]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: enable idling for last queue on priority class
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
30static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31static const int cfq_hist_divisor = 4;
22e2c507 32
d9e7620e 33/*
0871714e 34 * offset from end of service tree
d9e7620e 35 */
0871714e 36#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
37
38/*
39 * below this threshold, we consider thinktime immediate
40 */
41#define CFQ_MIN_TT (2)
42
e6c5bc73
JM
43/*
44 * Allow merged cfqqs to perform this amount of seeky I/O before
45 * deciding to break the queues up again.
46 */
47#define CFQQ_COOP_TOUT (HZ)
48
22e2c507 49#define CFQ_SLICE_SCALE (5)
45333d5a 50#define CFQ_HW_QUEUE_MIN (5)
22e2c507 51
fe094d98
JA
52#define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 54#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 55
e18b890b
CL
56static struct kmem_cache *cfq_pool;
57static struct kmem_cache *cfq_ioc_pool;
1da177e4 58
245b2e70 59static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 60static struct completion *ioc_gone;
9a11b4ed 61static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 62
22e2c507
JA
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
206dc69b
JA
67#define sample_valid(samples) ((samples) > 80)
68
cc09e299
JA
69/*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75struct cfq_rb_root {
76 struct rb_root rb;
77 struct rb_node *left;
aa6f6a3d 78 unsigned count;
cc09e299 79};
aa6f6a3d 80#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 81
6118b70b
JA
82/*
83 * Per process-grouping structure
84 */
85struct cfq_queue {
86 /* reference count */
87 atomic_t ref;
88 /* various state flags, see below */
89 unsigned int flags;
90 /* parent cfq_data */
91 struct cfq_data *cfqd;
92 /* service_tree member */
93 struct rb_node rb_node;
94 /* service_tree key */
95 unsigned long rb_key;
96 /* prio tree member */
97 struct rb_node p_node;
98 /* prio tree root we belong to, if any */
99 struct rb_root *p_root;
100 /* sorted list of pending requests */
101 struct rb_root sort_list;
102 /* if fifo isn't expired, next request to serve */
103 struct request *next_rq;
104 /* requests queued in sort_list */
105 int queued[2];
106 /* currently allocated requests */
107 int allocated[2];
108 /* fifo list of requests in sort_list */
109 struct list_head fifo;
110
111 unsigned long slice_end;
112 long slice_resid;
113 unsigned int slice_dispatch;
114
115 /* pending metadata requests */
116 int meta_pending;
117 /* number of requests that are on the dispatch list or inside driver */
118 int dispatched;
119
120 /* io prio of this group */
121 unsigned short ioprio, org_ioprio;
122 unsigned short ioprio_class, org_ioprio_class;
123
b2c18e1e
JM
124 unsigned int seek_samples;
125 u64 seek_total;
126 sector_t seek_mean;
127 sector_t last_request_pos;
e6c5bc73 128 unsigned long seeky_start;
b2c18e1e 129
6118b70b 130 pid_t pid;
df5fe3e8 131
aa6f6a3d 132 struct cfq_rb_root *service_tree;
df5fe3e8 133 struct cfq_queue *new_cfqq;
6118b70b
JA
134};
135
c0324a02
CZ
136/*
137 * Index in the service_trees.
138 * IDLE is handled separately, so it has negative index
139 */
140enum wl_prio_t {
141 IDLE_WORKLOAD = -1,
142 BE_WORKLOAD = 0,
143 RT_WORKLOAD = 1
144};
145
22e2c507
JA
146/*
147 * Per block device queue structure
148 */
1da177e4 149struct cfq_data {
165125e1 150 struct request_queue *queue;
22e2c507
JA
151
152 /*
c0324a02
CZ
153 * rr lists of queues with requests, onle rr for each priority class.
154 * Counts are embedded in the cfq_rb_root
155 */
156 struct cfq_rb_root service_trees[2];
157 struct cfq_rb_root service_tree_idle;
158 /*
159 * The priority currently being served
22e2c507 160 */
c0324a02 161 enum wl_prio_t serving_prio;
a36e71f9
JA
162
163 /*
164 * Each priority tree is sorted by next_request position. These
165 * trees are used when determining if two or more queues are
166 * interleaving requests (see cfq_close_cooperator).
167 */
168 struct rb_root prio_trees[CFQ_PRIO_LISTS];
169
22e2c507 170 unsigned int busy_queues;
5db5d642 171 unsigned int busy_queues_avg[2];
22e2c507 172
5ad531db 173 int rq_in_driver[2];
3ed9a296 174 int sync_flight;
45333d5a
AC
175
176 /*
177 * queue-depth detection
178 */
179 int rq_queued;
25776e35 180 int hw_tag;
45333d5a
AC
181 int hw_tag_samples;
182 int rq_in_driver_peak;
1da177e4 183
22e2c507
JA
184 /*
185 * idle window management
186 */
187 struct timer_list idle_slice_timer;
23e018a1 188 struct work_struct unplug_work;
1da177e4 189
22e2c507
JA
190 struct cfq_queue *active_queue;
191 struct cfq_io_context *active_cic;
22e2c507 192
c2dea2d1
VT
193 /*
194 * async queue for each priority case
195 */
196 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
197 struct cfq_queue *async_idle_cfqq;
15c31be4 198
6d048f53 199 sector_t last_position;
1da177e4 200
1da177e4
LT
201 /*
202 * tunables, see top of file
203 */
204 unsigned int cfq_quantum;
22e2c507 205 unsigned int cfq_fifo_expire[2];
1da177e4
LT
206 unsigned int cfq_back_penalty;
207 unsigned int cfq_back_max;
22e2c507
JA
208 unsigned int cfq_slice[2];
209 unsigned int cfq_slice_async_rq;
210 unsigned int cfq_slice_idle;
963b72fc 211 unsigned int cfq_latency;
d9ff4187
AV
212
213 struct list_head cic_list;
1da177e4 214
6118b70b
JA
215 /*
216 * Fallback dummy cfqq for extreme OOM conditions
217 */
218 struct cfq_queue oom_cfqq;
365722bb
VG
219
220 unsigned long last_end_sync_rq;
1da177e4
LT
221};
222
c0324a02
CZ
223static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
224 struct cfq_data *cfqd)
225{
226 if (prio == IDLE_WORKLOAD)
227 return &cfqd->service_tree_idle;
228
229 return &cfqd->service_trees[prio];
230}
231
3b18152c 232enum cfqq_state_flags {
b0b8d749
JA
233 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
234 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 235 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 236 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
237 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
238 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
239 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 240 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 241 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 242 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
3b18152c
JA
243};
244
245#define CFQ_CFQQ_FNS(name) \
246static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
247{ \
fe094d98 248 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
249} \
250static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
251{ \
fe094d98 252 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
253} \
254static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
255{ \
fe094d98 256 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
257}
258
259CFQ_CFQQ_FNS(on_rr);
260CFQ_CFQQ_FNS(wait_request);
b029195d 261CFQ_CFQQ_FNS(must_dispatch);
3b18152c 262CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
263CFQ_CFQQ_FNS(fifo_expire);
264CFQ_CFQQ_FNS(idle_window);
265CFQ_CFQQ_FNS(prio_changed);
44f7c160 266CFQ_CFQQ_FNS(slice_new);
91fac317 267CFQ_CFQQ_FNS(sync);
a36e71f9 268CFQ_CFQQ_FNS(coop);
3b18152c
JA
269#undef CFQ_CFQQ_FNS
270
7b679138
JA
271#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
272 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
273#define cfq_log(cfqd, fmt, args...) \
274 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
275
c0324a02
CZ
276static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
277{
278 if (cfq_class_idle(cfqq))
279 return IDLE_WORKLOAD;
280 if (cfq_class_rt(cfqq))
281 return RT_WORKLOAD;
282 return BE_WORKLOAD;
283}
284
285static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
286{
287 if (wl == IDLE_WORKLOAD)
288 return cfqd->service_tree_idle.count;
289
290 return cfqd->service_trees[wl].count;
291}
292
165125e1 293static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 294static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 295 struct io_context *, gfp_t);
4ac845a2 296static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
297 struct io_context *);
298
5ad531db
JA
299static inline int rq_in_driver(struct cfq_data *cfqd)
300{
301 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
302}
303
91fac317 304static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 305 bool is_sync)
91fac317 306{
a6151c3a 307 return cic->cfqq[is_sync];
91fac317
VT
308}
309
310static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 311 struct cfq_queue *cfqq, bool is_sync)
91fac317 312{
a6151c3a 313 cic->cfqq[is_sync] = cfqq;
91fac317
VT
314}
315
316/*
317 * We regard a request as SYNC, if it's either a read or has the SYNC bit
318 * set (in which case it could also be direct WRITE).
319 */
a6151c3a 320static inline bool cfq_bio_sync(struct bio *bio)
91fac317 321{
a6151c3a 322 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 323}
1da177e4 324
99f95e52
AM
325/*
326 * scheduler run of queue, if there are requests pending and no one in the
327 * driver that will restart queueing
328 */
23e018a1 329static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 330{
7b679138
JA
331 if (cfqd->busy_queues) {
332 cfq_log(cfqd, "schedule dispatch");
23e018a1 333 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 334 }
99f95e52
AM
335}
336
165125e1 337static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
338{
339 struct cfq_data *cfqd = q->elevator->elevator_data;
340
b4878f24 341 return !cfqd->busy_queues;
99f95e52
AM
342}
343
44f7c160
JA
344/*
345 * Scale schedule slice based on io priority. Use the sync time slice only
346 * if a queue is marked sync and has sync io queued. A sync queue with async
347 * io only, should not get full sync slice length.
348 */
a6151c3a 349static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 350 unsigned short prio)
44f7c160 351{
d9e7620e 352 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 353
d9e7620e
JA
354 WARN_ON(prio >= IOPRIO_BE_NR);
355
356 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
357}
44f7c160 358
d9e7620e
JA
359static inline int
360cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
361{
362 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
363}
364
5db5d642
CZ
365/*
366 * get averaged number of queues of RT/BE priority.
367 * average is updated, with a formula that gives more weight to higher numbers,
368 * to quickly follows sudden increases and decrease slowly
369 */
370
371static inline unsigned
372cfq_get_avg_queues(struct cfq_data *cfqd, bool rt) {
373 unsigned min_q, max_q;
374 unsigned mult = cfq_hist_divisor - 1;
375 unsigned round = cfq_hist_divisor / 2;
c0324a02 376 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
377
378 min_q = min(cfqd->busy_queues_avg[rt], busy);
379 max_q = max(cfqd->busy_queues_avg[rt], busy);
380 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
381 cfq_hist_divisor;
382 return cfqd->busy_queues_avg[rt];
383}
384
44f7c160
JA
385static inline void
386cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
387{
5db5d642
CZ
388 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
389 if (cfqd->cfq_latency) {
390 /* interested queues (we consider only the ones with the same
391 * priority class) */
392 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
393 unsigned sync_slice = cfqd->cfq_slice[1];
394 unsigned expect_latency = sync_slice * iq;
395 if (expect_latency > cfq_target_latency) {
396 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
397 /* scale low_slice according to IO priority
398 * and sync vs async */
399 unsigned low_slice =
400 min(slice, base_low_slice * slice / sync_slice);
401 /* the adapted slice value is scaled to fit all iqs
402 * into the target latency */
403 slice = max(slice * cfq_target_latency / expect_latency,
404 low_slice);
405 }
406 }
407 cfqq->slice_end = jiffies + slice;
7b679138 408 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
409}
410
411/*
412 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
413 * isn't valid until the first request from the dispatch is activated
414 * and the slice time set.
