]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: fix locking around ioc->ioc_data assignment
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98 56#define RQ_CIC(rq) \
c186794d
MS
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
30d7b944 99 int ref;
6118b70b
JA
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
c4e7893e
VG
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
6118b70b
JA
151};
152
c0324a02 153/*
718eee05 154 * First index in the service_trees.
c0324a02
CZ
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
c0324a02 158 BE_WORKLOAD = 0,
615f0259
VG
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
b4627321 161 CFQ_PRIO_NR,
c0324a02
CZ
162};
163
718eee05
CZ
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171};
172
cdb16e8f
VG
173/* This is per cgroup per device grouping structure */
174struct cfq_group {
1fa8f6d6
VG
175 /* group service_tree member */
176 struct rb_node rb_node;
177
178 /* group service_tree key */
179 u64 vdisktime;
25bc6b07 180 unsigned int weight;
8184f93e
JT
181 unsigned int new_weight;
182 bool needs_update;
1fa8f6d6
VG
183
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
186
cdb16e8f 187 /*
b4627321
VG
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
192 */
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
194 /*
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
cdb16e8f
VG
200 * Counts are embedded in the cfq_rb_root
201 */
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
dae739eb
VG
204
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
25fb5169
VG
208 struct blkio_group blkg;
209#ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
329a6781 211 int ref;
25fb5169 212#endif
80bdf0c7
VG
213 /* number of requests that are on the dispatch list or inside driver */
214 int dispatched;
cdb16e8f 215};
718eee05 216
22e2c507
JA
217/*
218 * Per block device queue structure
219 */
1da177e4 220struct cfq_data {
165125e1 221 struct request_queue *queue;
1fa8f6d6
VG
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
cdb16e8f 224 struct cfq_group root_group;
22e2c507 225
c0324a02
CZ
226 /*
227 * The priority currently being served
22e2c507 228 */
c0324a02 229 enum wl_prio_t serving_prio;
718eee05
CZ
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
cdb16e8f 232 struct cfq_group *serving_group;
a36e71f9
JA
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
22e2c507 241 unsigned int busy_queues;
ef8a41df 242 unsigned int busy_sync_queues;
22e2c507 243
53c583d2
CZ
244 int rq_in_driver;
245 int rq_in_flight[2];
45333d5a
AC
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
25776e35 251 int hw_tag;
e459dd08
CZ
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
1da177e4 260
22e2c507
JA
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
23e018a1 265 struct work_struct unplug_work;
1da177e4 266
22e2c507
JA
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
22e2c507 269
c2dea2d1
VT
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
15c31be4 275
6d048f53 276 sector_t last_position;
1da177e4 277
1da177e4
LT
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
22e2c507 282 unsigned int cfq_fifo_expire[2];
1da177e4
LT
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
22e2c507
JA
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
80bdf0c7 288 unsigned int cfq_group_idle;
963b72fc 289 unsigned int cfq_latency;
d9ff4187 290
80b15c73 291 unsigned int cic_index;
d9ff4187 292 struct list_head cic_list;
1da177e4 293
6118b70b
JA
294 /*
295 * Fallback dummy cfqq for extreme OOM conditions
296 */
297 struct cfq_queue oom_cfqq;
365722bb 298
573412b2 299 unsigned long last_delayed_sync;
25fb5169
VG
300
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
56edf7d7
VG
303
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
306};
307
25fb5169
VG
308static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
cdb16e8f
VG
310static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311 enum wl_prio_t prio,
65b32a57 312 enum wl_type_t type)
c0324a02 313{
1fa8f6d6
VG
314 if (!cfqg)
315 return NULL;
316
c0324a02 317 if (prio == IDLE_WORKLOAD)
cdb16e8f 318 return &cfqg->service_tree_idle;
c0324a02 319
cdb16e8f 320 return &cfqg->service_trees[prio][type];
c0324a02
CZ
321}
322
3b18152c 323enum cfqq_state_flags {
b0b8d749
JA
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
337};
338
339#define CFQ_CFQQ_FNS(name) \
340static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341{ \
fe094d98 342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
343} \
344static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345{ \
fe094d98 346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
347} \
348static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349{ \
fe094d98 350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
351}
352
353CFQ_CFQQ_FNS(on_rr);
354CFQ_CFQQ_FNS(wait_request);
b029195d 355CFQ_CFQQ_FNS(must_dispatch);
3b18152c 356CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
357CFQ_CFQQ_FNS(fifo_expire);
358CFQ_CFQQ_FNS(idle_window);
359CFQ_CFQQ_FNS(prio_changed);
44f7c160 360CFQ_CFQQ_FNS(slice_new);
91fac317 361CFQ_CFQQ_FNS(sync);
a36e71f9 362CFQ_CFQQ_FNS(coop);
ae54abed 363CFQ_CFQQ_FNS(split_coop);
76280aff 364CFQ_CFQQ_FNS(deep);
f75edf2d 365CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
366#undef CFQ_CFQQ_FNS
367
afc24d49 368#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
369#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args);
373
374#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args); \
377
378#else
7b679138
JA
379#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
381#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
382#endif
7b679138
JA
383#define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
615f0259
VG
386/* Traverses through cfq group service trees */
387#define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
395
396
02b35081
VG
397static inline bool iops_mode(struct cfq_data *cfqd)
398{
399 /*
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
405 */
406 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407 return true;
408 else
409 return false;
410}
411
c0324a02
CZ
412static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413{
414 if (cfq_class_idle(cfqq))
415 return IDLE_WORKLOAD;
416 if (cfq_class_rt(cfqq))
417 return RT_WORKLOAD;
418 return BE_WORKLOAD;
419}
420
718eee05
CZ
421
422static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423{
424 if (!cfq_cfqq_sync(cfqq))
425 return ASYNC_WORKLOAD;
426 if (!cfq_cfqq_idle_window(cfqq))
427 return SYNC_NOIDLE_WORKLOAD;
428 return SYNC_WORKLOAD;
429}
430
58ff82f3
VG
431static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432 struct cfq_data *cfqd,
433 struct cfq_group *cfqg)
c0324a02
CZ
434{
435 if (wl == IDLE_WORKLOAD)
cdb16e8f 436 return cfqg->service_tree_idle.count;
c0324a02 437
cdb16e8f
VG
438 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
441}
442
f26bd1f0
VG
443static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
445{
446 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448}
449
165125e1 450static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 451static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 452 struct io_context *, gfp_t);
4ac845a2 453static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
454 struct io_context *);
455
456static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 457 bool is_sync)
91fac317 458{
a6151c3a 459 return cic->cfqq[is_sync];
91fac317
VT
460}
461
462static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 463 struct cfq_queue *cfqq, bool is_sync)
91fac317 464{
a6151c3a 465 cic->cfqq[is_sync] = cfqq;
91fac317
VT
466}
467
bca4b914 468#define CIC_DEAD_KEY 1ul
80b15c73 469#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
470
471static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472{
80b15c73 473 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
474}
475
476static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477{
478 struct cfq_data *cfqd = cic->key;
479
480 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481 return NULL;
482
483 return cfqd;
484}
485
91fac317
VT
486/*
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
489 */
a6151c3a 490static inline bool cfq_bio_sync(struct bio *bio)
91fac317 491{
7b6d91da 492 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 493}
1da177e4 494
99f95e52
AM
495/*
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
498 */
23e018a1 499static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 500{
7b679138
JA
501 if (cfqd->busy_queues) {
502 cfq_log(cfqd, "schedule dispatch");
23e018a1 503 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 504 }
99f95e52
AM
505}
506
44f7c160
JA
507/*
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
511 */
a6151c3a 512static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 513 unsigned short prio)
44f7c160 514{
d9e7620e 515 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 516
d9e7620e
JA
517 WARN_ON(prio >= IOPRIO_BE_NR);
518
519 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520}
44f7c160 521
d9e7620e
JA
522static inline int
523cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524{
525 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
526}
527
25bc6b07
VG
528static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529{
530 u64 d = delta << CFQ_SERVICE_SHIFT;
531
532 d = d * BLKIO_WEIGHT_DEFAULT;
533 do_div(d, cfqg->weight);
534 return d;
535}
536
537static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538{
539 s64 delta = (s64)(vdisktime - min_vdisktime);
540 if (delta > 0)
541 min_vdisktime = vdisktime;
542
543 return min_vdisktime;
544}
545
546static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547{
548 s64 delta = (s64)(vdisktime - min_vdisktime);
549 if (delta < 0)
550 min_vdisktime = vdisktime;
551
552 return min_vdisktime;
553}
554
555static void update_min_vdisktime(struct cfq_rb_root *st)
556{
25bc6b07
VG
557 struct cfq_group *cfqg;
558
25bc6b07
VG
559 if (st->left) {
560 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
561 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562 cfqg->vdisktime);
25bc6b07 563 }
25bc6b07
VG
564}
565
5db5d642
CZ
566/*
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
570 */
571
58ff82f3
VG
572static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573 struct cfq_group *cfqg, bool rt)
5869619c 574{
5db5d642
CZ
575 unsigned min_q, max_q;
576 unsigned mult = cfq_hist_divisor - 1;
577 unsigned round = cfq_hist_divisor / 2;
58ff82f3 578 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 579
58ff82f3
VG
580 min_q = min(cfqg->busy_queues_avg[rt], busy);
581 max_q = max(cfqg->busy_queues_avg[rt], busy);
582 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 583 cfq_hist_divisor;
58ff82f3
VG
584 return cfqg->busy_queues_avg[rt];
585}
586
587static inline unsigned
588cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589{
590 struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
593}
594
c553f8e3 595static inline unsigned
ba5bd520 596cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 597{
5db5d642
CZ
598 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599 if (cfqd->cfq_latency) {
58ff82f3
VG
600 /*
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
603 */
604 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605 cfq_class_rt(cfqq));
5db5d642
CZ
606 unsigned sync_slice = cfqd->cfq_slice[1];
607 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
608 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610 if (expect_latency > group_slice) {
5db5d642
CZ
611 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
614 unsigned low_slice =
615 min(slice, base_low_slice * slice / sync_slice);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
58ff82f3 618 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
619 low_slice);
620 }
621 }
c553f8e3
SL
622 return slice;
623}
624
625static inline void
626cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627{
ba5bd520 628 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 629
dae739eb 630 cfqq->slice_start = jiffies;
5db5d642 631 cfqq->slice_end = jiffies + slice;
f75edf2d 632 cfqq->allocated_slice = slice;
7b679138 633 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
634}
635
636/*
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
640 */
a6151c3a 641static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
642{
643 if (cfq_cfqq_slice_new(cfqq))
c1e44756 644 return false;
44f7c160 645 if (time_before(jiffies, cfqq->slice_end))
c1e44756 646 return false;
44f7c160 647
c1e44756 648 return true;
44f7c160
JA
649}
650
1da177e4 651/*
5e705374 652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 653 * We choose the request that is closest to the head right now. Distance
e8a99053 654 * behind the head is penalized and only allowed to a certain extent.
1da177e4 655 */
5e705374 656static struct request *
cf7c25cf 657cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 658{
cf7c25cf 659 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 660 unsigned long back_max;
e8a99053
AM
661#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 664
5e705374
JA
665 if (rq1 == NULL || rq1 == rq2)
666 return rq2;
667 if (rq2 == NULL)
668 return rq1;
9c2c38a1 669
229836bd
NK
670 if (rq_is_sync(rq1) != rq_is_sync(rq2))
671 return rq_is_sync(rq1) ? rq1 : rq2;
672
673 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_META)
674 return rq1->cmd_flags & REQ_META ? rq1 : rq2;
1da177e4 675
83096ebf
TH
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
1da177e4 678
1da177e4
LT
679 /*
680 * by definition, 1KiB is 2 sectors
681 */
682 back_max = cfqd->cfq_back_max * 2;
683
684 /*
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
688 */
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
e8a99053 694 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
695
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
e8a99053 701 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
702
703 /* Found required data */
e8a99053
AM
704
705 /*
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
708 */
709 switch (wrap) {
5e705374 710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 711 if (d1 < d2)
5e705374 712 return rq1;
e8a99053 713 else if (d2 < d1)
5e705374 714 return rq2;
e8a99053
AM
715 else {
716 if (s1 >= s2)
5e705374 717 return rq1;
e8a99053 718 else
5e705374 719 return rq2;
e8a99053 720 }
1da177e4 721
e8a99053 722 case CFQ_RQ2_WRAP:
5e705374 723 return rq1;
e8a99053 724 case CFQ_RQ1_WRAP:
5e705374
JA
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
727 default:
728 /*
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
733 */
734 if (s1 <= s2)
5e705374 735 return rq1;
1da177e4 736 else
5e705374 737 return rq2;
1da177e4
LT
738 }
739}
740
498d3aa2
JA
741/*
742 * The below is leftmost cache rbtree addon
743 */
0871714e 744static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 745{
615f0259
VG
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
749
cc09e299
JA
750 if (!root->left)
751 root->left = rb_first(&root->rb);
752
0871714e
JA
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
755
756 return NULL;
cc09e299
JA
757}
758
1fa8f6d6
VG
759static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760{
761 if (!root->left)
762 root->left = rb_first(&root->rb);
763
764 if (root->left)
765 return rb_entry_cfqg(root->left);
766
767 return NULL;
768}
769
a36e71f9
JA
770static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771{
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
774}
775
cc09e299
JA
776static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777{
778 if (root->left == n)
779 root->left = NULL;
a36e71f9 780 rb_erase_init(n, &root->rb);
aa6f6a3d 781 --root->count;
cc09e299
JA
782}
783
1da177e4
LT
784/*
785 * would be nice to take fifo expire time into account as well
786 */
5e705374
JA
787static struct request *
788cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
1da177e4 790{
21183b07
JA
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 793 struct request *next = NULL, *prev = NULL;
1da177e4 794
21183b07 795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
796
797 if (rbprev)
5e705374 798 prev = rb_entry_rq(rbprev);
1da177e4 799
21183b07 800 if (rbnext)
5e705374 801 next = rb_entry_rq(rbnext);
21183b07
JA
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
5e705374 805 next = rb_entry_rq(rbnext);
21183b07 806 }
1da177e4 807
cf7c25cf 808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
809}
810
d9e7620e
JA
811static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
1da177e4 813{
d9e7620e
JA
814 /*
815 * just an approximation, should be ok.
