = cfq_check_fifo(cfqq);
2466 if (!rq)
2467 rq = cfqq->next_rq;
2468
2469 /*
2470 * insert request into driver dispatch list
2471 */
2472 cfq_dispatch_insert(cfqd->queue, rq);
2473
2474 if (!cfqd->active_cic) {
2475 struct cfq_io_context *cic = RQ_CIC(rq);
2476
2477 atomic_long_inc(&cic->ioc->refcount);
2478 cfqd->active_cic = cic;
2479 }
2480
2481 return true;
2482}
2483
2484/*
2485 * Find the cfqq that we need to service and move a request from that to the
2486 * dispatch list
2487 */
2488static int cfq_dispatch_requests(struct request_queue *q, int force)
2489{
2490 struct cfq_data *cfqd = q->elevator->elevator_data;
2491 struct cfq_queue *cfqq;
2492
2493 if (!cfqd->busy_queues)
2494 return 0;
2495
2496 if (unlikely(force))
2497 return cfq_forced_dispatch(cfqd);
2498
2499 cfqq = cfq_select_queue(cfqd);
2500 if (!cfqq)
8e296755
JA
2501 return 0;
2502
2f5cb738 2503 /*
0b182d61 2504 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2505 */
0b182d61
JA
2506 if (!cfq_dispatch_request(cfqd, cfqq))
2507 return 0;
2508
2f5cb738 2509 cfqq->slice_dispatch++;
b029195d 2510 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2511
2f5cb738
JA
2512 /*
2513 * expire an async queue immediately if it has used up its slice. idle
2514 * queue always expire after 1 dispatch round.
2515 */
2516 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2517 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2518 cfq_class_idle(cfqq))) {
2519 cfqq->slice_end = jiffies + 1;
e5ff082e 2520 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2521 }
2522
b217a903 2523 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2524 return 1;
1da177e4
LT
2525}
2526
1da177e4 2527/*
5e705374
JA
2528 * task holds one reference to the queue, dropped when task exits. each rq
2529 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2530 *
b1c35769 2531 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2532 * queue lock must be held here.
2533 */
2534static void cfq_put_queue(struct cfq_queue *cfqq)
2535{
22e2c507 2536 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2537 struct cfq_group *cfqg;
22e2c507 2538
30d7b944 2539 BUG_ON(cfqq->ref <= 0);
1da177e4 2540
30d7b944
SL
2541 cfqq->ref--;
2542 if (cfqq->ref)
1da177e4
LT
2543 return;
2544
7b679138 2545 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2546 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2547 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2548 cfqg = cfqq->cfqg;
1da177e4 2549
28f95cbc 2550 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2551 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2552 cfq_schedule_dispatch(cfqd);
28f95cbc 2553 }
22e2c507 2554
f04a6424 2555 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2556 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2557 cfq_put_cfqg(cfqg);
1da177e4
LT
2558}
2559
d6de8be7
JA
2560/*
2561 * Must always be called with the rcu_read_lock() held
2562 */
07416d29
JA
2563static void
2564__call_for_each_cic(struct io_context *ioc,
2565 void (*func)(struct io_context *, struct cfq_io_context *))
2566{
2567 struct cfq_io_context *cic;
2568 struct hlist_node *n;
2569
2570 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2571 func(ioc, cic);
2572}
2573
4ac845a2 2574/*
34e6bbf2 2575 * Call func for each cic attached to this ioc.
4ac845a2 2576 */
34e6bbf2 2577static void
4ac845a2
JA
2578call_for_each_cic(struct io_context *ioc,
2579 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2580{
4ac845a2 2581 rcu_read_lock();
07416d29 2582 __call_for_each_cic(ioc, func);
4ac845a2 2583 rcu_read_unlock();
34e6bbf2
FC
2584}
2585
2586static void cfq_cic_free_rcu(struct rcu_head *head)
2587{
2588 struct cfq_io_context *cic;
2589
2590 cic = container_of(head, struct cfq_io_context, rcu_head);
2591
2592 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2593 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2594
9a11b4ed
JA
2595 if (ioc_gone) {
2596 /*
2597 * CFQ scheduler is exiting, grab exit lock and check
2598 * the pending io context count. If it hits zero,
2599 * complete ioc_gone and set it back to NULL
2600 */
2601 spin_lock(&ioc_gone_lock);
245b2e70 2602 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2603 complete(ioc_gone);
2604 ioc_gone = NULL;
2605 }
2606 spin_unlock(&ioc_gone_lock);
2607 }
34e6bbf2 2608}
4ac845a2 2609
34e6bbf2
FC
2610static void cfq_cic_free(struct cfq_io_context *cic)
2611{
2612 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2613}
2614
2615static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2616{
2617 unsigned long flags;
bca4b914 2618 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2619
bca4b914 2620 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2621
2622 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2623 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2624 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2625 spin_unlock_irqrestore(&ioc->lock, flags);
2626
34e6bbf2 2627 cfq_cic_free(cic);
4ac845a2
JA
2628}
2629
d6de8be7
JA
2630/*
2631 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2632 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2633 * and ->trim() which is called with the task lock held
2634 */
4ac845a2
JA
2635static void cfq_free_io_context(struct io_context *ioc)
2636{
4ac845a2 2637 /*
34e6bbf2
FC
2638 * ioc->refcount is zero here, or we are called from elv_unregister(),
2639 * so no more cic's are allowed to be linked into this ioc. So it
2640 * should be ok to iterate over the known list, we will see all cic's
2641 * since no new ones are added.