415 */
a6151c3a 416static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
417{
418 if (cfq_cfqq_slice_new(cfqq))
419 return 0;
420 if (time_before(jiffies, cfqq->slice_end))
421 return 0;
422
423 return 1;
424}
425
1da177e4 426/*
5e705374 427 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 428 * We choose the request that is closest to the head right now. Distance
e8a99053 429 * behind the head is penalized and only allowed to a certain extent.
1da177e4 430 */
5e705374
JA
431static struct request *
432cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
433{
434 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 435 unsigned long back_max;
e8a99053
AM
436#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
437#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
438 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 439
5e705374
JA
440 if (rq1 == NULL || rq1 == rq2)
441 return rq2;
442 if (rq2 == NULL)
443 return rq1;
9c2c38a1 444
5e705374
JA
445 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
446 return rq1;
447 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
448 return rq2;
374f84ac
JA
449 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
450 return rq1;
451 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
452 return rq2;
1da177e4 453
83096ebf
TH
454 s1 = blk_rq_pos(rq1);
455 s2 = blk_rq_pos(rq2);
1da177e4 456
6d048f53 457 last = cfqd->last_position;
1da177e4 458
1da177e4
LT
459 /*
460 * by definition, 1KiB is 2 sectors
461 */
462 back_max = cfqd->cfq_back_max * 2;
463
464 /*
465 * Strict one way elevator _except_ in the case where we allow
466 * short backward seeks which are biased as twice the cost of a
467 * similar forward seek.
468 */
469 if (s1 >= last)
470 d1 = s1 - last;
471 else if (s1 + back_max >= last)
472 d1 = (last - s1) * cfqd->cfq_back_penalty;
473 else
e8a99053 474 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
475
476 if (s2 >= last)
477 d2 = s2 - last;
478 else if (s2 + back_max >= last)
479 d2 = (last - s2) * cfqd->cfq_back_penalty;
480 else
e8a99053 481 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
482
483 /* Found required data */
e8a99053
AM
484
485 /*
486 * By doing switch() on the bit mask "wrap" we avoid having to
487 * check two variables for all permutations: --> faster!
488 */
489 switch (wrap) {
5e705374 490 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 491 if (d1 < d2)
5e705374 492 return rq1;
e8a99053 493 else if (d2 < d1)
5e705374 494 return rq2;
e8a99053
AM
495 else {
496 if (s1 >= s2)
5e705374 497 return rq1;
e8a99053 498 else
5e705374 499 return rq2;
e8a99053 500 }
1da177e4 501
e8a99053 502 case CFQ_RQ2_WRAP:
5e705374 503 return rq1;
e8a99053 504 case CFQ_RQ1_WRAP:
5e705374
JA
505 return rq2;
506 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
507 default:
508 /*
509 * Since both rqs are wrapped,
510 * start with the one that's further behind head
511 * (--> only *one* back seek required),
512 * since back seek takes more time than forward.
513 */
514 if (s1 <= s2)
5e705374 515 return rq1;
1da177e4 516 else
5e705374 517 return rq2;
1da177e4
LT
518 }
519}
520
498d3aa2
JA
521/*
522 * The below is leftmost cache rbtree addon
523 */
0871714e 524static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
525{
526 if (!root->left)
527 root->left = rb_first(&root->rb);
528
0871714e
JA
529 if (root->left)
530 return rb_entry(root->left, struct cfq_queue, rb_node);
531
532 return NULL;
cc09e299
JA
533}
534
a36e71f9
JA
535static void rb_erase_init(struct rb_node *n, struct rb_root *root)
536{
537 rb_erase(n, root);
538 RB_CLEAR_NODE(n);
539}
540
cc09e299
JA
541static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
542{
543 if (root->left == n)
544 root->left = NULL;
a36e71f9 545 rb_erase_init(n, &root->rb);
aa6f6a3d 546 --root->count;
cc09e299
JA
547}
548
1da177e4
LT
549/*
550 * would be nice to take fifo expire time into account as well
551 */
5e705374
JA
552static struct request *
553cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
554 struct request *last)
1da177e4 555{
21183b07
JA
556 struct rb_node *rbnext = rb_next(&last->rb_node);
557 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 558 struct request *next = NULL, *prev = NULL;
1da177e4 559
21183b07 560 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
561
562 if (rbprev)
5e705374 563 prev = rb_entry_rq(rbprev);
1da177e4 564
21183b07 565 if (rbnext)
5e705374 566 next = rb_entry_rq(rbnext);
21183b07
JA
567 else {
568 rbnext = rb_first(&cfqq->sort_list);
569 if (rbnext && rbnext != &last->rb_node)
5e705374 570 next = rb_entry_rq(rbnext);
21183b07 571 }
1da177e4 572
21183b07 573 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
574}
575
d9e7620e
JA
576static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
577 struct cfq_queue *cfqq)
1da177e4 578{
d9e7620e
JA
579 /*
580 * just an approximation, should be ok.
581 */
67e6b49e
JA
582 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
583 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
584}
585
498d3aa2 586/*
c0324a02 587 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
588 * requests waiting to be processed. It is sorted in the order that
589 * we will service the queues.
590 */
a36e71f9 591static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 592 bool add_front)
d9e7620e 593{
0871714e
JA
594 struct rb_node **p, *parent;
595 struct cfq_queue *__cfqq;
d9e7620e 596 unsigned long rb_key;
c0324a02 597 struct cfq_rb_root *service_tree;
498d3aa2 598 int left;
d9e7620e 599
c0324a02 600 service_tree = service_tree_for(cfqq_prio(cfqq), cfqd);
0871714e
JA
601 if (cfq_class_idle(cfqq)) {
602 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 603 parent = rb_last(&service_tree->rb);
0871714e
JA
604 if (parent && parent != &cfqq->rb_node) {
605 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
606 rb_key += __cfqq->rb_key;
607 } else
608 rb_key += jiffies;
609 } else if (!add_front) {
b9c8946b
JA
610 /*
611 * Get our rb key offset. Subtract any residual slice
612 * value carried from last service. A negative resid
613 * count indicates slice overrun, and this should position
614 * the next service time further away in the tree.
615 */
edd75ffd 616 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 617 rb_key -= cfqq->slice_resid;
edd75ffd 618 cfqq->slice_resid = 0;
48e025e6
CZ
619 } else {
620 rb_key = -HZ;
aa6f6a3d 621 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
622 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
623 }
1da177e4 624
d9e7620e 625 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 626 /*
d9e7620e 627 * same position, nothing more to do
99f9628a 628 */
c0324a02
CZ
629 if (rb_key == cfqq->rb_key &&
630 cfqq->service_tree == service_tree)
d9e7620e 631 return;
1da177e4 632
aa6f6a3d
CZ
633 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
634 cfqq->service_tree = NULL;
1da177e4 635 }
d9e7620e 636
498d3aa2 637 left = 1;
0871714e 638 parent = NULL;
aa6f6a3d
CZ
639 cfqq->service_tree = service_tree;
640 p = &service_tree->rb.rb_node;
d9e7620e 641 while (*p) {
67060e37 642 struct rb_node **n;
cc09e299 643
d9e7620e
JA
644 parent = *p;
645 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
646
0c534e0a 647 /*
c0324a02 648 * sort by key, that represents service time.
0c534e0a 649 */
c0324a02 650 if (time_before(rb_key, __cfqq->rb_key))
67060e37 651 n = &(*p)->rb_left;
c0324a02 652 else {
67060e37 653 n = &(*p)->rb_right;
cc09e299 654 left = 0;
c0324a02 655 }
67060e37
JA
656
657 p = n;
d9e7620e
JA
658 }
659
cc09e299 660 if (left)
aa6f6a3d 661 service_tree->left = &cfqq->rb_node;
cc09e299 662
d9e7620e
JA
663 cfqq->rb_key = rb_key;
664 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
665 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
666 service_tree->count++;
1da177e4
LT
667}
668
a36e71f9 669static struct cfq_queue *
f2d1f0ae
JA
670cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
671 sector_t sector, struct rb_node **ret_parent,
672 struct rb_node ***rb_link)
a36e71f9 673{
a36e71f9
JA
674 struct rb_node **p, *parent;
675 struct cfq_queue *cfqq = NULL;
676
677 parent = NULL;
678 p = &root->rb_node;
679 while (*p) {
680 struct rb_node **n;
681
682 parent = *p;
683 cfqq = rb_entry(parent, struct cfq_queue, p_node);
684
685 /*
686 * Sort strictly based on sector. Smallest to the left,
687 * largest to the right.
688 */
2e46e8b2 689 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 690 n = &(*p)->rb_right;
2e46e8b2 691 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
692 n = &(*p)->rb_left;
693 else
694 break;
695 p = n;
3ac6c9f8 696 cfqq = NULL;
a36e71f9
JA
697 }
698
699 *ret_parent = parent;
700 if (rb_link)
701 *rb_link = p;
3ac6c9f8 702 return cfqq;
a36e71f9
JA
703}
704
705static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
706{
a36e71f9
JA
707 struct rb_node **p, *parent;
708 struct cfq_queue *__cfqq;
709
f2d1f0ae
JA
710 if (cfqq->p_root) {
711 rb_erase(&cfqq->p_node, cfqq->p_root);
712 cfqq->p_root = NULL;
713 }
a36e71f9
JA
714
715 if (cfq_class_idle(cfqq))
716 return;
717 if (!cfqq->next_rq)
718 return;
719
f2d1f0ae 720 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
721 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
722 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
723 if (!__cfqq) {
724 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
725 rb_insert_color(&cfqq->p_node, cfqq->p_root);
726 } else
727 cfqq->p_root = NULL;
a36e71f9
JA
728}
729
498d3aa2
JA
730/*
731 * Update cfqq's position in the service tree.
732 */
edd75ffd 733static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 734{
6d048f53
JA
735 /*
736 * Resorting requires the cfqq to be on the RR list already.
737 */
a36e71f9 738 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 739 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
740 cfq_prio_tree_add(cfqd, cfqq);
741 }
6d048f53
JA
742}
743
1da177e4
LT
744/*
745 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 746 * the pending list according to last request service
1da177e4 747 */
febffd61 748static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 749{
7b679138 750 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
751 BUG_ON(cfq_cfqq_on_rr(cfqq));
752 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 753 cfqd->busy_queues++;
c0324a02 754
edd75ffd 755 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
756}
757
498d3aa2
JA
758/*
759 * Called when the cfqq no longer has requests pending, remove it from
760 * the service tree.
