]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: preparation to handle multiple service trees
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
30static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31static const int cfq_hist_divisor = 4;
22e2c507 32
d9e7620e 33/*
0871714e 34 * offset from end of service tree
d9e7620e 35 */
0871714e 36#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
37
38/*
39 * below this threshold, we consider thinktime immediate
40 */
41#define CFQ_MIN_TT (2)
42
e6c5bc73
JM
43/*
44 * Allow merged cfqqs to perform this amount of seeky I/O before
45 * deciding to break the queues up again.
46 */
47#define CFQQ_COOP_TOUT (HZ)
48
22e2c507 49#define CFQ_SLICE_SCALE (5)
45333d5a 50#define CFQ_HW_QUEUE_MIN (5)
22e2c507 51
fe094d98
JA
52#define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 54#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 55
e18b890b
CL
56static struct kmem_cache *cfq_pool;
57static struct kmem_cache *cfq_ioc_pool;
1da177e4 58
245b2e70 59static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 60static struct completion *ioc_gone;
9a11b4ed 61static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 62
22e2c507
JA
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
206dc69b
JA
67#define sample_valid(samples) ((samples) > 80)
68
cc09e299
JA
69/*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75struct cfq_rb_root {
76 struct rb_root rb;
77 struct rb_node *left;
aa6f6a3d 78 unsigned count;
cc09e299 79};
aa6f6a3d 80#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 81
6118b70b
JA
82/*
83 * Per process-grouping structure
84 */
85struct cfq_queue {
86 /* reference count */
87 atomic_t ref;
88 /* various state flags, see below */
89 unsigned int flags;
90 /* parent cfq_data */
91 struct cfq_data *cfqd;
92 /* service_tree member */
93 struct rb_node rb_node;
94 /* service_tree key */
95 unsigned long rb_key;
96 /* prio tree member */
97 struct rb_node p_node;
98 /* prio tree root we belong to, if any */
99 struct rb_root *p_root;
100 /* sorted list of pending requests */
101 struct rb_root sort_list;
102 /* if fifo isn't expired, next request to serve */
103 struct request *next_rq;
104 /* requests queued in sort_list */
105 int queued[2];
106 /* currently allocated requests */
107 int allocated[2];
108 /* fifo list of requests in sort_list */
109 struct list_head fifo;
110
111 unsigned long slice_end;
112 long slice_resid;
113 unsigned int slice_dispatch;
114
115 /* pending metadata requests */
116 int meta_pending;
117 /* number of requests that are on the dispatch list or inside driver */
118 int dispatched;
119
120 /* io prio of this group */
121 unsigned short ioprio, org_ioprio;
122 unsigned short ioprio_class, org_ioprio_class;
123
b2c18e1e
JM
124 unsigned int seek_samples;
125 u64 seek_total;
126 sector_t seek_mean;
127 sector_t last_request_pos;
e6c5bc73 128 unsigned long seeky_start;
b2c18e1e 129
6118b70b 130 pid_t pid;
df5fe3e8 131
aa6f6a3d 132 struct cfq_rb_root *service_tree;
df5fe3e8 133 struct cfq_queue *new_cfqq;
6118b70b
JA
134};
135
22e2c507
JA
136/*
137 * Per block device queue structure
138 */
1da177e4 139struct cfq_data {
165125e1 140 struct request_queue *queue;
22e2c507
JA
141
142 /*
143 * rr list of queues with requests and the count of them
144 */
cc09e299 145 struct cfq_rb_root service_tree;
a36e71f9
JA
146
147 /*
148 * Each priority tree is sorted by next_request position. These
149 * trees are used when determining if two or more queues are
150 * interleaving requests (see cfq_close_cooperator).
