]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
blktrace: perform cleanup after setup error
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
22e2c507 45#define CFQ_SLICE_SCALE (5)
45333d5a 46#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 47#define CFQ_SERVICE_SHIFT 12
22e2c507 48
3dde36dd 49#define CFQQ_SEEK_THR (sector_t)(8 * 100)
41647e7a 50#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 51#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b 68#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 69#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 70
cc09e299
JA
71/*
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
76 */
77struct cfq_rb_root {
78 struct rb_root rb;
79 struct rb_node *left;
aa6f6a3d 80 unsigned count;
1fa8f6d6 81 u64 min_vdisktime;
25bc6b07 82 struct rb_node *active;
58ff82f3 83 unsigned total_weight;
cc09e299 84};
1fa8f6d6 85#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 86
6118b70b
JA
87/*
88 * Per process-grouping structure
89 */
90struct cfq_queue {
91 /* reference count */
92 atomic_t ref;
93 /* various state flags, see below */
94 unsigned int flags;
95 /* parent cfq_data */
96 struct cfq_data *cfqd;
97 /* service_tree member */
98 struct rb_node rb_node;
99 /* service_tree key */
100 unsigned long rb_key;
101 /* prio tree member */
102 struct rb_node p_node;
103 /* prio tree root we belong to, if any */
104 struct rb_root *p_root;
105 /* sorted list of pending requests */
106 struct rb_root sort_list;
107 /* if fifo isn't expired, next request to serve */
108 struct request *next_rq;
109 /* requests queued in sort_list */
110 int queued[2];
111 /* currently allocated requests */
112 int allocated[2];
113 /* fifo list of requests in sort_list */
114 struct list_head fifo;
115
dae739eb
VG
116 /* time when queue got scheduled in to dispatch first request. */
117 unsigned long dispatch_start;
f75edf2d 118 unsigned int allocated_slice;
c4081ba5 119 unsigned int slice_dispatch;
dae739eb
VG
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
6118b70b
JA
122 unsigned long slice_end;
123 long slice_resid;
6118b70b
JA
124
125 /* pending metadata requests */
126 int meta_pending;
127 /* number of requests that are on the dispatch list or inside driver */
128 int dispatched;
129
130 /* io prio of this group */
131 unsigned short ioprio, org_ioprio;
132 unsigned short ioprio_class, org_ioprio_class;
133
c4081ba5
RK
134 pid_t pid;
135
3dde36dd 136 u32 seek_history;
b2c18e1e
JM
137 sector_t last_request_pos;
138
aa6f6a3d 139 struct cfq_rb_root *service_tree;
df5fe3e8 140 struct cfq_queue *new_cfqq;
cdb16e8f 141 struct cfq_group *cfqg;
ae30c286 142 struct cfq_group *orig_cfqg;
22084190
VG
143 /* Sectors dispatched in current dispatch round */
144 unsigned long nr_sectors;
6118b70b
JA
145};
146
c0324a02 147/*
718eee05 148 * First index in the service_trees.
c0324a02
CZ
149 * IDLE is handled separately, so it has negative index
150 */
151enum wl_prio_t {
c0324a02 152 BE_WORKLOAD = 0,
615f0259
VG
153 RT_WORKLOAD = 1,
154 IDLE_WORKLOAD = 2,
c0324a02
CZ
155};
156
718eee05
CZ
157/*
158 * Second index in the service_trees.
159 */
160enum wl_type_t {
161 ASYNC_WORKLOAD = 0,
162 SYNC_NOIDLE_WORKLOAD = 1,
163 SYNC_WORKLOAD = 2
164};
165
cdb16e8f
VG
166/* This is per cgroup per device grouping structure */
167struct cfq_group {
1fa8f6d6
VG
168 /* group service_tree member */
169 struct rb_node rb_node;
170
171 /* group service_tree key */
172 u64 vdisktime;
25bc6b07 173 unsigned int weight;
1fa8f6d6
VG
174 bool on_st;
175
176 /* number of cfqq currently on this group */
177 int nr_cfqq;
178
58ff82f3
VG
179 /* Per group busy queus average. Useful for workload slice calc. */
180 unsigned int busy_queues_avg[2];
cdb16e8f
VG
181 /*
182 * rr lists of queues with requests, onle rr for each priority class.
183 * Counts are embedded in the cfq_rb_root
184 */
185 struct cfq_rb_root service_trees[2][3];
186 struct cfq_rb_root service_tree_idle;
dae739eb
VG
187
188 unsigned long saved_workload_slice;
189 enum wl_type_t saved_workload;
190 enum wl_prio_t saved_serving_prio;
25fb5169
VG
191 struct blkio_group blkg;
192#ifdef CONFIG_CFQ_GROUP_IOSCHED
193 struct hlist_node cfqd_node;
b1c35769 194 atomic_t ref;
25fb5169 195#endif
cdb16e8f 196};
718eee05 197
22e2c507
JA
198/*
199 * Per block device queue structure
200 */
1da177e4 201struct cfq_data {
165125e1 202 struct request_queue *queue;
1fa8f6d6
VG
203 /* Root service tree for cfq_groups */
204 struct cfq_rb_root grp_service_tree;
cdb16e8f 205 struct cfq_group root_group;
22e2c507 206
c0324a02
CZ
207 /*
208 * The priority currently being served
22e2c507 209 */
c0324a02 210 enum wl_prio_t serving_prio;
718eee05
CZ
211 enum wl_type_t serving_type;
212 unsigned long workload_expires;
cdb16e8f 213 struct cfq_group *serving_group;
8e550632 214 bool noidle_tree_requires_idle;
a36e71f9
JA
215
216 /*
217 * Each priority tree is sorted by next_request position. These
218 * trees are used when determining if two or more queues are
219 * interleaving requests (see cfq_close_cooperator).
220 */
221 struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
22e2c507
JA
223 unsigned int busy_queues;
224
53c583d2
CZ
225 int rq_in_driver;
226 int rq_in_flight[2];
45333d5a
AC
227
228 /*
229 * queue-depth detection
230 */
231 int rq_queued;
25776e35 232 int hw_tag;
e459dd08
CZ
233 /*
234 * hw_tag can be
235 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237 * 0 => no NCQ
238 */
239 int hw_tag_est_depth;
240 unsigned int hw_tag_samples;
1da177e4 241
22e2c507
JA
242 /*
243 * idle window management
244 */
245 struct timer_list idle_slice_timer;
23e018a1 246 struct work_struct unplug_work;
1da177e4 247
22e2c507
JA
248 struct cfq_queue *active_queue;
249 struct cfq_io_context *active_cic;
22e2c507 250
c2dea2d1
VT
251 /*
252 * async queue for each priority case
253 */
254 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255 struct cfq_queue *async_idle_cfqq;
15c31be4 256
6d048f53 257 sector_t last_position;
1da177e4 258
1da177e4
LT
259 /*
260 * tunables, see top of file
261 */
262 unsigned int cfq_quantum;
22e2c507 263 unsigned int cfq_fifo_expire[2];
1da177e4
LT
264 unsigned int cfq_back_penalty;
265 unsigned int cfq_back_max;
22e2c507
JA
266 unsigned int cfq_slice[2];
267 unsigned int cfq_slice_async_rq;
268 unsigned int cfq_slice_idle;
963b72fc 269 unsigned int cfq_latency;
ae30c286 270 unsigned int cfq_group_isolation;
d9ff4187
AV
271
272 struct list_head cic_list;
1da177e4 273
6118b70b
JA
274 /*
275 * Fallback dummy cfqq for extreme OOM conditions
276 */
277 struct cfq_queue oom_cfqq;
365722bb 278
573412b2 279 unsigned long last_delayed_sync;
25fb5169
VG
280
281 /* List of cfq groups being managed on this device*/
282 struct hlist_head cfqg_list;
bb729bc9 283 struct rcu_head rcu;
1da177e4
LT
284};
285
25fb5169
VG
286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
cdb16e8f
VG
288static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289 enum wl_prio_t prio,
65b32a57 290 enum wl_type_t type)
c0324a02 291{
1fa8f6d6
VG
292 if (!cfqg)
293 return NULL;
294
c0324a02 295 if (prio == IDLE_WORKLOAD)
cdb16e8f 296 return &cfqg->service_tree_idle;
c0324a02 297
cdb16e8f 298 return &cfqg->service_trees[prio][type];
c0324a02
CZ
299}
300
3b18152c 301enum cfqq_state_flags {
b0b8d749
JA
302 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
303 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 304 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 305 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
306 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
307 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
308 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 309 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 310 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 311 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 312 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 313 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 314 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
315};
316
317#define CFQ_CFQQ_FNS(name) \
318static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319{ \
fe094d98 320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
321} \
322static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323{ \
fe094d98 324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
325} \
326static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327{ \
fe094d98 328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
329}
330
331CFQ_CFQQ_FNS(on_rr);
332CFQ_CFQQ_FNS(wait_request);
b029195d 333CFQ_CFQQ_FNS(must_dispatch);
3b18152c 334CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
335CFQ_CFQQ_FNS(fifo_expire);
336CFQ_CFQQ_FNS(idle_window);
337CFQ_CFQQ_FNS(prio_changed);
44f7c160 338CFQ_CFQQ_FNS(slice_new);
91fac317 339CFQ_CFQQ_FNS(sync);
a36e71f9 340CFQ_CFQQ_FNS(coop);
ae54abed 341CFQ_CFQQ_FNS(split_coop);
76280aff 342CFQ_CFQQ_FNS(deep);
f75edf2d 343CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
344#undef CFQ_CFQQ_FNS
345
2868ef7b
VG
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
7b679138
JA
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
7b679138
JA
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
615f0259
VG
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
c0324a02
CZ
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
718eee05
CZ
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
58ff82f3
VG
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
c0324a02
CZ
397{
398 if (wl == IDLE_WORKLOAD)
cdb16e8f 399 return cfqg->service_tree_idle.count;
c0324a02 400
cdb16e8f
VG
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
404}
405
f26bd1f0
VG
406static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407 struct cfq_group *cfqg)
408{
409 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411}
412
165125e1 413static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 414static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 415 struct io_context *, gfp_t);
4ac845a2 416static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
417 struct io_context *);
418
419static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 420 bool is_sync)
91fac317 421{
a6151c3a 422 return cic->cfqq[is_sync];
91fac317
VT
423}
424
425static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 426 struct cfq_queue *cfqq, bool is_sync)
91fac317 427{
a6151c3a 428 cic->cfqq[is_sync] = cfqq;
91fac317
VT
429}
430
431/*
432 * We regard a request as SYNC, if it's either a read or has the SYNC bit
433 * set (in which case it could also be direct WRITE).
434 */
a6151c3a 435static inline bool cfq_bio_sync(struct bio *bio)
91fac317 436{
a6151c3a 437 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 438}
1da177e4 439
99f95e52
AM
440/*
441 * scheduler run of queue, if there are requests pending and no one in the
442 * driver that will restart queueing
443 */
23e018a1 444static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 445{
7b679138
JA
446 if (cfqd->busy_queues) {
447 cfq_log(cfqd, "schedule dispatch");
23e018a1 448 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 449 }
99f95e52
AM
450}
451
165125e1 452static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
453{
454 struct cfq_data *cfqd = q->elevator->elevator_data;
455
f04a6424 456 return !cfqd->rq_queued;
99f95e52
AM
457}
458
44f7c160
JA
459/*
460 * Scale schedule slice based on io priority. Use the sync time slice only
461 * if a queue is marked sync and has sync io queued. A sync queue with async
462 * io only, should not get full sync slice length.
463 */
a6151c3a 464static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 465 unsigned short prio)
44f7c160 466{
d9e7620e 467 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 468
d9e7620e
JA
469 WARN_ON(prio >= IOPRIO_BE_NR);
470
471 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
472}
44f7c160 473
d9e7620e
JA
474static inline int
475cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
476{
477 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
478}
479
25bc6b07
VG
480static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
481{
482 u64 d = delta << CFQ_SERVICE_SHIFT;
483
484 d = d * BLKIO_WEIGHT_DEFAULT;
485 do_div(d, cfqg->weight);
486 return d;
487}
488
489static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
490{
491 s64 delta = (s64)(vdisktime - min_vdisktime);
492 if (delta > 0)
493 min_vdisktime = vdisktime;
494
495 return min_vdisktime;
496}
497
498static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
499{
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta < 0)
502 min_vdisktime = vdisktime;
503
504 return min_vdisktime;
505}
506
507static void update_min_vdisktime(struct cfq_rb_root *st)
508{
509 u64 vdisktime = st->min_vdisktime;
510 struct cfq_group *cfqg;
511
512 if (st->active) {
513 cfqg = rb_entry_cfqg(st->active);
514 vdisktime = cfqg->vdisktime;
515 }
516
517 if (st->left) {
518 cfqg = rb_entry_cfqg(st->left);
519 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
520 }
521
522 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
523}
524
5db5d642
CZ
525/*
526 * get averaged number of queues of RT/BE priority.
527 * average is updated, with a formula that gives more weight to higher numbers,
528 * to quickly follows sudden increases and decrease slowly
529 */
530
58ff82f3
VG
531static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
532 struct cfq_group *cfqg, bool rt)
5869619c 533{
5db5d642
CZ
534 unsigned min_q, max_q;
535 unsigned mult = cfq_hist_divisor - 1;
536 unsigned round = cfq_hist_divisor / 2;
58ff82f3 537 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 538
58ff82f3
VG
539 min_q = min(cfqg->busy_queues_avg[rt], busy);
540 max_q = max(cfqg->busy_queues_avg[rt], busy);
541 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 542 cfq_hist_divisor;
58ff82f3
VG
543 return cfqg->busy_queues_avg[rt];
544}
545
546static inline unsigned
547cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
548{
549 struct cfq_rb_root *st = &cfqd->grp_service_tree;
550
551 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
552}
553
44f7c160
JA
554static inline void
555cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556{
5db5d642
CZ
557 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
558 if (cfqd->cfq_latency) {
58ff82f3
VG
559 /*
560 * interested queues (we consider only the ones with the same
561 * priority class in the cfq group)
562 */
563 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
564 cfq_class_rt(cfqq));
5db5d642
CZ
565 unsigned sync_slice = cfqd->cfq_slice[1];
566 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
567 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
568
569 if (expect_latency > group_slice) {
5db5d642
CZ
570 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
571 /* scale low_slice according to IO priority
572 * and sync vs async */
573 unsigned low_slice =
574 min(slice, base_low_slice * slice / sync_slice);
575 /* the adapted slice value is scaled to fit all iqs
576 * into the target latency */
58ff82f3 577 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
578 low_slice);
579 }
580 }
dae739eb 581 cfqq->slice_start = jiffies;
5db5d642 582 cfqq->slice_end = jiffies + slice;
f75edf2d 583 cfqq->allocated_slice = slice;
7b679138 584 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
585}
586
587/*
588 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
589 * isn't valid until the first request from the dispatch is activated
590 * and the slice time set.