761 */
febffd61 762static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 763{
7b679138 764 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
765 BUG_ON(!cfq_cfqq_on_rr(cfqq));
766 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 767
aa6f6a3d
CZ
768 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
769 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
770 cfqq->service_tree = NULL;
771 }
f2d1f0ae
JA
772 if (cfqq->p_root) {
773 rb_erase(&cfqq->p_node, cfqq->p_root);
774 cfqq->p_root = NULL;
775 }
d9e7620e 776
1da177e4
LT
777 BUG_ON(!cfqd->busy_queues);
778 cfqd->busy_queues--;
779}
780
781/*
782 * rb tree support functions
783 */
febffd61 784static void cfq_del_rq_rb(struct request *rq)
1da177e4 785{
5e705374 786 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 787 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 788 const int sync = rq_is_sync(rq);
1da177e4 789
b4878f24
JA
790 BUG_ON(!cfqq->queued[sync]);
791 cfqq->queued[sync]--;
1da177e4 792
5e705374 793 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 794
dd67d051 795 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 796 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
797}
798
5e705374 799static void cfq_add_rq_rb(struct request *rq)
1da177e4 800{
5e705374 801 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 802 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 803 struct request *__alias, *prev;
1da177e4 804
5380a101 805 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
806
807 /*
808 * looks a little odd, but the first insert might return an alias.
809 * if that happens, put the alias on the dispatch list
810 */
21183b07 811 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 812 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
813
814 if (!cfq_cfqq_on_rr(cfqq))
815 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
816
817 /*
818 * check if this request is a better next-serve candidate
819 */
a36e71f9 820 prev = cfqq->next_rq;
5044eed4 821 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
822
823 /*
824 * adjust priority tree position, if ->next_rq changes
825 */
826 if (prev != cfqq->next_rq)
827 cfq_prio_tree_add(cfqd, cfqq);
828
5044eed4 829 BUG_ON(!cfqq->next_rq);
1da177e4
LT
830}
831
febffd61 832static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 833{
5380a101
JA
834 elv_rb_del(&cfqq->sort_list, rq);
835 cfqq->queued[rq_is_sync(rq)]--;
5e705374 836 cfq_add_rq_rb(rq);
1da177e4
LT
837}
838
206dc69b
JA
839static struct request *
840cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 841{
206dc69b 842 struct task_struct *tsk = current;
91fac317 843 struct cfq_io_context *cic;
206dc69b 844 struct cfq_queue *cfqq;
1da177e4 845
4ac845a2 846 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
847 if (!cic)
848 return NULL;
849
850 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
851 if (cfqq) {
852 sector_t sector = bio->bi_sector + bio_sectors(bio);
853
21183b07 854 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 855 }
1da177e4 856
1da177e4
LT
857 return NULL;
858}
859
165125e1 860static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 861{
22e2c507 862 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 863
5ad531db 864 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 865 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 866 rq_in_driver(cfqd));
25776e35 867
5b93629b 868 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
869}
870
165125e1 871static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 872{
b4878f24 873 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 874 const int sync = rq_is_sync(rq);
b4878f24 875
5ad531db
JA
876 WARN_ON(!cfqd->rq_in_driver[sync]);
877 cfqd->rq_in_driver[sync]--;
7b679138 878 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 879 rq_in_driver(cfqd));
1da177e4
LT
880}
881
b4878f24 882static void cfq_remove_request(struct request *rq)
1da177e4 883{
5e705374 884 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 885
5e705374
JA
886 if (cfqq->next_rq == rq)
887 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 888
b4878f24 889 list_del_init(&rq->queuelist);
5e705374 890 cfq_del_rq_rb(rq);
374f84ac 891
45333d5a 892 cfqq->cfqd->rq_queued--;
374f84ac
JA
893 if (rq_is_meta(rq)) {
894 WARN_ON(!cfqq->meta_pending);
895 cfqq->meta_pending--;
896 }
1da177e4
LT
897}
898
165125e1
JA
899static int cfq_merge(struct request_queue *q, struct request **req,
900 struct bio *bio)
1da177e4
LT
901{
902 struct cfq_data *cfqd = q->elevator->elevator_data;
903 struct request *__rq;
1da177e4 904
206dc69b 905 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 906 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
907 *req = __rq;
908 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
909 }
910
911 return ELEVATOR_NO_MERGE;
1da177e4
LT
912}
913
165125e1 914static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 915 int type)
1da177e4 916{
21183b07 917 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 918 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 919
5e705374 920 cfq_reposition_rq_rb(cfqq, req);
1da177e4 921 }
1da177e4
LT
922}
923
924static void
165125e1 925cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
926 struct request *next)
927{
22e2c507
JA
928 /*
929 * reposition in fifo if next is older than rq
930 */
931 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 932 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 933 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
934 rq_set_fifo_time(rq, rq_fifo_time(next));
935 }
22e2c507 936
b4878f24 937 cfq_remove_request(next);
22e2c507
JA
938}
939
165125e1 940static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
941 struct bio *bio)
942{
943 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 944 struct cfq_io_context *cic;
da775265 945 struct cfq_queue *cfqq;
da775265
JA
946
947 /*
ec8acb69 948 * Disallow merge of a sync bio into an async request.
da775265 949 */
91fac317 950 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 951 return false;
da775265
JA
952
953 /*
719d3402
JA
954 * Lookup the cfqq that this bio will be queued with. Allow
955 * merge only if rq is queued there.
da775265 956 */
4ac845a2 957 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 958 if (!cic)
a6151c3a 959 return false;
719d3402 960
91fac317 961 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 962 return cfqq == RQ_CFQQ(rq);
da775265
JA
963}
964
febffd61
JA
965static void __cfq_set_active_queue(struct cfq_data *cfqd,
966 struct cfq_queue *cfqq)
22e2c507
JA
967{
968 if (cfqq) {
7b679138 969 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 970 cfqq->slice_end = 0;
2f5cb738
JA
971 cfqq->slice_dispatch = 0;
972
2f5cb738 973 cfq_clear_cfqq_wait_request(cfqq);
b029195d 974 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
975 cfq_clear_cfqq_must_alloc_slice(cfqq);
976 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 977 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
978
979 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
980 }
981
982 cfqd->active_queue = cfqq;
983}
984
7b14e3b5
JA
985/*
986 * current cfqq expired its slice (or was too idle), select new one
987 */
988static void
989__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 990 bool timed_out)
7b14e3b5 991{
7b679138
JA
992 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
993
7b14e3b5
JA
994 if (cfq_cfqq_wait_request(cfqq))
995 del_timer(&cfqd->idle_slice_timer);
996
7b14e3b5
JA
997 cfq_clear_cfqq_wait_request(cfqq);
998
999 /*
6084cdda 1000 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1001 */
7b679138 1002 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1003 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1004 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1005 }
7b14e3b5 1006
edd75ffd 1007 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1008
1009 if (cfqq == cfqd->active_queue)
1010 cfqd->active_queue = NULL;
1011
1012 if (cfqd->active_cic) {
1013 put_io_context(cfqd->active_cic->ioc);
1014 cfqd->active_cic = NULL;
1015 }
7b14e3b5
JA
1016}
1017
a6151c3a 1018static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1019{
1020 struct cfq_queue *cfqq = cfqd->active_queue;
1021
1022 if (cfqq)
6084cdda 1023 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1024}
1025
498d3aa2
JA
1026/*
1027 * Get next queue for service. Unless we have a queue preemption,
1028 * we'll simply select the first cfqq in the service tree.
1029 */
6d048f53 1030static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1031{
c0324a02
CZ
1032 struct cfq_rb_root *service_tree =
1033 service_tree_for(cfqd->serving_prio, cfqd);
d9e7620e 1034
c0324a02
CZ
1035 if (RB_EMPTY_ROOT(&service_tree->rb))
1036 return NULL;
1037 return cfq_rb_first(service_tree);
6d048f53
JA
1038}
1039
498d3aa2
JA
1040/*
1041 * Get and set a new active queue for service.
1042 */
a36e71f9
JA
1043static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1044 struct cfq_queue *cfqq)
6d048f53 1045{
b3b6d040 1046 if (!cfqq)
a36e71f9 1047 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1048
22e2c507 1049 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1050 return cfqq;
22e2c507
JA
1051}
1052
d9e7620e
JA
1053static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1054 struct request *rq)
1055{
83096ebf
TH
1056 if (blk_rq_pos(rq) >= cfqd->last_position)
1057 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1058 else
83096ebf 1059 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1060}
1061
b2c18e1e
JM
1062#define CFQQ_SEEK_THR 8 * 1024
1063#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1064
b2c18e1e
JM
1065static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1066 struct request *rq)
6d048f53 1067{
b2c18e1e 1068 sector_t sdist = cfqq->seek_mean;
6d048f53 1069
b2c18e1e
JM
1070 if (!sample_valid(cfqq->seek_samples))
1071 sdist = CFQQ_SEEK_THR;
6d048f53 1072
04dc6e71 1073 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1074}
1075
a36e71f9
JA
1076static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1077 struct cfq_queue *cur_cfqq)
1078{
f2d1f0ae 1079 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1080 struct rb_node *parent, *node;
1081 struct cfq_queue *__cfqq;
1082 sector_t sector = cfqd->last_position;
1083
1084 if (RB_EMPTY_ROOT(root))
1085 return NULL;
1086
1087 /*
1088 * First, if we find a request starting at the end of the last
1089 * request, choose it.
1090 */
f2d1f0ae 1091 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1092 if (__cfqq)
1093 return __cfqq;
1094
1095 /*
1096 * If the exact sector wasn't found, the parent of the NULL leaf
1097 * will contain the closest sector.
1098 */
1099 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1100 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1101 return __cfqq;
1102
2e46e8b2 1103 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1104 node = rb_next(&__cfqq->p_node);
1105 else
1106 node = rb_prev(&__cfqq->p_node);
1107 if (!node)
1108 return NULL;
1109
1110 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1111 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1112 return __cfqq;
1113
1114 return NULL;
1115}
1116
1117/*
1118 * cfqd - obvious
1119 * cur_cfqq - passed in so that we don't decide that the current queue is
1120 * closely cooperating with itself.
1121 *
1122 * So, basically we're assuming that that cur_cfqq has dispatched at least
1123 * one request, and that cfqd->last_position reflects a position on the disk
1124 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1125 * assumption.
1126 */
1127static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1128 struct cfq_queue *cur_cfqq)
6d048f53 1129{
a36e71f9
JA
1130 struct cfq_queue *cfqq;
1131
e6c5bc73
JM
1132 if (!cfq_cfqq_sync(cur_cfqq))
1133 return NULL;
1134 if (CFQQ_SEEKY(cur_cfqq))
1135 return NULL;
1136
6d048f53 1137 /*
d9e7620e
JA
1138 * We should notice if some of the queues are cooperating, eg
1139 * working closely on the same area of the disk. In that case,
1140 * we can group them together and don't waste time idling.
6d048f53 1141 */
a36e71f9
JA
1142 cfqq = cfqq_close(cfqd, cur_cfqq);
1143 if (!cfqq)
1144 return NULL;
1145
df5fe3e8
JM
1146 /*
1147 * It only makes sense to merge sync queues.
1148 */
1149 if (!cfq_cfqq_sync(cfqq))
1150 return NULL;
e6c5bc73
JM
1151 if (CFQQ_SEEKY(cfqq))
1152 return NULL;
df5fe3e8 1153
c0324a02
CZ
1154 /*
1155 * Do not merge queues of different priority classes
1156 */
1157 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1158 return NULL;
1159
a36e71f9 1160 return cfqq;
6d048f53
JA
1161}
1162
a6d44e98
CZ
1163/*
1164 * Determine whether we should enforce idle window for this queue.
1165 */
1166
1167static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1168{
1169 enum wl_prio_t prio = cfqq_prio(cfqq);
1170 struct cfq_rb_root *service_tree;
1171
1172 /* We never do for idle class queues. */
1173 if (prio == IDLE_WORKLOAD)
1174 return false;
1175
1176 /* We do for queues that were marked with idle window flag. */
1177 if (cfq_cfqq_idle_window(cfqq))
1178 return true;
1179
1180 /*
1181 * Otherwise, we do only if they are the last ones
1182 * in their service tree.