151 */
152 struct rb_root prio_trees[CFQ_PRIO_LISTS];
153
22e2c507 154 unsigned int busy_queues;
5db5d642
CZ
155 unsigned int busy_rt_queues;
156 unsigned int busy_queues_avg[2];
22e2c507 157
5ad531db 158 int rq_in_driver[2];
3ed9a296 159 int sync_flight;
45333d5a
AC
160
161 /*
162 * queue-depth detection
163 */
164 int rq_queued;
25776e35 165 int hw_tag;
45333d5a
AC
166 int hw_tag_samples;
167 int rq_in_driver_peak;
1da177e4 168
22e2c507
JA
169 /*
170 * idle window management
171 */
172 struct timer_list idle_slice_timer;
23e018a1 173 struct work_struct unplug_work;
1da177e4 174
22e2c507
JA
175 struct cfq_queue *active_queue;
176 struct cfq_io_context *active_cic;
22e2c507 177
c2dea2d1
VT
178 /*
179 * async queue for each priority case
180 */
181 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
182 struct cfq_queue *async_idle_cfqq;
15c31be4 183
6d048f53 184 sector_t last_position;
1da177e4 185
1da177e4
LT
186 /*
187 * tunables, see top of file
188 */
189 unsigned int cfq_quantum;
22e2c507 190 unsigned int cfq_fifo_expire[2];
1da177e4
LT
191 unsigned int cfq_back_penalty;
192 unsigned int cfq_back_max;
22e2c507
JA
193 unsigned int cfq_slice[2];
194 unsigned int cfq_slice_async_rq;
195 unsigned int cfq_slice_idle;
963b72fc 196 unsigned int cfq_latency;
d9ff4187
AV
197
198 struct list_head cic_list;
1da177e4 199
6118b70b
JA
200 /*
201 * Fallback dummy cfqq for extreme OOM conditions
202 */
203 struct cfq_queue oom_cfqq;
365722bb
VG
204
205 unsigned long last_end_sync_rq;
1da177e4
LT
206};
207
3b18152c 208enum cfqq_state_flags {
b0b8d749
JA
209 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
210 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 211 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 212 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
213 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
214 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
215 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 216 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 217 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 218 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
3b18152c
JA
219};
220
221#define CFQ_CFQQ_FNS(name) \
222static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
223{ \
fe094d98 224 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
225} \
226static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
227{ \
fe094d98 228 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
229} \
230static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
231{ \
fe094d98 232 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
233}
234
235CFQ_CFQQ_FNS(on_rr);
236CFQ_CFQQ_FNS(wait_request);
b029195d 237CFQ_CFQQ_FNS(must_dispatch);
3b18152c 238CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
239CFQ_CFQQ_FNS(fifo_expire);
240CFQ_CFQQ_FNS(idle_window);
241CFQ_CFQQ_FNS(prio_changed);
44f7c160 242CFQ_CFQQ_FNS(slice_new);
91fac317 243CFQ_CFQQ_FNS(sync);
a36e71f9 244CFQ_CFQQ_FNS(coop);
3b18152c
JA
245#undef CFQ_CFQQ_FNS
246
7b679138
JA
247#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
248 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
249#define cfq_log(cfqd, fmt, args...) \
250 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
251
165125e1 252static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 253static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 254 struct io_context *, gfp_t);
4ac845a2 255static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
256 struct io_context *);
257
5ad531db
JA
258static inline int rq_in_driver(struct cfq_data *cfqd)
259{
260 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
261}
262
91fac317 263static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 264 bool is_sync)
91fac317 265{
a6151c3a 266 return cic->cfqq[is_sync];
91fac317
VT
267}
268
269static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 270 struct cfq_queue *cfqq, bool is_sync)
91fac317 271{
a6151c3a 272 cic->cfqq[is_sync] = cfqq;
91fac317
VT
273}
274
275/*
276 * We regard a request as SYNC, if it's either a read or has the SYNC bit
277 * set (in which case it could also be direct WRITE).
278 */
a6151c3a 279static inline bool cfq_bio_sync(struct bio *bio)
91fac317 280{
a6151c3a 281 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 282}
1da177e4 283
99f95e52
AM
284/*
285 * scheduler run of queue, if there are requests pending and no one in the
286 * driver that will restart queueing
287 */
23e018a1 288static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 289{
7b679138
JA
290 if (cfqd->busy_queues) {
291 cfq_log(cfqd, "schedule dispatch");
23e018a1 292 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 293 }
99f95e52
AM
294}
295
165125e1 296static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
297{
298 struct cfq_data *cfqd = q->elevator->elevator_data;
299
b4878f24 300 return !cfqd->busy_queues;
99f95e52
AM
301}
302
44f7c160
JA
303/*
304 * Scale schedule slice based on io priority. Use the sync time slice only
305 * if a queue is marked sync and has sync io queued. A sync queue with async
306 * io only, should not get full sync slice length.
307 */
a6151c3a 308static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 309 unsigned short prio)
44f7c160 310{
d9e7620e 311 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 312
d9e7620e
JA
313 WARN_ON(prio >= IOPRIO_BE_NR);
314
315 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
316}
44f7c160 317
d9e7620e
JA
318static inline int
319cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
320{
321 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
322}
323
5db5d642
CZ
324/*
325 * get averaged number of queues of RT/BE priority.