4ac845a2 2642 */
07416d29 2643 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2644}
2645
d02a2c07 2646static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2647{
df5fe3e8
JM
2648 struct cfq_queue *__cfqq, *next;
2649
df5fe3e8
JM
2650 /*
2651 * If this queue was scheduled to merge with another queue, be
2652 * sure to drop the reference taken on that queue (and others in
2653 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2654 */
2655 __cfqq = cfqq->new_cfqq;
2656 while (__cfqq) {
2657 if (__cfqq == cfqq) {
2658 WARN(1, "cfqq->new_cfqq loop detected\n");
2659 break;
2660 }
2661 next = __cfqq->new_cfqq;
2662 cfq_put_queue(__cfqq);
2663 __cfqq = next;
2664 }
d02a2c07
SL
2665}
2666
2667static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2668{
2669 if (unlikely(cfqq == cfqd->active_queue)) {
2670 __cfq_slice_expired(cfqd, cfqq, 0);
2671 cfq_schedule_dispatch(cfqd);
2672 }
2673
2674 cfq_put_cooperator(cfqq);
df5fe3e8 2675
89850f7e
JA
2676 cfq_put_queue(cfqq);
2677}
22e2c507 2678
89850f7e
JA
2679static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2680 struct cfq_io_context *cic)
2681{
4faa3c81
FC
2682 struct io_context *ioc = cic->ioc;
2683
fc46379d 2684 list_del_init(&cic->queue_list);
4ac845a2
JA
2685
2686 /*
bca4b914 2687 * Make sure dead mark is seen for dead queues
4ac845a2 2688 */
fc46379d 2689 smp_wmb();
bca4b914 2690 cic->key = cfqd_dead_key(cfqd);
fc46379d 2691
4faa3c81
FC
2692 if (ioc->ioc_data == cic)
2693 rcu_assign_pointer(ioc->ioc_data, NULL);
2694
ff6657c6
JA
2695 if (cic->cfqq[BLK_RW_ASYNC]) {
2696 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2697 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2698 }
2699
ff6657c6
JA
2700 if (cic->cfqq[BLK_RW_SYNC]) {
2701 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2702 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2703 }
89850f7e
JA
2704}
2705
4ac845a2
JA
2706static void cfq_exit_single_io_context(struct io_context *ioc,
2707 struct cfq_io_context *cic)
89850f7e 2708{
bca4b914 2709 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2710
89850f7e 2711 if (cfqd) {
165125e1 2712 struct request_queue *q = cfqd->queue;
4ac845a2 2713 unsigned long flags;
89850f7e 2714
4ac845a2 2715 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2716
2717 /*
2718 * Ensure we get a fresh copy of the ->key to prevent
2719 * race between exiting task and queue
2720 */
2721 smp_read_barrier_depends();
bca4b914 2722 if (cic->key == cfqd)
62c1fe9d
JA
2723 __cfq_exit_single_io_context(cfqd, cic);
2724
4ac845a2 2725 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2726 }
1da177e4
LT
2727}
2728
498d3aa2
JA
2729/*
2730 * The process that ioc belongs to has exited, we need to clean up
2731 * and put the internal structures we have that belongs to that process.
2732 */
e2d74ac0 2733static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2734{
4ac845a2 2735 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2736}
2737
22e2c507 2738static struct cfq_io_context *
8267e268 2739cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2740{
b5deef90 2741 struct cfq_io_context *cic;
1da177e4 2742
94f6030c
CL
2743 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2744 cfqd->queue->node);
1da177e4 2745 if (cic) {
22e2c507 2746 cic->last_end_request = jiffies;
553698f9 2747 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2748 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2749 cic->dtor = cfq_free_io_context;
2750 cic->exit = cfq_exit_io_context;
245b2e70 2751 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2752 }
2753
2754 return cic;
2755}
2756
fd0928df 2757static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2758{
2759 struct task_struct *tsk = current;
2760 int ioprio_class;
2761
3b18152c 2762 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2763 return;
2764
fd0928df 2765 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2766 switch (ioprio_class) {
fe094d98
JA
2767 default:
2768 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2769 case IOPRIO_CLASS_NONE:
2770 /*
6d63c275 2771 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2772 */
2773 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2774 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2775 break;
2776 case IOPRIO_CLASS_RT:
2777 cfqq->ioprio = task_ioprio(ioc);
2778 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2779 break;
2780 case IOPRIO_CLASS_BE:
2781 cfqq->ioprio = task_ioprio(ioc);
2782 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2783 break;
2784 case IOPRIO_CLASS_IDLE:
2785 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2786 cfqq->ioprio = 7;
2787 cfq_clear_cfqq_idle_window(cfqq);
2788 break;
22e2c507
JA
2789 }
2790
2791 /*
2792 * keep track of original prio settings in case we have to temporarily
2793 * elevate the priority of this queue
2794 */
2795 cfqq->org_ioprio = cfqq->ioprio;
2796 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2797 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2798}
2799
febffd61 2800static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2801{
bca4b914 2802 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2803 struct cfq_queue *cfqq;
c1b707d2 2804 unsigned long flags;
35e6077c 2805
caaa5f9f
JA
2806 if (unlikely(!cfqd))
2807 return;
2808
c1b707d2 2809 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2810
ff6657c6 2811 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2812 if (cfqq) {
2813 struct cfq_queue *new_cfqq;
ff6657c6
JA
2814 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2815 GFP_ATOMIC);
caaa5f9f 2816 if (new_cfqq) {
ff6657c6 2817 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2818 cfq_put_queue(cfqq);
2819 }
22e2c507 2820 }
caaa5f9f 2821
ff6657c6 2822 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2823 if (cfqq)
2824 cfq_mark_cfqq_prio_changed(cfqq);
2825
c1b707d2 2826 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2827}
2828
fc46379d 2829static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2830{
4ac845a2 2831 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2832 ioc->ioprio_changed = 0;
22e2c507
JA
2833}
2834
d5036d77 2835static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2836 pid_t pid, bool is_sync)
d5036d77
JA
2837{
2838 RB_CLEAR_NODE(&cfqq->rb_node);
2839 RB_CLEAR_NODE(&cfqq->p_node);
2840 INIT_LIST_HEAD(&cfqq->fifo);
2841
30d7b944 2842 cfqq->ref = 0;
d5036d77
JA
2843 cfqq->cfqd = cfqd;
2844
2845 cfq_mark_cfqq_prio_changed(cfqq);
2846
2847 if (is_sync) {
2848 if (!cfq_class_idle(cfqq))
2849 cfq_mark_cfqq_idle_window(cfqq);
2850 cfq_mark_cfqq_sync(cfqq);
2851 }
2852 cfqq->pid = pid;
2853}
2854
24610333
VG
2855#ifdef CONFIG_CFQ_GROUP_IOSCHED
2856static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2857{
2858 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2859 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2860 unsigned long flags;
2861 struct request_queue *q;
2862
2863 if (unlikely(!cfqd))
2864 return;
2865
2866 q = cfqd->queue;
2867
2868 spin_lock_irqsave(q->queue_lock, flags);
2869
2870 if (sync_cfqq) {
2871 /*
2872 * Drop reference to sync queue. A new sync queue will be
2873 * assigned in new group upon arrival of a fresh request.
2874 */
2875 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2876 cic_set_cfqq(cic, NULL, 1);
2877 cfq_put_queue(sync_cfqq);
2878 }
2879
2880 spin_unlock_irqrestore(q->queue_lock, flags);
2881}
2882
2883static void cfq_ioc_set_cgroup(struct io_context *ioc)
2884{
2885 call_for_each_cic(ioc, changed_cgroup);
2886 ioc->cgroup_changed = 0;
2887}
2888#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2889
22e2c507 2890static struct cfq_queue *
a6151c3a 2891cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2892 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2893{
22e2c507 2894 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2895 struct cfq_io_context *cic;
cdb16e8f 2896 struct cfq_group *cfqg;
22e2c507
JA
2897
2898retry:
cdb16e8f 2899 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2900 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2901 /* cic always exists here */
2902 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2903
6118b70b
JA
2904 /*
2905 * Always try a new alloc if we fell back to the OOM cfqq
2906 * originally, since it should just be a temporary situation.