1183 */
1184 service_tree = service_tree_for(prio, cfqd);
1185 if (service_tree->count == 0)
1186 return true;
1187
1188 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1189}
1190
6d048f53 1191static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1192{
1792669c 1193 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1194 struct cfq_io_context *cic;
7b14e3b5
JA
1195 unsigned long sl;
1196
a68bbddb 1197 /*
f7d7b7a7
JA
1198 * SSD device without seek penalty, disable idling. But only do so
1199 * for devices that support queuing, otherwise we still have a problem
1200 * with sync vs async workloads.
a68bbddb 1201 */
f7d7b7a7 1202 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1203 return;
1204
dd67d051 1205 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1206 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1207
1208 /*
1209 * idle is disabled, either manually or by past process history
1210 */
a6d44e98 1211 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1212 return;
1213
7b679138
JA
1214 /*
1215 * still requests with the driver, don't idle
1216 */
5ad531db 1217 if (rq_in_driver(cfqd))
7b679138
JA
1218 return;
1219
22e2c507
JA
1220 /*
1221 * task has exited, don't wait
1222 */
206dc69b 1223 cic = cfqd->active_cic;
66dac98e 1224 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1225 return;
1226
355b659c
CZ
1227 /*
1228 * If our average think time is larger than the remaining time
1229 * slice, then don't idle. This avoids overrunning the allotted
1230 * time slice.
1231 */
1232 if (sample_valid(cic->ttime_samples) &&
1233 (cfqq->slice_end - jiffies < cic->ttime_mean))
1234 return;
1235
3b18152c 1236 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1237
206dc69b
JA
1238 /*
1239 * we don't want to idle for seeks, but we do want to allow
1240 * fair distribution of slice time for a process doing back-to-back
1241 * seeks. so allow a little bit of time for him to submit a new rq
1242 */
6d048f53 1243 sl = cfqd->cfq_slice_idle;
b2c18e1e 1244 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
d9e7620e 1245 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1246
7b14e3b5 1247 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1248 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1249}
1250
498d3aa2
JA
1251/*
1252 * Move request from internal lists to the request queue dispatch list.
1253 */
165125e1 1254static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1255{
3ed9a296 1256 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1257 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1258
7b679138
JA
1259 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1260
06d21886 1261 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1262 cfq_remove_request(rq);
6d048f53 1263 cfqq->dispatched++;
5380a101 1264 elv_dispatch_sort(q, rq);
3ed9a296
JA
1265
1266 if (cfq_cfqq_sync(cfqq))
1267 cfqd->sync_flight++;
1da177e4
LT
1268}
1269
1270/*
1271 * return expired entry, or NULL to just start from scratch in rbtree
1272 */
febffd61 1273static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1274{
30996f40 1275 struct request *rq = NULL;
1da177e4 1276
3b18152c 1277 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1278 return NULL;
cb887411
JA
1279
1280 cfq_mark_cfqq_fifo_expire(cfqq);
1281
89850f7e
JA
1282 if (list_empty(&cfqq->fifo))
1283 return NULL;
1da177e4 1284
89850f7e 1285 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1286 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1287 rq = NULL;
1da177e4 1288
30996f40 1289 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1290 return rq;
1da177e4
LT
1291}
1292
22e2c507
JA
1293static inline int
1294cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1295{
1296 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1297
22e2c507 1298 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1299
22e2c507 1300 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1301}
1302
df5fe3e8
JM
1303/*
1304 * Must be called with the queue_lock held.
1305 */
1306static int cfqq_process_refs(struct cfq_queue *cfqq)
1307{
1308 int process_refs, io_refs;
1309
1310 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1311 process_refs = atomic_read(&cfqq->ref) - io_refs;
1312 BUG_ON(process_refs < 0);
1313 return process_refs;
1314}
1315
1316static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1317{
e6c5bc73 1318 int process_refs, new_process_refs;
df5fe3e8
JM
1319 struct cfq_queue *__cfqq;
1320
1321 /* Avoid a circular list and skip interim queue merges */
1322 while ((__cfqq = new_cfqq->new_cfqq)) {
1323 if (__cfqq == cfqq)
1324 return;
1325 new_cfqq = __cfqq;
1326 }
1327
1328 process_refs = cfqq_process_refs(cfqq);
1329 /*
1330 * If the process for the cfqq has gone away, there is no
1331 * sense in merging the queues.
1332 */
1333 if (process_refs == 0)
1334 return;
1335
e6c5bc73
JM
1336 /*
1337 * Merge in the direction of the lesser amount of work.
1338 */
1339 new_process_refs = cfqq_process_refs(new_cfqq);
1340 if (new_process_refs >= process_refs) {
1341 cfqq->new_cfqq = new_cfqq;
1342 atomic_add(process_refs, &new_cfqq->ref);
1343 } else {
1344 new_cfqq->new_cfqq = cfqq;
1345 atomic_add(new_process_refs, &cfqq->ref);
1346 }
df5fe3e8
JM
1347}
1348
22e2c507 1349/*
498d3aa2
JA
1350 * Select a queue for service. If we have a current active queue,
1351 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1352 */
1b5ed5e1 1353static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1354{
a36e71f9 1355 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1356
22e2c507
JA
1357 cfqq = cfqd->active_queue;
1358 if (!cfqq)
1359 goto new_queue;
1da177e4 1360
22e2c507 1361 /*
6d048f53 1362 * The active queue has run out of time, expire it and select new.
22e2c507 1363 */
b029195d 1364 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1365 goto expire;
1da177e4 1366
22e2c507 1367 /*
6d048f53
JA
1368 * The active queue has requests and isn't expired, allow it to
1369 * dispatch.
22e2c507 1370 */
dd67d051 1371 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1372 goto keep_queue;
6d048f53 1373
a36e71f9
JA
1374 /*
1375 * If another queue has a request waiting within our mean seek
1376 * distance, let it run. The expire code will check for close
1377 * cooperators and put the close queue at the front of the service
df5fe3e8 1378 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1379 */
b3b6d040 1380 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1381 if (new_cfqq) {
1382 if (!cfqq->new_cfqq)
1383 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1384 goto expire;
df5fe3e8 1385 }
a36e71f9 1386
6d048f53
JA
1387 /*
1388 * No requests pending. If the active queue still has requests in
1389 * flight or is idling for a new request, allow either of these
1390 * conditions to happen (or time out) before selecting a new queue.
1391 */
cc197479 1392 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1393 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1394 cfqq = NULL;
1395 goto keep_queue;
22e2c507
JA
1396 }
1397
3b18152c 1398expire:
6084cdda 1399 cfq_slice_expired(cfqd, 0);
3b18152c 1400new_queue:
c0324a02
CZ
1401 if (!new_cfqq) {
1402 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1403 cfqd->serving_prio = RT_WORKLOAD;
1404 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1405 cfqd->serving_prio = BE_WORKLOAD;
1406 else
1407 cfqd->serving_prio = IDLE_WORKLOAD;
1408 }
a36e71f9 1409 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1410keep_queue:
3b18152c 1411 return cfqq;
22e2c507
JA
1412}
1413
febffd61 1414static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1415{
1416 int dispatched = 0;
1417
1418 while (cfqq->next_rq) {
1419 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1420 dispatched++;
1421 }
1422
1423 BUG_ON(!list_empty(&cfqq->fifo));
1424 return dispatched;
1425}
1426
498d3aa2
JA
1427/*
1428 * Drain our current requests. Used for barriers and when switching
1429 * io schedulers on-the-fly.
1430 */
d9e7620e 1431static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1432{
0871714e 1433 struct cfq_queue *cfqq;
d9e7620e 1434 int dispatched = 0;
c0324a02
CZ
1435 int i;
1436 for (i = 0; i < 2; ++i)
1437 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i])) != NULL)
1438 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1439
c0324a02 1440 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
d9e7620e 1441 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1442
6084cdda 1443 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1444
1445 BUG_ON(cfqd->busy_queues);
1446
6923715a 1447 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1448 return dispatched;
1449}
1450
0b182d61 1451static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1452{
2f5cb738 1453 unsigned int max_dispatch;
22e2c507 1454
5ad531db
JA
1455 /*
1456 * Drain async requests before we start sync IO
1457 */
a6d44e98 1458 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1459 return false;
5ad531db 1460
2f5cb738
JA
1461 /*
1462 * If this is an async queue and we have sync IO in flight, let it wait
1463 */
1464 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1465 return false;
2f5cb738
JA
1466
1467 max_dispatch = cfqd->cfq_quantum;
1468 if (cfq_class_idle(cfqq))
1469 max_dispatch = 1;
b4878f24 1470
2f5cb738
JA
1471 /*
1472 * Does this cfqq already have too much IO in flight?
1473 */
1474 if (cfqq->dispatched >= max_dispatch) {
1475 /*
1476 * idle queue must always only have a single IO in flight
1477 */
3ed9a296 1478 if (cfq_class_idle(cfqq))
0b182d61 1479 return false;
3ed9a296 1480
2f5cb738
JA
1481 /*
1482 * We have other queues, don't allow more IO from this one
1483 */
1484 if (cfqd->busy_queues > 1)
0b182d61 1485 return false;
9ede209e 1486
365722bb 1487 /*
8e296755 1488 * Sole queue user, allow bigger slice
365722bb 1489 */
8e296755
JA
1490 max_dispatch *= 4;
1491 }
1492
1493 /*
1494 * Async queues must wait a bit before being allowed dispatch.
1495 * We also ramp up the dispatch depth gradually for async IO,
1496 * based on the last sync IO we serviced
1497 */
963b72fc 1498 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1499 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1500 unsigned int depth;
365722bb 1501
61f0c1dc 1502 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1503 if (!depth && !cfqq->dispatched)
1504 depth = 1;
8e296755
JA
1505 if (depth < max_dispatch)
1506 max_dispatch = depth;
2f5cb738 1507 }
3ed9a296 1508
0b182d61
JA
1509 /*
1510 * If we're below the current max, allow a dispatch
1511 */
1512 return cfqq->dispatched < max_dispatch;
1513}
1514
1515/*
1516 * Dispatch a request from cfqq, moving them to the request queue
1517 * dispatch list.
1518 */
1519static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1520{
1521 struct request *rq;
1522
1523 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1524
1525 if (!cfq_may_dispatch(cfqd, cfqq))
1526 return false;
1527
1528 /*
1529 * follow expired path, else get first next available
1530 */
1531 rq = cfq_check_fifo(cfqq);
1532 if (!rq)
1533 rq = cfqq->next_rq;
1534
1535 /*
1536 * insert request into driver dispatch list
1537 */
1538 cfq_dispatch_insert(cfqd->queue, rq);
1539
1540 if (!cfqd->active_cic) {
1541 struct cfq_io_context *cic = RQ_CIC(rq);
1542
1543 atomic_long_inc(&cic->ioc->refcount);
1544 cfqd->active_cic = cic;
1545 }
1546
1547 return true;
1548}
1549
1550/*
1551 * Find the cfqq that we need to service and move a request from that to the
1552 * dispatch list
1553 */
1554static int cfq_dispatch_requests(struct request_queue *q, int force)
1555{
1556 struct cfq_data *cfqd = q->elevator->elevator_data;
1557 struct cfq_queue *cfqq;
1558
1559 if (!cfqd->busy_queues)
1560 return 0;
1561
1562 if (unlikely(force))
1563 return cfq_forced_dispatch(cfqd);
1564
1565 cfqq = cfq_select_queue(cfqd);
1566 if (!cfqq)
8e296755
JA
1567 return 0;
1568
2f5cb738 1569 /*
0b182d61 1570 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1571 */
0b182d61
JA
1572 if (!cfq_dispatch_request(cfqd, cfqq))
1573 return 0;
1574
2f5cb738 1575 cfqq->slice_dispatch++;
b029195d 1576 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1577
2f5cb738
JA
1578 /*
1579 * expire an async queue immediately if it has used up its slice. idle
1580 * queue always expire after 1 dispatch round.