591 */
a6151c3a 592static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
593{
594 if (cfq_cfqq_slice_new(cfqq))
595 return 0;
596 if (time_before(jiffies, cfqq->slice_end))
597 return 0;
598
599 return 1;
600}
601
1da177e4 602/*
5e705374 603 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 604 * We choose the request that is closest to the head right now. Distance
e8a99053 605 * behind the head is penalized and only allowed to a certain extent.
1da177e4 606 */
5e705374 607static struct request *
cf7c25cf 608cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 609{
cf7c25cf 610 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 611 unsigned long back_max;
e8a99053
AM
612#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
613#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
614 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 615
5e705374
JA
616 if (rq1 == NULL || rq1 == rq2)
617 return rq2;
618 if (rq2 == NULL)
619 return rq1;
9c2c38a1 620
5e705374
JA
621 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
622 return rq1;
623 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
624 return rq2;
374f84ac
JA
625 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
626 return rq1;
627 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
628 return rq2;
1da177e4 629
83096ebf
TH
630 s1 = blk_rq_pos(rq1);
631 s2 = blk_rq_pos(rq2);
1da177e4 632
1da177e4
LT
633 /*
634 * by definition, 1KiB is 2 sectors
635 */
636 back_max = cfqd->cfq_back_max * 2;
637
638 /*
639 * Strict one way elevator _except_ in the case where we allow
640 * short backward seeks which are biased as twice the cost of a
641 * similar forward seek.
642 */
643 if (s1 >= last)
644 d1 = s1 - last;
645 else if (s1 + back_max >= last)
646 d1 = (last - s1) * cfqd->cfq_back_penalty;
647 else
e8a99053 648 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
649
650 if (s2 >= last)
651 d2 = s2 - last;
652 else if (s2 + back_max >= last)
653 d2 = (last - s2) * cfqd->cfq_back_penalty;
654 else
e8a99053 655 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
656
657 /* Found required data */
e8a99053
AM
658
659 /*
660 * By doing switch() on the bit mask "wrap" we avoid having to
661 * check two variables for all permutations: --> faster!
662 */
663 switch (wrap) {
5e705374 664 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 665 if (d1 < d2)
5e705374 666 return rq1;
e8a99053 667 else if (d2 < d1)
5e705374 668 return rq2;
e8a99053
AM
669 else {
670 if (s1 >= s2)
5e705374 671 return rq1;
e8a99053 672 else
5e705374 673 return rq2;
e8a99053 674 }
1da177e4 675
e8a99053 676 case CFQ_RQ2_WRAP:
5e705374 677 return rq1;
e8a99053 678 case CFQ_RQ1_WRAP:
5e705374
JA
679 return rq2;
680 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
681 default:
682 /*
683 * Since both rqs are wrapped,
684 * start with the one that's further behind head
685 * (--> only *one* back seek required),
686 * since back seek takes more time than forward.
687 */
688 if (s1 <= s2)
5e705374 689 return rq1;
1da177e4 690 else
5e705374 691 return rq2;
1da177e4
LT
692 }
693}
694
498d3aa2
JA
695/*
696 * The below is leftmost cache rbtree addon
697 */
0871714e 698static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 699{
615f0259
VG
700 /* Service tree is empty */
701 if (!root->count)
702 return NULL;
703
cc09e299
JA
704 if (!root->left)
705 root->left = rb_first(&root->rb);
706
0871714e
JA
707 if (root->left)
708 return rb_entry(root->left, struct cfq_queue, rb_node);
709
710 return NULL;
cc09e299
JA
711}
712
1fa8f6d6
VG
713static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
714{
715 if (!root->left)
716 root->left = rb_first(&root->rb);
717
718 if (root->left)
719 return rb_entry_cfqg(root->left);
720
721 return NULL;
722}
723
a36e71f9
JA
724static void rb_erase_init(struct rb_node *n, struct rb_root *root)
725{
726 rb_erase(n, root);
727 RB_CLEAR_NODE(n);
728}
729
cc09e299
JA
730static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
731{
732 if (root->left == n)
733 root->left = NULL;
a36e71f9 734 rb_erase_init(n, &root->rb);
aa6f6a3d 735 --root->count;
cc09e299
JA
736}
737
1da177e4
LT
738/*
739 * would be nice to take fifo expire time into account as well
740 */
5e705374
JA
741static struct request *
742cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
743 struct request *last)
1da177e4 744{
21183b07
JA
745 struct rb_node *rbnext = rb_next(&last->rb_node);
746 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 747 struct request *next = NULL, *prev = NULL;
1da177e4 748
21183b07 749 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
750
751 if (rbprev)
5e705374 752 prev = rb_entry_rq(rbprev);
1da177e4 753
21183b07 754 if (rbnext)
5e705374 755 next = rb_entry_rq(rbnext);
21183b07
JA
756 else {
757 rbnext = rb_first(&cfqq->sort_list);
758 if (rbnext && rbnext != &last->rb_node)
5e705374 759 next = rb_entry_rq(rbnext);
21183b07 760 }
1da177e4 761
cf7c25cf 762 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
763}
764
d9e7620e
JA
765static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
766 struct cfq_queue *cfqq)
1da177e4 767{
d9e7620e
JA
768 /*
769 * just an approximation, should be ok.
770 */
cdb16e8f 771 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 772 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
773}
774
1fa8f6d6
VG
775static inline s64
776cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
777{
778 return cfqg->vdisktime - st->min_vdisktime;
779}
780
781static void
782__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
783{
784 struct rb_node **node = &st->rb.rb_node;
785 struct rb_node *parent = NULL;
786 struct cfq_group *__cfqg;
787 s64 key = cfqg_key(st, cfqg);
788 int left = 1;
789
790 while (*node != NULL) {
791 parent = *node;
792 __cfqg = rb_entry_cfqg(parent);
793
794 if (key < cfqg_key(st, __cfqg))
795 node = &parent->rb_left;
796 else {
797 node = &parent->rb_right;
798 left = 0;
799 }
800 }
801
802 if (left)
803 st->left = &cfqg->rb_node;
804
805 rb_link_node(&cfqg->rb_node, parent, node);
806 rb_insert_color(&cfqg->rb_node, &st->rb);
807}
808
809static void
810cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
811{
812 struct cfq_rb_root *st = &cfqd->grp_service_tree;
813 struct cfq_group *__cfqg;
814 struct rb_node *n;
815
816 cfqg->nr_cfqq++;
817 if (cfqg->on_st)
818 return;
819
820 /*
821 * Currently put the group at the end. Later implement something
822 * so that groups get lesser vtime based on their weights, so that
823 * if group does not loose all if it was not continously backlogged.
824 */
825 n = rb_last(&st->rb);
826 if (n) {
827 __cfqg = rb_entry_cfqg(n);
828 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
829 } else
830 cfqg->vdisktime = st->min_vdisktime;
831
832 __cfq_group_service_tree_add(st, cfqg);
833 cfqg->on_st = true;
58ff82f3 834 st->total_weight += cfqg->weight;
1fa8f6d6
VG
835}
836
837static void
838cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
839{
840 struct cfq_rb_root *st = &cfqd->grp_service_tree;
841
25bc6b07
VG
842 if (st->active == &cfqg->rb_node)
843 st->active = NULL;
844
1fa8f6d6
VG
845 BUG_ON(cfqg->nr_cfqq < 1);
846 cfqg->nr_cfqq--;
25bc6b07 847
1fa8f6d6
VG
848 /* If there are other cfq queues under this group, don't delete it */
849 if (cfqg->nr_cfqq)
850 return;
851
2868ef7b 852 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 853 cfqg->on_st = false;
58ff82f3 854 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
855 if (!RB_EMPTY_NODE(&cfqg->rb_node))
856 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 857 cfqg->saved_workload_slice = 0;
22084190 858 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
859}
860
861static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
862{
f75edf2d 863 unsigned int slice_used;
dae739eb
VG
864
865 /*
866 * Queue got expired before even a single request completed or
867 * got expired immediately after first request completion.
868 */
869 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
870 /*
871 * Also charge the seek time incurred to the group, otherwise
872 * if there are mutiple queues in the group, each can dispatch
873 * a single request on seeky media and cause lots of seek time
874 * and group will never know it.
875 */
876 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
877 1);
878 } else {
879 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
880 if (slice_used > cfqq->allocated_slice)
881 slice_used = cfqq->allocated_slice;
dae739eb
VG
882 }
883
22084190
VG
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
885 cfqq->nr_sectors);
dae739eb
VG
886 return slice_used;
887}
888
889static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
890 struct cfq_queue *cfqq)
891{
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
893 unsigned int used_sl, charge_sl;
894 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
895 - cfqg->service_tree_idle.count;
896
897 BUG_ON(nr_sync < 0);
898 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 899
f26bd1f0
VG
900 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
901 charge_sl = cfqq->allocated_slice;
dae739eb
VG
902
903 /* Can't update vdisktime while group is on service tree */
904 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 905 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
906 __cfq_group_service_tree_add(st, cfqg);
907
908 /* This group is being expired. Save the context */
909 if (time_after(cfqd->workload_expires, jiffies)) {
910 cfqg->saved_workload_slice = cfqd->workload_expires
911 - jiffies;
912 cfqg->saved_workload = cfqd->serving_type;
913 cfqg->saved_serving_prio = cfqd->serving_prio;
914 } else
915 cfqg->saved_workload_slice = 0;
2868ef7b
VG
916
917 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
918 st->min_vdisktime);
22084190
VG
919 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
920 cfqq->nr_sectors);
1fa8f6d6
VG
921}
922
25fb5169
VG
923#ifdef CONFIG_CFQ_GROUP_IOSCHED
924static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
925{
926 if (blkg)
927 return container_of(blkg, struct cfq_group, blkg);
928 return NULL;
929}
930
f8d461d6
VG
931void
932cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
933{
934 cfqg_of_blkg(blkg)->weight = weight;
935}
936
25fb5169
VG
937static struct cfq_group *
938cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
939{
940 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
941 struct cfq_group *cfqg = NULL;
942 void *key = cfqd;
943 int i, j;
944 struct cfq_rb_root *st;
22084190
VG
945 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
946 unsigned int major, minor;
25fb5169 947
25fb5169
VG
948 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
949 if (cfqg || !create)
950 goto done;
951
952 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
953 if (!cfqg)
954 goto done;
955
956 cfqg->weight = blkcg->weight;
957 for_each_cfqg_st(cfqg, i, j, st)
958 *st = CFQ_RB_ROOT;
959 RB_CLEAR_NODE(&cfqg->rb_node);
960
b1c35769
VG
961 /*
962 * Take the initial reference that will be released on destroy
963 * This can be thought of a joint reference by cgroup and
964 * elevator which will be dropped by either elevator exit
965 * or cgroup deletion path depending on who is exiting first.
966 */
967 atomic_set(&cfqg->ref, 1);
968
25fb5169 969 /* Add group onto cgroup list */
22084190
VG
970 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
971 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
972 MKDEV(major, minor));
25fb5169
VG
973
974 /* Add group on cfqd list */
975 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
976
977done:
25fb5169
VG
978 return cfqg;
979}
980
981/*
982 * Search for the cfq group current task belongs to. If create = 1, then also
983 * create the cfq group if it does not exist. request_queue lock must be held.
984 */
985static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
986{
987 struct cgroup *cgroup;
988 struct cfq_group *cfqg = NULL;
989
990 rcu_read_lock();
991 cgroup = task_cgroup(current, blkio_subsys_id);
992 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
993 if (!cfqg && create)
994 cfqg = &cfqd->root_group;
995 rcu_read_unlock();
996 return cfqg;
997}
998
999static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1000{
1001 /* Currently, all async queues are mapped to root group */
1002 if (!cfq_cfqq_sync(cfqq))
1003 cfqg = &cfqq->cfqd->root_group;
1004
1005 cfqq->cfqg = cfqg;
b1c35769
VG
1006 /* cfqq reference on cfqg */
1007 atomic_inc(&cfqq->cfqg->ref);
1008}
1009
1010static void cfq_put_cfqg(struct cfq_group *cfqg)
1011{
1012 struct cfq_rb_root *st;
1013 int i, j;
1014
1015 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1016 if (!atomic_dec_and_test(&cfqg->ref))
1017 return;
1018 for_each_cfqg_st(cfqg, i, j, st)
1019 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1020 kfree(cfqg);
1021}
1022
1023static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1024{
1025 /* Something wrong if we are trying to remove same group twice */
1026 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1027
1028 hlist_del_init(&cfqg->cfqd_node);
1029
1030 /*
1031 * Put the reference taken at the time of creation so that when all
1032 * queues are gone, group can be destroyed.
1033 */
1034 cfq_put_cfqg(cfqg);
1035}
1036
1037static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1038{
1039 struct hlist_node *pos, *n;
1040 struct cfq_group *cfqg;
1041
1042 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1043 /*
1044 * If cgroup removal path got to blk_group first and removed
1045 * it from cgroup list, then it will take care of destroying
1046 * cfqg also.
1047 */
1048 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1049 cfq_destroy_cfqg(cfqd, cfqg);
1050 }
25fb5169 1051}
b1c35769
VG
1052
1053/*
1054 * Blk cgroup controller notification saying that blkio_group object is being
1055 * delinked as associated cgroup object is going away. That also means that
1056 * no new IO will come in this group. So get rid of this group as soon as
1057 * any pending IO in the group is finished.
1058 *
1059 * This function is called under rcu_read_lock(). key is the rcu protected
1060 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1061 * read lock.
1062 *
1063 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1064 * it should not be NULL as even if elevator was exiting, cgroup deltion
1065 * path got to it first.