2907 */
2908 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2909 cfqq = NULL;
22e2c507
JA
2910 if (new_cfqq) {
2911 cfqq = new_cfqq;
2912 new_cfqq = NULL;
2913 } else if (gfp_mask & __GFP_WAIT) {
2914 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2915 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2916 gfp_mask | __GFP_ZERO,
94f6030c 2917 cfqd->queue->node);
22e2c507 2918 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2919 if (new_cfqq)
2920 goto retry;
22e2c507 2921 } else {
94f6030c
CL
2922 cfqq = kmem_cache_alloc_node(cfq_pool,
2923 gfp_mask | __GFP_ZERO,
2924 cfqd->queue->node);
22e2c507
JA
2925 }
2926
6118b70b
JA
2927 if (cfqq) {
2928 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2929 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2930 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2931 cfq_log_cfqq(cfqd, cfqq, "alloced");
2932 } else
2933 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2934 }
2935
2936 if (new_cfqq)
2937 kmem_cache_free(cfq_pool, new_cfqq);
2938
22e2c507
JA
2939 return cfqq;
2940}
2941
c2dea2d1
VT
2942static struct cfq_queue **
2943cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2944{
fe094d98 2945 switch (ioprio_class) {
c2dea2d1
VT
2946 case IOPRIO_CLASS_RT:
2947 return &cfqd->async_cfqq[0][ioprio];
2948 case IOPRIO_CLASS_BE:
2949 return &cfqd->async_cfqq[1][ioprio];
2950 case IOPRIO_CLASS_IDLE:
2951 return &cfqd->async_idle_cfqq;
2952 default:
2953 BUG();
2954 }
2955}
2956
15c31be4 2957static struct cfq_queue *
a6151c3a 2958cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2959 gfp_t gfp_mask)
2960{
fd0928df
JA
2961 const int ioprio = task_ioprio(ioc);
2962 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2963 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2964 struct cfq_queue *cfqq = NULL;
2965
c2dea2d1
VT
2966 if (!is_sync) {
2967 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2968 cfqq = *async_cfqq;
2969 }
2970
6118b70b 2971 if (!cfqq)
fd0928df 2972 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2973
2974 /*
2975 * pin the queue now that it's allocated, scheduler exit will prune it
2976 */
c2dea2d1 2977 if (!is_sync && !(*async_cfqq)) {
30d7b944 2978 cfqq->ref++;
c2dea2d1 2979 *async_cfqq = cfqq;
15c31be4
JA
2980 }
2981
30d7b944 2982 cfqq->ref++;
15c31be4
JA
2983 return cfqq;
2984}
2985
498d3aa2
JA
2986/*
2987 * We drop cfq io contexts lazily, so we may find a dead one.
2988 */
dbecf3ab 2989static void
4ac845a2
JA
2990cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2991 struct cfq_io_context *cic)
dbecf3ab 2992{
4ac845a2
JA
2993 unsigned long flags;
2994
fc46379d 2995 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 2996 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 2997
4ac845a2
JA
2998 spin_lock_irqsave(&ioc->lock, flags);
2999
4faa3c81 3000 BUG_ON(ioc->ioc_data == cic);
597bc485 3001
80b15c73 3002 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3003 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3004 spin_unlock_irqrestore(&ioc->lock, flags);
3005
3006 cfq_cic_free(cic);
dbecf3ab
OH
3007}
3008
e2d74ac0 3009static struct cfq_io_context *
4ac845a2 3010cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3011{
e2d74ac0 3012 struct cfq_io_context *cic;
d6de8be7 3013 unsigned long flags;
e2d74ac0 3014
91fac317
VT
3015 if (unlikely(!ioc))
3016 return NULL;
3017
d6de8be7
JA
3018 rcu_read_lock();
3019
597bc485
JA
3020 /*
3021 * we maintain a last-hit cache, to avoid browsing over the tree
3022 */
4ac845a2 3023 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3024 if (cic && cic->key == cfqd) {
3025 rcu_read_unlock();
597bc485 3026 return cic;
d6de8be7 3027 }
597bc485 3028
4ac845a2 3029 do {
80b15c73 3030 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3031 rcu_read_unlock();
3032 if (!cic)
3033 break;
bca4b914 3034 if (unlikely(cic->key != cfqd)) {
4ac845a2 3035 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3036 rcu_read_lock();
4ac845a2 3037 continue;
dbecf3ab 3038 }
e2d74ac0 3039
d6de8be7 3040 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3041 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3042 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3043 break;
3044 } while (1);
e2d74ac0 3045
4ac845a2 3046 return cic;
e2d74ac0
JA
3047}
3048
4ac845a2
JA
3049/*
3050 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3051 * the process specific cfq io context when entered from the block layer.
3052 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3053 */
febffd61
JA
3054static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3055 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3056{
0261d688 3057 unsigned long flags;
4ac845a2 3058 int ret;
e2d74ac0 3059
4ac845a2
JA
3060 ret = radix_tree_preload(gfp_mask);
3061 if (!ret) {
3062 cic->ioc = ioc;
3063 cic->key = cfqd;
e2d74ac0 3064
4ac845a2
JA
3065 spin_lock_irqsave(&ioc->lock, flags);
3066 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3067 cfqd->cic_index, cic);
ffc4e759
JA
3068 if (!ret)
3069 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3070 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3071
4ac845a2
JA
3072 radix_tree_preload_end();
3073
3074 if (!ret) {
3075 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3076 list_add(&cic->queue_list, &cfqd->cic_list);
3077 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3078 }
e2d74ac0
JA
3079 }
3080
4ac845a2
JA
3081 if (ret)
3082 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3083
4ac845a2 3084 return ret;
e2d74ac0
JA
3085}
3086
1da177e4
LT
3087/*
3088 * Setup general io context and cfq io context. There can be several cfq
3089 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3090 * than one device managed by cfq.