326 * average is updated, with a formula that gives more weight to higher numbers,
327 * to quickly follows sudden increases and decrease slowly
328 */
329
330static inline unsigned
331cfq_get_avg_queues(struct cfq_data *cfqd, bool rt) {
332 unsigned min_q, max_q;
333 unsigned mult = cfq_hist_divisor - 1;
334 unsigned round = cfq_hist_divisor / 2;
335 unsigned busy = cfqd->busy_rt_queues;
336
337 if (!rt)
338 busy = cfqd->busy_queues - cfqd->busy_rt_queues;
339
340 min_q = min(cfqd->busy_queues_avg[rt], busy);
341 max_q = max(cfqd->busy_queues_avg[rt], busy);
342 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
343 cfq_hist_divisor;
344 return cfqd->busy_queues_avg[rt];
345}
346
44f7c160
JA
347static inline void
348cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
349{
5db5d642
CZ
350 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
351 if (cfqd->cfq_latency) {
352 /* interested queues (we consider only the ones with the same
353 * priority class) */
354 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
355 unsigned sync_slice = cfqd->cfq_slice[1];
356 unsigned expect_latency = sync_slice * iq;
357 if (expect_latency > cfq_target_latency) {
358 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
359 /* scale low_slice according to IO priority
360 * and sync vs async */
361 unsigned low_slice =
362 min(slice, base_low_slice * slice / sync_slice);
363 /* the adapted slice value is scaled to fit all iqs
364 * into the target latency */
365 slice = max(slice * cfq_target_latency / expect_latency,
366 low_slice);
367 }
368 }
369 cfqq->slice_end = jiffies + slice;
7b679138 370 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
371}
372
373/*
374 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
375 * isn't valid until the first request from the dispatch is activated
376 * and the slice time set.
377 */
a6151c3a 378static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
379{
380 if (cfq_cfqq_slice_new(cfqq))
381 return 0;
382 if (time_before(jiffies, cfqq->slice_end))
383 return 0;
384
385 return 1;
386}
387
1da177e4 388/*
5e705374 389 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 390 * We choose the request that is closest to the head right now. Distance
e8a99053 391 * behind the head is penalized and only allowed to a certain extent.
1da177e4 392 */
5e705374
JA
393static struct request *
394cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
395{
396 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 397 unsigned long back_max;
e8a99053
AM
398#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
399#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
400 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 401
5e705374
JA
402 if (rq1 == NULL || rq1 == rq2)
403 return rq2;
404 if (rq2 == NULL)
405 return rq1;
9c2c38a1 406
5e705374
JA
407 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
408 return rq1;
409 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
410 return rq2;
374f84ac
JA
411 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
412 return rq1;
413 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
414 return rq2;
1da177e4 415
83096ebf
TH
416 s1 = blk_rq_pos(rq1);
417 s2 = blk_rq_pos(rq2);
1da177e4 418
6d048f53 419 last = cfqd->last_position;
1da177e4 420
1da177e4
LT
421 /*
422 * by definition, 1KiB is 2 sectors
423 */
424 back_max = cfqd->cfq_back_max * 2;
425
426 /*
427 * Strict one way elevator _except_ in the case where we allow
428 * short backward seeks which are biased as twice the cost of a
429 * similar forward seek.
430 */
431 if (s1 >= last)
432 d1 = s1 - last;
433 else if (s1 + back_max >= last)
434 d1 = (last - s1) * cfqd->cfq_back_penalty;
435 else
e8a99053 436 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
437
438 if (s2 >= last)
439 d2 = s2 - last;
440 else if (s2 + back_max >= last)
441 d2 = (last - s2) * cfqd->cfq_back_penalty;
442 else
e8a99053 443 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
444
445 /* Found required data */
e8a99053
AM
446
447 /*
448 * By doing switch() on the bit mask "wrap" we avoid having to
449 * check two variables for all permutations: --> faster!
450 */
451 switch (wrap) {
5e705374 452 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 453 if (d1 < d2)
5e705374 454 return rq1;
e8a99053 455 else if (d2 < d1)
5e705374 456 return rq2;
e8a99053
AM
457 else {
458 if (s1 >= s2)
5e705374 459 return rq1;
e8a99053 460 else
5e705374 461 return rq2;
e8a99053 462 }
1da177e4 463
e8a99053 464 case CFQ_RQ2_WRAP:
5e705374 465 return rq1;
e8a99053 466 case CFQ_RQ1_WRAP:
5e705374
JA
467 return rq2;
468 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
469 default:
470 /*
471 * Since both rqs are wrapped,
472 * start with the one that's further behind head
473 * (--> only *one* back seek required),
474 * since back seek takes more time than forward.