1066 */
1067void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1068{
1069 unsigned long flags;
1070 struct cfq_data *cfqd = key;
1071
1072 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1073 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1074 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1075}
1076
25fb5169
VG
1077#else /* GROUP_IOSCHED */
1078static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1079{
1080 return &cfqd->root_group;
1081}
1082static inline void
1083cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1084 cfqq->cfqg = cfqg;
1085}
1086
b1c35769
VG
1087static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1088static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1089
25fb5169
VG
1090#endif /* GROUP_IOSCHED */
1091
498d3aa2 1092/*
c0324a02 1093 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1094 * requests waiting to be processed. It is sorted in the order that
1095 * we will service the queues.
1096 */
a36e71f9 1097static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1098 bool add_front)
d9e7620e 1099{
0871714e
JA
1100 struct rb_node **p, *parent;
1101 struct cfq_queue *__cfqq;
d9e7620e 1102 unsigned long rb_key;
c0324a02 1103 struct cfq_rb_root *service_tree;
498d3aa2 1104 int left;
dae739eb 1105 int new_cfqq = 1;
ae30c286
VG
1106 int group_changed = 0;
1107
1108#ifdef CONFIG_CFQ_GROUP_IOSCHED
1109 if (!cfqd->cfq_group_isolation
1110 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1111 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1112 /* Move this cfq to root group */
1113 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1114 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1115 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1116 cfqq->orig_cfqg = cfqq->cfqg;
1117 cfqq->cfqg = &cfqd->root_group;
1118 atomic_inc(&cfqd->root_group.ref);
1119 group_changed = 1;
1120 } else if (!cfqd->cfq_group_isolation
1121 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1122 /* cfqq is sequential now needs to go to its original group */
1123 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1124 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1125 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1126 cfq_put_cfqg(cfqq->cfqg);
1127 cfqq->cfqg = cfqq->orig_cfqg;
1128 cfqq->orig_cfqg = NULL;
1129 group_changed = 1;
1130 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1131 }
1132#endif
d9e7620e 1133
cdb16e8f 1134 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1135 cfqq_type(cfqq));
0871714e
JA
1136 if (cfq_class_idle(cfqq)) {
1137 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1138 parent = rb_last(&service_tree->rb);
0871714e
JA
1139 if (parent && parent != &cfqq->rb_node) {
1140 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1141 rb_key += __cfqq->rb_key;
1142 } else
1143 rb_key += jiffies;
1144 } else if (!add_front) {
b9c8946b
JA
1145 /*
1146 * Get our rb key offset. Subtract any residual slice
1147 * value carried from last service. A negative resid
1148 * count indicates slice overrun, and this should position
1149 * the next service time further away in the tree.
1150 */
edd75ffd 1151 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1152 rb_key -= cfqq->slice_resid;
edd75ffd 1153 cfqq->slice_resid = 0;
48e025e6
CZ
1154 } else {
1155 rb_key = -HZ;
aa6f6a3d 1156 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1157 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1158 }
1da177e4 1159
d9e7620e 1160 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1161 new_cfqq = 0;
99f9628a 1162 /*
d9e7620e 1163 * same position, nothing more to do
99f9628a 1164 */
c0324a02
CZ
1165 if (rb_key == cfqq->rb_key &&
1166 cfqq->service_tree == service_tree)
d9e7620e 1167 return;
1da177e4 1168
aa6f6a3d
CZ
1169 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1170 cfqq->service_tree = NULL;
1da177e4 1171 }
d9e7620e 1172
498d3aa2 1173 left = 1;
0871714e 1174 parent = NULL;
aa6f6a3d
CZ
1175 cfqq->service_tree = service_tree;
1176 p = &service_tree->rb.rb_node;
d9e7620e 1177 while (*p) {
67060e37 1178 struct rb_node **n;
cc09e299 1179
d9e7620e
JA
1180 parent = *p;
1181 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1182
0c534e0a 1183 /*
c0324a02 1184 * sort by key, that represents service time.
0c534e0a 1185 */
c0324a02 1186 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1187 n = &(*p)->rb_left;
c0324a02 1188 else {
67060e37 1189 n = &(*p)->rb_right;
cc09e299 1190 left = 0;
c0324a02 1191 }
67060e37
JA
1192
1193 p = n;
d9e7620e
JA
1194 }
1195
cc09e299 1196 if (left)
aa6f6a3d 1197 service_tree->left = &cfqq->rb_node;
cc09e299 1198
d9e7620e
JA
1199 cfqq->rb_key = rb_key;
1200 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1201 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1202 service_tree->count++;
ae30c286 1203 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1204 return;
1fa8f6d6 1205 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1206}
1207
a36e71f9 1208static struct cfq_queue *
f2d1f0ae
JA
1209cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1210 sector_t sector, struct rb_node **ret_parent,
1211 struct rb_node ***rb_link)
a36e71f9 1212{
a36e71f9
JA
1213 struct rb_node **p, *parent;
1214 struct cfq_queue *cfqq = NULL;
1215
1216 parent = NULL;
1217 p = &root->rb_node;
1218 while (*p) {
1219 struct rb_node **n;
1220
1221 parent = *p;
1222 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1223
1224 /*
1225 * Sort strictly based on sector. Smallest to the left,
1226 * largest to the right.
1227 */
2e46e8b2 1228 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1229 n = &(*p)->rb_right;
2e46e8b2 1230 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1231 n = &(*p)->rb_left;
1232 else
1233 break;
1234 p = n;
3ac6c9f8 1235 cfqq = NULL;
a36e71f9
JA
1236 }
1237
1238 *ret_parent = parent;
1239 if (rb_link)
1240 *rb_link = p;
3ac6c9f8 1241 return cfqq;
a36e71f9
JA
1242}
1243
1244static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1245{
a36e71f9
JA
1246 struct rb_node **p, *parent;
1247 struct cfq_queue *__cfqq;
1248
f2d1f0ae
JA
1249 if (cfqq->p_root) {
1250 rb_erase(&cfqq->p_node, cfqq->p_root);
1251 cfqq->p_root = NULL;
1252 }
a36e71f9
JA
1253
1254 if (cfq_class_idle(cfqq))
1255 return;
1256 if (!cfqq->next_rq)
1257 return;
1258
f2d1f0ae 1259 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1260 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1261 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1262 if (!__cfqq) {
1263 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1264 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1265 } else
1266 cfqq->p_root = NULL;
a36e71f9
JA
1267}
1268
498d3aa2
JA
1269/*
1270 * Update cfqq's position in the service tree.
1271 */
edd75ffd 1272static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1273{
6d048f53
JA
1274 /*
1275 * Resorting requires the cfqq to be on the RR list already.
1276 */
a36e71f9 1277 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1278 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1279 cfq_prio_tree_add(cfqd, cfqq);
1280 }
6d048f53
JA
1281}
1282
1da177e4
LT
1283/*
1284 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1285 * the pending list according to last request service
1da177e4 1286 */
febffd61 1287static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1288{
7b679138 1289 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1290 BUG_ON(cfq_cfqq_on_rr(cfqq));
1291 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1292 cfqd->busy_queues++;
1293
edd75ffd 1294 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1295}
1296
498d3aa2
JA
1297/*
1298 * Called when the cfqq no longer has requests pending, remove it from
1299 * the service tree.
1300 */
febffd61 1301static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1302{
7b679138 1303 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1304 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1305 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1306
aa6f6a3d
CZ
1307 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1308 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1309 cfqq->service_tree = NULL;
1310 }
f2d1f0ae
JA
1311 if (cfqq->p_root) {
1312 rb_erase(&cfqq->p_node, cfqq->p_root);
1313 cfqq->p_root = NULL;
1314 }
d9e7620e 1315
1fa8f6d6 1316 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1317 BUG_ON(!cfqd->busy_queues);
1318 cfqd->busy_queues--;
1319}
1320
1321/*
1322 * rb tree support functions
1323 */
febffd61 1324static void cfq_del_rq_rb(struct request *rq)
1da177e4 1325{
5e705374 1326 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1327 const int sync = rq_is_sync(rq);
1da177e4 1328
b4878f24
JA
1329 BUG_ON(!cfqq->queued[sync]);
1330 cfqq->queued[sync]--;
1da177e4 1331
5e705374 1332 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1333
f04a6424
VG
1334 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1335 /*
1336 * Queue will be deleted from service tree when we actually
1337 * expire it later. Right now just remove it from prio tree
1338 * as it is empty.
1339 */
1340 if (cfqq->p_root) {
1341 rb_erase(&cfqq->p_node, cfqq->p_root);
1342 cfqq->p_root = NULL;
1343 }
1344 }
1da177e4
LT
1345}
1346
5e705374 1347static void cfq_add_rq_rb(struct request *rq)
1da177e4 1348{
5e705374 1349 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1350 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1351 struct request *__alias, *prev;
1da177e4 1352
5380a101 1353 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1354
1355 /*
1356 * looks a little odd, but the first insert might return an alias.
1357 * if that happens, put the alias on the dispatch list
1358 */
21183b07 1359 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1360 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1361
1362 if (!cfq_cfqq_on_rr(cfqq))
1363 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1364
1365 /*
1366 * check if this request is a better next-serve candidate
1367 */
a36e71f9 1368 prev = cfqq->next_rq;
cf7c25cf 1369 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1370
1371 /*
1372 * adjust priority tree position, if ->next_rq changes
1373 */
1374 if (prev != cfqq->next_rq)
1375 cfq_prio_tree_add(cfqd, cfqq);
1376
5044eed4 1377 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1378}
1379
febffd61 1380static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1381{
5380a101
JA
1382 elv_rb_del(&cfqq->sort_list, rq);
1383 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1384 cfq_add_rq_rb(rq);
1da177e4
LT
1385}
1386
206dc69b
JA
1387static struct request *
1388cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1389{
206dc69b 1390 struct task_struct *tsk = current;
91fac317 1391 struct cfq_io_context *cic;
206dc69b 1392 struct cfq_queue *cfqq;
1da177e4 1393
4ac845a2 1394 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1395 if (!cic)
1396 return NULL;
1397
1398 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1399 if (cfqq) {
1400 sector_t sector = bio->bi_sector + bio_sectors(bio);
1401
21183b07 1402 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1403 }
1da177e4 1404
1da177e4
LT
1405 return NULL;
1406}
1407
165125e1 1408static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1409{
22e2c507 1410 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1411
53c583d2 1412 cfqd->rq_in_driver++;
7b679138 1413 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1414 cfqd->rq_in_driver);
25776e35 1415
5b93629b 1416 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1417}
1418
165125e1 1419static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1420{
b4878f24
JA
1421 struct cfq_data *cfqd = q->elevator->elevator_data;
1422
53c583d2
CZ
1423 WARN_ON(!cfqd->rq_in_driver);
1424 cfqd->rq_in_driver--;
7b679138 1425 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1426 cfqd->rq_in_driver);
1da177e4
LT
1427}
1428
b4878f24 1429static void cfq_remove_request(struct request *rq)
1da177e4 1430{
5e705374 1431 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1432
5e705374
JA
1433 if (cfqq->next_rq == rq)
1434 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1435
b4878f24 1436 list_del_init(&rq->queuelist);
5e705374 1437 cfq_del_rq_rb(rq);
374f84ac 1438
45333d5a 1439 cfqq->cfqd->rq_queued--;
374f84ac
JA
1440 if (rq_is_meta(rq)) {
1441 WARN_ON(!cfqq->meta_pending);
1442 cfqq->meta_pending--;
1443 }
1da177e4
LT
1444}
1445
165125e1
JA
1446static int cfq_merge(struct request_queue *q, struct request **req,
1447 struct bio *bio)
1da177e4
LT
1448{
1449 struct cfq_data *cfqd = q->elevator->elevator_data;
1450 struct request *__rq;
1da177e4 1451
206dc69b 1452 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1453 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1454 *req = __rq;
1455 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1456 }
1457
1458 return ELEVATOR_NO_MERGE;
1da177e4
LT
1459}
1460
165125e1 1461static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1462 int type)
1da177e4 1463{
21183b07 1464 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1465 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1466
5e705374 1467 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1468 }
1da177e4
LT
1469}
1470
1471static void
165125e1 1472cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1473 struct request *next)
1474{
cf7c25cf 1475 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1476 /*
1477 * reposition in fifo if next is older than rq
1478 */
1479 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1480 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1481 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1482 rq_set_fifo_time(rq, rq_fifo_time(next));
1483 }
22e2c507 1484
cf7c25cf
CZ
1485 if (cfqq->next_rq == next)
1486 cfqq->next_rq = rq;
b4878f24 1487 cfq_remove_request(next);
22e2c507
JA
1488}
1489
165125e1 1490static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1491 struct bio *bio)
1492{
1493 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1494 struct cfq_io_context *cic;
da775265 1495 struct cfq_queue *cfqq;
da775265
JA
1496
1497 /*
ec8acb69 1498 * Disallow merge of a sync bio into an async request.
da775265 1499 */
91fac317 1500 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1501 return false;
da775265
JA
1502
1503 /*
719d3402
JA
1504 * Lookup the cfqq that this bio will be queued with. Allow
1505 * merge only if rq is queued there.
da775265 1506 */
4ac845a2 1507 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1508 if (!cic)
a6151c3a 1509 return false;
719d3402 1510
91fac317 1511 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1512 return cfqq == RQ_CFQQ(rq);
da775265
JA
1513}
1514
febffd61
JA
1515static void __cfq_set_active_queue(struct cfq_data *cfqd,
1516 struct cfq_queue *cfqq)
22e2c507
JA
1517{
1518 if (cfqq) {
7b679138 1519 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1520 cfqq->slice_start = 0;
1521 cfqq->dispatch_start = jiffies;
f75edf2d 1522 cfqq->allocated_slice = 0;
22e2c507 1523 cfqq->slice_end = 0;
2f5cb738 1524 cfqq->slice_dispatch = 0;
22084190 1525 cfqq->nr_sectors = 0;
2f5cb738 1526
2f5cb738 1527 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1528 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1529 cfq_clear_cfqq_must_alloc_slice(cfqq);
1530 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1531 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1532
1533 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1534 }
1535
1536 cfqd->active_queue = cfqq;
1537}
1538
7b14e3b5
JA
1539/*
1540 * current cfqq expired its slice (or was too idle), select new one
1541 */
1542static void
1543__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1544 bool timed_out)
7b14e3b5 1545{
7b679138
JA
1546 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1547
7b14e3b5
JA
1548 if (cfq_cfqq_wait_request(cfqq))
1549 del_timer(&cfqd->idle_slice_timer);
1550
7b14e3b5 1551 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1552 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1553
ae54abed
SL
1554 /*
1555 * If this cfqq is shared between multiple processes, check to
1556 * make sure that those processes are still issuing I/Os within
1557 * the mean seek distance. If not, it may be time to break the
1558 * queues apart again.