1581 */
1582 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1583 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1584 cfq_class_idle(cfqq))) {
1585 cfqq->slice_end = jiffies + 1;
1586 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1587 }
1588
b217a903 1589 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1590 return 1;
1da177e4
LT
1591}
1592
1da177e4 1593/*
5e705374
JA
1594 * task holds one reference to the queue, dropped when task exits. each rq
1595 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1596 *
1597 * queue lock must be held here.
1598 */
1599static void cfq_put_queue(struct cfq_queue *cfqq)
1600{
22e2c507
JA
1601 struct cfq_data *cfqd = cfqq->cfqd;
1602
1603 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1604
1605 if (!atomic_dec_and_test(&cfqq->ref))
1606 return;
1607
7b679138 1608 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1609 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1610 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1611 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1612
28f95cbc 1613 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1614 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1615 cfq_schedule_dispatch(cfqd);
28f95cbc 1616 }
22e2c507 1617
1da177e4
LT
1618 kmem_cache_free(cfq_pool, cfqq);
1619}
1620
d6de8be7
JA
1621/*
1622 * Must always be called with the rcu_read_lock() held
1623 */
07416d29
JA
1624static void
1625__call_for_each_cic(struct io_context *ioc,
1626 void (*func)(struct io_context *, struct cfq_io_context *))
1627{
1628 struct cfq_io_context *cic;
1629 struct hlist_node *n;
1630
1631 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1632 func(ioc, cic);
1633}
1634
4ac845a2 1635/*
34e6bbf2 1636 * Call func for each cic attached to this ioc.
4ac845a2 1637 */
34e6bbf2 1638static void
4ac845a2
JA
1639call_for_each_cic(struct io_context *ioc,
1640 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1641{
4ac845a2 1642 rcu_read_lock();
07416d29 1643 __call_for_each_cic(ioc, func);
4ac845a2 1644 rcu_read_unlock();
34e6bbf2
FC
1645}
1646
1647static void cfq_cic_free_rcu(struct rcu_head *head)
1648{
1649 struct cfq_io_context *cic;
1650
1651 cic = container_of(head, struct cfq_io_context, rcu_head);
1652
1653 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1654 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1655
9a11b4ed
JA
1656 if (ioc_gone) {
1657 /*
1658 * CFQ scheduler is exiting, grab exit lock and check
1659 * the pending io context count. If it hits zero,
1660 * complete ioc_gone and set it back to NULL
1661 */
1662 spin_lock(&ioc_gone_lock);
245b2e70 1663 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1664 complete(ioc_gone);
1665 ioc_gone = NULL;
1666 }
1667 spin_unlock(&ioc_gone_lock);
1668 }
34e6bbf2 1669}
4ac845a2 1670
34e6bbf2
FC
1671static void cfq_cic_free(struct cfq_io_context *cic)
1672{
1673 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1674}
1675
1676static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1677{
1678 unsigned long flags;
1679
1680 BUG_ON(!cic->dead_key);
1681
1682 spin_lock_irqsave(&ioc->lock, flags);
1683 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1684 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1685 spin_unlock_irqrestore(&ioc->lock, flags);
1686
34e6bbf2 1687 cfq_cic_free(cic);
4ac845a2
JA
1688}
1689
d6de8be7
JA
1690/*
1691 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1692 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1693 * and ->trim() which is called with the task lock held
1694 */
4ac845a2
JA
1695static void cfq_free_io_context(struct io_context *ioc)
1696{
4ac845a2 1697 /*
34e6bbf2
FC
1698 * ioc->refcount is zero here, or we are called from elv_unregister(),
1699 * so no more cic's are allowed to be linked into this ioc. So it
1700 * should be ok to iterate over the known list, we will see all cic's
1701 * since no new ones are added.
4ac845a2 1702 */
07416d29 1703 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1704}
1705
89850f7e 1706static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1707{
df5fe3e8
JM
1708 struct cfq_queue *__cfqq, *next;
1709
28f95cbc 1710 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1711 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1712 cfq_schedule_dispatch(cfqd);
28f95cbc 1713 }
22e2c507 1714
df5fe3e8
JM
1715 /*
1716 * If this queue was scheduled to merge with another queue, be
1717 * sure to drop the reference taken on that queue (and others in
1718 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1719 */
1720 __cfqq = cfqq->new_cfqq;
1721 while (__cfqq) {
1722 if (__cfqq == cfqq) {
1723 WARN(1, "cfqq->new_cfqq loop detected\n");
1724 break;
1725 }
1726 next = __cfqq->new_cfqq;
1727 cfq_put_queue(__cfqq);
1728 __cfqq = next;
1729 }
1730
89850f7e
JA
1731 cfq_put_queue(cfqq);
1732}
22e2c507 1733
89850f7e
JA
1734static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1735 struct cfq_io_context *cic)
1736{
4faa3c81
FC
1737 struct io_context *ioc = cic->ioc;
1738
fc46379d 1739 list_del_init(&cic->queue_list);
4ac845a2
JA
1740
1741 /*
1742 * Make sure key == NULL is seen for dead queues
1743 */
fc46379d 1744 smp_wmb();
4ac845a2 1745 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1746 cic->key = NULL;
1747
4faa3c81
FC
1748 if (ioc->ioc_data == cic)
1749 rcu_assign_pointer(ioc->ioc_data, NULL);
1750
ff6657c6
JA
1751 if (cic->cfqq[BLK_RW_ASYNC]) {
1752 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1753 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1754 }
1755
ff6657c6
JA
1756 if (cic->cfqq[BLK_RW_SYNC]) {
1757 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1758 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1759 }
89850f7e
JA
1760}
1761
4ac845a2
JA
1762static void cfq_exit_single_io_context(struct io_context *ioc,
1763 struct cfq_io_context *cic)
89850f7e
JA
1764{
1765 struct cfq_data *cfqd = cic->key;
1766
89850f7e 1767 if (cfqd) {
165125e1 1768 struct request_queue *q = cfqd->queue;
4ac845a2 1769 unsigned long flags;
89850f7e 1770
4ac845a2 1771 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1772
1773 /*
1774 * Ensure we get a fresh copy of the ->key to prevent
1775 * race between exiting task and queue
1776 */
1777 smp_read_barrier_depends();
1778 if (cic->key)
1779 __cfq_exit_single_io_context(cfqd, cic);
1780
4ac845a2 1781 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1782 }
1da177e4
LT
1783}
1784
498d3aa2
JA
1785/*
1786 * The process that ioc belongs to has exited, we need to clean up
1787 * and put the internal structures we have that belongs to that process.
1788 */
e2d74ac0 1789static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1790{
4ac845a2 1791 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1792}
1793
22e2c507 1794static struct cfq_io_context *
8267e268 1795cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1796{
b5deef90 1797 struct cfq_io_context *cic;
1da177e4 1798
94f6030c
CL
1799 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1800 cfqd->queue->node);
1da177e4 1801 if (cic) {
22e2c507 1802 cic->last_end_request = jiffies;
553698f9 1803 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1804 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1805 cic->dtor = cfq_free_io_context;
1806 cic->exit = cfq_exit_io_context;
245b2e70 1807 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1808 }
1809
1810 return cic;
1811}
1812
fd0928df 1813static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1814{
1815 struct task_struct *tsk = current;
1816 int ioprio_class;
1817
3b18152c 1818 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1819 return;
1820
fd0928df 1821 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1822 switch (ioprio_class) {
fe094d98
JA
1823 default:
1824 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1825 case IOPRIO_CLASS_NONE:
1826 /*
6d63c275 1827 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1828 */
1829 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1830 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1831 break;
1832 case IOPRIO_CLASS_RT:
1833 cfqq->ioprio = task_ioprio(ioc);
1834 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1835 break;
1836 case IOPRIO_CLASS_BE:
1837 cfqq->ioprio = task_ioprio(ioc);
1838 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1839 break;
1840 case IOPRIO_CLASS_IDLE:
1841 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1842 cfqq->ioprio = 7;
1843 cfq_clear_cfqq_idle_window(cfqq);
1844 break;
22e2c507
JA
1845 }
1846
1847 /*
1848 * keep track of original prio settings in case we have to temporarily
1849 * elevate the priority of this queue
1850 */
1851 cfqq->org_ioprio = cfqq->ioprio;
1852 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1853 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1854}
1855
febffd61 1856static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1857{
478a82b0
AV
1858 struct cfq_data *cfqd = cic->key;
1859 struct cfq_queue *cfqq;
c1b707d2 1860 unsigned long flags;
35e6077c 1861
caaa5f9f
JA
1862 if (unlikely(!cfqd))
1863 return;
1864
c1b707d2 1865 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1866
ff6657c6 1867 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1868 if (cfqq) {
1869 struct cfq_queue *new_cfqq;
ff6657c6
JA
1870 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1871 GFP_ATOMIC);
caaa5f9f 1872 if (new_cfqq) {
ff6657c6 1873 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1874 cfq_put_queue(cfqq);
1875 }
22e2c507 1876 }
caaa5f9f 1877
ff6657c6 1878 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1879 if (cfqq)
1880 cfq_mark_cfqq_prio_changed(cfqq);
1881
c1b707d2 1882 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1883}
1884
fc46379d 1885static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1886{
4ac845a2 1887 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1888 ioc->ioprio_changed = 0;
22e2c507
JA
1889}
1890
d5036d77 1891static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1892 pid_t pid, bool is_sync)
d5036d77
JA
1893{
1894 RB_CLEAR_NODE(&cfqq->rb_node);
1895 RB_CLEAR_NODE(&cfqq->p_node);
1896 INIT_LIST_HEAD(&cfqq->fifo);
1897
1898 atomic_set(&cfqq->ref, 0);
1899 cfqq->cfqd = cfqd;
1900
1901 cfq_mark_cfqq_prio_changed(cfqq);
1902
1903 if (is_sync) {
1904 if (!cfq_class_idle(cfqq))
1905 cfq_mark_cfqq_idle_window(cfqq);
1906 cfq_mark_cfqq_sync(cfqq);
1907 }
1908 cfqq->pid = pid;
1909}
1910
22e2c507 1911static struct cfq_queue *
a6151c3a 1912cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 1913 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1914{
22e2c507 1915 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1916 struct cfq_io_context *cic;
22e2c507
JA
1917
1918retry:
4ac845a2 1919 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1920 /* cic always exists here */
1921 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1922
6118b70b
JA
1923 /*
1924 * Always try a new alloc if we fell back to the OOM cfqq
1925 * originally, since it should just be a temporary situation.