1da177e4
LT
3091 */
3092static struct cfq_io_context *
e2d74ac0 3093cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3094{
22e2c507 3095 struct io_context *ioc = NULL;
1da177e4 3096 struct cfq_io_context *cic;
1da177e4 3097
22e2c507 3098 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3099
b5deef90 3100 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3101 if (!ioc)
3102 return NULL;
3103
4ac845a2 3104 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3105 if (cic)
3106 goto out;
1da177e4 3107
e2d74ac0
JA
3108 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3109 if (cic == NULL)
3110 goto err;
1da177e4 3111
4ac845a2
JA
3112 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3113 goto err_free;
3114
1da177e4 3115out:
fc46379d
JA
3116 smp_read_barrier_depends();
3117 if (unlikely(ioc->ioprio_changed))
3118 cfq_ioc_set_ioprio(ioc);
3119
24610333
VG
3120#ifdef CONFIG_CFQ_GROUP_IOSCHED
3121 if (unlikely(ioc->cgroup_changed))
3122 cfq_ioc_set_cgroup(ioc);
3123#endif
1da177e4 3124 return cic;
4ac845a2
JA
3125err_free:
3126 cfq_cic_free(cic);
1da177e4
LT
3127err:
3128 put_io_context(ioc);
3129 return NULL;
3130}
3131
22e2c507
JA
3132static void
3133cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3134{
aaf1228d
JA
3135 unsigned long elapsed = jiffies - cic->last_end_request;
3136 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3137
22e2c507
JA
3138 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3139 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3140 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3141}
1da177e4 3142
206dc69b 3143static void
b2c18e1e 3144cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3145 struct request *rq)
206dc69b 3146{
3dde36dd 3147 sector_t sdist = 0;
41647e7a 3148 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3149 if (cfqq->last_request_pos) {
3150 if (cfqq->last_request_pos < blk_rq_pos(rq))
3151 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3152 else
3153 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3154 }
206dc69b 3155
3dde36dd 3156 cfqq->seek_history <<= 1;
41647e7a
CZ
3157 if (blk_queue_nonrot(cfqd->queue))
3158 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3159 else
3160 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3161}
1da177e4 3162
22e2c507
JA
3163/*
3164 * Disable idle window if the process thinks too long or seeks so much that
3165 * it doesn't matter
3166 */
3167static void
3168cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3169 struct cfq_io_context *cic)
3170{
7b679138 3171 int old_idle, enable_idle;
1be92f2f 3172
0871714e
JA
3173 /*
3174 * Don't idle for async or idle io prio class
3175 */
3176 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3177 return;
3178
c265a7f4 3179 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3180
76280aff
CZ
3181 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3182 cfq_mark_cfqq_deep(cfqq);
3183
749ef9f8
CZ
3184 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3185 enable_idle = 0;
3186 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3187 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3188 enable_idle = 0;
3189 else if (sample_valid(cic->ttime_samples)) {
718eee05 3190 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3191 enable_idle = 0;
3192 else
3193 enable_idle = 1;
1da177e4
LT
3194 }
3195
7b679138
JA
3196 if (old_idle != enable_idle) {
3197 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3198 if (enable_idle)
3199 cfq_mark_cfqq_idle_window(cfqq);
3200 else
3201 cfq_clear_cfqq_idle_window(cfqq);
3202 }
22e2c507 3203}
1da177e4 3204
22e2c507
JA
3205/*
3206 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3207 * no or if we aren't sure, a 1 will cause a preempt.
3208 */
a6151c3a 3209static bool
22e2c507 3210cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3211 struct request *rq)
22e2c507 3212{
6d048f53 3213 struct cfq_queue *cfqq;
22e2c507 3214
6d048f53
JA
3215 cfqq = cfqd->active_queue;
3216 if (!cfqq)
a6151c3a 3217 return false;
22e2c507 3218
6d048f53 3219 if (cfq_class_idle(new_cfqq))
a6151c3a 3220 return false;
22e2c507
JA
3221
3222 if (cfq_class_idle(cfqq))
a6151c3a 3223 return true;
1e3335de 3224
875feb63
DS
3225 /*
3226 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3227 */
3228 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3229 return false;
3230
374f84ac
JA
3231 /*
3232 * if the new request is sync, but the currently running queue is
3233 * not, let the sync request have priority.
3234 */
5e705374 3235 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3236 return true;
1e3335de 3237
8682e1f1
VG
3238 if (new_cfqq->cfqg != cfqq->cfqg)
3239 return false;
3240
3241 if (cfq_slice_used(cfqq))
3242 return true;
3243
3244 /* Allow preemption only if we are idling on sync-noidle tree */
3245 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3246 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3247 new_cfqq->service_tree->count == 2 &&
3248 RB_EMPTY_ROOT(&cfqq->sort_list))
3249 return true;
3250
374f84ac
JA
3251 /*
3252 * So both queues are sync. Let the new request get disk time if
3253 * it's a metadata request and the current queue is doing regular IO.
3254 */
7b6d91da 3255 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3256 return true;
22e2c507 3257
3a9a3f6c
DS
3258 /*
3259 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3260 */
3261 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3262 return true;
3a9a3f6c 3263
d2d59e18
SL
3264 /* An idle queue should not be idle now for some reason */
3265 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3266 return true;
3267
1e3335de 3268 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3269 return false;
1e3335de
JA
3270
3271 /*
3272 * if this request is as-good as one we would expect from the
3273 * current cfqq, let it preempt
3274 */
e9ce335d 3275 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3276 return true;
1e3335de 3277
a6151c3a 3278 return false;
22e2c507
JA
3279}
3280
3281/*
3282 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3283 * let it have half of its nominal slice.
3284 */
3285static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3286{
f8ae6e3e
SL
3287 struct cfq_queue *old_cfqq = cfqd->active_queue;
3288
7b679138 3289 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3290 cfq_slice_expired(cfqd, 1);
22e2c507 3291
f8ae6e3e
SL
3292 /*
3293 * workload type is changed, don't save slice, otherwise preempt
3294 * doesn't happen
3295 */
3296 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3297 cfqq->cfqg->saved_workload_slice = 0;
3298
bf572256
JA
3299 /*
3300 * Put the new queue at the front of the of the current list,
3301 * so we know that it will be selected next.
3302 */
3303 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3304
3305 cfq_service_tree_add(cfqd, cfqq, 1);
167400d3 3306 __cfq_set_active_queue(cfqd, cfqq);
22e2c507
JA
3307}
3308
22e2c507 3309/*
5e705374 3310 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3311 * something we should do about it
3312 */
3313static void
5e705374
JA
3314cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3315 struct request *rq)
22e2c507 3316{
5e705374 3317 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3318
45333d5a 3319 cfqd->rq_queued++;
7b6d91da 3320 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3321 cfqq->meta_pending++;
3322
9c2c38a1 3323 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3324 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3325 cfq_update_idle_window(cfqd, cfqq, cic);
3326
b2c18e1e 3327 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3328
3329 if (cfqq == cfqd->active_queue) {
3330 /*
b029195d
JA
3331 * Remember that we saw a request from this process, but
3332 * don't start queuing just yet. Otherwise we risk seeing lots
3333 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3334 * and merging. If the request is already larger than a single
3335 * page, let it rip immediately. For that case we assume that
2d870722
JA
3336 * merging is already done. Ditto for a busy system that
3337 * has other work pending, don't risk delaying until the
3338 * idle timer unplug to continue working.