1559 */
1560 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1561 cfq_mark_cfqq_split_coop(cfqq);
1562
7b14e3b5 1563 /*
6084cdda 1564 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1565 */
7b679138 1566 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1567 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1568 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1569 }
7b14e3b5 1570
dae739eb
VG
1571 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1572
f04a6424
VG
1573 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1574 cfq_del_cfqq_rr(cfqd, cfqq);
1575
edd75ffd 1576 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1577
1578 if (cfqq == cfqd->active_queue)
1579 cfqd->active_queue = NULL;
1580
dae739eb
VG
1581 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1582 cfqd->grp_service_tree.active = NULL;
1583
7b14e3b5
JA
1584 if (cfqd->active_cic) {
1585 put_io_context(cfqd->active_cic->ioc);
1586 cfqd->active_cic = NULL;
1587 }
7b14e3b5
JA
1588}
1589
a6151c3a 1590static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1591{
1592 struct cfq_queue *cfqq = cfqd->active_queue;
1593
1594 if (cfqq)
6084cdda 1595 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1596}
1597
498d3aa2
JA
1598/*
1599 * Get next queue for service. Unless we have a queue preemption,
1600 * we'll simply select the first cfqq in the service tree.
1601 */
6d048f53 1602static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1603{
c0324a02 1604 struct cfq_rb_root *service_tree =
cdb16e8f 1605 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1606 cfqd->serving_type);
d9e7620e 1607
f04a6424
VG
1608 if (!cfqd->rq_queued)
1609 return NULL;
1610
1fa8f6d6
VG
1611 /* There is nothing to dispatch */
1612 if (!service_tree)
1613 return NULL;
c0324a02
CZ
1614 if (RB_EMPTY_ROOT(&service_tree->rb))
1615 return NULL;
1616 return cfq_rb_first(service_tree);
6d048f53
JA
1617}
1618
f04a6424
VG
1619static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1620{
25fb5169 1621 struct cfq_group *cfqg;
f04a6424
VG
1622 struct cfq_queue *cfqq;
1623 int i, j;
1624 struct cfq_rb_root *st;
1625
1626 if (!cfqd->rq_queued)
1627 return NULL;
1628
25fb5169
VG
1629 cfqg = cfq_get_next_cfqg(cfqd);
1630 if (!cfqg)
1631 return NULL;
1632
f04a6424
VG
1633 for_each_cfqg_st(cfqg, i, j, st)
1634 if ((cfqq = cfq_rb_first(st)) != NULL)
1635 return cfqq;
1636 return NULL;
1637}
1638
498d3aa2
JA
1639/*
1640 * Get and set a new active queue for service.
1641 */
a36e71f9
JA
1642static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1643 struct cfq_queue *cfqq)
6d048f53 1644{
e00ef799 1645 if (!cfqq)
a36e71f9 1646 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1647
22e2c507 1648 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1649 return cfqq;
22e2c507
JA
1650}
1651
d9e7620e
JA
1652static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1653 struct request *rq)
1654{
83096ebf
TH
1655 if (blk_rq_pos(rq) >= cfqd->last_position)
1656 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1657 else
83096ebf 1658 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1659}
1660
b2c18e1e 1661static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2f7a2d89 1662 struct request *rq, bool for_preempt)
6d048f53 1663{
3dde36dd 1664 return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
6d048f53
JA
1665}
1666
a36e71f9
JA
1667static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1668 struct cfq_queue *cur_cfqq)
1669{
f2d1f0ae 1670 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1671 struct rb_node *parent, *node;
1672 struct cfq_queue *__cfqq;
1673 sector_t sector = cfqd->last_position;
1674
1675 if (RB_EMPTY_ROOT(root))
1676 return NULL;
1677
1678 /*
1679 * First, if we find a request starting at the end of the last
1680 * request, choose it.
1681 */
f2d1f0ae 1682 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1683 if (__cfqq)
1684 return __cfqq;
1685
1686 /*
1687 * If the exact sector wasn't found, the parent of the NULL leaf
1688 * will contain the closest sector.
1689 */
1690 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2f7a2d89 1691 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
a36e71f9
JA
1692 return __cfqq;
1693
2e46e8b2 1694 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1695 node = rb_next(&__cfqq->p_node);
1696 else
1697 node = rb_prev(&__cfqq->p_node);
1698 if (!node)
1699 return NULL;
1700
1701 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2f7a2d89 1702 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
a36e71f9
JA
1703 return __cfqq;
1704
1705 return NULL;
1706}
1707
1708/*
1709 * cfqd - obvious
1710 * cur_cfqq - passed in so that we don't decide that the current queue is
1711 * closely cooperating with itself.
1712 *
1713 * So, basically we're assuming that that cur_cfqq has dispatched at least
1714 * one request, and that cfqd->last_position reflects a position on the disk
1715 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1716 * assumption.
1717 */
1718static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1719 struct cfq_queue *cur_cfqq)
6d048f53 1720{
a36e71f9
JA
1721 struct cfq_queue *cfqq;
1722
e6c5bc73
JM
1723 if (!cfq_cfqq_sync(cur_cfqq))
1724 return NULL;
1725 if (CFQQ_SEEKY(cur_cfqq))
1726 return NULL;
1727
b9d8f4c7
GJ
1728 /*
1729 * Don't search priority tree if it's the only queue in the group.
1730 */
1731 if (cur_cfqq->cfqg->nr_cfqq == 1)
1732 return NULL;
1733
6d048f53 1734 /*
d9e7620e
JA
1735 * We should notice if some of the queues are cooperating, eg
1736 * working closely on the same area of the disk. In that case,
1737 * we can group them together and don't waste time idling.
6d048f53 1738 */
a36e71f9
JA
1739 cfqq = cfqq_close(cfqd, cur_cfqq);
1740 if (!cfqq)
1741 return NULL;
1742
8682e1f1
VG
1743 /* If new queue belongs to different cfq_group, don't choose it */
1744 if (cur_cfqq->cfqg != cfqq->cfqg)
1745 return NULL;
1746
df5fe3e8
JM
1747 /*
1748 * It only makes sense to merge sync queues.
1749 */
1750 if (!cfq_cfqq_sync(cfqq))
1751 return NULL;
e6c5bc73
JM
1752 if (CFQQ_SEEKY(cfqq))
1753 return NULL;
df5fe3e8 1754
c0324a02
CZ
1755 /*
1756 * Do not merge queues of different priority classes
1757 */
1758 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1759 return NULL;
1760
a36e71f9 1761 return cfqq;
6d048f53
JA
1762}
1763
a6d44e98
CZ
1764/*
1765 * Determine whether we should enforce idle window for this queue.
1766 */
1767
1768static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1769{
1770 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1771 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1772
f04a6424
VG
1773 BUG_ON(!service_tree);
1774 BUG_ON(!service_tree->count);
1775
a6d44e98
CZ
1776 /* We never do for idle class queues. */
1777 if (prio == IDLE_WORKLOAD)
1778 return false;
1779
1780 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1781 if (cfq_cfqq_idle_window(cfqq) &&
1782 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1783 return true;
1784
1785 /*
1786 * Otherwise, we do only if they are the last ones
1787 * in their service tree.
1788 */
1efe8fe1 1789 return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
a6d44e98
CZ
1790}
1791
6d048f53 1792static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1793{
1792669c 1794 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1795 struct cfq_io_context *cic;
7b14e3b5
JA
1796 unsigned long sl;
1797
a68bbddb 1798 /*
f7d7b7a7
JA
1799 * SSD device without seek penalty, disable idling. But only do so
1800 * for devices that support queuing, otherwise we still have a problem
1801 * with sync vs async workloads.
a68bbddb 1802 */
f7d7b7a7 1803 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1804 return;
1805
dd67d051 1806 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1807 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1808
1809 /*
1810 * idle is disabled, either manually or by past process history
1811 */
a6d44e98 1812 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1813 return;
1814
7b679138 1815 /*
8e550632 1816 * still active requests from this queue, don't idle
7b679138 1817 */
8e550632 1818 if (cfqq->dispatched)
7b679138
JA
1819 return;
1820
22e2c507
JA
1821 /*
1822 * task has exited, don't wait
1823 */
206dc69b 1824 cic = cfqd->active_cic;
66dac98e 1825 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1826 return;
1827
355b659c
CZ
1828 /*
1829 * If our average think time is larger than the remaining time
1830 * slice, then don't idle. This avoids overrunning the allotted
1831 * time slice.
1832 */
1833 if (sample_valid(cic->ttime_samples) &&
1834 (cfqq->slice_end - jiffies < cic->ttime_mean))
1835 return;
1836
3b18152c 1837 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1838
6d048f53 1839 sl = cfqd->cfq_slice_idle;
206dc69b 1840
7b14e3b5 1841 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1842 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1843}
1844
498d3aa2
JA
1845/*
1846 * Move request from internal lists to the request queue dispatch list.
1847 */
165125e1 1848static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1849{
3ed9a296 1850 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1851 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1852
7b679138
JA
1853 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1854
06d21886 1855 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1856 cfq_remove_request(rq);
6d048f53 1857 cfqq->dispatched++;
5380a101 1858 elv_dispatch_sort(q, rq);
3ed9a296 1859
53c583d2 1860 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
22084190 1861 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1862}
1863
1864/*
1865 * return expired entry, or NULL to just start from scratch in rbtree
1866 */
febffd61 1867static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1868{
30996f40 1869 struct request *rq = NULL;
1da177e4 1870
3b18152c 1871 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1872 return NULL;
cb887411
JA
1873
1874 cfq_mark_cfqq_fifo_expire(cfqq);
1875
89850f7e
JA
1876 if (list_empty(&cfqq->fifo))
1877 return NULL;
1da177e4 1878
89850f7e 1879 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1880 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1881 rq = NULL;
1da177e4 1882
30996f40 1883 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1884 return rq;
1da177e4
LT
1885}
1886
22e2c507
JA
1887static inline int
1888cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1889{
1890 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1891
22e2c507 1892 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1893
22e2c507 1894 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1895}
1896
df5fe3e8
JM
1897/*
1898 * Must be called with the queue_lock held.
1899 */
1900static int cfqq_process_refs(struct cfq_queue *cfqq)
1901{
1902 int process_refs, io_refs;
1903
1904 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1905 process_refs = atomic_read(&cfqq->ref) - io_refs;
1906 BUG_ON(process_refs < 0);
1907 return process_refs;
1908}
1909
1910static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1911{
e6c5bc73 1912 int process_refs, new_process_refs;
df5fe3e8
JM
1913 struct cfq_queue *__cfqq;
1914
1915 /* Avoid a circular list and skip interim queue merges */
1916 while ((__cfqq = new_cfqq->new_cfqq)) {
1917 if (__cfqq == cfqq)
1918 return;
1919 new_cfqq = __cfqq;
1920 }
1921
1922 process_refs = cfqq_process_refs(cfqq);
1923 /*
1924 * If the process for the cfqq has gone away, there is no
1925 * sense in merging the queues.
1926 */
1927 if (process_refs == 0)
1928 return;
1929
e6c5bc73
JM
1930 /*
1931 * Merge in the direction of the lesser amount of work.
1932 */
1933 new_process_refs = cfqq_process_refs(new_cfqq);
1934 if (new_process_refs >= process_refs) {
1935 cfqq->new_cfqq = new_cfqq;
1936 atomic_add(process_refs, &new_cfqq->ref);
1937 } else {
1938 new_cfqq->new_cfqq = cfqq;
1939 atomic_add(new_process_refs, &cfqq->ref);
1940 }
df5fe3e8
JM
1941}
1942
cdb16e8f 1943static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 1944 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
1945{
1946 struct cfq_queue *queue;
1947 int i;
1948 bool key_valid = false;
1949 unsigned long lowest_key = 0;
1950 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1951
65b32a57
VG
1952 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1953 /* select the one with lowest rb_key */
1954 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
1955 if (queue &&
1956 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1957 lowest_key = queue->rb_key;
1958 cur_best = i;
1959 key_valid = true;
1960 }
1961 }
1962
1963 return cur_best;
1964}
1965
cdb16e8f 1966static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 1967{
718eee05
CZ
1968 unsigned slice;
1969 unsigned count;
cdb16e8f 1970 struct cfq_rb_root *st;
58ff82f3 1971 unsigned group_slice;
718eee05 1972
1fa8f6d6
VG
1973 if (!cfqg) {
1974 cfqd->serving_prio = IDLE_WORKLOAD;
1975 cfqd->workload_expires = jiffies + 1;
1976 return;
1977 }
1978
718eee05 1979 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1980 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1981 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1982 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1983 cfqd->serving_prio = BE_WORKLOAD;
1984 else {
1985 cfqd->serving_prio = IDLE_WORKLOAD;
1986 cfqd->workload_expires = jiffies + 1;
1987 return;
1988 }
1989
1990 /*
1991 * For RT and BE, we have to choose also the type
1992 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1993 * expiration time
1994 */
65b32a57 1995 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 1996 count = st->count;
718eee05
CZ
1997
1998 /*
65b32a57 1999 * check workload expiration, and that we still have other queues ready
718eee05 2000 */
65b32a57 2001 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2002 return;
2003
2004 /* otherwise select new workload type */
2005 cfqd->serving_type =
65b32a57
VG
2006 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2007 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2008 count = st->count;
718eee05
CZ
2009
2010 /*
2011 * the workload slice is computed as a fraction of target latency
2012 * proportional to the number of queues in that workload, over
2013 * all the queues in the same priority class
2014 */
58ff82f3
VG
2015 group_slice = cfq_group_slice(cfqd, cfqg);
2016
2017 slice = group_slice * count /
2018 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2019 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2020
f26bd1f0
VG
2021 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2022 unsigned int tmp;
2023
2024 /*
2025 * Async queues are currently system wide. Just taking
2026 * proportion of queues with-in same group will lead to higher
2027 * async ratio system wide as generally root group is going
2028 * to have higher weight. A more accurate thing would be to
2029 * calculate system wide asnc/sync ratio.