816 */
cdb16e8f 817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
819}
820
1fa8f6d6
VG
821static inline s64
822cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823{
824 return cfqg->vdisktime - st->min_vdisktime;
825}
826
827static void
828__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829{
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
835
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
839
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
845 }
846 }
847
848 if (left)
849 st->left = &cfqg->rb_node;
850
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
853}
854
855static void
8184f93e
JT
856cfq_update_group_weight(struct cfq_group *cfqg)
857{
858 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
859 if (cfqg->needs_update) {
860 cfqg->weight = cfqg->new_weight;
861 cfqg->needs_update = false;
862 }
863}
864
865static void
866cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
867{
868 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
869
870 cfq_update_group_weight(cfqg);
871 __cfq_group_service_tree_add(st, cfqg);
872 st->total_weight += cfqg->weight;
873}
874
875static void
876cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
877{
878 struct cfq_rb_root *st = &cfqd->grp_service_tree;
879 struct cfq_group *__cfqg;
880 struct rb_node *n;
881
882 cfqg->nr_cfqq++;
760701bf 883 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
884 return;
885
886 /*
887 * Currently put the group at the end. Later implement something
888 * so that groups get lesser vtime based on their weights, so that
25985edc 889 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
890 */
891 n = rb_last(&st->rb);
892 if (n) {
893 __cfqg = rb_entry_cfqg(n);
894 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
895 } else
896 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
897 cfq_group_service_tree_add(st, cfqg);
898}
1fa8f6d6 899
8184f93e
JT
900static void
901cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
902{
903 st->total_weight -= cfqg->weight;
904 if (!RB_EMPTY_NODE(&cfqg->rb_node))
905 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
906}
907
908static void
8184f93e 909cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
910{
911 struct cfq_rb_root *st = &cfqd->grp_service_tree;
912
913 BUG_ON(cfqg->nr_cfqq < 1);
914 cfqg->nr_cfqq--;
25bc6b07 915
1fa8f6d6
VG
916 /* If there are other cfq queues under this group, don't delete it */
917 if (cfqg->nr_cfqq)
918 return;
919
2868ef7b 920 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 921 cfq_group_service_tree_del(st, cfqg);
dae739eb 922 cfqg->saved_workload_slice = 0;
e98ef89b 923 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
924}
925
167400d3
JT
926static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
927 unsigned int *unaccounted_time)
dae739eb 928{
f75edf2d 929 unsigned int slice_used;
dae739eb
VG
930
931 /*
932 * Queue got expired before even a single request completed or
933 * got expired immediately after first request completion.
934 */
935 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
936 /*
937 * Also charge the seek time incurred to the group, otherwise
938 * if there are mutiple queues in the group, each can dispatch
939 * a single request on seeky media and cause lots of seek time
940 * and group will never know it.
941 */
942 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
943 1);
944 } else {
945 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
946 if (slice_used > cfqq->allocated_slice) {
947 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 948 slice_used = cfqq->allocated_slice;
167400d3
JT
949 }
950 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
951 *unaccounted_time += cfqq->slice_start -
952 cfqq->dispatch_start;
dae739eb
VG
953 }
954
dae739eb
VG
955 return slice_used;
956}
957
958static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 959 struct cfq_queue *cfqq)
dae739eb
VG
960{
961 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 962 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
963 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
964 - cfqg->service_tree_idle.count;
965
966 BUG_ON(nr_sync < 0);
167400d3 967 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 968
02b35081
VG
969 if (iops_mode(cfqd))
970 charge = cfqq->slice_dispatch;
971 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
972 charge = cfqq->allocated_slice;
dae739eb
VG
973
974 /* Can't update vdisktime while group is on service tree */
8184f93e 975 cfq_group_service_tree_del(st, cfqg);
02b35081 976 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
977 /* If a new weight was requested, update now, off tree */
978 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
979
980 /* This group is being expired. Save the context */
981 if (time_after(cfqd->workload_expires, jiffies)) {
982 cfqg->saved_workload_slice = cfqd->workload_expires
983 - jiffies;
984 cfqg->saved_workload = cfqd->serving_type;
985 cfqg->saved_serving_prio = cfqd->serving_prio;
986 } else
987 cfqg->saved_workload_slice = 0;
2868ef7b
VG
988
989 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
990 st->min_vdisktime);
c4e7893e
VG
991 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
992 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
993 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
994 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
995 unaccounted_sl);
e98ef89b 996 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
997}
998
25fb5169
VG
999#ifdef CONFIG_CFQ_GROUP_IOSCHED
1000static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1001{
1002 if (blkg)
1003 return container_of(blkg, struct cfq_group, blkg);
1004 return NULL;
1005}
1006
fe071437
VG
1007void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1008 unsigned int weight)
f8d461d6 1009{
8184f93e
JT
1010 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1011 cfqg->new_weight = weight;
1012 cfqg->needs_update = true;
f8d461d6
VG
1013}
1014
f469a7b4
VG
1015static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1016 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1017{
22084190
VG
1018 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1019 unsigned int major, minor;
25fb5169 1020
f469a7b4
VG
1021 /*
1022 * Add group onto cgroup list. It might happen that bdi->dev is
1023 * not initialized yet. Initialize this new group without major
1024 * and minor info and this info will be filled in once a new thread
1025 * comes for IO.
1026 */
1027 if (bdi->dev) {
a74b2ada 1028 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1029 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1030 (void *)cfqd, MKDEV(major, minor));
1031 } else
1032 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1033 (void *)cfqd, 0);
1034
1035 cfqd->nr_blkcg_linked_grps++;
1036 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1037
1038 /* Add group on cfqd list */
1039 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1040}
1041
1042/*
1043 * Should be called from sleepable context. No request queue lock as per
1044 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1045 * from sleepable context.
1046 */
1047static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1048{
1049 struct cfq_group *cfqg = NULL;
5624a4e4 1050 int i, j, ret;
f469a7b4 1051 struct cfq_rb_root *st;
25fb5169
VG
1052
1053 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1054 if (!cfqg)
f469a7b4 1055 return NULL;
25fb5169 1056
25fb5169
VG
1057 for_each_cfqg_st(cfqg, i, j, st)
1058 *st = CFQ_RB_ROOT;
1059 RB_CLEAR_NODE(&cfqg->rb_node);
1060
b1c35769
VG
1061 /*
1062 * Take the initial reference that will be released on destroy
1063 * This can be thought of a joint reference by cgroup and
1064 * elevator which will be dropped by either elevator exit
1065 * or cgroup deletion path depending on who is exiting first.
1066 */
329a6781 1067 cfqg->ref = 1;
5624a4e4
VG
1068
1069 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1070 if (ret) {
1071 kfree(cfqg);
1072 return NULL;
1073 }
1074
f469a7b4
VG
1075 return cfqg;
1076}
1077
1078static struct cfq_group *
1079cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1080{
1081 struct cfq_group *cfqg = NULL;
1082 void *key = cfqd;
1083 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1084 unsigned int major, minor;
b1c35769 1085
180be2a0 1086 /*
f469a7b4
VG
1087 * This is the common case when there are no blkio cgroups.
1088 * Avoid lookup in this case
180be2a0 1089 */
f469a7b4
VG
1090 if (blkcg == &blkio_root_cgroup)
1091 cfqg = &cfqd->root_group;
1092 else
1093 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1094
f469a7b4
VG
1095 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1096 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1097 cfqg->blkg.dev = MKDEV(major, minor);
1098 }
25fb5169 1099
25fb5169
VG
1100 return cfqg;
1101}
1102
1103/*
3e59cf9d
VG
1104 * Search for the cfq group current task belongs to. request_queue lock must
1105 * be held.
25fb5169 1106 */
3e59cf9d 1107static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1108{
70087dc3 1109 struct blkio_cgroup *blkcg;
f469a7b4
VG
1110 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1111 struct request_queue *q = cfqd->queue;
25fb5169
VG
1112
1113 rcu_read_lock();
70087dc3 1114 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1115 cfqg = cfq_find_cfqg(cfqd, blkcg);
1116 if (cfqg) {
1117 rcu_read_unlock();
1118 return cfqg;
1119 }
1120
1121 /*
1122 * Need to allocate a group. Allocation of group also needs allocation
1123 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1124 * we need to drop rcu lock and queue_lock before we call alloc.
1125 *
1126 * Not taking any queue reference here and assuming that queue is
1127 * around by the time we return. CFQ queue allocation code does
1128 * the same. It might be racy though.
1129 */
1130
1131 rcu_read_unlock();
1132 spin_unlock_irq(q->queue_lock);
1133
1134 cfqg = cfq_alloc_cfqg(cfqd);
1135
1136 spin_lock_irq(q->queue_lock);
1137
1138 rcu_read_lock();
1139 blkcg = task_blkio_cgroup(current);
1140
1141 /*
1142 * If some other thread already allocated the group while we were
1143 * not holding queue lock, free up the group
1144 */
1145 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1146
1147 if (__cfqg) {
1148 kfree(cfqg);
1149 rcu_read_unlock();
1150 return __cfqg;
1151 }
1152
3e59cf9d 1153 if (!cfqg)
25fb5169 1154 cfqg = &cfqd->root_group;
f469a7b4
VG
1155
1156 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1157 rcu_read_unlock();
1158 return cfqg;
1159}
1160
7f1dc8a2
VG
1161static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1162{
329a6781 1163 cfqg->ref++;
7f1dc8a2
VG
1164 return cfqg;
1165}
1166
25fb5169
VG
1167static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1168{
1169 /* Currently, all async queues are mapped to root group */
1170 if (!cfq_cfqq_sync(cfqq))
1171 cfqg = &cfqq->cfqd->root_group;
1172
1173 cfqq->cfqg = cfqg;
b1c35769 1174 /* cfqq reference on cfqg */
329a6781 1175 cfqq->cfqg->ref++;
b1c35769
VG
1176}
1177
1178static void cfq_put_cfqg(struct cfq_group *cfqg)
1179{
1180 struct cfq_rb_root *st;
1181 int i, j;
1182
329a6781
SL
1183 BUG_ON(cfqg->ref <= 0);
1184 cfqg->ref--;
1185 if (cfqg->ref)
b1c35769
VG
1186 return;
1187 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1188 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1189 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1190 kfree(cfqg);
1191}
1192
1193static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1194{
1195 /* Something wrong if we are trying to remove same group twice */
1196 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1197
1198 hlist_del_init(&cfqg->cfqd_node);
1199
1200 /*
1201 * Put the reference taken at the time of creation so that when all
1202 * queues are gone, group can be destroyed.
1203 */
1204 cfq_put_cfqg(cfqg);
1205}
1206
1207static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1208{
1209 struct hlist_node *pos, *n;
1210 struct cfq_group *cfqg;
1211
1212 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1213 /*
1214 * If cgroup removal path got to blk_group first and removed
1215 * it from cgroup list, then it will take care of destroying
1216 * cfqg also.
1217 */
e98ef89b 1218 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1219 cfq_destroy_cfqg(cfqd, cfqg);
1220 }
25fb5169 1221}
b1c35769
VG
1222
1223/*
1224 * Blk cgroup controller notification saying that blkio_group object is being
1225 * delinked as associated cgroup object is going away. That also means that
1226 * no new IO will come in this group. So get rid of this group as soon as
1227 * any pending IO in the group is finished.
1228 *
1229 * This function is called under rcu_read_lock(). key is the rcu protected
1230 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1231 * read lock.
1232 *
1233 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1234 * it should not be NULL as even if elevator was exiting, cgroup deltion
1235 * path got to it first.
1236 */
1237void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1238{
1239 unsigned long flags;
1240 struct cfq_data *cfqd = key;
1241
1242 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1243 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1244 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1245}
1246
25fb5169 1247#else /* GROUP_IOSCHED */
3e59cf9d 1248static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1249{
1250 return &cfqd->root_group;
1251}
7f1dc8a2
VG
1252
1253static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1254{
50eaeb32 1255 return cfqg;
7f1dc8a2
VG
1256}
1257
25fb5169
VG
1258static inline void
1259cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1260 cfqq->cfqg = cfqg;
1261}
1262
b1c35769
VG
1263static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1264static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1265
25fb5169
VG
1266#endif /* GROUP_IOSCHED */
1267
498d3aa2 1268/*
c0324a02 1269 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1270 * requests waiting to be processed. It is sorted in the order that
1271 * we will service the queues.
1272 */
a36e71f9 1273static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1274 bool add_front)
d9e7620e 1275{
0871714e
JA
1276 struct rb_node **p, *parent;
1277 struct cfq_queue *__cfqq;
d9e7620e 1278 unsigned long rb_key;
c0324a02 1279 struct cfq_rb_root *service_tree;
498d3aa2 1280 int left;
dae739eb 1281 int new_cfqq = 1;
ae30c286 1282
cdb16e8f 1283 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1284 cfqq_type(cfqq));
0871714e
JA
1285 if (cfq_class_idle(cfqq)) {
1286 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1287 parent = rb_last(&service_tree->rb);
0871714e
JA
1288 if (parent && parent != &cfqq->rb_node) {
1289 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1290 rb_key += __cfqq->rb_key;
1291 } else
1292 rb_key += jiffies;
1293 } else if (!add_front) {
b9c8946b
JA
1294 /*
1295 * Get our rb key offset. Subtract any residual slice
1296 * value carried from last service. A negative resid
1297 * count indicates slice overrun, and this should position
1298 * the next service time further away in the tree.
1299 */
edd75ffd 1300 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1301 rb_key -= cfqq->slice_resid;
edd75ffd 1302 cfqq->slice_resid = 0;
48e025e6
CZ
1303 } else {
1304 rb_key = -HZ;
aa6f6a3d 1305 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1306 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1307 }
1da177e4 1308
d9e7620e 1309 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1310 new_cfqq = 0;
99f9628a 1311 /*
d9e7620e 1312 * same position, nothing more to do
99f9628a 1313 */
c0324a02
CZ
1314 if (rb_key == cfqq->rb_key &&
1315 cfqq->service_tree == service_tree)
d9e7620e 1316 return;
1da177e4 1317
aa6f6a3d
CZ
1318 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1319 cfqq->service_tree = NULL;
1da177e4 1320 }
d9e7620e 1321
498d3aa2 1322 left = 1;
0871714e 1323 parent = NULL;
aa6f6a3d
CZ
1324 cfqq->service_tree = service_tree;
1325 p = &service_tree->rb.rb_node;
d9e7620e 1326 while (*p) {
67060e37 1327 struct rb_node **n;
cc09e299 1328
d9e7620e
JA
1329 parent = *p;
1330 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1331
0c534e0a 1332 /*
c0324a02 1333 * sort by key, that represents service time.