22e2c507 3339 */
d6ceb25e 3340 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3341 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3342 cfqd->busy_queues > 1) {
812df48d 3343 cfq_del_timer(cfqd, cfqq);
554554f6 3344 cfq_clear_cfqq_wait_request(cfqq);
1654e741 3345 __blk_run_queue(cfqd->queue, false);
a11cdaa7 3346 } else {
e98ef89b 3347 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3348 &cfqq->cfqg->blkg);
bf791937 3349 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3350 }
d6ceb25e 3351 }
5e705374 3352 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3353 /*
3354 * not the active queue - expire current slice if it is
3355 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3356 * has some old slice time left and is of higher priority or
3357 * this new queue is RT and the current one is BE
22e2c507
JA
3358 */
3359 cfq_preempt_queue(cfqd, cfqq);
1654e741 3360 __blk_run_queue(cfqd->queue, false);
22e2c507 3361 }
1da177e4
LT
3362}
3363
165125e1 3364static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3365{
b4878f24 3366 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3368
7b679138 3369 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3370 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3371
30996f40 3372 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3373 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3374 cfq_add_rq_rb(rq);
e98ef89b 3375 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3376 &cfqd->serving_group->blkg, rq_data_dir(rq),
3377 rq_is_sync(rq));
5e705374 3378 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3379}
3380
45333d5a
AC
3381/*
3382 * Update hw_tag based on peak queue depth over 50 samples under
3383 * sufficient load.
3384 */
3385static void cfq_update_hw_tag(struct cfq_data *cfqd)
3386{
1a1238a7
SL
3387 struct cfq_queue *cfqq = cfqd->active_queue;
3388
53c583d2
CZ
3389 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3390 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3391
3392 if (cfqd->hw_tag == 1)
3393 return;
45333d5a
AC
3394
3395 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3396 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3397 return;
3398
1a1238a7
SL
3399 /*
3400 * If active queue hasn't enough requests and can idle, cfq might not
3401 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3402 * case
3403 */
3404 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3405 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3406 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3407 return;
3408
45333d5a
AC
3409 if (cfqd->hw_tag_samples++ < 50)
3410 return;
3411
e459dd08 3412 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3413 cfqd->hw_tag = 1;
3414 else
3415 cfqd->hw_tag = 0;
45333d5a
AC
3416}
3417
7667aa06
VG
3418static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3419{
3420 struct cfq_io_context *cic = cfqd->active_cic;
3421
02a8f01b
JT
3422 /* If the queue already has requests, don't wait */
3423 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3424 return false;
3425
7667aa06
VG
3426 /* If there are other queues in the group, don't wait */
3427 if (cfqq->cfqg->nr_cfqq > 1)
3428 return false;
3429
3430 if (cfq_slice_used(cfqq))
3431 return true;
3432
3433 /* if slice left is less than think time, wait busy */
3434 if (cic && sample_valid(cic->ttime_samples)
3435 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3436 return true;
3437
3438 /*
3439 * If think times is less than a jiffy than ttime_mean=0 and above
3440 * will not be true. It might happen that slice has not expired yet
3441 * but will expire soon (4-5 ns) during select_queue(). To cover the
3442 * case where think time is less than a jiffy, mark the queue wait
3443 * busy if only 1 jiffy is left in the slice.
3444 */
3445 if (cfqq->slice_end - jiffies == 1)
3446 return true;
3447
3448 return false;
3449}
3450
165125e1 3451static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3452{
5e705374 3453 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3454 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3455 const int sync = rq_is_sync(rq);
b4878f24 3456 unsigned long now;
1da177e4 3457
b4878f24 3458 now = jiffies;
33659ebb
CH
3459 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3460 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3461
45333d5a
AC
3462 cfq_update_hw_tag(cfqd);
3463
53c583d2 3464 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3465 WARN_ON(!cfqq->dispatched);
53c583d2 3466 cfqd->rq_in_driver--;
6d048f53 3467 cfqq->dispatched--;
80bdf0c7 3468 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3469 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3470 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3471 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3472
53c583d2 3473 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3474
365722bb 3475 if (sync) {
5e705374 3476 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3477 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3478 cfqd->last_delayed_sync = now;
365722bb 3479 }
caaa5f9f
JA
3480
3481 /*
3482 * If this is the active queue, check if it needs to be expired,
3483 * or if we want to idle in case it has no pending requests.
3484 */
3485 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3486 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3487
44f7c160
JA
3488 if (cfq_cfqq_slice_new(cfqq)) {
3489 cfq_set_prio_slice(cfqd, cfqq);
3490 cfq_clear_cfqq_slice_new(cfqq);
3491 }
f75edf2d
VG
3492
3493 /*
7667aa06
VG
3494 * Should we wait for next request to come in before we expire
3495 * the queue.
f75edf2d 3496 */
7667aa06 3497 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3498 unsigned long extend_sl = cfqd->cfq_slice_idle;
3499 if (!cfqd->cfq_slice_idle)
3500 extend_sl = cfqd->cfq_group_idle;
3501 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3502 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3503 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3504 }
3505
a36e71f9 3506 /*
8e550632
CZ
3507 * Idling is not enabled on:
3508 * - expired queues
3509 * - idle-priority queues
3510 * - async queues
3511 * - queues with still some requests queued
3512 * - when there is a close cooperator
a36e71f9 3513 */
0871714e 3514 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3515 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3516 else if (sync && cfqq_empty &&
3517 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3518 cfq_arm_slice_timer(cfqd);
8e550632 3519 }
caaa5f9f 3520 }
6d048f53 3521
53c583d2 3522 if (!cfqd->rq_in_driver)
23e018a1 3523 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3524}
3525
22e2c507
JA
3526/*
3527 * we temporarily boost lower priority queues if they are holding fs exclusive
3528 * resources. they are boosted to normal prio (CLASS_BE/4)
3529 */
3530static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3531{
22e2c507
JA
3532 if (has_fs_excl()) {
3533 /*
3534 * boost idle prio on transactions that would lock out other
3535 * users of the filesystem
3536 */
3537 if (cfq_class_idle(cfqq))
3538 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3539 if (cfqq->ioprio > IOPRIO_NORM)
3540 cfqq->ioprio = IOPRIO_NORM;
3541 } else {
3542 /*
dddb7451 3543 * unboost the queue (if needed)
22e2c507 3544 */
dddb7451
CZ
3545 cfqq->ioprio_class = cfqq->org_ioprio_class;
3546 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3547 }
22e2c507 3548}
1da177e4 3549
89850f7e 3550static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3551{
1b379d8d 3552 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3553 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3554 return ELV_MQUEUE_MUST;
3b18152c 3555 }
1da177e4 3556
22e2c507 3557 return ELV_MQUEUE_MAY;
22e2c507
JA
3558}
3559
165125e1 3560static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3561{
3562 struct cfq_data *cfqd = q->elevator->elevator_data;
3563 struct task_struct *tsk = current;
91fac317 3564 struct cfq_io_context *cic;
22e2c507
JA
3565 struct cfq_queue *cfqq;
3566
3567 /*
3568 * don't force setup of a queue from here, as a call to may_queue
3569 * does not necessarily imply that a request actually will be queued.