2030 */
2031 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2032 tmp = tmp/cfqd->busy_queues;
2033 slice = min_t(unsigned, slice, tmp);
2034
718eee05
CZ
2035 /* async workload slice is scaled down according to
2036 * the sync/async slice ratio. */
2037 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2038 } else
718eee05
CZ
2039 /* sync workload slice is at least 2 * cfq_slice_idle */
2040 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2041
2042 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2043 cfqd->workload_expires = jiffies + slice;
8e550632 2044 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2045}
2046
1fa8f6d6
VG
2047static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2048{
2049 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2050 struct cfq_group *cfqg;
1fa8f6d6
VG
2051
2052 if (RB_EMPTY_ROOT(&st->rb))
2053 return NULL;
25bc6b07
VG
2054 cfqg = cfq_rb_first_group(st);
2055 st->active = &cfqg->rb_node;
2056 update_min_vdisktime(st);
2057 return cfqg;
1fa8f6d6
VG
2058}
2059
cdb16e8f
VG
2060static void cfq_choose_cfqg(struct cfq_data *cfqd)
2061{
1fa8f6d6
VG
2062 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2063
2064 cfqd->serving_group = cfqg;
dae739eb
VG
2065
2066 /* Restore the workload type data */
2067 if (cfqg->saved_workload_slice) {
2068 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2069 cfqd->serving_type = cfqg->saved_workload;
2070 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2071 } else
2072 cfqd->workload_expires = jiffies - 1;
2073
1fa8f6d6 2074 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2075}
2076
22e2c507 2077/*
498d3aa2
JA
2078 * Select a queue for service. If we have a current active queue,
2079 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2080 */
1b5ed5e1 2081static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2082{
a36e71f9 2083 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2084
22e2c507
JA
2085 cfqq = cfqd->active_queue;
2086 if (!cfqq)
2087 goto new_queue;
1da177e4 2088
f04a6424
VG
2089 if (!cfqd->rq_queued)
2090 return NULL;
c244bb50
VG
2091
2092 /*
2093 * We were waiting for group to get backlogged. Expire the queue
2094 */
2095 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2096 goto expire;
2097
22e2c507 2098 /*
6d048f53 2099 * The active queue has run out of time, expire it and select new.
22e2c507 2100 */
7667aa06
VG
2101 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2102 /*
2103 * If slice had not expired at the completion of last request
2104 * we might not have turned on wait_busy flag. Don't expire
2105 * the queue yet. Allow the group to get backlogged.
2106 *
2107 * The very fact that we have used the slice, that means we
2108 * have been idling all along on this queue and it should be
2109 * ok to wait for this request to complete.
2110 */
82bbbf28
VG
2111 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2112 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2113 cfqq = NULL;
7667aa06 2114 goto keep_queue;
82bbbf28 2115 } else
7667aa06
VG
2116 goto expire;
2117 }
1da177e4 2118
22e2c507 2119 /*
6d048f53
JA
2120 * The active queue has requests and isn't expired, allow it to
2121 * dispatch.
22e2c507 2122 */
dd67d051 2123 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2124 goto keep_queue;
6d048f53 2125
a36e71f9
JA
2126 /*
2127 * If another queue has a request waiting within our mean seek
2128 * distance, let it run. The expire code will check for close
2129 * cooperators and put the close queue at the front of the service
df5fe3e8 2130 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2131 */
b3b6d040 2132 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2133 if (new_cfqq) {
2134 if (!cfqq->new_cfqq)
2135 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2136 goto expire;
df5fe3e8 2137 }
a36e71f9 2138
6d048f53
JA
2139 /*
2140 * No requests pending. If the active queue still has requests in
2141 * flight or is idling for a new request, allow either of these
2142 * conditions to happen (or time out) before selecting a new queue.
2143 */
cc197479 2144 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2145 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2146 cfqq = NULL;
2147 goto keep_queue;
22e2c507
JA
2148 }
2149
3b18152c 2150expire:
6084cdda 2151 cfq_slice_expired(cfqd, 0);
3b18152c 2152new_queue:
718eee05
CZ
2153 /*
2154 * Current queue expired. Check if we have to switch to a new
2155 * service tree
2156 */
2157 if (!new_cfqq)
cdb16e8f 2158 cfq_choose_cfqg(cfqd);
718eee05 2159
a36e71f9 2160 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2161keep_queue:
3b18152c 2162 return cfqq;
22e2c507
JA
2163}
2164
febffd61 2165static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2166{
2167 int dispatched = 0;
2168
2169 while (cfqq->next_rq) {
2170 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2171 dispatched++;
2172 }
2173
2174 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2175
2176 /* By default cfqq is not expired if it is empty. Do it explicitly */
2177 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2178 return dispatched;
2179}
2180
498d3aa2
JA
2181/*
2182 * Drain our current requests. Used for barriers and when switching
2183 * io schedulers on-the-fly.
2184 */
d9e7620e 2185static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2186{
0871714e 2187 struct cfq_queue *cfqq;
d9e7620e 2188 int dispatched = 0;
cdb16e8f 2189
f04a6424
VG
2190 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2191 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2192
6084cdda 2193 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2194 BUG_ON(cfqd->busy_queues);
2195
6923715a 2196 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2197 return dispatched;
2198}
2199
0b182d61 2200static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2201{
2f5cb738 2202 unsigned int max_dispatch;
22e2c507 2203
5ad531db
JA
2204 /*
2205 * Drain async requests before we start sync IO
2206 */
53c583d2 2207 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2208 return false;
5ad531db 2209
2f5cb738
JA
2210 /*
2211 * If this is an async queue and we have sync IO in flight, let it wait
2212 */
53c583d2 2213 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2214 return false;
2f5cb738
JA
2215
2216 max_dispatch = cfqd->cfq_quantum;
2217 if (cfq_class_idle(cfqq))
2218 max_dispatch = 1;
b4878f24 2219
2f5cb738
JA
2220 /*
2221 * Does this cfqq already have too much IO in flight?
2222 */
2223 if (cfqq->dispatched >= max_dispatch) {
2224 /*
2225 * idle queue must always only have a single IO in flight
2226 */
3ed9a296 2227 if (cfq_class_idle(cfqq))
0b182d61 2228 return false;
3ed9a296 2229
2f5cb738
JA
2230 /*
2231 * We have other queues, don't allow more IO from this one
2232 */
2233 if (cfqd->busy_queues > 1)
0b182d61 2234 return false;
9ede209e 2235
365722bb 2236 /*
474b18cc 2237 * Sole queue user, no limit
365722bb 2238 */
474b18cc 2239 max_dispatch = -1;
8e296755
JA
2240 }
2241
2242 /*
2243 * Async queues must wait a bit before being allowed dispatch.
2244 * We also ramp up the dispatch depth gradually for async IO,
2245 * based on the last sync IO we serviced
2246 */
963b72fc 2247 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2248 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2249 unsigned int depth;
365722bb 2250
61f0c1dc 2251 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2252 if (!depth && !cfqq->dispatched)
2253 depth = 1;
8e296755
JA
2254 if (depth < max_dispatch)
2255 max_dispatch = depth;
2f5cb738 2256 }
3ed9a296 2257
0b182d61
JA
2258 /*
2259 * If we're below the current max, allow a dispatch
2260 */
2261 return cfqq->dispatched < max_dispatch;
2262}
2263
2264/*
2265 * Dispatch a request from cfqq, moving them to the request queue
2266 * dispatch list.
2267 */
2268static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2269{
2270 struct request *rq;
2271
2272 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2273
2274 if (!cfq_may_dispatch(cfqd, cfqq))
2275 return false;
2276
2277 /*
2278 * follow expired path, else get first next available
2279 */
2280 rq = cfq_check_fifo(cfqq);
2281 if (!rq)
2282 rq = cfqq->next_rq;
2283
2284 /*
2285 * insert request into driver dispatch list
2286 */
2287 cfq_dispatch_insert(cfqd->queue, rq);
2288
2289 if (!cfqd->active_cic) {
2290 struct cfq_io_context *cic = RQ_CIC(rq);
2291
2292 atomic_long_inc(&cic->ioc->refcount);
2293 cfqd->active_cic = cic;
2294 }
2295
2296 return true;
2297}
2298
2299/*
2300 * Find the cfqq that we need to service and move a request from that to the
2301 * dispatch list
2302 */
2303static int cfq_dispatch_requests(struct request_queue *q, int force)
2304{
2305 struct cfq_data *cfqd = q->elevator->elevator_data;
2306 struct cfq_queue *cfqq;
2307
2308 if (!cfqd->busy_queues)
2309 return 0;
2310
2311 if (unlikely(force))
2312 return cfq_forced_dispatch(cfqd);
2313
2314 cfqq = cfq_select_queue(cfqd);
2315 if (!cfqq)
8e296755
JA
2316 return 0;
2317
2f5cb738 2318 /*
0b182d61 2319 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2320 */
0b182d61
JA
2321 if (!cfq_dispatch_request(cfqd, cfqq))
2322 return 0;
2323
2f5cb738 2324 cfqq->slice_dispatch++;
b029195d 2325 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2326
2f5cb738
JA
2327 /*
2328 * expire an async queue immediately if it has used up its slice. idle
2329 * queue always expire after 1 dispatch round.
2330 */
2331 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2332 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2333 cfq_class_idle(cfqq))) {
2334 cfqq->slice_end = jiffies + 1;
2335 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2336 }
2337
b217a903 2338 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2339 return 1;
1da177e4
LT
2340}
2341
1da177e4 2342/*
5e705374
JA
2343 * task holds one reference to the queue, dropped when task exits. each rq
2344 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2345 *
b1c35769 2346 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2347 * queue lock must be held here.
2348 */
2349static void cfq_put_queue(struct cfq_queue *cfqq)
2350{
22e2c507 2351 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2352 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2353
2354 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2355
2356 if (!atomic_dec_and_test(&cfqq->ref))
2357 return;
2358
7b679138 2359 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2360 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2361 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2362 cfqg = cfqq->cfqg;
878eaddd 2363 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2364
28f95cbc 2365 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2366 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2367 cfq_schedule_dispatch(cfqd);
28f95cbc 2368 }
22e2c507 2369
f04a6424 2370 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2371 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2372 cfq_put_cfqg(cfqg);
878eaddd
VG
2373 if (orig_cfqg)
2374 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2375}
2376
d6de8be7
JA
2377/*
2378 * Must always be called with the rcu_read_lock() held
2379 */
07416d29
JA
2380static void
2381__call_for_each_cic(struct io_context *ioc,
2382 void (*func)(struct io_context *, struct cfq_io_context *))
2383{
2384 struct cfq_io_context *cic;
2385 struct hlist_node *n;
2386
2387 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2388 func(ioc, cic);
2389}
2390
4ac845a2 2391/*
34e6bbf2 2392 * Call func for each cic attached to this ioc.
4ac845a2 2393 */
34e6bbf2 2394static void
4ac845a2
JA
2395call_for_each_cic(struct io_context *ioc,
2396 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2397{
4ac845a2 2398 rcu_read_lock();
07416d29 2399 __call_for_each_cic(ioc, func);
4ac845a2 2400 rcu_read_unlock();
34e6bbf2
FC
2401}
2402
2403static void cfq_cic_free_rcu(struct rcu_head *head)
2404{
2405 struct cfq_io_context *cic;
2406
2407 cic = container_of(head, struct cfq_io_context, rcu_head);
2408
2409 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2410 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2411
9a11b4ed
JA
2412 if (ioc_gone) {
2413 /*
2414 * CFQ scheduler is exiting, grab exit lock and check
2415 * the pending io context count. If it hits zero,
2416 * complete ioc_gone and set it back to NULL
2417 */
2418 spin_lock(&ioc_gone_lock);
245b2e70 2419 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2420 complete(ioc_gone);
2421 ioc_gone = NULL;
2422 }
2423 spin_unlock(&ioc_gone_lock);
2424 }
34e6bbf2 2425}
4ac845a2 2426
34e6bbf2
FC
2427static void cfq_cic_free(struct cfq_io_context *cic)
2428{
2429 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2430}
2431
2432static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2433{
2434 unsigned long flags;
2435
2436 BUG_ON(!cic->dead_key);
2437
2438 spin_lock_irqsave(&ioc->lock, flags);
2439 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2440 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2441 spin_unlock_irqrestore(&ioc->lock, flags);
2442
34e6bbf2 2443 cfq_cic_free(cic);
4ac845a2
JA
2444}
2445
d6de8be7
JA
2446/*
2447 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2448 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2449 * and ->trim() which is called with the task lock held
2450 */
4ac845a2
JA
2451static void cfq_free_io_context(struct io_context *ioc)
2452{
4ac845a2 2453 /*
34e6bbf2
FC
2454 * ioc->refcount is zero here, or we are called from elv_unregister(),
2455 * so no more cic's are allowed to be linked into this ioc. So it
2456 * should be ok to iterate over the known list, we will see all cic's
2457 * since no new ones are added.
4ac845a2 2458 */
07416d29 2459 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2460}
2461
89850f7e 2462static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2463{
df5fe3e8
JM
2464 struct cfq_queue *__cfqq, *next;
2465
28f95cbc 2466 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2467 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2468 cfq_schedule_dispatch(cfqd);
28f95cbc 2469 }
22e2c507 2470
df5fe3e8
JM
2471 /*
2472 * If this queue was scheduled to merge with another queue, be
2473 * sure to drop the reference taken on that queue (and others in
2474 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2475 */
2476 __cfqq = cfqq->new_cfqq;
2477 while (__cfqq) {
2478 if (__cfqq == cfqq) {
2479 WARN(1, "cfqq->new_cfqq loop detected\n");
2480 break;
2481 }
2482 next = __cfqq->new_cfqq;
2483 cfq_put_queue(__cfqq);
2484 __cfqq = next;
2485 }
2486
89850f7e
JA
2487 cfq_put_queue(cfqq);
2488}
22e2c507 2489
89850f7e
JA
2490static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2491 struct cfq_io_context *cic)
2492{
4faa3c81
FC
2493 struct io_context *ioc = cic->ioc;
2494
fc46379d 2495 list_del_init(&cic->queue_list);
4ac845a2
JA
2496
2497 /*
2498 * Make sure key == NULL is seen for dead queues
2499 */
fc46379d 2500 smp_wmb();
4ac845a2 2501 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2502 cic->key = NULL;
2503
4faa3c81
FC
2504 if (ioc->ioc_data == cic)
2505 rcu_assign_pointer(ioc->ioc_data, NULL);
2506
ff6657c6
JA
2507 if (cic->cfqq[BLK_RW_ASYNC]) {
2508 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2509 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2510 }
2511
ff6657c6
JA
2512 if (cic->cfqq[BLK_RW_SYNC]) {
2513 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2514 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2515 }
89850f7e
JA
2516}
2517
4ac845a2
JA
2518static void cfq_exit_single_io_context(struct io_context *ioc,
2519 struct cfq_io_context *cic)
89850f7e
JA
2520{
2521 struct cfq_data *cfqd = cic->key;
2522
89850f7e 2523 if (cfqd) {
165125e1 2524 struct request_queue *q = cfqd->queue;
4ac845a2 2525 unsigned long flags;
89850f7e 2526
4ac845a2 2527 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2528
2529 /*
2530 * Ensure we get a fresh copy of the ->key to prevent
2531 * race between exiting task and queue
2532 */
2533 smp_read_barrier_depends();
2534 if (cic->key)
2535 __cfq_exit_single_io_context(cfqd, cic);
2536
4ac845a2 2537 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2538 }
1da177e4
LT
2539}
2540
498d3aa2
JA
2541/*
2542 * The process that ioc belongs to has exited, we need to clean up
2543 * and put the internal structures we have that belongs to that process.