0c534e0a 1334 */
c0324a02 1335 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1336 n = &(*p)->rb_left;
c0324a02 1337 else {
67060e37 1338 n = &(*p)->rb_right;
cc09e299 1339 left = 0;
c0324a02 1340 }
67060e37
JA
1341
1342 p = n;
d9e7620e
JA
1343 }
1344
cc09e299 1345 if (left)
aa6f6a3d 1346 service_tree->left = &cfqq->rb_node;
cc09e299 1347
d9e7620e
JA
1348 cfqq->rb_key = rb_key;
1349 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1350 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1351 service_tree->count++;
20359f27 1352 if (add_front || !new_cfqq)
dae739eb 1353 return;
8184f93e 1354 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1355}
1356
a36e71f9 1357static struct cfq_queue *
f2d1f0ae
JA
1358cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1359 sector_t sector, struct rb_node **ret_parent,
1360 struct rb_node ***rb_link)
a36e71f9 1361{
a36e71f9
JA
1362 struct rb_node **p, *parent;
1363 struct cfq_queue *cfqq = NULL;
1364
1365 parent = NULL;
1366 p = &root->rb_node;
1367 while (*p) {
1368 struct rb_node **n;
1369
1370 parent = *p;
1371 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1372
1373 /*
1374 * Sort strictly based on sector. Smallest to the left,
1375 * largest to the right.
1376 */
2e46e8b2 1377 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1378 n = &(*p)->rb_right;
2e46e8b2 1379 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1380 n = &(*p)->rb_left;
1381 else
1382 break;
1383 p = n;
3ac6c9f8 1384 cfqq = NULL;
a36e71f9
JA
1385 }
1386
1387 *ret_parent = parent;
1388 if (rb_link)
1389 *rb_link = p;
3ac6c9f8 1390 return cfqq;
a36e71f9
JA
1391}
1392
1393static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1394{
a36e71f9
JA
1395 struct rb_node **p, *parent;
1396 struct cfq_queue *__cfqq;
1397
f2d1f0ae
JA
1398 if (cfqq->p_root) {
1399 rb_erase(&cfqq->p_node, cfqq->p_root);
1400 cfqq->p_root = NULL;
1401 }
a36e71f9
JA
1402
1403 if (cfq_class_idle(cfqq))
1404 return;
1405 if (!cfqq->next_rq)
1406 return;
1407
f2d1f0ae 1408 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1409 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1410 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1411 if (!__cfqq) {
1412 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1413 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1414 } else
1415 cfqq->p_root = NULL;
a36e71f9
JA
1416}
1417
498d3aa2
JA
1418/*
1419 * Update cfqq's position in the service tree.
1420 */
edd75ffd 1421static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1422{
6d048f53
JA
1423 /*
1424 * Resorting requires the cfqq to be on the RR list already.
1425 */
a36e71f9 1426 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1427 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1428 cfq_prio_tree_add(cfqd, cfqq);
1429 }
6d048f53
JA
1430}
1431
1da177e4
LT
1432/*
1433 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1434 * the pending list according to last request service
1da177e4 1435 */
febffd61 1436static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1437{
7b679138 1438 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1439 BUG_ON(cfq_cfqq_on_rr(cfqq));
1440 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1441 cfqd->busy_queues++;
ef8a41df
SL
1442 if (cfq_cfqq_sync(cfqq))
1443 cfqd->busy_sync_queues++;
1da177e4 1444
edd75ffd 1445 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1446}
1447
498d3aa2
JA
1448/*
1449 * Called when the cfqq no longer has requests pending, remove it from
1450 * the service tree.
1451 */
febffd61 1452static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1453{
7b679138 1454 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1455 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1456 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1457
aa6f6a3d
CZ
1458 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1459 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1460 cfqq->service_tree = NULL;
1461 }
f2d1f0ae
JA
1462 if (cfqq->p_root) {
1463 rb_erase(&cfqq->p_node, cfqq->p_root);
1464 cfqq->p_root = NULL;
1465 }
d9e7620e 1466
8184f93e 1467 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1468 BUG_ON(!cfqd->busy_queues);
1469 cfqd->busy_queues--;
ef8a41df
SL
1470 if (cfq_cfqq_sync(cfqq))
1471 cfqd->busy_sync_queues--;
1da177e4
LT
1472}
1473
1474/*
1475 * rb tree support functions
1476 */
febffd61 1477static void cfq_del_rq_rb(struct request *rq)
1da177e4 1478{
5e705374 1479 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1480 const int sync = rq_is_sync(rq);
1da177e4 1481
b4878f24
JA
1482 BUG_ON(!cfqq->queued[sync]);
1483 cfqq->queued[sync]--;
1da177e4 1484
5e705374 1485 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1486
f04a6424
VG
1487 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1488 /*
1489 * Queue will be deleted from service tree when we actually
1490 * expire it later. Right now just remove it from prio tree
1491 * as it is empty.
1492 */
1493 if (cfqq->p_root) {
1494 rb_erase(&cfqq->p_node, cfqq->p_root);
1495 cfqq->p_root = NULL;
1496 }
1497 }
1da177e4
LT
1498}
1499
5e705374 1500static void cfq_add_rq_rb(struct request *rq)
1da177e4 1501{
5e705374 1502 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1503 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1504 struct request *prev;
1da177e4 1505
5380a101 1506 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1507
796d5116 1508 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1509
1510 if (!cfq_cfqq_on_rr(cfqq))
1511 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1512
1513 /*
1514 * check if this request is a better next-serve candidate
1515 */
a36e71f9 1516 prev = cfqq->next_rq;
cf7c25cf 1517 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1518
1519 /*
1520 * adjust priority tree position, if ->next_rq changes
1521 */
1522 if (prev != cfqq->next_rq)
1523 cfq_prio_tree_add(cfqd, cfqq);
1524
5044eed4 1525 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1526}
1527
febffd61 1528static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1529{
5380a101
JA
1530 elv_rb_del(&cfqq->sort_list, rq);
1531 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1532 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1533 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1534 cfq_add_rq_rb(rq);
e98ef89b 1535 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1536 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1537 rq_is_sync(rq));
1da177e4
LT
1538}
1539
206dc69b
JA
1540static struct request *
1541cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1542{
206dc69b 1543 struct task_struct *tsk = current;
91fac317 1544 struct cfq_io_context *cic;
206dc69b 1545 struct cfq_queue *cfqq;
1da177e4 1546
4ac845a2 1547 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1548 if (!cic)
1549 return NULL;
1550
1551 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1552 if (cfqq) {
1553 sector_t sector = bio->bi_sector + bio_sectors(bio);
1554
21183b07 1555 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1556 }
1da177e4 1557
1da177e4
LT
1558 return NULL;
1559}
1560
165125e1 1561static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1562{
22e2c507 1563 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1564
53c583d2 1565 cfqd->rq_in_driver++;
7b679138 1566 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1567 cfqd->rq_in_driver);
25776e35 1568
5b93629b 1569 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1570}
1571
165125e1 1572static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1573{
b4878f24
JA
1574 struct cfq_data *cfqd = q->elevator->elevator_data;
1575
53c583d2
CZ
1576 WARN_ON(!cfqd->rq_in_driver);
1577 cfqd->rq_in_driver--;
7b679138 1578 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1579 cfqd->rq_in_driver);
1da177e4
LT
1580}
1581
b4878f24 1582static void cfq_remove_request(struct request *rq)
1da177e4 1583{
5e705374 1584 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1585
5e705374
JA
1586 if (cfqq->next_rq == rq)
1587 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1588
b4878f24 1589 list_del_init(&rq->queuelist);
5e705374 1590 cfq_del_rq_rb(rq);
374f84ac 1591
45333d5a 1592 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1593 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1594 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1595 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1596 WARN_ON(!cfqq->meta_pending);
1597 cfqq->meta_pending--;
1598 }
1da177e4
LT
1599}
1600
165125e1
JA
1601static int cfq_merge(struct request_queue *q, struct request **req,
1602 struct bio *bio)
1da177e4
LT
1603{
1604 struct cfq_data *cfqd = q->elevator->elevator_data;
1605 struct request *__rq;
1da177e4 1606
206dc69b 1607 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1608 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1609 *req = __rq;
1610 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1611 }
1612
1613 return ELEVATOR_NO_MERGE;
1da177e4
LT
1614}
1615
165125e1 1616static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1617 int type)
1da177e4 1618{
21183b07 1619 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1620 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1621
5e705374 1622 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1623 }
1da177e4
LT
1624}
1625
812d4026
DS
1626static void cfq_bio_merged(struct request_queue *q, struct request *req,
1627 struct bio *bio)
1628{
e98ef89b
VG
1629 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1630 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1631}
1632
1da177e4 1633static void
165125e1 1634cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1635 struct request *next)
1636{
cf7c25cf 1637 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1638 /*
1639 * reposition in fifo if next is older than rq
1640 */
1641 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1642 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1643 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1644 rq_set_fifo_time(rq, rq_fifo_time(next));
1645 }
22e2c507 1646
cf7c25cf
CZ
1647 if (cfqq->next_rq == next)
1648 cfqq->next_rq = rq;
b4878f24 1649 cfq_remove_request(next);
e98ef89b
VG
1650 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1651 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1652}
1653
165125e1 1654static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1655 struct bio *bio)
1656{
1657 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1658 struct cfq_io_context *cic;
da775265 1659 struct cfq_queue *cfqq;
da775265
JA
1660
1661 /*
ec8acb69 1662 * Disallow merge of a sync bio into an async request.
da775265 1663 */
91fac317 1664 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1665 return false;
da775265
JA
1666
1667 /*
719d3402
JA
1668 * Lookup the cfqq that this bio will be queued with. Allow
1669 * merge only if rq is queued there.
da775265 1670 */
4ac845a2 1671 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1672 if (!cic)
a6151c3a 1673 return false;
719d3402 1674
91fac317 1675 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1676 return cfqq == RQ_CFQQ(rq);
da775265
JA
1677}
1678
812df48d
DS
1679static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1680{
1681 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1682 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1683}
1684
febffd61
JA
1685static void __cfq_set_active_queue(struct cfq_data *cfqd,
1686 struct cfq_queue *cfqq)
22e2c507
JA
1687{
1688 if (cfqq) {
b1ffe737
DS
1689 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1690 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1691 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1692 cfqq->slice_start = 0;
1693 cfqq->dispatch_start = jiffies;
1694 cfqq->allocated_slice = 0;
1695 cfqq->slice_end = 0;
1696 cfqq->slice_dispatch = 0;
1697 cfqq->nr_sectors = 0;
1698
1699 cfq_clear_cfqq_wait_request(cfqq);
1700 cfq_clear_cfqq_must_dispatch(cfqq);
1701 cfq_clear_cfqq_must_alloc_slice(cfqq);
1702 cfq_clear_cfqq_fifo_expire(cfqq);
1703 cfq_mark_cfqq_slice_new(cfqq);
1704
1705 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1706 }
1707
1708 cfqd->active_queue = cfqq;
1709}
1710
7b14e3b5
JA
1711/*
1712 * current cfqq expired its slice (or was too idle), select new one
1713 */
1714static void
1715__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1716 bool timed_out)
7b14e3b5 1717{
7b679138
JA
1718 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1719
7b14e3b5 1720 if (cfq_cfqq_wait_request(cfqq))
812df48d 1721 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1722
7b14e3b5 1723 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1724 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1725
ae54abed
SL
1726 /*
1727 * If this cfqq is shared between multiple processes, check to
1728 * make sure that those processes are still issuing I/Os within
1729 * the mean seek distance. If not, it may be time to break the
1730 * queues apart again.
1731 */
1732 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1733 cfq_mark_cfqq_split_coop(cfqq);
1734
7b14e3b5 1735 /*
6084cdda 1736 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1737 */
c553f8e3
SL
1738 if (timed_out) {
1739 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1740 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1741 else
1742 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1743 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1744 }
7b14e3b5 1745
e5ff082e 1746 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1747
f04a6424
VG
1748 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1749 cfq_del_cfqq_rr(cfqd, cfqq);
1750
edd75ffd 1751 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1752
1753 if (cfqq == cfqd->active_queue)
1754 cfqd->active_queue = NULL;
1755
1756 if (cfqd->active_cic) {
1757 put_io_context(cfqd->active_cic->ioc);
1758 cfqd->active_cic = NULL;
1759 }
7b14e3b5
JA
1760}
1761
e5ff082e 1762static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1763{
1764 struct cfq_queue *cfqq = cfqd->active_queue;
1765
1766 if (cfqq)
e5ff082e 1767 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1768}
1769
498d3aa2
JA
1770/*
1771 * Get next queue for service. Unless we have a queue preemption,
1772 * we'll simply select the first cfqq in the service tree.
1773 */
6d048f53 1774static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1775{
c0324a02 1776 struct cfq_rb_root *service_tree =
cdb16e8f 1777 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1778 cfqd->serving_type);
d9e7620e 1779
f04a6424
VG
1780 if (!cfqd->rq_queued)
1781 return NULL;
1782
1fa8f6d6
VG
1783 /* There is nothing to dispatch */
1784 if (!service_tree)
1785 return NULL;
c0324a02
CZ
1786 if (RB_EMPTY_ROOT(&service_tree->rb))
1787 return NULL;
1788 return cfq_rb_first(service_tree);
6d048f53
JA
1789}
1790
f04a6424
VG
1791static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1792{
25fb5169 1793 struct cfq_group *cfqg;
f04a6424
VG
1794 struct cfq_queue *cfqq;
1795 int i, j;
1796 struct cfq_rb_root *st;
1797
1798 if (!cfqd->rq_queued)
1799 return NULL;
1800
25fb5169
VG
1801 cfqg = cfq_get_next_cfqg(cfqd);
1802 if (!cfqg)
1803 return NULL;
1804
f04a6424
VG
1805 for_each_cfqg_st(cfqg, i, j, st)
1806 if ((cfqq = cfq_rb_first(st)) != NULL)
1807 return cfqq;
1808 return NULL;
1809}
1810
498d3aa2
JA
1811/*
1812 * Get and set a new active queue for service.
1813 */
a36e71f9
JA
1814static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1815 struct cfq_queue *cfqq)
6d048f53 1816{
e00ef799 1817 if (!cfqq)
a36e71f9 1818 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1819
22e2c507 1820 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1821 return cfqq;
22e2c507
JA
1822}
1823
d9e7620e
JA
1824static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1825 struct request *rq)
1826{
83096ebf
TH
1827 if (blk_rq_pos(rq) >= cfqd->last_position)
1828 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1829 else
83096ebf 1830 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1831}
1832
b2c18e1e 1833static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1834 struct request *rq)
6d048f53 1835{
e9ce335d 1836 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1837}
1838
a36e71f9
JA
1839static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1840 struct cfq_queue *cur_cfqq)
1841{
f2d1f0ae 1842 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1843 struct rb_node *parent, *node;
1844 struct cfq_queue *__cfqq;
1845 sector_t sector = cfqd->last_position;
1846
1847 if (RB_EMPTY_ROOT(root))
1848 return NULL;
1849
1850 /*
1851 * First, if we find a request starting at the end of the last
1852 * request, choose it.
1853 */
f2d1f0ae 1854 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1855 if (__cfqq)
1856 return __cfqq;
1857
1858 /*
1859 * If the exact sector wasn't found, the parent of the NULL leaf
1860 * will contain the closest sector.