1926 */
1927 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1928 cfqq = NULL;
22e2c507
JA
1929 if (new_cfqq) {
1930 cfqq = new_cfqq;
1931 new_cfqq = NULL;
1932 } else if (gfp_mask & __GFP_WAIT) {
1933 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1934 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1935 gfp_mask | __GFP_ZERO,
94f6030c 1936 cfqd->queue->node);
22e2c507 1937 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1938 if (new_cfqq)
1939 goto retry;
22e2c507 1940 } else {
94f6030c
CL
1941 cfqq = kmem_cache_alloc_node(cfq_pool,
1942 gfp_mask | __GFP_ZERO,
1943 cfqd->queue->node);
22e2c507
JA
1944 }
1945
6118b70b
JA
1946 if (cfqq) {
1947 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1948 cfq_init_prio_data(cfqq, ioc);
1949 cfq_log_cfqq(cfqd, cfqq, "alloced");
1950 } else
1951 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1952 }
1953
1954 if (new_cfqq)
1955 kmem_cache_free(cfq_pool, new_cfqq);
1956
22e2c507
JA
1957 return cfqq;
1958}
1959
c2dea2d1
VT
1960static struct cfq_queue **
1961cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1962{
fe094d98 1963 switch (ioprio_class) {
c2dea2d1
VT
1964 case IOPRIO_CLASS_RT:
1965 return &cfqd->async_cfqq[0][ioprio];
1966 case IOPRIO_CLASS_BE:
1967 return &cfqd->async_cfqq[1][ioprio];
1968 case IOPRIO_CLASS_IDLE:
1969 return &cfqd->async_idle_cfqq;
1970 default:
1971 BUG();
1972 }
1973}
1974
15c31be4 1975static struct cfq_queue *
a6151c3a 1976cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
1977 gfp_t gfp_mask)
1978{
fd0928df
JA
1979 const int ioprio = task_ioprio(ioc);
1980 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1981 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1982 struct cfq_queue *cfqq = NULL;
1983
c2dea2d1
VT
1984 if (!is_sync) {
1985 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1986 cfqq = *async_cfqq;
1987 }
1988
6118b70b 1989 if (!cfqq)
fd0928df 1990 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1991
1992 /*
1993 * pin the queue now that it's allocated, scheduler exit will prune it
1994 */
c2dea2d1 1995 if (!is_sync && !(*async_cfqq)) {
15c31be4 1996 atomic_inc(&cfqq->ref);
c2dea2d1 1997 *async_cfqq = cfqq;
15c31be4
JA
1998 }
1999
2000 atomic_inc(&cfqq->ref);
2001 return cfqq;
2002}
2003
498d3aa2
JA
2004/*
2005 * We drop cfq io contexts lazily, so we may find a dead one.
2006 */
dbecf3ab 2007static void
4ac845a2
JA
2008cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2009 struct cfq_io_context *cic)
dbecf3ab 2010{
4ac845a2
JA
2011 unsigned long flags;
2012
fc46379d 2013 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2014
4ac845a2
JA
2015 spin_lock_irqsave(&ioc->lock, flags);
2016
4faa3c81 2017 BUG_ON(ioc->ioc_data == cic);
597bc485 2018
4ac845a2 2019 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2020 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2021 spin_unlock_irqrestore(&ioc->lock, flags);
2022
2023 cfq_cic_free(cic);
dbecf3ab
OH
2024}
2025
e2d74ac0 2026static struct cfq_io_context *
4ac845a2 2027cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2028{
e2d74ac0 2029 struct cfq_io_context *cic;
d6de8be7 2030 unsigned long flags;
4ac845a2 2031 void *k;
e2d74ac0 2032
91fac317
VT
2033 if (unlikely(!ioc))
2034 return NULL;
2035
d6de8be7
JA
2036 rcu_read_lock();
2037
597bc485
JA
2038 /*
2039 * we maintain a last-hit cache, to avoid browsing over the tree
2040 */
4ac845a2 2041 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2042 if (cic && cic->key == cfqd) {
2043 rcu_read_unlock();
597bc485 2044 return cic;
d6de8be7 2045 }
597bc485 2046
4ac845a2 2047 do {
4ac845a2
JA
2048 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2049 rcu_read_unlock();
2050 if (!cic)
2051 break;
be3b0753
OH
2052 /* ->key must be copied to avoid race with cfq_exit_queue() */
2053 k = cic->key;
2054 if (unlikely(!k)) {
4ac845a2 2055 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2056 rcu_read_lock();
4ac845a2 2057 continue;
dbecf3ab 2058 }
e2d74ac0 2059
d6de8be7 2060 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2061 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2062 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2063 break;
2064 } while (1);
e2d74ac0 2065
4ac845a2 2066 return cic;
e2d74ac0
JA
2067}
2068
4ac845a2
JA
2069/*
2070 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2071 * the process specific cfq io context when entered from the block layer.
2072 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2073 */
febffd61
JA
2074static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2075 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2076{
0261d688 2077 unsigned long flags;
4ac845a2 2078 int ret;
e2d74ac0 2079
4ac845a2
JA
2080 ret = radix_tree_preload(gfp_mask);
2081 if (!ret) {
2082 cic->ioc = ioc;
2083 cic->key = cfqd;
e2d74ac0 2084
4ac845a2
JA
2085 spin_lock_irqsave(&ioc->lock, flags);
2086 ret = radix_tree_insert(&ioc->radix_root,
2087 (unsigned long) cfqd, cic);
ffc4e759
JA
2088 if (!ret)
2089 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2090 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2091
4ac845a2
JA
2092 radix_tree_preload_end();
2093
2094 if (!ret) {
2095 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2096 list_add(&cic->queue_list, &cfqd->cic_list);
2097 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2098 }
e2d74ac0
JA
2099 }
2100
4ac845a2
JA
2101 if (ret)
2102 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2103
4ac845a2 2104 return ret;
e2d74ac0
JA
2105}
2106
1da177e4
LT
2107/*
2108 * Setup general io context and cfq io context. There can be several cfq
2109 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2110 * than one device managed by cfq.
1da177e4
LT
2111 */
2112static struct cfq_io_context *
e2d74ac0 2113cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2114{
22e2c507 2115 struct io_context *ioc = NULL;
1da177e4 2116 struct cfq_io_context *cic;
1da177e4 2117
22e2c507 2118 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2119
b5deef90 2120 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2121 if (!ioc)
2122 return NULL;
2123
4ac845a2 2124 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2125 if (cic)
2126 goto out;
1da177e4 2127
e2d74ac0
JA
2128 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2129 if (cic == NULL)
2130 goto err;
1da177e4 2131
4ac845a2
JA
2132 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2133 goto err_free;
2134
1da177e4 2135out:
fc46379d
JA
2136 smp_read_barrier_depends();
2137 if (unlikely(ioc->ioprio_changed))
2138 cfq_ioc_set_ioprio(ioc);
2139
1da177e4 2140 return cic;
4ac845a2
JA
2141err_free:
2142 cfq_cic_free(cic);
1da177e4
LT
2143err:
2144 put_io_context(ioc);
2145 return NULL;
2146}
2147
22e2c507
JA
2148static void
2149cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2150{
aaf1228d
JA
2151 unsigned long elapsed = jiffies - cic->last_end_request;
2152 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2153
22e2c507
JA
2154 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2155 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2156 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2157}
1da177e4 2158
206dc69b 2159static void
b2c18e1e 2160cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2161 struct request *rq)
206dc69b
JA
2162{
2163 sector_t sdist;
2164 u64 total;
2165
b2c18e1e 2166 if (!cfqq->last_request_pos)
4d00aa47 2167 sdist = 0;
b2c18e1e
JM
2168 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2169 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2170 else
b2c18e1e 2171 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2172
2173 /*
2174 * Don't allow the seek distance to get too large from the
2175 * odd fragment, pagein, etc
2176 */
b2c18e1e
JM
2177 if (cfqq->seek_samples <= 60) /* second&third seek */
2178 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2179 else
b2c18e1e 2180 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2181
b2c18e1e
JM
2182 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2183 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2184 total = cfqq->seek_total + (cfqq->seek_samples/2);
2185 do_div(total, cfqq->seek_samples);
2186 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2187
2188 /*
2189 * If this cfqq is shared between multiple processes, check to
2190 * make sure that those processes are still issuing I/Os within
2191 * the mean seek distance. If not, it may be time to break the
2192 * queues apart again.
2193 */
2194 if (cfq_cfqq_coop(cfqq)) {
2195 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2196 cfqq->seeky_start = jiffies;
2197 else if (!CFQQ_SEEKY(cfqq))
2198 cfqq->seeky_start = 0;
2199 }
206dc69b 2200}
1da177e4 2201
22e2c507
JA
2202/*
2203 * Disable idle window if the process thinks too long or seeks so much that
2204 * it doesn't matter
2205 */
2206static void
2207cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2208 struct cfq_io_context *cic)
2209{
7b679138 2210 int old_idle, enable_idle;
1be92f2f 2211
0871714e
JA
2212 /*
2213 * Don't idle for async or idle io prio class
2214 */
2215 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2216 return;
2217
c265a7f4 2218 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2219
66dac98e 2220 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
b2c18e1e 2221 (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2222 enable_idle = 0;
2223 else if (sample_valid(cic->ttime_samples)) {
ec60e4f6 2224 unsigned int slice_idle = cfqd->cfq_slice_idle;
b2c18e1e 2225 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
ec60e4f6
CZ
2226 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2227 if (cic->ttime_mean > slice_idle)
22e2c507
JA
2228 enable_idle = 0;
2229 else
2230 enable_idle = 1;
1da177e4
LT
2231 }
2232
7b679138
JA
2233 if (old_idle != enable_idle) {
2234 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2235 if (enable_idle)
2236 cfq_mark_cfqq_idle_window(cfqq);
2237 else
2238 cfq_clear_cfqq_idle_window(cfqq);
2239 }
22e2c507 2240}
1da177e4 2241
22e2c507
JA
2242/*
2243 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2244 * no or if we aren't sure, a 1 will cause a preempt.
2245 */
a6151c3a 2246static bool
22e2c507 2247cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2248 struct request *rq)
22e2c507 2249{
6d048f53 2250 struct cfq_queue *cfqq;
22e2c507 2251
6d048f53
JA
2252 cfqq = cfqd->active_queue;
2253 if (!cfqq)
a6151c3a 2254 return false;
22e2c507 2255
6d048f53 2256 if (cfq_slice_used(cfqq))
a6151c3a 2257 return true;
6d048f53
JA
2258
2259 if (cfq_class_idle(new_cfqq))
a6151c3a 2260 return false;
22e2c507
JA
2261
2262 if (cfq_class_idle(cfqq))
a6151c3a 2263 return true;
1e3335de 2264
374f84ac
JA
2265 /*
2266 * if the new request is sync, but the currently running queue is
2267 * not, let the sync request have priority.
2268 */
5e705374 2269 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2270 return true;
1e3335de 2271
374f84ac
JA
2272 /*
2273 * So both queues are sync. Let the new request get disk time if
2274 * it's a metadata request and the current queue is doing regular IO.