2544 */
e2d74ac0 2545static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2546{
4ac845a2 2547 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2548}
2549
22e2c507 2550static struct cfq_io_context *
8267e268 2551cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2552{
b5deef90 2553 struct cfq_io_context *cic;
1da177e4 2554
94f6030c
CL
2555 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2556 cfqd->queue->node);
1da177e4 2557 if (cic) {
22e2c507 2558 cic->last_end_request = jiffies;
553698f9 2559 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2560 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2561 cic->dtor = cfq_free_io_context;
2562 cic->exit = cfq_exit_io_context;
245b2e70 2563 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2564 }
2565
2566 return cic;
2567}
2568
fd0928df 2569static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2570{
2571 struct task_struct *tsk = current;
2572 int ioprio_class;
2573
3b18152c 2574 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2575 return;
2576
fd0928df 2577 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2578 switch (ioprio_class) {
fe094d98
JA
2579 default:
2580 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2581 case IOPRIO_CLASS_NONE:
2582 /*
6d63c275 2583 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2584 */
2585 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2586 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2587 break;
2588 case IOPRIO_CLASS_RT:
2589 cfqq->ioprio = task_ioprio(ioc);
2590 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2591 break;
2592 case IOPRIO_CLASS_BE:
2593 cfqq->ioprio = task_ioprio(ioc);
2594 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2595 break;
2596 case IOPRIO_CLASS_IDLE:
2597 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2598 cfqq->ioprio = 7;
2599 cfq_clear_cfqq_idle_window(cfqq);
2600 break;
22e2c507
JA
2601 }
2602
2603 /*
2604 * keep track of original prio settings in case we have to temporarily
2605 * elevate the priority of this queue
2606 */
2607 cfqq->org_ioprio = cfqq->ioprio;
2608 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2609 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2610}
2611
febffd61 2612static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2613{
478a82b0
AV
2614 struct cfq_data *cfqd = cic->key;
2615 struct cfq_queue *cfqq;
c1b707d2 2616 unsigned long flags;
35e6077c 2617
caaa5f9f
JA
2618 if (unlikely(!cfqd))
2619 return;
2620
c1b707d2 2621 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2622
ff6657c6 2623 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2624 if (cfqq) {
2625 struct cfq_queue *new_cfqq;
ff6657c6
JA
2626 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2627 GFP_ATOMIC);
caaa5f9f 2628 if (new_cfqq) {
ff6657c6 2629 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2630 cfq_put_queue(cfqq);
2631 }
22e2c507 2632 }
caaa5f9f 2633
ff6657c6 2634 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2635 if (cfqq)
2636 cfq_mark_cfqq_prio_changed(cfqq);
2637
c1b707d2 2638 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2639}
2640
fc46379d 2641static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2642{
4ac845a2 2643 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2644 ioc->ioprio_changed = 0;
22e2c507
JA
2645}
2646
d5036d77 2647static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2648 pid_t pid, bool is_sync)
d5036d77
JA
2649{
2650 RB_CLEAR_NODE(&cfqq->rb_node);
2651 RB_CLEAR_NODE(&cfqq->p_node);
2652 INIT_LIST_HEAD(&cfqq->fifo);
2653
2654 atomic_set(&cfqq->ref, 0);
2655 cfqq->cfqd = cfqd;
2656
2657 cfq_mark_cfqq_prio_changed(cfqq);
2658
2659 if (is_sync) {
2660 if (!cfq_class_idle(cfqq))
2661 cfq_mark_cfqq_idle_window(cfqq);
2662 cfq_mark_cfqq_sync(cfqq);
2663 }
2664 cfqq->pid = pid;
2665}
2666
24610333
VG
2667#ifdef CONFIG_CFQ_GROUP_IOSCHED
2668static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2669{
2670 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2671 struct cfq_data *cfqd = cic->key;
2672 unsigned long flags;
2673 struct request_queue *q;
2674
2675 if (unlikely(!cfqd))
2676 return;
2677
2678 q = cfqd->queue;
2679
2680 spin_lock_irqsave(q->queue_lock, flags);
2681
2682 if (sync_cfqq) {
2683 /*
2684 * Drop reference to sync queue. A new sync queue will be
2685 * assigned in new group upon arrival of a fresh request.
2686 */
2687 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2688 cic_set_cfqq(cic, NULL, 1);
2689 cfq_put_queue(sync_cfqq);
2690 }
2691
2692 spin_unlock_irqrestore(q->queue_lock, flags);
2693}
2694
2695static void cfq_ioc_set_cgroup(struct io_context *ioc)
2696{
2697 call_for_each_cic(ioc, changed_cgroup);
2698 ioc->cgroup_changed = 0;
2699}
2700#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2701
22e2c507 2702static struct cfq_queue *
a6151c3a 2703cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2704 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2705{
22e2c507 2706 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2707 struct cfq_io_context *cic;
cdb16e8f 2708 struct cfq_group *cfqg;
22e2c507
JA
2709
2710retry:
cdb16e8f 2711 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2712 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2713 /* cic always exists here */
2714 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2715
6118b70b
JA
2716 /*
2717 * Always try a new alloc if we fell back to the OOM cfqq
2718 * originally, since it should just be a temporary situation.
2719 */
2720 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2721 cfqq = NULL;
22e2c507
JA
2722 if (new_cfqq) {
2723 cfqq = new_cfqq;
2724 new_cfqq = NULL;
2725 } else if (gfp_mask & __GFP_WAIT) {
2726 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2727 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2728 gfp_mask | __GFP_ZERO,
94f6030c 2729 cfqd->queue->node);
22e2c507 2730 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2731 if (new_cfqq)
2732 goto retry;
22e2c507 2733 } else {
94f6030c
CL
2734 cfqq = kmem_cache_alloc_node(cfq_pool,
2735 gfp_mask | __GFP_ZERO,
2736 cfqd->queue->node);
22e2c507
JA
2737 }
2738
6118b70b
JA
2739 if (cfqq) {
2740 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2741 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2742 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2743 cfq_log_cfqq(cfqd, cfqq, "alloced");
2744 } else
2745 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2746 }
2747
2748 if (new_cfqq)
2749 kmem_cache_free(cfq_pool, new_cfqq);
2750
22e2c507
JA
2751 return cfqq;
2752}
2753
c2dea2d1
VT
2754static struct cfq_queue **
2755cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2756{
fe094d98 2757 switch (ioprio_class) {
c2dea2d1
VT
2758 case IOPRIO_CLASS_RT:
2759 return &cfqd->async_cfqq[0][ioprio];
2760 case IOPRIO_CLASS_BE:
2761 return &cfqd->async_cfqq[1][ioprio];
2762 case IOPRIO_CLASS_IDLE:
2763 return &cfqd->async_idle_cfqq;
2764 default:
2765 BUG();
2766 }
2767}
2768
15c31be4 2769static struct cfq_queue *
a6151c3a 2770cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2771 gfp_t gfp_mask)
2772{
fd0928df
JA
2773 const int ioprio = task_ioprio(ioc);
2774 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2775 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2776 struct cfq_queue *cfqq = NULL;
2777
c2dea2d1
VT
2778 if (!is_sync) {
2779 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2780 cfqq = *async_cfqq;
2781 }
2782
6118b70b 2783 if (!cfqq)
fd0928df 2784 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2785
2786 /*
2787 * pin the queue now that it's allocated, scheduler exit will prune it
2788 */
c2dea2d1 2789 if (!is_sync && !(*async_cfqq)) {
15c31be4 2790 atomic_inc(&cfqq->ref);
c2dea2d1 2791 *async_cfqq = cfqq;
15c31be4
JA
2792 }
2793
2794 atomic_inc(&cfqq->ref);
2795 return cfqq;
2796}
2797
498d3aa2
JA
2798/*
2799 * We drop cfq io contexts lazily, so we may find a dead one.
2800 */
dbecf3ab 2801static void
4ac845a2
JA
2802cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2803 struct cfq_io_context *cic)
dbecf3ab 2804{
4ac845a2
JA
2805 unsigned long flags;
2806
fc46379d 2807 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2808
4ac845a2
JA
2809 spin_lock_irqsave(&ioc->lock, flags);
2810
4faa3c81 2811 BUG_ON(ioc->ioc_data == cic);
597bc485 2812
4ac845a2 2813 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2814 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2815 spin_unlock_irqrestore(&ioc->lock, flags);
2816
2817 cfq_cic_free(cic);
dbecf3ab
OH
2818}
2819
e2d74ac0 2820static struct cfq_io_context *
4ac845a2 2821cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2822{
e2d74ac0 2823 struct cfq_io_context *cic;
d6de8be7 2824 unsigned long flags;
4ac845a2 2825 void *k;
e2d74ac0 2826
91fac317
VT
2827 if (unlikely(!ioc))
2828 return NULL;
2829
d6de8be7
JA
2830 rcu_read_lock();
2831
597bc485
JA
2832 /*
2833 * we maintain a last-hit cache, to avoid browsing over the tree
2834 */
4ac845a2 2835 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2836 if (cic && cic->key == cfqd) {
2837 rcu_read_unlock();
597bc485 2838 return cic;
d6de8be7 2839 }
597bc485 2840
4ac845a2 2841 do {
4ac845a2
JA
2842 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2843 rcu_read_unlock();
2844 if (!cic)
2845 break;
be3b0753
OH
2846 /* ->key must be copied to avoid race with cfq_exit_queue() */
2847 k = cic->key;
2848 if (unlikely(!k)) {
4ac845a2 2849 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2850 rcu_read_lock();
4ac845a2 2851 continue;
dbecf3ab 2852 }
e2d74ac0 2853
d6de8be7 2854 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2855 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2856 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2857 break;
2858 } while (1);
e2d74ac0 2859
4ac845a2 2860 return cic;
e2d74ac0
JA
2861}
2862
4ac845a2
JA
2863/*
2864 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2865 * the process specific cfq io context when entered from the block layer.
2866 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2867 */
febffd61
JA
2868static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2869 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2870{
0261d688 2871 unsigned long flags;
4ac845a2 2872 int ret;
e2d74ac0 2873
4ac845a2
JA
2874 ret = radix_tree_preload(gfp_mask);
2875 if (!ret) {
2876 cic->ioc = ioc;
2877 cic->key = cfqd;
e2d74ac0 2878
4ac845a2
JA
2879 spin_lock_irqsave(&ioc->lock, flags);
2880 ret = radix_tree_insert(&ioc->radix_root,
2881 (unsigned long) cfqd, cic);
ffc4e759
JA
2882 if (!ret)
2883 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2884 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2885
4ac845a2
JA
2886 radix_tree_preload_end();
2887
2888 if (!ret) {
2889 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2890 list_add(&cic->queue_list, &cfqd->cic_list);
2891 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2892 }
e2d74ac0
JA
2893 }
2894
4ac845a2
JA
2895 if (ret)
2896 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2897
4ac845a2 2898 return ret;
e2d74ac0
JA
2899}
2900
1da177e4
LT
2901/*
2902 * Setup general io context and cfq io context. There can be several cfq
2903 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2904 * than one device managed by cfq.
1da177e4
LT
2905 */
2906static struct cfq_io_context *
e2d74ac0 2907cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2908{
22e2c507 2909 struct io_context *ioc = NULL;
1da177e4 2910 struct cfq_io_context *cic;
1da177e4 2911
22e2c507 2912 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2913
b5deef90 2914 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2915 if (!ioc)
2916 return NULL;
2917
4ac845a2 2918 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2919 if (cic)
2920 goto out;
1da177e4 2921
e2d74ac0
JA
2922 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2923 if (cic == NULL)
2924 goto err;
1da177e4 2925
4ac845a2
JA
2926 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2927 goto err_free;
2928
1da177e4 2929out:
fc46379d
JA
2930 smp_read_barrier_depends();
2931 if (unlikely(ioc->ioprio_changed))
2932 cfq_ioc_set_ioprio(ioc);
2933
24610333
VG
2934#ifdef CONFIG_CFQ_GROUP_IOSCHED
2935 if (unlikely(ioc->cgroup_changed))
2936 cfq_ioc_set_cgroup(ioc);
2937#endif
1da177e4 2938 return cic;
4ac845a2
JA
2939err_free:
2940 cfq_cic_free(cic);
1da177e4
LT
2941err:
2942 put_io_context(ioc);
2943 return NULL;
2944}
2945
22e2c507
JA
2946static void
2947cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2948{
aaf1228d
JA
2949 unsigned long elapsed = jiffies - cic->last_end_request;
2950 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2951
22e2c507
JA
2952 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2953 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2954 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2955}
1da177e4 2956
206dc69b 2957static void
b2c18e1e 2958cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2959 struct request *rq)
206dc69b 2960{
3dde36dd 2961 sector_t sdist = 0;
41647e7a 2962 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
2963 if (cfqq->last_request_pos) {
2964 if (cfqq->last_request_pos < blk_rq_pos(rq))
2965 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2966 else
2967 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2968 }
206dc69b 2969
3dde36dd 2970 cfqq->seek_history <<= 1;
41647e7a
CZ
2971 if (blk_queue_nonrot(cfqd->queue))
2972 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2973 else
2974 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 2975}
1da177e4 2976
22e2c507
JA
2977/*
2978 * Disable idle window if the process thinks too long or seeks so much that
2979 * it doesn't matter
2980 */
2981static void
2982cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2983 struct cfq_io_context *cic)
2984{
7b679138 2985 int old_idle, enable_idle;
1be92f2f 2986
0871714e
JA
2987 /*
2988 * Don't idle for async or idle io prio class
2989 */
2990 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2991 return;
2992
c265a7f4 2993 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2994
76280aff
CZ
2995 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2996 cfq_mark_cfqq_deep(cfqq);
2997
66dac98e 2998 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 2999 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3000 enable_idle = 0;
3001 else if (sample_valid(cic->ttime_samples)) {
718eee05 3002 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3003 enable_idle = 0;
3004 else
3005 enable_idle = 1;
1da177e4
LT
3006 }
3007
7b679138
JA
3008 if (old_idle != enable_idle) {
3009 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3010 if (enable_idle)
3011 cfq_mark_cfqq_idle_window(cfqq);
3012 else
3013 cfq_clear_cfqq_idle_window(cfqq);
3014 }
22e2c507 3015}
1da177e4 3016
22e2c507
JA
3017/*
3018 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3019 * no or if we aren't sure, a 1 will cause a preempt.