1861 */
1862 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1863 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1864 return __cfqq;
1865
2e46e8b2 1866 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1867 node = rb_next(&__cfqq->p_node);
1868 else
1869 node = rb_prev(&__cfqq->p_node);
1870 if (!node)
1871 return NULL;
1872
1873 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1874 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1875 return __cfqq;
1876
1877 return NULL;
1878}
1879
1880/*
1881 * cfqd - obvious
1882 * cur_cfqq - passed in so that we don't decide that the current queue is
1883 * closely cooperating with itself.
1884 *
1885 * So, basically we're assuming that that cur_cfqq has dispatched at least
1886 * one request, and that cfqd->last_position reflects a position on the disk
1887 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1888 * assumption.
1889 */
1890static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1891 struct cfq_queue *cur_cfqq)
6d048f53 1892{
a36e71f9
JA
1893 struct cfq_queue *cfqq;
1894
39c01b21
DS
1895 if (cfq_class_idle(cur_cfqq))
1896 return NULL;
e6c5bc73
JM
1897 if (!cfq_cfqq_sync(cur_cfqq))
1898 return NULL;
1899 if (CFQQ_SEEKY(cur_cfqq))
1900 return NULL;
1901
b9d8f4c7
GJ
1902 /*
1903 * Don't search priority tree if it's the only queue in the group.
1904 */
1905 if (cur_cfqq->cfqg->nr_cfqq == 1)
1906 return NULL;
1907
6d048f53 1908 /*
d9e7620e
JA
1909 * We should notice if some of the queues are cooperating, eg
1910 * working closely on the same area of the disk. In that case,
1911 * we can group them together and don't waste time idling.
6d048f53 1912 */
a36e71f9
JA
1913 cfqq = cfqq_close(cfqd, cur_cfqq);
1914 if (!cfqq)
1915 return NULL;
1916
8682e1f1
VG
1917 /* If new queue belongs to different cfq_group, don't choose it */
1918 if (cur_cfqq->cfqg != cfqq->cfqg)
1919 return NULL;
1920
df5fe3e8
JM
1921 /*
1922 * It only makes sense to merge sync queues.
1923 */
1924 if (!cfq_cfqq_sync(cfqq))
1925 return NULL;
e6c5bc73
JM
1926 if (CFQQ_SEEKY(cfqq))
1927 return NULL;
df5fe3e8 1928
c0324a02
CZ
1929 /*
1930 * Do not merge queues of different priority classes
1931 */
1932 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1933 return NULL;
1934
a36e71f9 1935 return cfqq;
6d048f53
JA
1936}
1937
a6d44e98
CZ
1938/*
1939 * Determine whether we should enforce idle window for this queue.
1940 */
1941
1942static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1943{
1944 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1945 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1946
f04a6424
VG
1947 BUG_ON(!service_tree);
1948 BUG_ON(!service_tree->count);
1949
b6508c16
VG
1950 if (!cfqd->cfq_slice_idle)
1951 return false;
1952
a6d44e98
CZ
1953 /* We never do for idle class queues. */
1954 if (prio == IDLE_WORKLOAD)
1955 return false;
1956
1957 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1958 if (cfq_cfqq_idle_window(cfqq) &&
1959 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1960 return true;
1961
1962 /*
1963 * Otherwise, we do only if they are the last ones
1964 * in their service tree.
1965 */
b1ffe737 1966 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1967 return true;
b1ffe737
DS
1968 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1969 service_tree->count);
c1e44756 1970 return false;
a6d44e98
CZ
1971}
1972
6d048f53 1973static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1974{
1792669c 1975 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1976 struct cfq_io_context *cic;
80bdf0c7 1977 unsigned long sl, group_idle = 0;
7b14e3b5 1978
a68bbddb 1979 /*
f7d7b7a7
JA
1980 * SSD device without seek penalty, disable idling. But only do so
1981 * for devices that support queuing, otherwise we still have a problem
1982 * with sync vs async workloads.
a68bbddb 1983 */
f7d7b7a7 1984 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1985 return;
1986
dd67d051 1987 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1988 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1989
1990 /*
1991 * idle is disabled, either manually or by past process history
1992 */
80bdf0c7
VG
1993 if (!cfq_should_idle(cfqd, cfqq)) {
1994 /* no queue idling. Check for group idling */
1995 if (cfqd->cfq_group_idle)
1996 group_idle = cfqd->cfq_group_idle;
1997 else
1998 return;
1999 }
6d048f53 2000
7b679138 2001 /*
8e550632 2002 * still active requests from this queue, don't idle
7b679138 2003 */
8e550632 2004 if (cfqq->dispatched)
7b679138
JA
2005 return;
2006
22e2c507
JA
2007 /*
2008 * task has exited, don't wait
2009 */
206dc69b 2010 cic = cfqd->active_cic;
66dac98e 2011 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2012 return;
2013
355b659c
CZ
2014 /*
2015 * If our average think time is larger than the remaining time
2016 * slice, then don't idle. This avoids overrunning the allotted
2017 * time slice.
2018 */
2019 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
2020 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2021 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2022 cic->ttime_mean);
355b659c 2023 return;
b1ffe737 2024 }
355b659c 2025
80bdf0c7
VG
2026 /* There are other queues in the group, don't do group idle */
2027 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2028 return;
2029
3b18152c 2030 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2031
80bdf0c7
VG
2032 if (group_idle)
2033 sl = cfqd->cfq_group_idle;
2034 else
2035 sl = cfqd->cfq_slice_idle;
206dc69b 2036
7b14e3b5 2037 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2038 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2039 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2040 group_idle ? 1 : 0);
1da177e4
LT
2041}
2042
498d3aa2
JA
2043/*
2044 * Move request from internal lists to the request queue dispatch list.
2045 */
165125e1 2046static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2047{
3ed9a296 2048 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2049 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2050
7b679138
JA
2051 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2052
06d21886 2053 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2054 cfq_remove_request(rq);
6d048f53 2055 cfqq->dispatched++;
80bdf0c7 2056 (RQ_CFQG(rq))->dispatched++;
5380a101 2057 elv_dispatch_sort(q, rq);
3ed9a296 2058
53c583d2 2059 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2060 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2061 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2062 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2063}
2064
2065/*
2066 * return expired entry, or NULL to just start from scratch in rbtree
2067 */
febffd61 2068static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2069{
30996f40 2070 struct request *rq = NULL;
1da177e4 2071
3b18152c 2072 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2073 return NULL;
cb887411
JA
2074
2075 cfq_mark_cfqq_fifo_expire(cfqq);
2076
89850f7e
JA
2077 if (list_empty(&cfqq->fifo))
2078 return NULL;
1da177e4 2079
89850f7e 2080 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2081 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2082 rq = NULL;
1da177e4 2083
30996f40 2084 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2085 return rq;
1da177e4
LT
2086}
2087
22e2c507
JA
2088static inline int
2089cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2090{
2091 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2092
22e2c507 2093 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2094
b9f8ce05 2095 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2096}
2097
df5fe3e8
JM
2098/*
2099 * Must be called with the queue_lock held.
2100 */
2101static int cfqq_process_refs(struct cfq_queue *cfqq)
2102{
2103 int process_refs, io_refs;
2104
2105 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2106 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2107 BUG_ON(process_refs < 0);
2108 return process_refs;
2109}
2110
2111static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2112{
e6c5bc73 2113 int process_refs, new_process_refs;
df5fe3e8
JM
2114 struct cfq_queue *__cfqq;
2115
c10b61f0
JM
2116 /*
2117 * If there are no process references on the new_cfqq, then it is
2118 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2119 * chain may have dropped their last reference (not just their
2120 * last process reference).
2121 */
2122 if (!cfqq_process_refs(new_cfqq))
2123 return;
2124
df5fe3e8
JM
2125 /* Avoid a circular list and skip interim queue merges */
2126 while ((__cfqq = new_cfqq->new_cfqq)) {
2127 if (__cfqq == cfqq)
2128 return;
2129 new_cfqq = __cfqq;
2130 }
2131
2132 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2133 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2134 /*
2135 * If the process for the cfqq has gone away, there is no
2136 * sense in merging the queues.
2137 */
c10b61f0 2138 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2139 return;
2140
e6c5bc73
JM
2141 /*
2142 * Merge in the direction of the lesser amount of work.
2143 */
e6c5bc73
JM
2144 if (new_process_refs >= process_refs) {
2145 cfqq->new_cfqq = new_cfqq;
30d7b944 2146 new_cfqq->ref += process_refs;
e6c5bc73
JM
2147 } else {
2148 new_cfqq->new_cfqq = cfqq;
30d7b944 2149 cfqq->ref += new_process_refs;
e6c5bc73 2150 }
df5fe3e8
JM
2151}
2152
cdb16e8f 2153static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2154 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2155{
2156 struct cfq_queue *queue;
2157 int i;
2158 bool key_valid = false;
2159 unsigned long lowest_key = 0;
2160 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2161
65b32a57
VG
2162 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2163 /* select the one with lowest rb_key */
2164 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2165 if (queue &&
2166 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2167 lowest_key = queue->rb_key;
2168 cur_best = i;
2169 key_valid = true;
2170 }
2171 }
2172
2173 return cur_best;
2174}
2175
cdb16e8f 2176static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2177{
718eee05
CZ
2178 unsigned slice;
2179 unsigned count;
cdb16e8f 2180 struct cfq_rb_root *st;
58ff82f3 2181 unsigned group_slice;
e4ea0c16 2182 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2183
718eee05 2184 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2185 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2186 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2187 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2188 cfqd->serving_prio = BE_WORKLOAD;
2189 else {
2190 cfqd->serving_prio = IDLE_WORKLOAD;
2191 cfqd->workload_expires = jiffies + 1;
2192 return;
2193 }
2194
e4ea0c16
SL
2195 if (original_prio != cfqd->serving_prio)
2196 goto new_workload;
2197
718eee05
CZ
2198 /*
2199 * For RT and BE, we have to choose also the type
2200 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2201 * expiration time
2202 */
65b32a57 2203 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2204 count = st->count;
718eee05
CZ
2205
2206 /*
65b32a57 2207 * check workload expiration, and that we still have other queues ready
718eee05 2208 */
65b32a57 2209 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2210 return;
2211
e4ea0c16 2212new_workload:
718eee05
CZ
2213 /* otherwise select new workload type */
2214 cfqd->serving_type =
65b32a57
VG
2215 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2216 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2217 count = st->count;
718eee05
CZ
2218
2219 /*
2220 * the workload slice is computed as a fraction of target latency
2221 * proportional to the number of queues in that workload, over
2222 * all the queues in the same priority class
2223 */
58ff82f3
VG
2224 group_slice = cfq_group_slice(cfqd, cfqg);
2225
2226 slice = group_slice * count /
2227 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2228 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2229
f26bd1f0
VG
2230 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2231 unsigned int tmp;
2232
2233 /*
2234 * Async queues are currently system wide. Just taking
2235 * proportion of queues with-in same group will lead to higher
2236 * async ratio system wide as generally root group is going
2237 * to have higher weight. A more accurate thing would be to
2238 * calculate system wide asnc/sync ratio.
2239 */
2240 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2241 tmp = tmp/cfqd->busy_queues;
2242 slice = min_t(unsigned, slice, tmp);
2243
718eee05
CZ
2244 /* async workload slice is scaled down according to
2245 * the sync/async slice ratio. */
2246 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2247 } else
718eee05
CZ
2248 /* sync workload slice is at least 2 * cfq_slice_idle */
2249 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2250
2251 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2252 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2253 cfqd->workload_expires = jiffies + slice;
2254}
2255
1fa8f6d6
VG
2256static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2257{
2258 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2259 struct cfq_group *cfqg;
1fa8f6d6
VG
2260
2261 if (RB_EMPTY_ROOT(&st->rb))
2262 return NULL;
25bc6b07 2263 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2264 update_min_vdisktime(st);
2265 return cfqg;
1fa8f6d6
VG
2266}
2267
cdb16e8f
VG
2268static void cfq_choose_cfqg(struct cfq_data *cfqd)
2269{
1fa8f6d6
VG
2270 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2271
2272 cfqd->serving_group = cfqg;
dae739eb
VG
2273
2274 /* Restore the workload type data */
2275 if (cfqg->saved_workload_slice) {
2276 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2277 cfqd->serving_type = cfqg->saved_workload;
2278 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2279 } else
2280 cfqd->workload_expires = jiffies - 1;
2281
1fa8f6d6 2282 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2283}
2284
22e2c507 2285/*
498d3aa2
JA
2286 * Select a queue for service. If we have a current active queue,
2287 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2288 */
1b5ed5e1 2289static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2290{
a36e71f9 2291 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2292
22e2c507
JA
2293 cfqq = cfqd->active_queue;
2294 if (!cfqq)
2295 goto new_queue;
1da177e4 2296
f04a6424
VG
2297 if (!cfqd->rq_queued)
2298 return NULL;
c244bb50
VG
2299
2300 /*
2301 * We were waiting for group to get backlogged. Expire the queue
2302 */
2303 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2304 goto expire;
2305
22e2c507 2306 /*
6d048f53 2307 * The active queue has run out of time, expire it and select new.
22e2c507 2308 */
7667aa06
VG
2309 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2310 /*
2311 * If slice had not expired at the completion of last request
2312 * we might not have turned on wait_busy flag. Don't expire
2313 * the queue yet. Allow the group to get backlogged.
2314 *
2315 * The very fact that we have used the slice, that means we
2316 * have been idling all along on this queue and it should be
2317 * ok to wait for this request to complete.
2318 */
82bbbf28
VG
2319 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2320 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2321 cfqq = NULL;
7667aa06 2322 goto keep_queue;
82bbbf28 2323 } else
80bdf0c7 2324 goto check_group_idle;
7667aa06 2325 }
1da177e4 2326
22e2c507 2327 /*
6d048f53
JA
2328 * The active queue has requests and isn't expired, allow it to
2329 * dispatch.
22e2c507 2330 */
dd67d051 2331 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2332 goto keep_queue;
6d048f53 2333
a36e71f9
JA
2334 /*
2335 * If another queue has a request waiting within our mean seek
2336 * distance, let it run. The expire code will check for close
2337 * cooperators and put the close queue at the front of the service
df5fe3e8 2338 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2339 */
b3b6d040 2340 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2341 if (new_cfqq) {
2342 if (!cfqq->new_cfqq)
2343 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2344 goto expire;
df5fe3e8 2345 }
a36e71f9 2346
6d048f53
JA
2347 /*
2348 * No requests pending. If the active queue still has requests in
2349 * flight or is idling for a new request, allow either of these
2350 * conditions to happen (or time out) before selecting a new queue.