2275 */
2276 if (rq_is_meta(rq) && !cfqq->meta_pending)
a6151c3a 2277 return false;
22e2c507 2278
3a9a3f6c
DS
2279 /*
2280 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2281 */
2282 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2283 return true;
3a9a3f6c 2284
1e3335de 2285 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2286 return false;
1e3335de
JA
2287
2288 /*
2289 * if this request is as-good as one we would expect from the
2290 * current cfqq, let it preempt
2291 */
b2c18e1e 2292 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2293 return true;
1e3335de 2294
a6151c3a 2295 return false;
22e2c507
JA
2296}
2297
2298/*
2299 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2300 * let it have half of its nominal slice.
2301 */
2302static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2303{
7b679138 2304 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2305 cfq_slice_expired(cfqd, 1);
22e2c507 2306
bf572256
JA
2307 /*
2308 * Put the new queue at the front of the of the current list,
2309 * so we know that it will be selected next.
2310 */
2311 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2312
2313 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2314
44f7c160
JA
2315 cfqq->slice_end = 0;
2316 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2317}
2318
22e2c507 2319/*
5e705374 2320 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2321 * something we should do about it
2322 */
2323static void
5e705374
JA
2324cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2325 struct request *rq)
22e2c507 2326{
5e705374 2327 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2328
45333d5a 2329 cfqd->rq_queued++;
374f84ac
JA
2330 if (rq_is_meta(rq))
2331 cfqq->meta_pending++;
2332
9c2c38a1 2333 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2334 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2335 cfq_update_idle_window(cfqd, cfqq, cic);
2336
b2c18e1e 2337 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2338
2339 if (cfqq == cfqd->active_queue) {
2340 /*
b029195d
JA
2341 * Remember that we saw a request from this process, but
2342 * don't start queuing just yet. Otherwise we risk seeing lots
2343 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2344 * and merging. If the request is already larger than a single
2345 * page, let it rip immediately. For that case we assume that
2d870722
JA
2346 * merging is already done. Ditto for a busy system that
2347 * has other work pending, don't risk delaying until the
2348 * idle timer unplug to continue working.
22e2c507 2349 */
d6ceb25e 2350 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2351 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2352 cfqd->busy_queues > 1) {
d6ceb25e 2353 del_timer(&cfqd->idle_slice_timer);
a7f55792 2354 __blk_run_queue(cfqd->queue);
d6ceb25e 2355 }
b029195d 2356 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2357 }
5e705374 2358 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2359 /*
2360 * not the active queue - expire current slice if it is
2361 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2362 * has some old slice time left and is of higher priority or
2363 * this new queue is RT and the current one is BE
22e2c507
JA
2364 */
2365 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2366 __blk_run_queue(cfqd->queue);
22e2c507 2367 }
1da177e4
LT
2368}
2369
165125e1 2370static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2371{
b4878f24 2372 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2373 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2374
7b679138 2375 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2376 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2377
30996f40 2378 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2379 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2380 cfq_add_rq_rb(rq);
22e2c507 2381
5e705374 2382 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2383}
2384
45333d5a
AC
2385/*
2386 * Update hw_tag based on peak queue depth over 50 samples under
2387 * sufficient load.
2388 */
2389static void cfq_update_hw_tag(struct cfq_data *cfqd)
2390{
1a1238a7
SL
2391 struct cfq_queue *cfqq = cfqd->active_queue;
2392
5ad531db
JA
2393 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2394 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2395
2396 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2397 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2398 return;
2399
1a1238a7
SL
2400 /*
2401 * If active queue hasn't enough requests and can idle, cfq might not
2402 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2403 * case
2404 */
2405 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2406 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2407 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2408 return;
2409
45333d5a
AC
2410 if (cfqd->hw_tag_samples++ < 50)
2411 return;
2412
2413 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2414 cfqd->hw_tag = 1;
2415 else
2416 cfqd->hw_tag = 0;
2417
2418 cfqd->hw_tag_samples = 0;
2419 cfqd->rq_in_driver_peak = 0;
2420}
2421
165125e1 2422static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2423{
5e705374 2424 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2425 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2426 const int sync = rq_is_sync(rq);
b4878f24 2427 unsigned long now;
1da177e4 2428
b4878f24 2429 now = jiffies;
7b679138 2430 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2431
45333d5a
AC
2432 cfq_update_hw_tag(cfqd);
2433
5ad531db 2434 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2435 WARN_ON(!cfqq->dispatched);
5ad531db 2436 cfqd->rq_in_driver[sync]--;
6d048f53 2437 cfqq->dispatched--;
1da177e4 2438
3ed9a296
JA
2439 if (cfq_cfqq_sync(cfqq))
2440 cfqd->sync_flight--;
2441
365722bb 2442 if (sync) {
5e705374 2443 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2444 cfqd->last_end_sync_rq = now;
2445 }
caaa5f9f
JA
2446
2447 /*
2448 * If this is the active queue, check if it needs to be expired,
2449 * or if we want to idle in case it has no pending requests.
2450 */
2451 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2452 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2453
44f7c160
JA
2454 if (cfq_cfqq_slice_new(cfqq)) {
2455 cfq_set_prio_slice(cfqd, cfqq);
2456 cfq_clear_cfqq_slice_new(cfqq);
2457 }
a36e71f9
JA
2458 /*
2459 * If there are no requests waiting in this queue, and
2460 * there are other queues ready to issue requests, AND
2461 * those other queues are issuing requests within our
2462 * mean seek distance, give them a chance to run instead
2463 * of idling.
2464 */
0871714e 2465 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2466 cfq_slice_expired(cfqd, 1);
b3b6d040 2467 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2468 sync && !rq_noidle(rq))
6d048f53 2469 cfq_arm_slice_timer(cfqd);
caaa5f9f 2470 }
6d048f53 2471
5ad531db 2472 if (!rq_in_driver(cfqd))
23e018a1 2473 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2474}
2475
22e2c507
JA
2476/*
2477 * we temporarily boost lower priority queues if they are holding fs exclusive
2478 * resources. they are boosted to normal prio (CLASS_BE/4)
2479 */
2480static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2481{
22e2c507
JA
2482 if (has_fs_excl()) {
2483 /*
2484 * boost idle prio on transactions that would lock out other
2485 * users of the filesystem
2486 */
2487 if (cfq_class_idle(cfqq))
2488 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2489 if (cfqq->ioprio > IOPRIO_NORM)
2490 cfqq->ioprio = IOPRIO_NORM;
2491 } else {
2492 /*
2493 * check if we need to unboost the queue
2494 */
2495 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2496 cfqq->ioprio_class = cfqq->org_ioprio_class;
2497 if (cfqq->ioprio != cfqq->org_ioprio)
2498 cfqq->ioprio = cfqq->org_ioprio;
2499 }
22e2c507 2500}
1da177e4 2501
89850f7e 2502static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2503{
1b379d8d 2504 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2505 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2506 return ELV_MQUEUE_MUST;
3b18152c 2507 }
1da177e4 2508
22e2c507 2509 return ELV_MQUEUE_MAY;
22e2c507
JA
2510}
2511
165125e1 2512static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2513{
2514 struct cfq_data *cfqd = q->elevator->elevator_data;
2515 struct task_struct *tsk = current;
91fac317 2516 struct cfq_io_context *cic;
22e2c507
JA
2517 struct cfq_queue *cfqq;
2518
2519 /*
2520 * don't force setup of a queue from here, as a call to may_queue
2521 * does not necessarily imply that a request actually will be queued.
2522 * so just lookup a possibly existing queue, or return 'may queue'
2523 * if that fails
2524 */
4ac845a2 2525 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2526 if (!cic)
2527 return ELV_MQUEUE_MAY;
2528
b0b78f81 2529 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2530 if (cfqq) {
fd0928df 2531 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2532 cfq_prio_boost(cfqq);
2533
89850f7e 2534 return __cfq_may_queue(cfqq);
22e2c507
JA
2535 }
2536
2537 return ELV_MQUEUE_MAY;
1da177e4
LT
2538}
2539
1da177e4
LT
2540/*
2541 * queue lock held here
2542 */
bb37b94c 2543static void cfq_put_request(struct request *rq)
1da177e4 2544{
5e705374 2545 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2546
5e705374 2547 if (cfqq) {
22e2c507 2548 const int rw = rq_data_dir(rq);
1da177e4 2549
22e2c507
JA
2550 BUG_ON(!cfqq->allocated[rw]);
2551 cfqq->allocated[rw]--;
1da177e4 2552
5e705374 2553 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2554
1da177e4 2555 rq->elevator_private = NULL;
5e705374 2556 rq->elevator_private2 = NULL;
1da177e4 2557
1da177e4
LT
2558 cfq_put_queue(cfqq);
2559 }
2560}
2561
df5fe3e8
JM
2562static struct cfq_queue *
2563cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2564 struct cfq_queue *cfqq)
2565{
2566 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2567 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2568 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2569 cfq_put_queue(cfqq);
2570 return cic_to_cfqq(cic, 1);
2571}
2572
e6c5bc73
JM
2573static int should_split_cfqq(struct cfq_queue *cfqq)
2574{
2575 if (cfqq->seeky_start &&
2576 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2577 return 1;
2578 return 0;
2579}
2580
2581/*
2582 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2583 * was the last process referring to said cfqq.
2584 */
2585static struct cfq_queue *
2586split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2587{
2588 if (cfqq_process_refs(cfqq) == 1) {
2589 cfqq->seeky_start = 0;
2590 cfqq->pid = current->pid;
2591 cfq_clear_cfqq_coop(cfqq);
2592 return cfqq;
2593 }
2594
2595 cic_set_cfqq(cic, NULL, 1);
2596 cfq_put_queue(cfqq);
2597 return NULL;
2598}
1da177e4 2599/*
22e2c507 2600 * Allocate cfq data structures associated with this request.
1da177e4 2601 */
22e2c507 2602static int
165125e1 2603cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2604{
2605 struct cfq_data *cfqd = q->elevator->elevator_data;
2606 struct cfq_io_context *cic;
2607 const int rw = rq_data_dir(rq);
a6151c3a 2608 const bool is_sync = rq_is_sync(rq);
22e2c507 2609 struct cfq_queue *cfqq;
1da177e4
LT
2610 unsigned long flags;
2611
2612 might_sleep_if(gfp_mask & __GFP_WAIT);
2613
e2d74ac0 2614 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2615
1da177e4
LT
2616 spin_lock_irqsave(q->queue_lock, flags);
2617
22e2c507
JA
2618 if (!cic)
2619 goto queue_fail;
2620
e6c5bc73 2621new_queue:
91fac317 2622 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2623 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2624 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2625 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2626 } else {
e6c5bc73
JM
2627 /*
2628 * If the queue was seeky for too long, break it apart.
2629 */
2630 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2631 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2632 cfqq = split_cfqq(cic, cfqq);
2633 if (!cfqq)
2634 goto new_queue;
2635 }
2636
df5fe3e8
JM
2637 /*
2638 * Check to see if this queue is scheduled to merge with
2639 * another, closely cooperating queue. The merging of
2640 * queues happens here as it must be done in process context.
2641 * The reference on new_cfqq was taken in merge_cfqqs.