3570 * so just lookup a possibly existing queue, or return 'may queue'
3571 * if that fails
3572 */
4ac845a2 3573 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3574 if (!cic)
3575 return ELV_MQUEUE_MAY;
3576
b0b78f81 3577 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3578 if (cfqq) {
fd0928df 3579 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3580 cfq_prio_boost(cfqq);
3581
89850f7e 3582 return __cfq_may_queue(cfqq);
22e2c507
JA
3583 }
3584
3585 return ELV_MQUEUE_MAY;
1da177e4
LT
3586}
3587
1da177e4
LT
3588/*
3589 * queue lock held here
3590 */
bb37b94c 3591static void cfq_put_request(struct request *rq)
1da177e4 3592{
5e705374 3593 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3594
5e705374 3595 if (cfqq) {
22e2c507 3596 const int rw = rq_data_dir(rq);
1da177e4 3597
22e2c507
JA
3598 BUG_ON(!cfqq->allocated[rw]);
3599 cfqq->allocated[rw]--;
1da177e4 3600
5e705374 3601 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3602
c186794d
MS
3603 rq->elevator_private[0] = NULL;
3604 rq->elevator_private[1] = NULL;
1da177e4 3605
7f1dc8a2
VG
3606 /* Put down rq reference on cfqg */
3607 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3608 rq->elevator_private[2] = NULL;
7f1dc8a2 3609
1da177e4
LT
3610 cfq_put_queue(cfqq);
3611 }
3612}
3613
df5fe3e8
JM
3614static struct cfq_queue *
3615cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3616 struct cfq_queue *cfqq)
3617{
3618 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3619 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3620 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3621 cfq_put_queue(cfqq);
3622 return cic_to_cfqq(cic, 1);
3623}
3624
e6c5bc73
JM
3625/*
3626 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3627 * was the last process referring to said cfqq.
3628 */
3629static struct cfq_queue *
3630split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3631{
3632 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3633 cfqq->pid = current->pid;
3634 cfq_clear_cfqq_coop(cfqq);
ae54abed 3635 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3636 return cfqq;
3637 }
3638
3639 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3640
3641 cfq_put_cooperator(cfqq);
3642
e6c5bc73
JM
3643 cfq_put_queue(cfqq);
3644 return NULL;
3645}
1da177e4 3646/*
22e2c507 3647 * Allocate cfq data structures associated with this request.
1da177e4 3648 */
22e2c507 3649static int
165125e1 3650cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3651{
3652 struct cfq_data *cfqd = q->elevator->elevator_data;
3653 struct cfq_io_context *cic;
3654 const int rw = rq_data_dir(rq);
a6151c3a 3655 const bool is_sync = rq_is_sync(rq);
22e2c507 3656 struct cfq_queue *cfqq;
1da177e4
LT
3657 unsigned long flags;
3658
3659 might_sleep_if(gfp_mask & __GFP_WAIT);
3660
e2d74ac0 3661 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3662
1da177e4
LT
3663 spin_lock_irqsave(q->queue_lock, flags);
3664
22e2c507
JA
3665 if (!cic)
3666 goto queue_fail;
3667
e6c5bc73 3668new_queue:
91fac317 3669 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3670 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3671 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3672 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3673 } else {
e6c5bc73
JM
3674 /*
3675 * If the queue was seeky for too long, break it apart.
3676 */
ae54abed 3677 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3678 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3679 cfqq = split_cfqq(cic, cfqq);
3680 if (!cfqq)
3681 goto new_queue;
3682 }
3683
df5fe3e8
JM
3684 /*
3685 * Check to see if this queue is scheduled to merge with
3686 * another, closely cooperating queue. The merging of
3687 * queues happens here as it must be done in process context.
3688 * The reference on new_cfqq was taken in merge_cfqqs.