2351 */
80bdf0c7
VG
2352 if (timer_pending(&cfqd->idle_slice_timer)) {
2353 cfqq = NULL;
2354 goto keep_queue;
2355 }
2356
8e1ac665
SL
2357 /*
2358 * This is a deep seek queue, but the device is much faster than
2359 * the queue can deliver, don't idle
2360 **/
2361 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2362 (cfq_cfqq_slice_new(cfqq) ||
2363 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2364 cfq_clear_cfqq_deep(cfqq);
2365 cfq_clear_cfqq_idle_window(cfqq);
2366 }
2367
80bdf0c7
VG
2368 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2369 cfqq = NULL;
2370 goto keep_queue;
2371 }
2372
2373 /*
2374 * If group idle is enabled and there are requests dispatched from
2375 * this group, wait for requests to complete.
2376 */
2377check_group_idle:
2378 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2379 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2380 cfqq = NULL;
2381 goto keep_queue;
22e2c507
JA
2382 }
2383
3b18152c 2384expire:
e5ff082e 2385 cfq_slice_expired(cfqd, 0);
3b18152c 2386new_queue:
718eee05
CZ
2387 /*
2388 * Current queue expired. Check if we have to switch to a new
2389 * service tree
2390 */
2391 if (!new_cfqq)
cdb16e8f 2392 cfq_choose_cfqg(cfqd);
718eee05 2393
a36e71f9 2394 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2395keep_queue:
3b18152c 2396 return cfqq;
22e2c507
JA
2397}
2398
febffd61 2399static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2400{
2401 int dispatched = 0;
2402
2403 while (cfqq->next_rq) {
2404 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2405 dispatched++;
2406 }
2407
2408 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2409
2410 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2411 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2412 return dispatched;
2413}
2414
498d3aa2
JA
2415/*
2416 * Drain our current requests. Used for barriers and when switching
2417 * io schedulers on-the-fly.
2418 */
d9e7620e 2419static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2420{
0871714e 2421 struct cfq_queue *cfqq;
d9e7620e 2422 int dispatched = 0;
cdb16e8f 2423
3440c49f 2424 /* Expire the timeslice of the current active queue first */
e5ff082e 2425 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2426 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2427 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2428 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2429 }
1b5ed5e1 2430
1b5ed5e1
TH
2431 BUG_ON(cfqd->busy_queues);
2432
6923715a 2433 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2434 return dispatched;
2435}
2436
abc3c744
SL
2437static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2438 struct cfq_queue *cfqq)
2439{
2440 /* the queue hasn't finished any request, can't estimate */
2441 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2442 return true;
abc3c744
SL
2443 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2444 cfqq->slice_end))
c1e44756 2445 return true;
abc3c744 2446
c1e44756 2447 return false;
abc3c744
SL
2448}
2449
0b182d61 2450static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2451{
2f5cb738 2452 unsigned int max_dispatch;
22e2c507 2453
5ad531db
JA
2454 /*
2455 * Drain async requests before we start sync IO
2456 */
53c583d2 2457 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2458 return false;
5ad531db 2459
2f5cb738
JA
2460 /*
2461 * If this is an async queue and we have sync IO in flight, let it wait
2462 */
53c583d2 2463 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2464 return false;
2f5cb738 2465
abc3c744 2466 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2467 if (cfq_class_idle(cfqq))
2468 max_dispatch = 1;
b4878f24 2469
2f5cb738
JA
2470 /*
2471 * Does this cfqq already have too much IO in flight?
2472 */
2473 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2474 bool promote_sync = false;
2f5cb738
JA
2475 /*
2476 * idle queue must always only have a single IO in flight
2477 */
3ed9a296 2478 if (cfq_class_idle(cfqq))
0b182d61 2479 return false;
3ed9a296 2480
ef8a41df 2481 /*
c4ade94f
LS
2482 * If there is only one sync queue
2483 * we can ignore async queue here and give the sync
ef8a41df
SL
2484 * queue no dispatch limit. The reason is a sync queue can
2485 * preempt async queue, limiting the sync queue doesn't make
2486 * sense. This is useful for aiostress test.
2487 */
c4ade94f
LS
2488 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2489 promote_sync = true;
ef8a41df 2490
2f5cb738
JA
2491 /*
2492 * We have other queues, don't allow more IO from this one
2493 */
ef8a41df
SL
2494 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2495 !promote_sync)
0b182d61 2496 return false;
9ede209e 2497
365722bb 2498 /*
474b18cc 2499 * Sole queue user, no limit
365722bb 2500 */
ef8a41df 2501 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2502 max_dispatch = -1;
2503 else
2504 /*
2505 * Normally we start throttling cfqq when cfq_quantum/2
2506 * requests have been dispatched. But we can drive
2507 * deeper queue depths at the beginning of slice
2508 * subjected to upper limit of cfq_quantum.
2509 * */
2510 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2511 }
2512
2513 /*
2514 * Async queues must wait a bit before being allowed dispatch.
2515 * We also ramp up the dispatch depth gradually for async IO,
2516 * based on the last sync IO we serviced
2517 */
963b72fc 2518 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2519 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2520 unsigned int depth;
365722bb 2521
61f0c1dc 2522 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2523 if (!depth && !cfqq->dispatched)
2524 depth = 1;
8e296755
JA
2525 if (depth < max_dispatch)
2526 max_dispatch = depth;
2f5cb738 2527 }
3ed9a296 2528
0b182d61
JA
2529 /*
2530 * If we're below the current max, allow a dispatch
2531 */
2532 return cfqq->dispatched < max_dispatch;
2533}
2534
2535/*
2536 * Dispatch a request from cfqq, moving them to the request queue
2537 * dispatch list.
2538 */
2539static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2540{
2541 struct request *rq;
2542
2543 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2544
2545 if (!cfq_may_dispatch(cfqd, cfqq))
2546 return false;
2547
2548 /*
2549 * follow expired path, else get first next available
2550 */
2551 rq = cfq_check_fifo(cfqq);
2552 if (!rq)
2553 rq = cfqq->next_rq;
2554
2555 /*
2556 * insert request into driver dispatch list
2557 */
2558 cfq_dispatch_insert(cfqd->queue, rq);
2559
2560 if (!cfqd->active_cic) {
2561 struct cfq_io_context *cic = RQ_CIC(rq);
2562
2563 atomic_long_inc(&cic->ioc->refcount);
2564 cfqd->active_cic = cic;
2565 }
2566
2567 return true;
2568}
2569
2570/*
2571 * Find the cfqq that we need to service and move a request from that to the
2572 * dispatch list
2573 */
2574static int cfq_dispatch_requests(struct request_queue *q, int force)
2575{
2576 struct cfq_data *cfqd = q->elevator->elevator_data;
2577 struct cfq_queue *cfqq;
2578
2579 if (!cfqd->busy_queues)
2580 return 0;
2581
2582 if (unlikely(force))
2583 return cfq_forced_dispatch(cfqd);
2584
2585 cfqq = cfq_select_queue(cfqd);
2586 if (!cfqq)
8e296755
JA
2587 return 0;
2588
2f5cb738 2589 /*
0b182d61 2590 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2591 */
0b182d61
JA
2592 if (!cfq_dispatch_request(cfqd, cfqq))
2593 return 0;
2594
2f5cb738 2595 cfqq->slice_dispatch++;
b029195d 2596 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2597
2f5cb738
JA
2598 /*
2599 * expire an async queue immediately if it has used up its slice. idle
2600 * queue always expire after 1 dispatch round.
2601 */
2602 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2603 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2604 cfq_class_idle(cfqq))) {
2605 cfqq->slice_end = jiffies + 1;
e5ff082e 2606 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2607 }
2608
b217a903 2609 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2610 return 1;
1da177e4
LT
2611}
2612
1da177e4 2613/*
5e705374
JA
2614 * task holds one reference to the queue, dropped when task exits. each rq
2615 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2616 *
b1c35769 2617 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2618 * queue lock must be held here.
2619 */
2620static void cfq_put_queue(struct cfq_queue *cfqq)
2621{
22e2c507 2622 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2623 struct cfq_group *cfqg;
22e2c507 2624
30d7b944 2625 BUG_ON(cfqq->ref <= 0);
1da177e4 2626
30d7b944
SL
2627 cfqq->ref--;
2628 if (cfqq->ref)
1da177e4
LT
2629 return;
2630
7b679138 2631 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2632 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2633 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2634 cfqg = cfqq->cfqg;
1da177e4 2635
28f95cbc 2636 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2637 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2638 cfq_schedule_dispatch(cfqd);
28f95cbc 2639 }
22e2c507 2640
f04a6424 2641 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2642 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2643 cfq_put_cfqg(cfqg);
1da177e4
LT
2644}
2645
d6de8be7 2646/*
5f45c695 2647 * Call func for each cic attached to this ioc.
d6de8be7 2648 */
07416d29 2649static void
5f45c695
JA
2650call_for_each_cic(struct io_context *ioc,
2651 void (*func)(struct io_context *, struct cfq_io_context *))
07416d29
JA
2652{
2653 struct cfq_io_context *cic;
2654 struct hlist_node *n;
2655
5f45c695
JA
2656 rcu_read_lock();
2657
07416d29
JA
2658 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2659 func(ioc, cic);
07416d29 2660
4ac845a2 2661 rcu_read_unlock();
34e6bbf2
FC
2662}
2663
2664static void cfq_cic_free_rcu(struct rcu_head *head)
2665{
2666 struct cfq_io_context *cic;
2667
2668 cic = container_of(head, struct cfq_io_context, rcu_head);
2669
2670 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2671 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2672
9a11b4ed
JA
2673 if (ioc_gone) {
2674 /*
2675 * CFQ scheduler is exiting, grab exit lock and check
2676 * the pending io context count. If it hits zero,
2677 * complete ioc_gone and set it back to NULL
2678 */
2679 spin_lock(&ioc_gone_lock);
245b2e70 2680 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2681 complete(ioc_gone);
2682 ioc_gone = NULL;
2683 }
2684 spin_unlock(&ioc_gone_lock);
2685 }
34e6bbf2 2686}
4ac845a2 2687
34e6bbf2
FC
2688static void cfq_cic_free(struct cfq_io_context *cic)
2689{
2690 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2691}
2692
2693static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2694{
2695 unsigned long flags;
bca4b914 2696 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2697
bca4b914 2698 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2699
2700 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2701 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2702 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2703 spin_unlock_irqrestore(&ioc->lock, flags);
2704
34e6bbf2 2705 cfq_cic_free(cic);
4ac845a2
JA
2706}
2707
d6de8be7
JA
2708/*
2709 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2710 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2711 * and ->trim() which is called with the task lock held
2712 */
4ac845a2
JA
2713static void cfq_free_io_context(struct io_context *ioc)
2714{
4ac845a2 2715 /*
34e6bbf2
FC
2716 * ioc->refcount is zero here, or we are called from elv_unregister(),
2717 * so no more cic's are allowed to be linked into this ioc. So it
2718 * should be ok to iterate over the known list, we will see all cic's
2719 * since no new ones are added.
4ac845a2 2720 */
5f45c695 2721 call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2722}
2723
d02a2c07 2724static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2725{
df5fe3e8
JM
2726 struct cfq_queue *__cfqq, *next;
2727
df5fe3e8
JM
2728 /*
2729 * If this queue was scheduled to merge with another queue, be
2730 * sure to drop the reference taken on that queue (and others in
2731 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2732 */
2733 __cfqq = cfqq->new_cfqq;
2734 while (__cfqq) {
2735 if (__cfqq == cfqq) {
2736 WARN(1, "cfqq->new_cfqq loop detected\n");
2737 break;
2738 }
2739 next = __cfqq->new_cfqq;
2740 cfq_put_queue(__cfqq);
2741 __cfqq = next;
2742 }
d02a2c07
SL
2743}
2744
2745static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2746{
2747 if (unlikely(cfqq == cfqd->active_queue)) {
2748 __cfq_slice_expired(cfqd, cfqq, 0);
2749 cfq_schedule_dispatch(cfqd);
2750 }
2751
2752 cfq_put_cooperator(cfqq);
df5fe3e8 2753
89850f7e
JA
2754 cfq_put_queue(cfqq);
2755}
22e2c507 2756
89850f7e
JA
2757static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2758 struct cfq_io_context *cic)
2759{
4faa3c81
FC
2760 struct io_context *ioc = cic->ioc;
2761
fc46379d 2762 list_del_init(&cic->queue_list);
4ac845a2
JA
2763
2764 /*
bca4b914 2765 * Make sure dead mark is seen for dead queues
4ac845a2 2766 */
fc46379d 2767 smp_wmb();
bca4b914 2768 cic->key = cfqd_dead_key(cfqd);
fc46379d 2769
9b50902d
JA
2770 if (rcu_dereference(ioc->ioc_data) == cic) {
2771 spin_lock(&ioc->lock);
4faa3c81 2772 rcu_assign_pointer(ioc->ioc_data, NULL);
9b50902d
JA
2773 spin_unlock(&ioc->lock);
2774 }
4faa3c81 2775
ff6657c6
JA
2776 if (cic->cfqq[BLK_RW_ASYNC]) {
2777 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2778 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2779 }
2780
ff6657c6
JA
2781 if (cic->cfqq[BLK_RW_SYNC]) {
2782 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2783 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2784 }
89850f7e
JA
2785}
2786
4ac845a2
JA
2787static void cfq_exit_single_io_context(struct io_context *ioc,
2788 struct cfq_io_context *cic)
89850f7e 2789{
bca4b914 2790 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2791
89850f7e 2792 if (cfqd) {
165125e1 2793 struct request_queue *q = cfqd->queue;
4ac845a2 2794 unsigned long flags;
89850f7e 2795
4ac845a2 2796 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2797
2798 /*
2799 * Ensure we get a fresh copy of the ->key to prevent
2800 * race between exiting task and queue
2801 */
2802 smp_read_barrier_depends();
bca4b914 2803 if (cic->key == cfqd)
62c1fe9d
JA
2804 __cfq_exit_single_io_context(cfqd, cic);
2805
4ac845a2 2806 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2807 }
1da177e4
LT
2808}
2809
498d3aa2
JA
2810/*
2811 * The process that ioc belongs to has exited, we need to clean up
2812 * and put the internal structures we have that belongs to that process.