2642 */
2643 if (cfqq->new_cfqq)
2644 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2645 }
1da177e4
LT
2646
2647 cfqq->allocated[rw]++;
22e2c507 2648 atomic_inc(&cfqq->ref);
1da177e4 2649
5e705374 2650 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2651
5e705374
JA
2652 rq->elevator_private = cic;
2653 rq->elevator_private2 = cfqq;
2654 return 0;
1da177e4 2655
22e2c507
JA
2656queue_fail:
2657 if (cic)
2658 put_io_context(cic->ioc);
89850f7e 2659
23e018a1 2660 cfq_schedule_dispatch(cfqd);
1da177e4 2661 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2662 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2663 return 1;
2664}
2665
65f27f38 2666static void cfq_kick_queue(struct work_struct *work)
22e2c507 2667{
65f27f38 2668 struct cfq_data *cfqd =
23e018a1 2669 container_of(work, struct cfq_data, unplug_work);
165125e1 2670 struct request_queue *q = cfqd->queue;
22e2c507 2671
40bb54d1 2672 spin_lock_irq(q->queue_lock);
a7f55792 2673 __blk_run_queue(cfqd->queue);
40bb54d1 2674 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2675}
2676
2677/*
2678 * Timer running if the active_queue is currently idling inside its time slice
2679 */
2680static void cfq_idle_slice_timer(unsigned long data)
2681{
2682 struct cfq_data *cfqd = (struct cfq_data *) data;
2683 struct cfq_queue *cfqq;
2684 unsigned long flags;
3c6bd2f8 2685 int timed_out = 1;
22e2c507 2686
7b679138
JA
2687 cfq_log(cfqd, "idle timer fired");
2688
22e2c507
JA
2689 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2690
fe094d98
JA
2691 cfqq = cfqd->active_queue;
2692 if (cfqq) {
3c6bd2f8
JA
2693 timed_out = 0;
2694
b029195d
JA
2695 /*
2696 * We saw a request before the queue expired, let it through
2697 */
2698 if (cfq_cfqq_must_dispatch(cfqq))
2699 goto out_kick;
2700
22e2c507
JA
2701 /*
2702 * expired
2703 */
44f7c160 2704 if (cfq_slice_used(cfqq))
22e2c507
JA
2705 goto expire;
2706
2707 /*
2708 * only expire and reinvoke request handler, if there are
2709 * other queues with pending requests
2710 */
caaa5f9f 2711 if (!cfqd->busy_queues)
22e2c507 2712 goto out_cont;
22e2c507
JA
2713
2714 /*
2715 * not expired and it has a request pending, let it dispatch
2716 */
75e50984 2717 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2718 goto out_kick;
22e2c507
JA
2719 }
2720expire:
6084cdda 2721 cfq_slice_expired(cfqd, timed_out);
22e2c507 2722out_kick:
23e018a1 2723 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2724out_cont:
2725 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2726}
2727
3b18152c
JA
2728static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2729{
2730 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2731 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2732}
22e2c507 2733
c2dea2d1
VT
2734static void cfq_put_async_queues(struct cfq_data *cfqd)
2735{
2736 int i;
2737
2738 for (i = 0; i < IOPRIO_BE_NR; i++) {
2739 if (cfqd->async_cfqq[0][i])
2740 cfq_put_queue(cfqd->async_cfqq[0][i]);
2741 if (cfqd->async_cfqq[1][i])
2742 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2743 }
2389d1ef
ON
2744
2745 if (cfqd->async_idle_cfqq)
2746 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2747}
2748
b374d18a 2749static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2750{
22e2c507 2751 struct cfq_data *cfqd = e->elevator_data;
165125e1 2752 struct request_queue *q = cfqd->queue;
22e2c507 2753
3b18152c 2754 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2755
d9ff4187 2756 spin_lock_irq(q->queue_lock);
e2d74ac0 2757
d9ff4187 2758 if (cfqd->active_queue)
6084cdda 2759 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2760
2761 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2762 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2763 struct cfq_io_context,
2764 queue_list);
89850f7e
JA
2765
2766 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2767 }
e2d74ac0 2768
c2dea2d1 2769 cfq_put_async_queues(cfqd);
15c31be4 2770
d9ff4187 2771 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2772
2773 cfq_shutdown_timer_wq(cfqd);
2774
a90d742e 2775 kfree(cfqd);
1da177e4
LT
2776}
2777
165125e1 2778static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2779{
2780 struct cfq_data *cfqd;
26a2ac00 2781 int i;
1da177e4 2782
94f6030c 2783 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2784 if (!cfqd)
bc1c1169 2785 return NULL;
1da177e4 2786
c0324a02
CZ
2787 for (i = 0; i < 2; ++i)
2788 cfqd->service_trees[i] = CFQ_RB_ROOT;
2789 cfqd->service_tree_idle = CFQ_RB_ROOT;
26a2ac00
JA
2790
2791 /*
2792 * Not strictly needed (since RB_ROOT just clears the node and we
2793 * zeroed cfqd on alloc), but better be safe in case someone decides
2794 * to add magic to the rb code
2795 */
2796 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2797 cfqd->prio_trees[i] = RB_ROOT;
2798
6118b70b
JA
2799 /*
2800 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2801 * Grab a permanent reference to it, so that the normal code flow
2802 * will not attempt to free it.
2803 */
2804 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2805 atomic_inc(&cfqd->oom_cfqq.ref);
2806
d9ff4187 2807 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2808
1da177e4 2809 cfqd->queue = q;
1da177e4 2810
22e2c507
JA
2811 init_timer(&cfqd->idle_slice_timer);
2812 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2813 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2814
23e018a1 2815 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2816
1da177e4 2817 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2818 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2819 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2820 cfqd->cfq_back_max = cfq_back_max;
2821 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2822 cfqd->cfq_slice[0] = cfq_slice_async;
2823 cfqd->cfq_slice[1] = cfq_slice_sync;
2824 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2825 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2826 cfqd->cfq_latency = 1;
45333d5a 2827 cfqd->hw_tag = 1;
365722bb 2828 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2829 return cfqd;
1da177e4
LT
2830}
2831
2832static void cfq_slab_kill(void)
2833{
d6de8be7
JA
2834 /*
2835 * Caller already ensured that pending RCU callbacks are completed,
2836 * so we should have no busy allocations at this point.
2837 */
1da177e4
LT
2838 if (cfq_pool)
2839 kmem_cache_destroy(cfq_pool);
2840 if (cfq_ioc_pool)
2841 kmem_cache_destroy(cfq_ioc_pool);
2842}
2843
2844static int __init cfq_slab_setup(void)
2845{
0a31bd5f 2846 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2847 if (!cfq_pool)
2848 goto fail;
2849
34e6bbf2 2850 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2851 if (!cfq_ioc_pool)
2852 goto fail;
2853
2854 return 0;
2855fail:
2856 cfq_slab_kill();
2857 return -ENOMEM;
2858}
2859
1da177e4
LT
2860/*
2861 * sysfs parts below -->
2862 */
1da177e4
LT
2863static ssize_t
2864cfq_var_show(unsigned int var, char *page)
2865{
2866 return sprintf(page, "%d\n", var);
2867}
2868
2869static ssize_t
2870cfq_var_store(unsigned int *var, const char *page, size_t count)
2871{
2872 char *p = (char *) page;
2873
2874 *var = simple_strtoul(p, &p, 10);
2875 return count;
2876}
2877
1da177e4 2878#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2879static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2880{ \
3d1ab40f 2881 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2882 unsigned int __data = __VAR; \
2883 if (__CONV) \
2884 __data = jiffies_to_msecs(__data); \
2885 return cfq_var_show(__data, (page)); \
2886}
2887SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2888SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2889SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2890SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2891SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2892SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2893SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2894SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2895SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2896SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2897#undef SHOW_FUNCTION
2898
2899#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2900static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2901{ \
3d1ab40f 2902 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2903 unsigned int __data; \
2904 int ret = cfq_var_store(&__data, (page), count); \
2905 if (__data < (MIN)) \
2906 __data = (MIN); \
2907 else if (__data > (MAX)) \
2908 __data = (MAX); \
2909 if (__CONV) \
2910 *(__PTR) = msecs_to_jiffies(__data); \
2911 else \
2912 *(__PTR) = __data; \
2913 return ret; \
2914}
2915STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2916STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2917 UINT_MAX, 1);
2918STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2919 UINT_MAX, 1);
e572ec7e 2920STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2921STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2922 UINT_MAX, 0);
22e2c507
JA
2923STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2924STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2925STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2926STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2927 UINT_MAX, 0);
963b72fc 2928STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2929#undef STORE_FUNCTION
2930
e572ec7e
AV
2931#define CFQ_ATTR(name) \
2932 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2933
2934static struct elv_fs_entry cfq_attrs[] = {
2935 CFQ_ATTR(quantum),
e572ec7e
AV
2936 CFQ_ATTR(fifo_expire_sync),
2937 CFQ_ATTR(fifo_expire_async),
2938 CFQ_ATTR(back_seek_max),
2939 CFQ_ATTR(back_seek_penalty),
2940 CFQ_ATTR(slice_sync),
2941 CFQ_ATTR(slice_async),
2942 CFQ_ATTR(slice_async_rq),
2943 CFQ_ATTR(slice_idle),
963b72fc 2944 CFQ_ATTR(low_latency),
e572ec7e 2945 __ATTR_NULL
1da177e4
LT
2946};
2947
1da177e4
LT
2948static struct elevator_type iosched_cfq = {
2949 .ops = {
2950 .elevator_merge_fn = cfq_merge,
2951 .elevator_merged_fn = cfq_merged_request,
2952 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2953 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2954 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2955 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2956 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2957 .elevator_deactivate_req_fn = cfq_deactivate_request,
2958 .elevator_queue_empty_fn = cfq_queue_empty,
2959 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2960 .elevator_former_req_fn = elv_rb_former_request,
2961 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2962 .elevator_set_req_fn = cfq_set_request,
2963 .elevator_put_req_fn = cfq_put_request,
2964 .elevator_may_queue_fn = cfq_may_queue,
2965 .elevator_init_fn = cfq_init_queue,
2966 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2967 .trim = cfq_free_io_context,
1da177e4 2968 },
3d1ab40f 2969 .elevator_attrs = cfq_attrs,
1da177e4
LT
2970 .elevator_name = "cfq",
2971 .elevator_owner = THIS_MODULE,
2972};
2973
2974static int __init cfq_init(void)
2975{
22e2c507
JA
2976 /*
2977 * could be 0 on HZ < 1000 setups
2978 */
2979 if (!cfq_slice_async)
2980 cfq_slice_async = 1;
2981 if (!cfq_slice_idle)
2982 cfq_slice_idle = 1;
2983
1da177e4
LT
2984 if (cfq_slab_setup())
2985 return -ENOMEM;
2986
2fdd82bd 2987 elv_register(&iosched_cfq);
1da177e4 2988
2fdd82bd 2989 return 0;
1da177e4
LT
2990}
2991
2992static void __exit cfq_exit(void)
2993{
6e9a4738 2994 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2995 elv_unregister(&iosched_cfq);
334e94de 2996 ioc_gone = &all_gone;
fba82272
OH
2997 /* ioc_gone's update must be visible before reading ioc_count */
2998 smp_wmb();
d6de8be7
JA
2999
3000 /*
3001 * this also protects us from entering cfq_slab_kill() with
3002 * pending RCU callbacks
3003 */
245b2e70 3004 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3005 wait_for_completion(&all_gone);
83521d3e 3006 cfq_slab_kill();
1da177e4
LT
3007}
3008
3009module_init(cfq_init);
3010module_exit(cfq_exit);
3011
3012MODULE_AUTHOR("Jens Axboe");
3013MODULE_LICENSE("GPL");
3014MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");