3689 */
3690 if (cfqq->new_cfqq)
3691 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3692 }
1da177e4
LT
3693
3694 cfqq->allocated[rw]++;
1da177e4 3695
6fae9c25 3696 cfqq->ref++;
c186794d
MS
3697 rq->elevator_private[0] = cic;
3698 rq->elevator_private[1] = cfqq;
3699 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
93803e01 3700 spin_unlock_irqrestore(q->queue_lock, flags);
5e705374 3701 return 0;
1da177e4 3702
22e2c507
JA
3703queue_fail:
3704 if (cic)
3705 put_io_context(cic->ioc);
89850f7e 3706
23e018a1 3707 cfq_schedule_dispatch(cfqd);
1da177e4 3708 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3709 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3710 return 1;
3711}
3712
65f27f38 3713static void cfq_kick_queue(struct work_struct *work)
22e2c507 3714{
65f27f38 3715 struct cfq_data *cfqd =
23e018a1 3716 container_of(work, struct cfq_data, unplug_work);
165125e1 3717 struct request_queue *q = cfqd->queue;
22e2c507 3718
40bb54d1 3719 spin_lock_irq(q->queue_lock);
1654e741 3720 __blk_run_queue(cfqd->queue, false);
40bb54d1 3721 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3722}
3723
3724/*
3725 * Timer running if the active_queue is currently idling inside its time slice
3726 */
3727static void cfq_idle_slice_timer(unsigned long data)
3728{
3729 struct cfq_data *cfqd = (struct cfq_data *) data;
3730 struct cfq_queue *cfqq;
3731 unsigned long flags;
3c6bd2f8 3732 int timed_out = 1;
22e2c507 3733
7b679138
JA
3734 cfq_log(cfqd, "idle timer fired");
3735
22e2c507
JA
3736 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3737
fe094d98
JA
3738 cfqq = cfqd->active_queue;
3739 if (cfqq) {
3c6bd2f8
JA
3740 timed_out = 0;
3741
b029195d
JA
3742 /*
3743 * We saw a request before the queue expired, let it through
3744 */
3745 if (cfq_cfqq_must_dispatch(cfqq))
3746 goto out_kick;
3747
22e2c507
JA
3748 /*
3749 * expired
3750 */
44f7c160 3751 if (cfq_slice_used(cfqq))
22e2c507
JA
3752 goto expire;
3753
3754 /*
3755 * only expire and reinvoke request handler, if there are
3756 * other queues with pending requests
3757 */
caaa5f9f 3758 if (!cfqd->busy_queues)
22e2c507 3759 goto out_cont;
22e2c507
JA
3760
3761 /*
3762 * not expired and it has a request pending, let it dispatch
3763 */
75e50984 3764 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3765 goto out_kick;
76280aff
CZ
3766
3767 /*
3768 * Queue depth flag is reset only when the idle didn't succeed
3769 */
3770 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3771 }
3772expire:
e5ff082e 3773 cfq_slice_expired(cfqd, timed_out);
22e2c507 3774out_kick:
23e018a1 3775 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3776out_cont:
3777 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3778}
3779
3b18152c
JA
3780static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3781{
3782 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3783 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3784}
22e2c507 3785
c2dea2d1
VT
3786static void cfq_put_async_queues(struct cfq_data *cfqd)
3787{
3788 int i;
3789
3790 for (i = 0; i < IOPRIO_BE_NR; i++) {
3791 if (cfqd->async_cfqq[0][i])
3792 cfq_put_queue(cfqd->async_cfqq[0][i]);
3793 if (cfqd->async_cfqq[1][i])
3794 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3795 }
2389d1ef
ON
3796
3797 if (cfqd->async_idle_cfqq)
3798 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3799}
3800
bb729bc9
JA
3801static void cfq_cfqd_free(struct rcu_head *head)
3802{
3803 kfree(container_of(head, struct cfq_data, rcu));
3804}
3805
b374d18a 3806static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3807{
22e2c507 3808 struct cfq_data *cfqd = e->elevator_data;
165125e1 3809 struct request_queue *q = cfqd->queue;
22e2c507 3810
3b18152c 3811 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3812
d9ff4187 3813 spin_lock_irq(q->queue_lock);
e2d74ac0 3814
d9ff4187 3815 if (cfqd->active_queue)
e5ff082e 3816 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3817
3818 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3819 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3820 struct cfq_io_context,
3821 queue_list);
89850f7e
JA
3822
3823 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3824 }
e2d74ac0 3825
c2dea2d1 3826 cfq_put_async_queues(cfqd);
b1c35769 3827 cfq_release_cfq_groups(cfqd);
e98ef89b 3828 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3829
d9ff4187 3830 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3831
3832 cfq_shutdown_timer_wq(cfqd);
3833
80b15c73
KK
3834 spin_lock(&cic_index_lock);
3835 ida_remove(&cic_index_ida, cfqd->cic_index);
3836 spin_unlock(&cic_index_lock);
3837
b1c35769 3838 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3839 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3840}
3841
80b15c73
KK
3842static int cfq_alloc_cic_index(void)
3843{
3844 int index, error;
3845
3846 do {
3847 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3848 return -ENOMEM;
3849
3850 spin_lock(&cic_index_lock);
3851 error = ida_get_new(&cic_index_ida, &index);
3852 spin_unlock(&cic_index_lock);
3853 if (error && error != -EAGAIN)
3854 return error;
3855 } while (error);
3856
3857 return index;
3858}
3859
165125e1 3860static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3861{
3862 struct cfq_data *cfqd;
718eee05 3863 int i, j;
cdb16e8f 3864 struct cfq_group *cfqg;
615f0259 3865 struct cfq_rb_root *st;
1da177e4 3866
80b15c73
KK
3867 i = cfq_alloc_cic_index();
3868 if (i < 0)
3869 return NULL;
3870
94f6030c 3871 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3872 if (!cfqd)
bc1c1169 3873 return NULL;
1da177e4 3874
30d7b944
SL
3875 /*
3876 * Don't need take queue_lock in the routine, since we are
3877 * initializing the ioscheduler, and nobody is using cfqd
3878 */
80b15c73
KK
3879 cfqd->cic_index = i;
3880
1fa8f6d6
VG
3881 /* Init root service tree */
3882 cfqd->grp_service_tree = CFQ_RB_ROOT;
3883
cdb16e8f
VG
3884 /* Init root group */
3885 cfqg = &cfqd->root_group;
615f0259
VG
3886 for_each_cfqg_st(cfqg, i, j, st)
3887 *st = CFQ_RB_ROOT;
1fa8f6d6 3888 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3889
25bc6b07
VG
3890 /* Give preference to root group over other groups */
3891 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3892
25fb5169 3893#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3894 /*
3895 * Take a reference to root group which we never drop. This is just
3896 * to make sure that cfq_put_cfqg() does not try to kfree root group
3897 */
329a6781 3898 cfqg->ref = 1;
dcf097b2 3899 rcu_read_lock();
e98ef89b
VG
3900 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3901 (void *)cfqd, 0);
dcf097b2 3902 rcu_read_unlock();
25fb5169 3903#endif
26a2ac00
JA
3904 /*
3905 * Not strictly needed (since RB_ROOT just clears the node and we
3906 * zeroed cfqd on alloc), but better be safe in case someone decides
3907 * to add magic to the rb code
3908 */
3909 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3910 cfqd->prio_trees[i] = RB_ROOT;
3911
6118b70b
JA
3912 /*
3913 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3914 * Grab a permanent reference to it, so that the normal code flow
3915 * will not attempt to free it.
3916 */
3917 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3918 cfqd->oom_cfqq.ref++;
cdb16e8f 3919 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3920
d9ff4187 3921 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3922
1da177e4 3923 cfqd->queue = q;
1da177e4 3924
22e2c507
JA
3925 init_timer(&cfqd->idle_slice_timer);
3926 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3927 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3928
23e018a1 3929 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3930
1da177e4 3931 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3932 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3933 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3934 cfqd->cfq_back_max = cfq_back_max;
3935 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3936 cfqd->cfq_slice[0] = cfq_slice_async;
3937 cfqd->cfq_slice[1] = cfq_slice_sync;
3938 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3939 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3940 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3941 cfqd->cfq_latency = 1;
e459dd08 3942 cfqd->hw_tag = -1;
edc71131
CZ
3943 /*
3944 * we optimistically start assuming sync ops weren't delayed in last
3945 * second, in order to have larger depth for async operations.