2813 */
e2d74ac0 2814static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2815{
4ac845a2 2816 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2817}
2818
22e2c507 2819static struct cfq_io_context *
8267e268 2820cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2821{
b5deef90 2822 struct cfq_io_context *cic;
1da177e4 2823
94f6030c
CL
2824 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2825 cfqd->queue->node);
1da177e4 2826 if (cic) {
22e2c507 2827 cic->last_end_request = jiffies;
553698f9 2828 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2829 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2830 cic->dtor = cfq_free_io_context;
2831 cic->exit = cfq_exit_io_context;
245b2e70 2832 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2833 }
2834
2835 return cic;
2836}
2837
fd0928df 2838static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2839{
2840 struct task_struct *tsk = current;
2841 int ioprio_class;
2842
3b18152c 2843 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2844 return;
2845
fd0928df 2846 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2847 switch (ioprio_class) {
fe094d98
JA
2848 default:
2849 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2850 case IOPRIO_CLASS_NONE:
2851 /*
6d63c275 2852 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2853 */
2854 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2855 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2856 break;
2857 case IOPRIO_CLASS_RT:
2858 cfqq->ioprio = task_ioprio(ioc);
2859 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2860 break;
2861 case IOPRIO_CLASS_BE:
2862 cfqq->ioprio = task_ioprio(ioc);
2863 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2864 break;
2865 case IOPRIO_CLASS_IDLE:
2866 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2867 cfqq->ioprio = 7;
2868 cfq_clear_cfqq_idle_window(cfqq);
2869 break;
22e2c507
JA
2870 }
2871
2872 /*
2873 * keep track of original prio settings in case we have to temporarily
2874 * elevate the priority of this queue
2875 */
2876 cfqq->org_ioprio = cfqq->ioprio;
2877 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2878 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2879}
2880
febffd61 2881static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2882{
bca4b914 2883 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2884 struct cfq_queue *cfqq;
c1b707d2 2885 unsigned long flags;
35e6077c 2886
caaa5f9f
JA
2887 if (unlikely(!cfqd))
2888 return;
2889
c1b707d2 2890 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2891
ff6657c6 2892 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2893 if (cfqq) {
2894 struct cfq_queue *new_cfqq;
ff6657c6
JA
2895 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2896 GFP_ATOMIC);
caaa5f9f 2897 if (new_cfqq) {
ff6657c6 2898 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2899 cfq_put_queue(cfqq);
2900 }
22e2c507 2901 }
caaa5f9f 2902
ff6657c6 2903 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2904 if (cfqq)
2905 cfq_mark_cfqq_prio_changed(cfqq);
2906
c1b707d2 2907 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2908}
2909
fc46379d 2910static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2911{
4ac845a2 2912 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2913 ioc->ioprio_changed = 0;
22e2c507
JA
2914}
2915
d5036d77 2916static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2917 pid_t pid, bool is_sync)
d5036d77
JA
2918{
2919 RB_CLEAR_NODE(&cfqq->rb_node);
2920 RB_CLEAR_NODE(&cfqq->p_node);
2921 INIT_LIST_HEAD(&cfqq->fifo);
2922
30d7b944 2923 cfqq->ref = 0;
d5036d77
JA
2924 cfqq->cfqd = cfqd;
2925
2926 cfq_mark_cfqq_prio_changed(cfqq);
2927
2928 if (is_sync) {
2929 if (!cfq_class_idle(cfqq))
2930 cfq_mark_cfqq_idle_window(cfqq);
2931 cfq_mark_cfqq_sync(cfqq);
2932 }
2933 cfqq->pid = pid;
2934}
2935
24610333
VG
2936#ifdef CONFIG_CFQ_GROUP_IOSCHED
2937static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2938{
2939 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2940 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2941 unsigned long flags;
2942 struct request_queue *q;
2943
2944 if (unlikely(!cfqd))
2945 return;
2946
2947 q = cfqd->queue;
2948
2949 spin_lock_irqsave(q->queue_lock, flags);
2950
2951 if (sync_cfqq) {
2952 /*
2953 * Drop reference to sync queue. A new sync queue will be
2954 * assigned in new group upon arrival of a fresh request.
2955 */
2956 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2957 cic_set_cfqq(cic, NULL, 1);
2958 cfq_put_queue(sync_cfqq);
2959 }
2960
2961 spin_unlock_irqrestore(q->queue_lock, flags);
2962}
2963
2964static void cfq_ioc_set_cgroup(struct io_context *ioc)
2965{
2966 call_for_each_cic(ioc, changed_cgroup);
2967 ioc->cgroup_changed = 0;
2968}
2969#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2970
22e2c507 2971static struct cfq_queue *
a6151c3a 2972cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2973 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2974{
22e2c507 2975 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2976 struct cfq_io_context *cic;
cdb16e8f 2977 struct cfq_group *cfqg;
22e2c507
JA
2978
2979retry:
3e59cf9d 2980 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2981 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2982 /* cic always exists here */
2983 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2984
6118b70b
JA
2985 /*
2986 * Always try a new alloc if we fell back to the OOM cfqq
2987 * originally, since it should just be a temporary situation.
2988 */
2989 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2990 cfqq = NULL;
22e2c507
JA
2991 if (new_cfqq) {
2992 cfqq = new_cfqq;
2993 new_cfqq = NULL;
2994 } else if (gfp_mask & __GFP_WAIT) {
2995 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2996 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2997 gfp_mask | __GFP_ZERO,
94f6030c 2998 cfqd->queue->node);
22e2c507 2999 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
3000 if (new_cfqq)
3001 goto retry;
22e2c507 3002 } else {
94f6030c
CL
3003 cfqq = kmem_cache_alloc_node(cfq_pool,
3004 gfp_mask | __GFP_ZERO,
3005 cfqd->queue->node);
22e2c507
JA
3006 }
3007
6118b70b
JA
3008 if (cfqq) {
3009 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3010 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 3011 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
3012 cfq_log_cfqq(cfqd, cfqq, "alloced");
3013 } else
3014 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
3015 }
3016
3017 if (new_cfqq)
3018 kmem_cache_free(cfq_pool, new_cfqq);
3019
22e2c507
JA
3020 return cfqq;
3021}
3022
c2dea2d1
VT
3023static struct cfq_queue **
3024cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3025{
fe094d98 3026 switch (ioprio_class) {
c2dea2d1
VT
3027 case IOPRIO_CLASS_RT:
3028 return &cfqd->async_cfqq[0][ioprio];
3029 case IOPRIO_CLASS_BE:
3030 return &cfqd->async_cfqq[1][ioprio];
3031 case IOPRIO_CLASS_IDLE:
3032 return &cfqd->async_idle_cfqq;
3033 default:
3034 BUG();
3035 }
3036}
3037
15c31be4 3038static struct cfq_queue *
a6151c3a 3039cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
3040 gfp_t gfp_mask)
3041{
fd0928df
JA
3042 const int ioprio = task_ioprio(ioc);
3043 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 3044 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
3045 struct cfq_queue *cfqq = NULL;
3046
c2dea2d1
VT
3047 if (!is_sync) {
3048 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3049 cfqq = *async_cfqq;
3050 }
3051
6118b70b 3052 if (!cfqq)
fd0928df 3053 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
3054
3055 /*
3056 * pin the queue now that it's allocated, scheduler exit will prune it
3057 */
c2dea2d1 3058 if (!is_sync && !(*async_cfqq)) {
30d7b944 3059 cfqq->ref++;
c2dea2d1 3060 *async_cfqq = cfqq;
15c31be4
JA
3061 }
3062
30d7b944 3063 cfqq->ref++;
15c31be4
JA
3064 return cfqq;
3065}
3066
498d3aa2
JA
3067/*
3068 * We drop cfq io contexts lazily, so we may find a dead one.
3069 */
dbecf3ab 3070static void
4ac845a2
JA
3071cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3072 struct cfq_io_context *cic)
dbecf3ab 3073{
4ac845a2
JA
3074 unsigned long flags;
3075
fc46379d 3076 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3077 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3078
4ac845a2
JA
3079 spin_lock_irqsave(&ioc->lock, flags);
3080
4faa3c81 3081 BUG_ON(ioc->ioc_data == cic);
597bc485 3082
80b15c73 3083 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3084 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3085 spin_unlock_irqrestore(&ioc->lock, flags);
3086
3087 cfq_cic_free(cic);
dbecf3ab
OH
3088}
3089
e2d74ac0 3090static struct cfq_io_context *
4ac845a2 3091cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3092{
e2d74ac0 3093 struct cfq_io_context *cic;
d6de8be7 3094 unsigned long flags;
e2d74ac0 3095
91fac317
VT
3096 if (unlikely(!ioc))
3097 return NULL;
3098
d6de8be7
JA
3099 rcu_read_lock();
3100
597bc485
JA
3101 /*
3102 * we maintain a last-hit cache, to avoid browsing over the tree
3103 */
4ac845a2 3104 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3105 if (cic && cic->key == cfqd) {
3106 rcu_read_unlock();
597bc485 3107 return cic;
d6de8be7 3108 }
597bc485 3109
4ac845a2 3110 do {
80b15c73 3111 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3112 rcu_read_unlock();
3113 if (!cic)
3114 break;
bca4b914 3115 if (unlikely(cic->key != cfqd)) {
4ac845a2 3116 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3117 rcu_read_lock();
4ac845a2 3118 continue;
dbecf3ab 3119 }
e2d74ac0 3120
d6de8be7 3121 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3122 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3123 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3124 break;
3125 } while (1);
e2d74ac0 3126
4ac845a2 3127 return cic;
e2d74ac0
JA
3128}
3129
4ac845a2
JA
3130/*
3131 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3132 * the process specific cfq io context when entered from the block layer.
3133 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3134 */
febffd61
JA
3135static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3136 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3137{
0261d688 3138 unsigned long flags;
4ac845a2 3139 int ret;
e2d74ac0 3140
4ac845a2
JA
3141 ret = radix_tree_preload(gfp_mask);
3142 if (!ret) {
3143 cic->ioc = ioc;
3144 cic->key = cfqd;
e2d74ac0 3145
4ac845a2
JA
3146 spin_lock_irqsave(&ioc->lock, flags);
3147 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3148 cfqd->cic_index, cic);
ffc4e759
JA
3149 if (!ret)
3150 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3151 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3152
4ac845a2
JA
3153 radix_tree_preload_end();
3154
3155 if (!ret) {
3156 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3157 list_add(&cic->queue_list, &cfqd->cic_list);
3158 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3159 }
e2d74ac0
JA
3160 }
3161
4ac845a2
JA
3162 if (ret)
3163 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3164
4ac845a2 3165 return ret;
e2d74ac0
JA
3166}
3167
1da177e4
LT
3168/*
3169 * Setup general io context and cfq io context. There can be several cfq
3170 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3171 * than one device managed by cfq.
1da177e4
LT
3172 */
3173static struct cfq_io_context *
e2d74ac0 3174cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3175{
22e2c507 3176 struct io_context *ioc = NULL;
1da177e4 3177 struct cfq_io_context *cic;
1da177e4 3178
22e2c507 3179 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3180
b5deef90 3181 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3182 if (!ioc)
3183 return NULL;
3184
4ac845a2 3185 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3186 if (cic)
3187 goto out;
1da177e4 3188
e2d74ac0
JA
3189 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3190 if (cic == NULL)
3191 goto err;
1da177e4 3192
4ac845a2
JA
3193 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3194 goto err_free;
3195
1da177e4 3196out:
fc46379d
JA
3197 smp_read_barrier_depends();
3198 if (unlikely(ioc->ioprio_changed))
3199 cfq_ioc_set_ioprio(ioc);
3200
24610333
VG
3201#ifdef CONFIG_CFQ_GROUP_IOSCHED
3202 if (unlikely(ioc->cgroup_changed))
3203 cfq_ioc_set_cgroup(ioc);
3204#endif
1da177e4 3205 return cic;
4ac845a2
JA
3206err_free:
3207 cfq_cic_free(cic);
1da177e4
LT
3208err:
3209 put_io_context(ioc);
3210 return NULL;
3211}
3212
22e2c507
JA
3213static void
3214cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3215{
aaf1228d
JA
3216 unsigned long elapsed = jiffies - cic->last_end_request;
3217 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3218
22e2c507
JA
3219 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3220 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3221 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3222}
1da177e4 3223
206dc69b 3224static void
b2c18e1e 3225cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3226 struct request *rq)
206dc69b 3227{
3dde36dd 3228 sector_t sdist = 0;
41647e7a 3229 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3230 if (cfqq->last_request_pos) {
3231 if (cfqq->last_request_pos < blk_rq_pos(rq))
3232 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3233 else
3234 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3235 }
206dc69b 3236
3dde36dd 3237 cfqq->seek_history <<= 1;
41647e7a
CZ
3238 if (blk_queue_nonrot(cfqd->queue))
3239 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3240 else
3241 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3242}
1da177e4 3243
22e2c507
JA
3244/*
3245 * Disable idle window if the process thinks too long or seeks so much that
3246 * it doesn't matter
3247 */
3248static void
3249cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3250 struct cfq_io_context *cic)
3251{
7b679138 3252 int old_idle, enable_idle;
1be92f2f 3253
0871714e
JA
3254 /*
3255 * Don't idle for async or idle io prio class
3256 */
3257 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3258 return;
3259
c265a7f4 3260 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3261
76280aff
CZ
3262 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3263 cfq_mark_cfqq_deep(cfqq);
3264
749ef9f8
CZ
3265 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3266 enable_idle = 0;
3267 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3268 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3269 enable_idle = 0;
3270 else if (sample_valid(cic->ttime_samples)) {
718eee05 3271 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3272 enable_idle = 0;
3273 else
3274 enable_idle = 1;
1da177e4
LT
3275 }
3276
7b679138
JA
3277 if (old_idle != enable_idle) {
3278 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3279 if (enable_idle)
3280 cfq_mark_cfqq_idle_window(cfqq);
3281 else
3282 cfq_clear_cfqq_idle_window(cfqq);
3283 }
22e2c507 3284}
1da177e4 3285
22e2c507
JA
3286/*
3287 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3288 * no or if we aren't sure, a 1 will cause a preempt.
3289 */
a6151c3a 3290static bool
22e2c507 3291cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3292 struct request *rq)
22e2c507 3293{
6d048f53 3294 struct cfq_queue *cfqq;
22e2c507 3295
6d048f53
JA
3296 cfqq = cfqd->active_queue;
3297 if (!cfqq)
a6151c3a 3298 return false;
22e2c507 3299
6d048f53 3300 if (cfq_class_idle(new_cfqq))
a6151c3a 3301 return false;
22e2c507
JA
3302
3303 if (cfq_class_idle(cfqq))
a6151c3a 3304 return true;
1e3335de 3305
875feb63
DS
3306 /*
3307 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3308 */
3309 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3310 return false;
3311
374f84ac
JA
3312 /*
3313 * if the new request is sync, but the currently running queue is
3314 * not, let the sync request have priority.
3315 */
5e705374 3316 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3317 return true;
1e3335de 3318
8682e1f1
VG
3319 if (new_cfqq->cfqg != cfqq->cfqg)
3320 return false;
3321
3322 if (cfq_slice_used(cfqq))
3323 return true;
3324
3325 /* Allow preemption only if we are idling on sync-noidle tree */
3326 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3327 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3328 new_cfqq->service_tree->count == 2 &&
3329 RB_EMPTY_ROOT(&cfqq->sort_list))
3330 return true;
3331
374f84ac
JA
3332 /*
3333 * So both queues are sync. Let the new request get disk time if
3334 * it's a metadata request and the current queue is doing regular IO.