3020 */
a6151c3a 3021static bool
22e2c507 3022cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3023 struct request *rq)
22e2c507 3024{
6d048f53 3025 struct cfq_queue *cfqq;
22e2c507 3026
6d048f53
JA
3027 cfqq = cfqd->active_queue;
3028 if (!cfqq)
a6151c3a 3029 return false;
22e2c507 3030
6d048f53 3031 if (cfq_class_idle(new_cfqq))
a6151c3a 3032 return false;
22e2c507
JA
3033
3034 if (cfq_class_idle(cfqq))
a6151c3a 3035 return true;
1e3335de 3036
875feb63
DS
3037 /*
3038 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3039 */
3040 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3041 return false;
3042
374f84ac
JA
3043 /*
3044 * if the new request is sync, but the currently running queue is
3045 * not, let the sync request have priority.
3046 */
5e705374 3047 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3048 return true;
1e3335de 3049
8682e1f1
VG
3050 if (new_cfqq->cfqg != cfqq->cfqg)
3051 return false;
3052
3053 if (cfq_slice_used(cfqq))
3054 return true;
3055
3056 /* Allow preemption only if we are idling on sync-noidle tree */
3057 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3058 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3059 new_cfqq->service_tree->count == 2 &&
3060 RB_EMPTY_ROOT(&cfqq->sort_list))
3061 return true;
3062
374f84ac
JA
3063 /*
3064 * So both queues are sync. Let the new request get disk time if
3065 * it's a metadata request and the current queue is doing regular IO.
3066 */
3067 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3068 return true;
22e2c507 3069
3a9a3f6c
DS
3070 /*
3071 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3072 */
3073 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3074 return true;
3a9a3f6c 3075
1e3335de 3076 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3077 return false;
1e3335de
JA
3078
3079 /*
3080 * if this request is as-good as one we would expect from the
3081 * current cfqq, let it preempt
3082 */
2f7a2d89 3083 if (cfq_rq_close(cfqd, cfqq, rq, true))
a6151c3a 3084 return true;
1e3335de 3085
a6151c3a 3086 return false;
22e2c507
JA
3087}
3088
3089/*
3090 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3091 * let it have half of its nominal slice.
3092 */
3093static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3094{
7b679138 3095 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3096 cfq_slice_expired(cfqd, 1);
22e2c507 3097
bf572256
JA
3098 /*
3099 * Put the new queue at the front of the of the current list,
3100 * so we know that it will be selected next.
3101 */
3102 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3103
3104 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3105
44f7c160
JA
3106 cfqq->slice_end = 0;
3107 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3108}
3109
22e2c507 3110/*
5e705374 3111 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3112 * something we should do about it
3113 */
3114static void
5e705374
JA
3115cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3116 struct request *rq)
22e2c507 3117{
5e705374 3118 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3119
45333d5a 3120 cfqd->rq_queued++;
374f84ac
JA
3121 if (rq_is_meta(rq))
3122 cfqq->meta_pending++;
3123
9c2c38a1 3124 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3125 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3126 cfq_update_idle_window(cfqd, cfqq, cic);
3127
b2c18e1e 3128 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3129
3130 if (cfqq == cfqd->active_queue) {
3131 /*
b029195d
JA
3132 * Remember that we saw a request from this process, but
3133 * don't start queuing just yet. Otherwise we risk seeing lots
3134 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3135 * and merging. If the request is already larger than a single
3136 * page, let it rip immediately. For that case we assume that
2d870722
JA
3137 * merging is already done. Ditto for a busy system that
3138 * has other work pending, don't risk delaying until the
3139 * idle timer unplug to continue working.
22e2c507 3140 */
d6ceb25e 3141 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3142 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3143 cfqd->busy_queues > 1) {
d6ceb25e 3144 del_timer(&cfqd->idle_slice_timer);
554554f6 3145 cfq_clear_cfqq_wait_request(cfqq);
bf791937
VG
3146 __blk_run_queue(cfqd->queue);
3147 } else
3148 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3149 }
5e705374 3150 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3151 /*
3152 * not the active queue - expire current slice if it is
3153 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3154 * has some old slice time left and is of higher priority or
3155 * this new queue is RT and the current one is BE
22e2c507
JA
3156 */
3157 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3158 __blk_run_queue(cfqd->queue);
22e2c507 3159 }
1da177e4
LT
3160}
3161
165125e1 3162static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3163{
b4878f24 3164 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3165 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3166
7b679138 3167 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3168 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3169
30996f40 3170 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3171 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3172 cfq_add_rq_rb(rq);
22e2c507 3173
5e705374 3174 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3175}
3176
45333d5a
AC
3177/*
3178 * Update hw_tag based on peak queue depth over 50 samples under
3179 * sufficient load.
3180 */
3181static void cfq_update_hw_tag(struct cfq_data *cfqd)
3182{
1a1238a7
SL
3183 struct cfq_queue *cfqq = cfqd->active_queue;
3184
53c583d2
CZ
3185 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3186 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3187
3188 if (cfqd->hw_tag == 1)
3189 return;
45333d5a
AC
3190
3191 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3192 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3193 return;
3194
1a1238a7
SL
3195 /*
3196 * If active queue hasn't enough requests and can idle, cfq might not
3197 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3198 * case
3199 */
3200 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3201 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3202 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3203 return;
3204
45333d5a
AC
3205 if (cfqd->hw_tag_samples++ < 50)
3206 return;
3207
e459dd08 3208 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3209 cfqd->hw_tag = 1;
3210 else
3211 cfqd->hw_tag = 0;
45333d5a
AC
3212}
3213
7667aa06
VG
3214static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3215{
3216 struct cfq_io_context *cic = cfqd->active_cic;
3217
3218 /* If there are other queues in the group, don't wait */
3219 if (cfqq->cfqg->nr_cfqq > 1)
3220 return false;
3221
3222 if (cfq_slice_used(cfqq))
3223 return true;
3224
3225 /* if slice left is less than think time, wait busy */
3226 if (cic && sample_valid(cic->ttime_samples)
3227 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3228 return true;
3229
3230 /*
3231 * If think times is less than a jiffy than ttime_mean=0 and above
3232 * will not be true. It might happen that slice has not expired yet
3233 * but will expire soon (4-5 ns) during select_queue(). To cover the
3234 * case where think time is less than a jiffy, mark the queue wait
3235 * busy if only 1 jiffy is left in the slice.
3236 */
3237 if (cfqq->slice_end - jiffies == 1)
3238 return true;
3239
3240 return false;
3241}
3242
165125e1 3243static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3244{
5e705374 3245 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3246 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3247 const int sync = rq_is_sync(rq);
b4878f24 3248 unsigned long now;
1da177e4 3249
b4878f24 3250 now = jiffies;
2868ef7b 3251 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3252
45333d5a
AC
3253 cfq_update_hw_tag(cfqd);
3254
53c583d2 3255 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3256 WARN_ON(!cfqq->dispatched);
53c583d2 3257 cfqd->rq_in_driver--;
6d048f53 3258 cfqq->dispatched--;
1da177e4 3259
53c583d2 3260 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3261
365722bb 3262 if (sync) {
5e705374 3263 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3264 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3265 cfqd->last_delayed_sync = now;
365722bb 3266 }
caaa5f9f
JA
3267
3268 /*
3269 * If this is the active queue, check if it needs to be expired,
3270 * or if we want to idle in case it has no pending requests.
3271 */
3272 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3273 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3274
44f7c160
JA
3275 if (cfq_cfqq_slice_new(cfqq)) {
3276 cfq_set_prio_slice(cfqd, cfqq);
3277 cfq_clear_cfqq_slice_new(cfqq);
3278 }
f75edf2d
VG
3279
3280 /*
7667aa06
VG
3281 * Should we wait for next request to come in before we expire
3282 * the queue.
f75edf2d 3283 */
7667aa06 3284 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3285 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3286 cfq_mark_cfqq_wait_busy(cfqq);
3287 }
3288
a36e71f9 3289 /*
8e550632
CZ
3290 * Idling is not enabled on:
3291 * - expired queues
3292 * - idle-priority queues
3293 * - async queues
3294 * - queues with still some requests queued
3295 * - when there is a close cooperator
a36e71f9 3296 */
0871714e 3297 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3298 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3299 else if (sync && cfqq_empty &&
3300 !cfq_close_cooperator(cfqd, cfqq)) {
3301 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3302 /*
3303 * Idling is enabled for SYNC_WORKLOAD.
3304 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3305 * only if we processed at least one !rq_noidle request
3306 */
3307 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3308 || cfqd->noidle_tree_requires_idle
3309 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3310 cfq_arm_slice_timer(cfqd);
3311 }
caaa5f9f 3312 }
6d048f53 3313
53c583d2 3314 if (!cfqd->rq_in_driver)
23e018a1 3315 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3316}
3317
22e2c507
JA
3318/*
3319 * we temporarily boost lower priority queues if they are holding fs exclusive
3320 * resources. they are boosted to normal prio (CLASS_BE/4)
3321 */
3322static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3323{
22e2c507
JA
3324 if (has_fs_excl()) {
3325 /*
3326 * boost idle prio on transactions that would lock out other
3327 * users of the filesystem
3328 */
3329 if (cfq_class_idle(cfqq))
3330 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3331 if (cfqq->ioprio > IOPRIO_NORM)
3332 cfqq->ioprio = IOPRIO_NORM;
3333 } else {
3334 /*
dddb7451 3335 * unboost the queue (if needed)
22e2c507 3336 */
dddb7451
CZ
3337 cfqq->ioprio_class = cfqq->org_ioprio_class;
3338 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3339 }
22e2c507 3340}
1da177e4 3341
89850f7e 3342static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3343{
1b379d8d 3344 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3345 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3346 return ELV_MQUEUE_MUST;
3b18152c 3347 }
1da177e4 3348
22e2c507 3349 return ELV_MQUEUE_MAY;
22e2c507
JA
3350}
3351
165125e1 3352static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3353{
3354 struct cfq_data *cfqd = q->elevator->elevator_data;
3355 struct task_struct *tsk = current;
91fac317 3356 struct cfq_io_context *cic;
22e2c507
JA
3357 struct cfq_queue *cfqq;
3358
3359 /*
3360 * don't force setup of a queue from here, as a call to may_queue
3361 * does not necessarily imply that a request actually will be queued.
3362 * so just lookup a possibly existing queue, or return 'may queue'
3363 * if that fails
3364 */
4ac845a2 3365 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3366 if (!cic)
3367 return ELV_MQUEUE_MAY;
3368
b0b78f81 3369 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3370 if (cfqq) {
fd0928df 3371 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3372 cfq_prio_boost(cfqq);
3373
89850f7e 3374 return __cfq_may_queue(cfqq);
22e2c507
JA
3375 }
3376
3377 return ELV_MQUEUE_MAY;
1da177e4
LT
3378}
3379
1da177e4
LT
3380/*
3381 * queue lock held here
3382 */
bb37b94c 3383static void cfq_put_request(struct request *rq)
1da177e4 3384{
5e705374 3385 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3386
5e705374 3387 if (cfqq) {
22e2c507 3388 const int rw = rq_data_dir(rq);
1da177e4 3389
22e2c507
JA
3390 BUG_ON(!cfqq->allocated[rw]);
3391 cfqq->allocated[rw]--;
1da177e4 3392
5e705374 3393 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3394
1da177e4 3395 rq->elevator_private = NULL;
5e705374 3396 rq->elevator_private2 = NULL;
1da177e4 3397
1da177e4
LT
3398 cfq_put_queue(cfqq);
3399 }
3400}
3401
df5fe3e8
JM
3402static struct cfq_queue *
3403cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3404 struct cfq_queue *cfqq)
3405{
3406 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3407 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3408 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3409 cfq_put_queue(cfqq);
3410 return cic_to_cfqq(cic, 1);
3411}
3412
e6c5bc73
JM
3413/*
3414 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3415 * was the last process referring to said cfqq.
3416 */
3417static struct cfq_queue *
3418split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3419{
3420 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3421 cfqq->pid = current->pid;
3422 cfq_clear_cfqq_coop(cfqq);
ae54abed 3423 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3424 return cfqq;
3425 }
3426
3427 cic_set_cfqq(cic, NULL, 1);
3428 cfq_put_queue(cfqq);
3429 return NULL;
3430}
1da177e4 3431/*
22e2c507 3432 * Allocate cfq data structures associated with this request.
1da177e4 3433 */
22e2c507 3434static int
165125e1 3435cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3436{
3437 struct cfq_data *cfqd = q->elevator->elevator_data;
3438 struct cfq_io_context *cic;
3439 const int rw = rq_data_dir(rq);
a6151c3a 3440 const bool is_sync = rq_is_sync(rq);
22e2c507 3441 struct cfq_queue *cfqq;
1da177e4
LT
3442 unsigned long flags;
3443
3444 might_sleep_if(gfp_mask & __GFP_WAIT);
3445
e2d74ac0 3446 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3447
1da177e4
LT
3448 spin_lock_irqsave(q->queue_lock, flags);
3449
22e2c507
JA
3450 if (!cic)
3451 goto queue_fail;
3452
e6c5bc73 3453new_queue:
91fac317 3454 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3455 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3456 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3457 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3458 } else {
e6c5bc73
JM
3459 /*
3460 * If the queue was seeky for too long, break it apart.