3946 */
573412b2 3947 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3948 return cfqd;
1da177e4
LT
3949}
3950
3951static void cfq_slab_kill(void)
3952{
d6de8be7
JA
3953 /*
3954 * Caller already ensured that pending RCU callbacks are completed,
3955 * so we should have no busy allocations at this point.
3956 */
1da177e4
LT
3957 if (cfq_pool)
3958 kmem_cache_destroy(cfq_pool);
3959 if (cfq_ioc_pool)
3960 kmem_cache_destroy(cfq_ioc_pool);
3961}
3962
3963static int __init cfq_slab_setup(void)
3964{
0a31bd5f 3965 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3966 if (!cfq_pool)
3967 goto fail;
3968
34e6bbf2 3969 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3970 if (!cfq_ioc_pool)
3971 goto fail;
3972
3973 return 0;
3974fail:
3975 cfq_slab_kill();
3976 return -ENOMEM;
3977}
3978
1da177e4
LT
3979/*
3980 * sysfs parts below -->
3981 */
1da177e4
LT
3982static ssize_t
3983cfq_var_show(unsigned int var, char *page)
3984{
3985 return sprintf(page, "%d\n", var);
3986}
3987
3988static ssize_t
3989cfq_var_store(unsigned int *var, const char *page, size_t count)
3990{
3991 char *p = (char *) page;
3992
3993 *var = simple_strtoul(p, &p, 10);
3994 return count;
3995}
3996
1da177e4 3997#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3998static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3999{ \
3d1ab40f 4000 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4001 unsigned int __data = __VAR; \
4002 if (__CONV) \
4003 __data = jiffies_to_msecs(__data); \
4004 return cfq_var_show(__data, (page)); \
4005}
4006SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4007SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4008SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4009SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4010SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4011SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4012SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4013SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4014SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4015SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4016SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4017#undef SHOW_FUNCTION
4018
4019#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4020static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4021{ \
3d1ab40f 4022 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4023 unsigned int __data; \
4024 int ret = cfq_var_store(&__data, (page), count); \
4025 if (__data < (MIN)) \
4026 __data = (MIN); \
4027 else if (__data > (MAX)) \
4028 __data = (MAX); \
4029 if (__CONV) \
4030 *(__PTR) = msecs_to_jiffies(__data); \
4031 else \
4032 *(__PTR) = __data; \
4033 return ret; \
4034}
4035STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4036STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4037 UINT_MAX, 1);
4038STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4039 UINT_MAX, 1);
e572ec7e 4040STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4041STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4042 UINT_MAX, 0);
22e2c507 4043STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4044STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4045STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4046STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4047STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4048 UINT_MAX, 0);
963b72fc 4049STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4050#undef STORE_FUNCTION
4051
e572ec7e
AV
4052#define CFQ_ATTR(name) \
4053 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4054
4055static struct elv_fs_entry cfq_attrs[] = {
4056 CFQ_ATTR(quantum),
e572ec7e
AV
4057 CFQ_ATTR(fifo_expire_sync),
4058 CFQ_ATTR(fifo_expire_async),
4059 CFQ_ATTR(back_seek_max),
4060 CFQ_ATTR(back_seek_penalty),
4061 CFQ_ATTR(slice_sync),
4062 CFQ_ATTR(slice_async),
4063 CFQ_ATTR(slice_async_rq),
4064 CFQ_ATTR(slice_idle),
80bdf0c7 4065 CFQ_ATTR(group_idle),
963b72fc 4066 CFQ_ATTR(low_latency),
e572ec7e 4067 __ATTR_NULL
1da177e4
LT
4068};
4069
1da177e4
LT
4070static struct elevator_type iosched_cfq = {
4071 .ops = {
4072 .elevator_merge_fn = cfq_merge,
4073 .elevator_merged_fn = cfq_merged_request,
4074 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4075 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4076 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4077 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4078 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4079 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4080 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4081 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4082 .elevator_former_req_fn = elv_rb_former_request,
4083 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4084 .elevator_set_req_fn = cfq_set_request,
4085 .elevator_put_req_fn = cfq_put_request,
4086 .elevator_may_queue_fn = cfq_may_queue,
4087 .elevator_init_fn = cfq_init_queue,
4088 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4089 .trim = cfq_free_io_context,
1da177e4 4090 },
3d1ab40f 4091 .elevator_attrs = cfq_attrs,
1da177e4
LT
4092 .elevator_name = "cfq",
4093 .elevator_owner = THIS_MODULE,
4094};
4095
3e252066
VG
4096#ifdef CONFIG_CFQ_GROUP_IOSCHED
4097static struct blkio_policy_type blkio_policy_cfq = {
4098 .ops = {
4099 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4100 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4101 },
062a644d 4102 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4103};
4104#else
4105static struct blkio_policy_type blkio_policy_cfq;
4106#endif
4107
1da177e4
LT
4108static int __init cfq_init(void)
4109{
22e2c507
JA
4110 /*
4111 * could be 0 on HZ < 1000 setups
4112 */
4113 if (!cfq_slice_async)
4114 cfq_slice_async = 1;
4115 if (!cfq_slice_idle)
4116 cfq_slice_idle = 1;
4117
80bdf0c7
VG
4118#ifdef CONFIG_CFQ_GROUP_IOSCHED
4119 if (!cfq_group_idle)
4120 cfq_group_idle = 1;
4121#else
4122 cfq_group_idle = 0;
4123#endif
1da177e4
LT
4124 if (cfq_slab_setup())
4125 return -ENOMEM;
4126
2fdd82bd 4127 elv_register(&iosched_cfq);
3e252066 4128 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4129
2fdd82bd 4130 return 0;
1da177e4
LT
4131}
4132
4133static void __exit cfq_exit(void)
4134{
6e9a4738 4135 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4136 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4137 elv_unregister(&iosched_cfq);
334e94de 4138 ioc_gone = &all_gone;
fba82272
OH
4139 /* ioc_gone's update must be visible before reading ioc_count */
4140 smp_wmb();
d6de8be7
JA
4141
4142 /*
4143 * this also protects us from entering cfq_slab_kill() with
4144 * pending RCU callbacks
4145 */
245b2e70 4146 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4147 wait_for_completion(&all_gone);
80b15c73 4148 ida_destroy(&cic_index_ida);
83521d3e 4149 cfq_slab_kill();
1da177e4
LT
4150}
4151
4152module_init(cfq_init);
4153module_exit(cfq_exit);
4154
4155MODULE_AUTHOR("Jens Axboe");
4156MODULE_LICENSE("GPL");
4157MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");