3335 */
7b6d91da 3336 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3337 return true;
22e2c507 3338
3a9a3f6c
DS
3339 /*
3340 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3341 */
3342 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3343 return true;
3a9a3f6c 3344
d2d59e18
SL
3345 /* An idle queue should not be idle now for some reason */
3346 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3347 return true;
3348
1e3335de 3349 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3350 return false;
1e3335de
JA
3351
3352 /*
3353 * if this request is as-good as one we would expect from the
3354 * current cfqq, let it preempt
3355 */
e9ce335d 3356 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3357 return true;
1e3335de 3358
a6151c3a 3359 return false;
22e2c507
JA
3360}
3361
3362/*
3363 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3364 * let it have half of its nominal slice.
3365 */
3366static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3367{
f8ae6e3e
SL
3368 struct cfq_queue *old_cfqq = cfqd->active_queue;
3369
7b679138 3370 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3371 cfq_slice_expired(cfqd, 1);
22e2c507 3372
f8ae6e3e
SL
3373 /*
3374 * workload type is changed, don't save slice, otherwise preempt
3375 * doesn't happen
3376 */
3377 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3378 cfqq->cfqg->saved_workload_slice = 0;
3379
bf572256
JA
3380 /*
3381 * Put the new queue at the front of the of the current list,
3382 * so we know that it will be selected next.
3383 */
3384 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3385
3386 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3387
62a37f6b
JT
3388 cfqq->slice_end = 0;
3389 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3390}
3391
22e2c507 3392/*
5e705374 3393 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3394 * something we should do about it
3395 */
3396static void
5e705374
JA
3397cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3398 struct request *rq)
22e2c507 3399{
5e705374 3400 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3401
45333d5a 3402 cfqd->rq_queued++;
7b6d91da 3403 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3404 cfqq->meta_pending++;
3405
9c2c38a1 3406 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3407 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3408 cfq_update_idle_window(cfqd, cfqq, cic);
3409
b2c18e1e 3410 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3411
3412 if (cfqq == cfqd->active_queue) {
3413 /*
b029195d
JA
3414 * Remember that we saw a request from this process, but
3415 * don't start queuing just yet. Otherwise we risk seeing lots
3416 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3417 * and merging. If the request is already larger than a single
3418 * page, let it rip immediately. For that case we assume that
2d870722
JA
3419 * merging is already done. Ditto for a busy system that
3420 * has other work pending, don't risk delaying until the
3421 * idle timer unplug to continue working.
22e2c507 3422 */
d6ceb25e 3423 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3424 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3425 cfqd->busy_queues > 1) {
812df48d 3426 cfq_del_timer(cfqd, cfqq);
554554f6 3427 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3428 __blk_run_queue(cfqd->queue);
a11cdaa7 3429 } else {
e98ef89b 3430 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3431 &cfqq->cfqg->blkg);
bf791937 3432 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3433 }
d6ceb25e 3434 }
5e705374 3435 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3436 /*
3437 * not the active queue - expire current slice if it is
3438 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3439 * has some old slice time left and is of higher priority or
3440 * this new queue is RT and the current one is BE
22e2c507
JA
3441 */
3442 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3443 __blk_run_queue(cfqd->queue);
22e2c507 3444 }
1da177e4
LT
3445}
3446
165125e1 3447static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3448{
b4878f24 3449 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3451
7b679138 3452 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3453 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3454
30996f40 3455 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3456 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3457 cfq_add_rq_rb(rq);
e98ef89b 3458 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3459 &cfqd->serving_group->blkg, rq_data_dir(rq),
3460 rq_is_sync(rq));
5e705374 3461 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3462}
3463
45333d5a
AC
3464/*
3465 * Update hw_tag based on peak queue depth over 50 samples under
3466 * sufficient load.
3467 */
3468static void cfq_update_hw_tag(struct cfq_data *cfqd)
3469{
1a1238a7
SL
3470 struct cfq_queue *cfqq = cfqd->active_queue;
3471
53c583d2
CZ
3472 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3473 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3474
3475 if (cfqd->hw_tag == 1)
3476 return;
45333d5a
AC
3477
3478 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3479 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3480 return;
3481
1a1238a7
SL
3482 /*
3483 * If active queue hasn't enough requests and can idle, cfq might not
3484 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3485 * case
3486 */
3487 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3488 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3489 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3490 return;
3491
45333d5a
AC
3492 if (cfqd->hw_tag_samples++ < 50)
3493 return;
3494
e459dd08 3495 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3496 cfqd->hw_tag = 1;
3497 else
3498 cfqd->hw_tag = 0;
45333d5a
AC
3499}
3500
7667aa06
VG
3501static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3502{
3503 struct cfq_io_context *cic = cfqd->active_cic;
3504
02a8f01b
JT
3505 /* If the queue already has requests, don't wait */
3506 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3507 return false;
3508
7667aa06
VG
3509 /* If there are other queues in the group, don't wait */
3510 if (cfqq->cfqg->nr_cfqq > 1)
3511 return false;
3512
3513 if (cfq_slice_used(cfqq))
3514 return true;
3515
3516 /* if slice left is less than think time, wait busy */
3517 if (cic && sample_valid(cic->ttime_samples)
3518 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3519 return true;
3520
3521 /*
3522 * If think times is less than a jiffy than ttime_mean=0 and above
3523 * will not be true. It might happen that slice has not expired yet
3524 * but will expire soon (4-5 ns) during select_queue(). To cover the
3525 * case where think time is less than a jiffy, mark the queue wait
3526 * busy if only 1 jiffy is left in the slice.
3527 */
3528 if (cfqq->slice_end - jiffies == 1)
3529 return true;
3530
3531 return false;
3532}
3533
165125e1 3534static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3535{
5e705374 3536 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3537 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3538 const int sync = rq_is_sync(rq);
b4878f24 3539 unsigned long now;
1da177e4 3540
b4878f24 3541 now = jiffies;
33659ebb
CH
3542 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3543 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3544
45333d5a
AC
3545 cfq_update_hw_tag(cfqd);
3546
53c583d2 3547 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3548 WARN_ON(!cfqq->dispatched);
53c583d2 3549 cfqd->rq_in_driver--;
6d048f53 3550 cfqq->dispatched--;
80bdf0c7 3551 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3552 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3553 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3554 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3555
53c583d2 3556 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3557
365722bb 3558 if (sync) {
5e705374 3559 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3560 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3561 cfqd->last_delayed_sync = now;
365722bb 3562 }
caaa5f9f
JA
3563
3564 /*
3565 * If this is the active queue, check if it needs to be expired,
3566 * or if we want to idle in case it has no pending requests.
3567 */
3568 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3569 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3570
44f7c160
JA
3571 if (cfq_cfqq_slice_new(cfqq)) {
3572 cfq_set_prio_slice(cfqd, cfqq);
3573 cfq_clear_cfqq_slice_new(cfqq);
3574 }
f75edf2d
VG
3575
3576 /*
7667aa06
VG
3577 * Should we wait for next request to come in before we expire
3578 * the queue.
f75edf2d 3579 */
7667aa06 3580 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3581 unsigned long extend_sl = cfqd->cfq_slice_idle;
3582 if (!cfqd->cfq_slice_idle)
3583 extend_sl = cfqd->cfq_group_idle;
3584 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3585 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3586 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3587 }
3588
a36e71f9 3589 /*
8e550632
CZ
3590 * Idling is not enabled on:
3591 * - expired queues
3592 * - idle-priority queues
3593 * - async queues
3594 * - queues with still some requests queued
3595 * - when there is a close cooperator
a36e71f9 3596 */
0871714e 3597 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3598 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3599 else if (sync && cfqq_empty &&
3600 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3601 cfq_arm_slice_timer(cfqd);
8e550632 3602 }
caaa5f9f 3603 }
6d048f53 3604
53c583d2 3605 if (!cfqd->rq_in_driver)
23e018a1 3606 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3607}
3608
22e2c507
JA
3609/*
3610 * we temporarily boost lower priority queues if they are holding fs exclusive
3611 * resources. they are boosted to normal prio (CLASS_BE/4)
3612 */
3613static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3614{
22e2c507
JA
3615 if (has_fs_excl()) {
3616 /*
3617 * boost idle prio on transactions that would lock out other
3618 * users of the filesystem
3619 */
3620 if (cfq_class_idle(cfqq))
3621 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3622 if (cfqq->ioprio > IOPRIO_NORM)
3623 cfqq->ioprio = IOPRIO_NORM;
3624 } else {
3625 /*
dddb7451 3626 * unboost the queue (if needed)
22e2c507 3627 */
dddb7451
CZ
3628 cfqq->ioprio_class = cfqq->org_ioprio_class;
3629 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3630 }
22e2c507 3631}
1da177e4 3632
89850f7e 3633static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3634{
1b379d8d 3635 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3636 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3637 return ELV_MQUEUE_MUST;
3b18152c 3638 }
1da177e4 3639
22e2c507 3640 return ELV_MQUEUE_MAY;
22e2c507
JA
3641}
3642
165125e1 3643static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3644{
3645 struct cfq_data *cfqd = q->elevator->elevator_data;
3646 struct task_struct *tsk = current;
91fac317 3647 struct cfq_io_context *cic;
22e2c507
JA
3648 struct cfq_queue *cfqq;
3649
3650 /*
3651 * don't force setup of a queue from here, as a call to may_queue
3652 * does not necessarily imply that a request actually will be queued.
3653 * so just lookup a possibly existing queue, or return 'may queue'
3654 * if that fails
3655 */
4ac845a2 3656 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3657 if (!cic)
3658 return ELV_MQUEUE_MAY;
3659
b0b78f81 3660 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3661 if (cfqq) {
fd0928df 3662 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3663 cfq_prio_boost(cfqq);
3664
89850f7e 3665 return __cfq_may_queue(cfqq);
22e2c507
JA
3666 }
3667
3668 return ELV_MQUEUE_MAY;
1da177e4
LT
3669}
3670
1da177e4
LT
3671/*
3672 * queue lock held here
3673 */
bb37b94c 3674static void cfq_put_request(struct request *rq)
1da177e4 3675{
5e705374 3676 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3677
5e705374 3678 if (cfqq) {
22e2c507 3679 const int rw = rq_data_dir(rq);
1da177e4 3680
22e2c507
JA
3681 BUG_ON(!cfqq->allocated[rw]);
3682 cfqq->allocated[rw]--;
1da177e4 3683
5e705374 3684 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3685
c186794d
MS
3686 rq->elevator_private[0] = NULL;
3687 rq->elevator_private[1] = NULL;
1da177e4 3688
7f1dc8a2
VG
3689 /* Put down rq reference on cfqg */
3690 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3691 rq->elevator_private[2] = NULL;
7f1dc8a2 3692
1da177e4
LT
3693 cfq_put_queue(cfqq);
3694 }
3695}
3696
df5fe3e8
JM
3697static struct cfq_queue *
3698cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3699 struct cfq_queue *cfqq)
3700{
3701 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3702 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3703 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3704 cfq_put_queue(cfqq);
3705 return cic_to_cfqq(cic, 1);
3706}
3707
e6c5bc73
JM
3708/*
3709 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3710 * was the last process referring to said cfqq.
3711 */
3712static struct cfq_queue *
3713split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3714{
3715 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3716 cfqq->pid = current->pid;
3717 cfq_clear_cfqq_coop(cfqq);
ae54abed 3718 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3719 return cfqq;
3720 }
3721
3722 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3723
3724 cfq_put_cooperator(cfqq);
3725
e6c5bc73
JM
3726 cfq_put_queue(cfqq);
3727 return NULL;
3728}
1da177e4 3729/*
22e2c507 3730 * Allocate cfq data structures associated with this request.
1da177e4 3731 */
22e2c507 3732static int
165125e1 3733cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3734{
3735 struct cfq_data *cfqd = q->elevator->elevator_data;
3736 struct cfq_io_context *cic;
3737 const int rw = rq_data_dir(rq);
a6151c3a 3738 const bool is_sync = rq_is_sync(rq);
22e2c507 3739 struct cfq_queue *cfqq;
1da177e4
LT
3740 unsigned long flags;
3741
3742 might_sleep_if(gfp_mask & __GFP_WAIT);
3743
e2d74ac0 3744 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3745
1da177e4
LT
3746 spin_lock_irqsave(q->queue_lock, flags);
3747
22e2c507
JA
3748 if (!cic)
3749 goto queue_fail;
3750
e6c5bc73 3751new_queue:
91fac317 3752 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3753 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3754 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3755 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3756 } else {
e6c5bc73
JM
3757 /*
3758 * If the queue was seeky for too long, break it apart.
3759 */
ae54abed 3760 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3761 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3762 cfqq = split_cfqq(cic, cfqq);
3763 if (!cfqq)
3764 goto new_queue;
3765 }
3766
df5fe3e8
JM
3767 /*
3768 * Check to see if this queue is scheduled to merge with
3769 * another, closely cooperating queue. The merging of
3770 * queues happens here as it must be done in process context.
3771 * The reference on new_cfqq was taken in merge_cfqqs.