3461 */
ae54abed 3462 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3463 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3464 cfqq = split_cfqq(cic, cfqq);
3465 if (!cfqq)
3466 goto new_queue;
3467 }
3468
df5fe3e8
JM
3469 /*
3470 * Check to see if this queue is scheduled to merge with
3471 * another, closely cooperating queue. The merging of
3472 * queues happens here as it must be done in process context.
3473 * The reference on new_cfqq was taken in merge_cfqqs.
3474 */
3475 if (cfqq->new_cfqq)
3476 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3477 }
1da177e4
LT
3478
3479 cfqq->allocated[rw]++;
22e2c507 3480 atomic_inc(&cfqq->ref);
1da177e4 3481
5e705374 3482 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3483
5e705374
JA
3484 rq->elevator_private = cic;
3485 rq->elevator_private2 = cfqq;
3486 return 0;
1da177e4 3487
22e2c507
JA
3488queue_fail:
3489 if (cic)
3490 put_io_context(cic->ioc);
89850f7e 3491
23e018a1 3492 cfq_schedule_dispatch(cfqd);
1da177e4 3493 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3494 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3495 return 1;
3496}
3497
65f27f38 3498static void cfq_kick_queue(struct work_struct *work)
22e2c507 3499{
65f27f38 3500 struct cfq_data *cfqd =
23e018a1 3501 container_of(work, struct cfq_data, unplug_work);
165125e1 3502 struct request_queue *q = cfqd->queue;
22e2c507 3503
40bb54d1 3504 spin_lock_irq(q->queue_lock);
a7f55792 3505 __blk_run_queue(cfqd->queue);
40bb54d1 3506 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3507}
3508
3509/*
3510 * Timer running if the active_queue is currently idling inside its time slice
3511 */
3512static void cfq_idle_slice_timer(unsigned long data)
3513{
3514 struct cfq_data *cfqd = (struct cfq_data *) data;
3515 struct cfq_queue *cfqq;
3516 unsigned long flags;
3c6bd2f8 3517 int timed_out = 1;
22e2c507 3518
7b679138
JA
3519 cfq_log(cfqd, "idle timer fired");
3520
22e2c507
JA
3521 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3522
fe094d98
JA
3523 cfqq = cfqd->active_queue;
3524 if (cfqq) {
3c6bd2f8
JA
3525 timed_out = 0;
3526
b029195d
JA
3527 /*
3528 * We saw a request before the queue expired, let it through
3529 */
3530 if (cfq_cfqq_must_dispatch(cfqq))
3531 goto out_kick;
3532
22e2c507
JA
3533 /*
3534 * expired
3535 */
44f7c160 3536 if (cfq_slice_used(cfqq))
22e2c507
JA
3537 goto expire;
3538
3539 /*
3540 * only expire and reinvoke request handler, if there are
3541 * other queues with pending requests
3542 */
caaa5f9f 3543 if (!cfqd->busy_queues)
22e2c507 3544 goto out_cont;
22e2c507
JA
3545
3546 /*
3547 * not expired and it has a request pending, let it dispatch
3548 */
75e50984 3549 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3550 goto out_kick;
76280aff
CZ
3551
3552 /*
3553 * Queue depth flag is reset only when the idle didn't succeed
3554 */
3555 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3556 }
3557expire:
6084cdda 3558 cfq_slice_expired(cfqd, timed_out);
22e2c507 3559out_kick:
23e018a1 3560 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3561out_cont:
3562 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3563}
3564
3b18152c
JA
3565static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3566{
3567 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3568 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3569}
22e2c507 3570
c2dea2d1
VT
3571static void cfq_put_async_queues(struct cfq_data *cfqd)
3572{
3573 int i;
3574
3575 for (i = 0; i < IOPRIO_BE_NR; i++) {
3576 if (cfqd->async_cfqq[0][i])
3577 cfq_put_queue(cfqd->async_cfqq[0][i]);
3578 if (cfqd->async_cfqq[1][i])
3579 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3580 }
2389d1ef
ON
3581
3582 if (cfqd->async_idle_cfqq)
3583 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3584}
3585
bb729bc9
JA
3586static void cfq_cfqd_free(struct rcu_head *head)
3587{
3588 kfree(container_of(head, struct cfq_data, rcu));
3589}
3590
b374d18a 3591static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3592{
22e2c507 3593 struct cfq_data *cfqd = e->elevator_data;
165125e1 3594 struct request_queue *q = cfqd->queue;
22e2c507 3595
3b18152c 3596 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3597
d9ff4187 3598 spin_lock_irq(q->queue_lock);
e2d74ac0 3599
d9ff4187 3600 if (cfqd->active_queue)
6084cdda 3601 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3602
3603 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3604 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3605 struct cfq_io_context,
3606 queue_list);
89850f7e
JA
3607
3608 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3609 }
e2d74ac0 3610
c2dea2d1 3611 cfq_put_async_queues(cfqd);
b1c35769
VG
3612 cfq_release_cfq_groups(cfqd);
3613 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3614
d9ff4187 3615 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3616
3617 cfq_shutdown_timer_wq(cfqd);
3618
b1c35769 3619 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3620 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3621}
3622
165125e1 3623static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3624{
3625 struct cfq_data *cfqd;
718eee05 3626 int i, j;
cdb16e8f 3627 struct cfq_group *cfqg;
615f0259 3628 struct cfq_rb_root *st;
1da177e4 3629
94f6030c 3630 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3631 if (!cfqd)
bc1c1169 3632 return NULL;
1da177e4 3633
1fa8f6d6
VG
3634 /* Init root service tree */
3635 cfqd->grp_service_tree = CFQ_RB_ROOT;
3636
cdb16e8f
VG
3637 /* Init root group */
3638 cfqg = &cfqd->root_group;
615f0259
VG
3639 for_each_cfqg_st(cfqg, i, j, st)
3640 *st = CFQ_RB_ROOT;
1fa8f6d6 3641 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3642
25bc6b07
VG
3643 /* Give preference to root group over other groups */
3644 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3645
25fb5169 3646#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3647 /*
3648 * Take a reference to root group which we never drop. This is just
3649 * to make sure that cfq_put_cfqg() does not try to kfree root group
3650 */
3651 atomic_set(&cfqg->ref, 1);
22084190
VG
3652 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3653 0);
25fb5169 3654#endif
26a2ac00
JA
3655 /*
3656 * Not strictly needed (since RB_ROOT just clears the node and we
3657 * zeroed cfqd on alloc), but better be safe in case someone decides
3658 * to add magic to the rb code
3659 */
3660 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3661 cfqd->prio_trees[i] = RB_ROOT;
3662
6118b70b
JA
3663 /*
3664 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3665 * Grab a permanent reference to it, so that the normal code flow
3666 * will not attempt to free it.
3667 */
3668 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3669 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3670 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3671
d9ff4187 3672 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3673
1da177e4 3674 cfqd->queue = q;
1da177e4 3675
22e2c507
JA
3676 init_timer(&cfqd->idle_slice_timer);
3677 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3678 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3679
23e018a1 3680 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3681
1da177e4 3682 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3683 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3684 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3685 cfqd->cfq_back_max = cfq_back_max;
3686 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3687 cfqd->cfq_slice[0] = cfq_slice_async;
3688 cfqd->cfq_slice[1] = cfq_slice_sync;
3689 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3690 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3691 cfqd->cfq_latency = 1;
ae30c286 3692 cfqd->cfq_group_isolation = 0;
e459dd08 3693 cfqd->hw_tag = -1;
edc71131
CZ
3694 /*
3695 * we optimistically start assuming sync ops weren't delayed in last
3696 * second, in order to have larger depth for async operations.
3697 */
573412b2 3698 cfqd->last_delayed_sync = jiffies - HZ;
bb729bc9 3699 INIT_RCU_HEAD(&cfqd->rcu);
bc1c1169 3700 return cfqd;
1da177e4
LT
3701}
3702
3703static void cfq_slab_kill(void)
3704{
d6de8be7
JA
3705 /*
3706 * Caller already ensured that pending RCU callbacks are completed,
3707 * so we should have no busy allocations at this point.
3708 */
1da177e4
LT
3709 if (cfq_pool)
3710 kmem_cache_destroy(cfq_pool);
3711 if (cfq_ioc_pool)
3712 kmem_cache_destroy(cfq_ioc_pool);
3713}
3714
3715static int __init cfq_slab_setup(void)
3716{
0a31bd5f 3717 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3718 if (!cfq_pool)
3719 goto fail;
3720
34e6bbf2 3721 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3722 if (!cfq_ioc_pool)
3723 goto fail;
3724
3725 return 0;
3726fail:
3727 cfq_slab_kill();
3728 return -ENOMEM;
3729}
3730
1da177e4
LT
3731/*
3732 * sysfs parts below -->
3733 */
1da177e4
LT
3734static ssize_t
3735cfq_var_show(unsigned int var, char *page)
3736{
3737 return sprintf(page, "%d\n", var);
3738}
3739
3740static ssize_t
3741cfq_var_store(unsigned int *var, const char *page, size_t count)
3742{
3743 char *p = (char *) page;
3744
3745 *var = simple_strtoul(p, &p, 10);
3746 return count;
3747}
3748
1da177e4 3749#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3750static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3751{ \
3d1ab40f 3752 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3753 unsigned int __data = __VAR; \
3754 if (__CONV) \
3755 __data = jiffies_to_msecs(__data); \
3756 return cfq_var_show(__data, (page)); \
3757}
3758SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3759SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3760SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3761SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3762SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3763SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3764SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3765SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3766SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3767SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3768SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3769#undef SHOW_FUNCTION
3770
3771#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3772static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3773{ \
3d1ab40f 3774 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3775 unsigned int __data; \
3776 int ret = cfq_var_store(&__data, (page), count); \
3777 if (__data < (MIN)) \
3778 __data = (MIN); \
3779 else if (__data > (MAX)) \
3780 __data = (MAX); \
3781 if (__CONV) \
3782 *(__PTR) = msecs_to_jiffies(__data); \
3783 else \
3784 *(__PTR) = __data; \
3785 return ret; \
3786}
3787STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3788STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3789 UINT_MAX, 1);
3790STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3791 UINT_MAX, 1);
e572ec7e 3792STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3793STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3794 UINT_MAX, 0);
22e2c507
JA
3795STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3796STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3797STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3798STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3799 UINT_MAX, 0);
963b72fc 3800STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3801STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3802#undef STORE_FUNCTION
3803
e572ec7e
AV
3804#define CFQ_ATTR(name) \
3805 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3806
3807static struct elv_fs_entry cfq_attrs[] = {
3808 CFQ_ATTR(quantum),
e572ec7e
AV
3809 CFQ_ATTR(fifo_expire_sync),
3810 CFQ_ATTR(fifo_expire_async),
3811 CFQ_ATTR(back_seek_max),
3812 CFQ_ATTR(back_seek_penalty),
3813 CFQ_ATTR(slice_sync),
3814 CFQ_ATTR(slice_async),
3815 CFQ_ATTR(slice_async_rq),
3816 CFQ_ATTR(slice_idle),
963b72fc 3817 CFQ_ATTR(low_latency),
ae30c286 3818 CFQ_ATTR(group_isolation),
e572ec7e 3819 __ATTR_NULL
1da177e4
LT
3820};
3821
1da177e4
LT
3822static struct elevator_type iosched_cfq = {
3823 .ops = {
3824 .elevator_merge_fn = cfq_merge,
3825 .elevator_merged_fn = cfq_merged_request,
3826 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3827 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3828 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3829 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3830 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3831 .elevator_deactivate_req_fn = cfq_deactivate_request,
3832 .elevator_queue_empty_fn = cfq_queue_empty,
3833 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3834 .elevator_former_req_fn = elv_rb_former_request,
3835 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3836 .elevator_set_req_fn = cfq_set_request,
3837 .elevator_put_req_fn = cfq_put_request,
3838 .elevator_may_queue_fn = cfq_may_queue,
3839 .elevator_init_fn = cfq_init_queue,
3840 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3841 .trim = cfq_free_io_context,
1da177e4 3842 },
3d1ab40f 3843 .elevator_attrs = cfq_attrs,
1da177e4
LT
3844 .elevator_name = "cfq",
3845 .elevator_owner = THIS_MODULE,
3846};
3847
3e252066
VG
3848#ifdef CONFIG_CFQ_GROUP_IOSCHED
3849static struct blkio_policy_type blkio_policy_cfq = {
3850 .ops = {
3851 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3852 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3853 },
3854};
3855#else
3856static struct blkio_policy_type blkio_policy_cfq;
3857#endif
3858
1da177e4
LT
3859static int __init cfq_init(void)
3860{
22e2c507
JA
3861 /*
3862 * could be 0 on HZ < 1000 setups
3863 */
3864 if (!cfq_slice_async)
3865 cfq_slice_async = 1;
3866 if (!cfq_slice_idle)
3867 cfq_slice_idle = 1;
3868
1da177e4
LT
3869 if (cfq_slab_setup())
3870 return -ENOMEM;
3871
2fdd82bd 3872 elv_register(&iosched_cfq);
3e252066 3873 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3874
2fdd82bd 3875 return 0;
1da177e4
LT
3876}
3877
3878static void __exit cfq_exit(void)
3879{
6e9a4738 3880 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 3881 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3882 elv_unregister(&iosched_cfq);
334e94de 3883 ioc_gone = &all_gone;
fba82272
OH
3884 /* ioc_gone's update must be visible before reading ioc_count */
3885 smp_wmb();
d6de8be7
JA
3886
3887 /*
3888 * this also protects us from entering cfq_slab_kill() with
3889 * pending RCU callbacks
3890 */
245b2e70 3891 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3892 wait_for_completion(&all_gone);
83521d3e 3893 cfq_slab_kill();
1da177e4
LT
3894}
3895
3896module_init(cfq_init);
3897module_exit(cfq_exit);
3898
3899MODULE_AUTHOR("Jens Axboe");
3900MODULE_LICENSE("GPL");
3901MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");