3772 */
3773 if (cfqq->new_cfqq)
3774 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3775 }
1da177e4
LT
3776
3777 cfqq->allocated[rw]++;
1da177e4 3778
6fae9c25 3779 cfqq->ref++;
c186794d
MS
3780 rq->elevator_private[0] = cic;
3781 rq->elevator_private[1] = cfqq;
3782 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
93803e01 3783 spin_unlock_irqrestore(q->queue_lock, flags);
5e705374 3784 return 0;
1da177e4 3785
22e2c507
JA
3786queue_fail:
3787 if (cic)
3788 put_io_context(cic->ioc);
89850f7e 3789
23e018a1 3790 cfq_schedule_dispatch(cfqd);
1da177e4 3791 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3792 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3793 return 1;
3794}
3795
65f27f38 3796static void cfq_kick_queue(struct work_struct *work)
22e2c507 3797{
65f27f38 3798 struct cfq_data *cfqd =
23e018a1 3799 container_of(work, struct cfq_data, unplug_work);
165125e1 3800 struct request_queue *q = cfqd->queue;
22e2c507 3801
40bb54d1 3802 spin_lock_irq(q->queue_lock);
24ecfbe2 3803 __blk_run_queue(cfqd->queue);
40bb54d1 3804 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3805}
3806
3807/*
3808 * Timer running if the active_queue is currently idling inside its time slice
3809 */
3810static void cfq_idle_slice_timer(unsigned long data)
3811{
3812 struct cfq_data *cfqd = (struct cfq_data *) data;
3813 struct cfq_queue *cfqq;
3814 unsigned long flags;
3c6bd2f8 3815 int timed_out = 1;
22e2c507 3816
7b679138
JA
3817 cfq_log(cfqd, "idle timer fired");
3818
22e2c507
JA
3819 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3820
fe094d98
JA
3821 cfqq = cfqd->active_queue;
3822 if (cfqq) {
3c6bd2f8
JA
3823 timed_out = 0;
3824
b029195d
JA
3825 /*
3826 * We saw a request before the queue expired, let it through
3827 */
3828 if (cfq_cfqq_must_dispatch(cfqq))
3829 goto out_kick;
3830
22e2c507
JA
3831 /*
3832 * expired
3833 */
44f7c160 3834 if (cfq_slice_used(cfqq))
22e2c507
JA
3835 goto expire;
3836
3837 /*
3838 * only expire and reinvoke request handler, if there are
3839 * other queues with pending requests
3840 */
caaa5f9f 3841 if (!cfqd->busy_queues)
22e2c507 3842 goto out_cont;
22e2c507
JA
3843
3844 /*
3845 * not expired and it has a request pending, let it dispatch
3846 */
75e50984 3847 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3848 goto out_kick;
76280aff
CZ
3849
3850 /*
3851 * Queue depth flag is reset only when the idle didn't succeed
3852 */
3853 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3854 }
3855expire:
e5ff082e 3856 cfq_slice_expired(cfqd, timed_out);
22e2c507 3857out_kick:
23e018a1 3858 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3859out_cont:
3860 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3861}
3862
3b18152c
JA
3863static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3864{
3865 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3866 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3867}
22e2c507 3868
c2dea2d1
VT
3869static void cfq_put_async_queues(struct cfq_data *cfqd)
3870{
3871 int i;
3872
3873 for (i = 0; i < IOPRIO_BE_NR; i++) {
3874 if (cfqd->async_cfqq[0][i])
3875 cfq_put_queue(cfqd->async_cfqq[0][i]);
3876 if (cfqd->async_cfqq[1][i])
3877 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3878 }
2389d1ef
ON
3879
3880 if (cfqd->async_idle_cfqq)
3881 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3882}
3883
b374d18a 3884static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3885{
22e2c507 3886 struct cfq_data *cfqd = e->elevator_data;
165125e1 3887 struct request_queue *q = cfqd->queue;
56edf7d7 3888 bool wait = false;
22e2c507 3889
3b18152c 3890 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3891
d9ff4187 3892 spin_lock_irq(q->queue_lock);
e2d74ac0 3893
d9ff4187 3894 if (cfqd->active_queue)
e5ff082e 3895 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3896
3897 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3898 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3899 struct cfq_io_context,
3900 queue_list);
89850f7e
JA
3901
3902 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3903 }
e2d74ac0 3904
c2dea2d1 3905 cfq_put_async_queues(cfqd);
b1c35769 3906 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3907
3908 /*
3909 * If there are groups which we could not unlink from blkcg list,
3910 * wait for a rcu period for them to be freed.
3911 */
3912 if (cfqd->nr_blkcg_linked_grps)
3913 wait = true;
15c31be4 3914
d9ff4187 3915 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3916
3917 cfq_shutdown_timer_wq(cfqd);
3918
80b15c73
KK
3919 spin_lock(&cic_index_lock);
3920 ida_remove(&cic_index_ida, cfqd->cic_index);
3921 spin_unlock(&cic_index_lock);
3922
56edf7d7
VG
3923 /*
3924 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3925 * Do this wait only if there are other unlinked groups out
3926 * there. This can happen if cgroup deletion path claimed the
3927 * responsibility of cleaning up a group before queue cleanup code
3928 * get to the group.
3929 *
3930 * Do not call synchronize_rcu() unconditionally as there are drivers
3931 * which create/delete request queue hundreds of times during scan/boot
3932 * and synchronize_rcu() can take significant time and slow down boot.
3933 */
3934 if (wait)
3935 synchronize_rcu();
2abae55f
VG
3936
3937#ifdef CONFIG_CFQ_GROUP_IOSCHED
3938 /* Free up per cpu stats for root group */
3939 free_percpu(cfqd->root_group.blkg.stats_cpu);
3940#endif
56edf7d7 3941 kfree(cfqd);
1da177e4
LT
3942}
3943
80b15c73
KK
3944static int cfq_alloc_cic_index(void)
3945{
3946 int index, error;
3947
3948 do {
3949 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3950 return -ENOMEM;
3951
3952 spin_lock(&cic_index_lock);
3953 error = ida_get_new(&cic_index_ida, &index);
3954 spin_unlock(&cic_index_lock);
3955 if (error && error != -EAGAIN)
3956 return error;
3957 } while (error);
3958
3959 return index;
3960}
3961
165125e1 3962static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3963{
3964 struct cfq_data *cfqd;
718eee05 3965 int i, j;
cdb16e8f 3966 struct cfq_group *cfqg;
615f0259 3967 struct cfq_rb_root *st;
1da177e4 3968
80b15c73
KK
3969 i = cfq_alloc_cic_index();
3970 if (i < 0)
3971 return NULL;
3972
94f6030c 3973 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1547010e
NK
3974 if (!cfqd) {
3975 spin_lock(&cic_index_lock);
3976 ida_remove(&cic_index_ida, i);
3977 spin_unlock(&cic_index_lock);
bc1c1169 3978 return NULL;
1547010e 3979 }
1da177e4 3980
30d7b944
SL
3981 /*
3982 * Don't need take queue_lock in the routine, since we are
3983 * initializing the ioscheduler, and nobody is using cfqd
3984 */
80b15c73
KK
3985 cfqd->cic_index = i;
3986
1fa8f6d6
VG
3987 /* Init root service tree */
3988 cfqd->grp_service_tree = CFQ_RB_ROOT;
3989
cdb16e8f
VG
3990 /* Init root group */
3991 cfqg = &cfqd->root_group;
615f0259
VG
3992 for_each_cfqg_st(cfqg, i, j, st)
3993 *st = CFQ_RB_ROOT;
1fa8f6d6 3994 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3995
25bc6b07
VG
3996 /* Give preference to root group over other groups */
3997 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3998
25fb5169 3999#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 4000 /*
56edf7d7
VG
4001 * Set root group reference to 2. One reference will be dropped when
4002 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4003 * Other reference will remain there as we don't want to delete this
4004 * group as it is statically allocated and gets destroyed when
4005 * throtl_data goes away.
b1c35769 4006 */
56edf7d7 4007 cfqg->ref = 2;
5624a4e4
VG
4008
4009 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4010 kfree(cfqg);
4011 kfree(cfqd);
4012 return NULL;
4013 }
4014
dcf097b2 4015 rcu_read_lock();
5624a4e4 4016
e98ef89b
VG
4017 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4018 (void *)cfqd, 0);
dcf097b2 4019 rcu_read_unlock();
56edf7d7
VG
4020 cfqd->nr_blkcg_linked_grps++;
4021
4022 /* Add group on cfqd->cfqg_list */
4023 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 4024#endif
26a2ac00
JA
4025 /*
4026 * Not strictly needed (since RB_ROOT just clears the node and we
4027 * zeroed cfqd on alloc), but better be safe in case someone decides
4028 * to add magic to the rb code
4029 */
4030 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4031 cfqd->prio_trees[i] = RB_ROOT;
4032
6118b70b
JA
4033 /*
4034 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4035 * Grab a permanent reference to it, so that the normal code flow
4036 * will not attempt to free it.
4037 */
4038 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 4039 cfqd->oom_cfqq.ref++;
cdb16e8f 4040 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 4041
d9ff4187 4042 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 4043
1da177e4 4044 cfqd->queue = q;
1da177e4 4045
22e2c507
JA
4046 init_timer(&cfqd->idle_slice_timer);
4047 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4048 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4049
23e018a1 4050 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 4051
1da177e4 4052 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
4053 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4054 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
4055 cfqd->cfq_back_max = cfq_back_max;
4056 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
4057 cfqd->cfq_slice[0] = cfq_slice_async;
4058 cfqd->cfq_slice[1] = cfq_slice_sync;
4059 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4060 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 4061 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 4062 cfqd->cfq_latency = 1;
e459dd08 4063 cfqd->hw_tag = -1;
edc71131
CZ
4064 /*
4065 * we optimistically start assuming sync ops weren't delayed in last
4066 * second, in order to have larger depth for async operations.
4067 */
573412b2 4068 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 4069 return cfqd;
1da177e4
LT
4070}
4071
4072static void cfq_slab_kill(void)
4073{
d6de8be7
JA
4074 /*
4075 * Caller already ensured that pending RCU callbacks are completed,
4076 * so we should have no busy allocations at this point.
4077 */
1da177e4
LT
4078 if (cfq_pool)
4079 kmem_cache_destroy(cfq_pool);
4080 if (cfq_ioc_pool)
4081 kmem_cache_destroy(cfq_ioc_pool);
4082}
4083
4084static int __init cfq_slab_setup(void)
4085{
0a31bd5f 4086 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
4087 if (!cfq_pool)
4088 goto fail;
4089
34e6bbf2 4090 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
4091 if (!cfq_ioc_pool)
4092 goto fail;
4093
4094 return 0;
4095fail:
4096 cfq_slab_kill();
4097 return -ENOMEM;
4098}
4099
1da177e4
LT
4100/*
4101 * sysfs parts below -->
4102 */
1da177e4
LT
4103static ssize_t
4104cfq_var_show(unsigned int var, char *page)
4105{
4106 return sprintf(page, "%d\n", var);
4107}
4108
4109static ssize_t
4110cfq_var_store(unsigned int *var, const char *page, size_t count)
4111{
4112 char *p = (char *) page;
4113
4114 *var = simple_strtoul(p, &p, 10);
4115 return count;
4116}
4117
1da177e4 4118#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4119static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4120{ \
3d1ab40f 4121 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4122 unsigned int __data = __VAR; \
4123 if (__CONV) \
4124 __data = jiffies_to_msecs(__data); \
4125 return cfq_var_show(__data, (page)); \
4126}
4127SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4128SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4129SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4130SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4131SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4132SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4133SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4134SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4135SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4136SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4137SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4138#undef SHOW_FUNCTION
4139
4140#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4141static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4142{ \
3d1ab40f 4143 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4144 unsigned int __data; \
4145 int ret = cfq_var_store(&__data, (page), count); \
4146 if (__data < (MIN)) \
4147 __data = (MIN); \
4148 else if (__data > (MAX)) \
4149 __data = (MAX); \
4150 if (__CONV) \
4151 *(__PTR) = msecs_to_jiffies(__data); \
4152 else \
4153 *(__PTR) = __data; \
4154 return ret; \
4155}
4156STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4157STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4158 UINT_MAX, 1);
4159STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4160 UINT_MAX, 1);
e572ec7e 4161STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4162STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4163 UINT_MAX, 0);
22e2c507 4164STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4165STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4166STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4167STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4168STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4169 UINT_MAX, 0);
963b72fc 4170STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4171#undef STORE_FUNCTION
4172
e572ec7e
AV
4173#define CFQ_ATTR(name) \
4174 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4175
4176static struct elv_fs_entry cfq_attrs[] = {
4177 CFQ_ATTR(quantum),
e572ec7e
AV
4178 CFQ_ATTR(fifo_expire_sync),
4179 CFQ_ATTR(fifo_expire_async),
4180 CFQ_ATTR(back_seek_max),
4181 CFQ_ATTR(back_seek_penalty),
4182 CFQ_ATTR(slice_sync),
4183 CFQ_ATTR(slice_async),
4184 CFQ_ATTR(slice_async_rq),
4185 CFQ_ATTR(slice_idle),
80bdf0c7 4186 CFQ_ATTR(group_idle),
963b72fc 4187 CFQ_ATTR(low_latency),
e572ec7e 4188 __ATTR_NULL
1da177e4
LT
4189};
4190
1da177e4
LT
4191static struct elevator_type iosched_cfq = {
4192 .ops = {
4193 .elevator_merge_fn = cfq_merge,
4194 .elevator_merged_fn = cfq_merged_request,
4195 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4196 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4197 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4198 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4199 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4200 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4201 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4202 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4203 .elevator_former_req_fn = elv_rb_former_request,
4204 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4205 .elevator_set_req_fn = cfq_set_request,
4206 .elevator_put_req_fn = cfq_put_request,
4207 .elevator_may_queue_fn = cfq_may_queue,
4208 .elevator_init_fn = cfq_init_queue,
4209 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4210 .trim = cfq_free_io_context,
1da177e4 4211 },
3d1ab40f 4212 .elevator_attrs = cfq_attrs,
1da177e4
LT
4213 .elevator_name = "cfq",
4214 .elevator_owner = THIS_MODULE,
4215};
4216
3e252066
VG
4217#ifdef CONFIG_CFQ_GROUP_IOSCHED
4218static struct blkio_policy_type blkio_policy_cfq = {
4219 .ops = {
4220 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4221 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4222 },
062a644d 4223 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4224};
4225#else
4226static struct blkio_policy_type blkio_policy_cfq;
4227#endif
4228
1da177e4
LT
4229static int __init cfq_init(void)
4230{
22e2c507
JA
4231 /*
4232 * could be 0 on HZ < 1000 setups
4233 */
4234 if (!cfq_slice_async)
4235 cfq_slice_async = 1;
4236 if (!cfq_slice_idle)
4237 cfq_slice_idle = 1;
4238
80bdf0c7
VG
4239#ifdef CONFIG_CFQ_GROUP_IOSCHED
4240 if (!cfq_group_idle)
4241 cfq_group_idle = 1;
4242#else
4243 cfq_group_idle = 0;
4244#endif
1da177e4
LT
4245 if (cfq_slab_setup())
4246 return -ENOMEM;
4247
2fdd82bd 4248 elv_register(&iosched_cfq);
3e252066 4249 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4250
2fdd82bd 4251 return 0;
1da177e4
LT
4252}
4253
4254static void __exit cfq_exit(void)
4255{
6e9a4738 4256 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4257 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4258 elv_unregister(&iosched_cfq);
334e94de 4259 ioc_gone = &all_gone;
fba82272
OH
4260 /* ioc_gone's update must be visible before reading ioc_count */
4261 smp_wmb();
d6de8be7
JA
4262
4263 /*
4264 * this also protects us from entering cfq_slab_kill() with
4265 * pending RCU callbacks
4266 */
245b2e70 4267 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4268 wait_for_completion(&all_gone);
80b15c73 4269 ida_destroy(&cic_index_ida);
83521d3e 4270 cfq_slab_kill();
1da177e4
LT
4271}
4272
4273module_init(cfq_init);
4274module_exit(cfq_exit);
4275
4276MODULE_AUTHOR("Jens Axboe");
4277MODULE_LICENSE("GPL");
4278MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");