475 */
476 if (s1 <= s2)
5e705374 477 return rq1;
1da177e4 478 else
5e705374 479 return rq2;
1da177e4
LT
480 }
481}
482
498d3aa2
JA
483/*
484 * The below is leftmost cache rbtree addon
485 */
0871714e 486static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
487{
488 if (!root->left)
489 root->left = rb_first(&root->rb);
490
0871714e
JA
491 if (root->left)
492 return rb_entry(root->left, struct cfq_queue, rb_node);
493
494 return NULL;
cc09e299
JA
495}
496
a36e71f9
JA
497static void rb_erase_init(struct rb_node *n, struct rb_root *root)
498{
499 rb_erase(n, root);
500 RB_CLEAR_NODE(n);
501}
502
cc09e299
JA
503static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
504{
505 if (root->left == n)
506 root->left = NULL;
a36e71f9 507 rb_erase_init(n, &root->rb);
aa6f6a3d 508 --root->count;
cc09e299
JA
509}
510
1da177e4
LT
511/*
512 * would be nice to take fifo expire time into account as well
513 */
5e705374
JA
514static struct request *
515cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
516 struct request *last)
1da177e4 517{
21183b07
JA
518 struct rb_node *rbnext = rb_next(&last->rb_node);
519 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 520 struct request *next = NULL, *prev = NULL;
1da177e4 521
21183b07 522 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
523
524 if (rbprev)
5e705374 525 prev = rb_entry_rq(rbprev);
1da177e4 526
21183b07 527 if (rbnext)
5e705374 528 next = rb_entry_rq(rbnext);
21183b07
JA
529 else {
530 rbnext = rb_first(&cfqq->sort_list);
531 if (rbnext && rbnext != &last->rb_node)
5e705374 532 next = rb_entry_rq(rbnext);
21183b07 533 }
1da177e4 534
21183b07 535 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
536}
537
d9e7620e
JA
538static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
539 struct cfq_queue *cfqq)
1da177e4 540{
d9e7620e
JA
541 /*
542 * just an approximation, should be ok.
543 */
67e6b49e
JA
544 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
545 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
546}
547
498d3aa2
JA
548/*
549 * The cfqd->service_tree holds all pending cfq_queue's that have
550 * requests waiting to be processed. It is sorted in the order that
551 * we will service the queues.
552 */
a36e71f9 553static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 554 bool add_front)
d9e7620e 555{
0871714e
JA
556 struct rb_node **p, *parent;
557 struct cfq_queue *__cfqq;
d9e7620e 558 unsigned long rb_key;
aa6f6a3d 559 struct cfq_rb_root *service_tree = &cfqd->service_tree;
498d3aa2 560 int left;
d9e7620e 561
0871714e
JA
562 if (cfq_class_idle(cfqq)) {
563 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 564 parent = rb_last(&service_tree->rb);
0871714e
JA
565 if (parent && parent != &cfqq->rb_node) {
566 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
567 rb_key += __cfqq->rb_key;
568 } else
569 rb_key += jiffies;
570 } else if (!add_front) {
b9c8946b
JA
571 /*
572 * Get our rb key offset. Subtract any residual slice
573 * value carried from last service. A negative resid
574 * count indicates slice overrun, and this should position
575 * the next service time further away in the tree.
576 */
edd75ffd 577 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 578 rb_key -= cfqq->slice_resid;
edd75ffd 579 cfqq->slice_resid = 0;
48e025e6
CZ
580 } else {
581 rb_key = -HZ;
aa6f6a3d 582 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
583 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
584 }
1da177e4 585
d9e7620e 586 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 587 /*
d9e7620e 588 * same position, nothing more to do
99f9628a 589 */
d9e7620e
JA
590 if (rb_key == cfqq->rb_key)
591 return;
1da177e4 592
aa6f6a3d
CZ
593 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
594 cfqq->service_tree = NULL;
1da177e4 595 }
d9e7620e 596
498d3aa2 597 left = 1;
0871714e 598 parent = NULL;
aa6f6a3d
CZ
599 cfqq->service_tree = service_tree;
600 p = &service_tree->rb.rb_node;
d9e7620e 601 while (*p) {
67060e37 602 struct rb_node **n;
cc09e299 603
d9e7620e
JA
604 parent = *p;
605 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
606
0c534e0a
JA
607 /*
608 * sort RT queues first, we always want to give
67060e37
JA
609 * preference to them. IDLE queues goes to the back.
610 * after that, sort on the next service time.
0c534e0a
JA
611 */
612 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 613 n = &(*p)->rb_left;
0c534e0a 614 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
615 n = &(*p)->rb_right;
616 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
617 n = &(*p)->rb_left;
618 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
619 n = &(*p)->rb_right;
48e025e6 620 else if (time_before(rb_key, __cfqq->rb_key))
67060e37
JA
621 n = &(*p)->rb_left;
622 else
623 n = &(*p)->rb_right;
624
625 if (n == &(*p)->rb_right)
cc09e299 626 left = 0;
67060e37
JA
627
628 p = n;
d9e7620e
JA
629 }
630
cc09e299 631 if (left)
aa6f6a3d 632 service_tree->left = &cfqq->rb_node;
cc09e299 633
d9e7620e
JA
634 cfqq->rb_key = rb_key;
635 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
636 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
637 service_tree->count++;
1da177e4
LT
638}
639
a36e71f9 640static struct cfq_queue *
f2d1f0ae
JA
641cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
642 sector_t sector, struct rb_node **ret_parent,
643 struct rb_node ***rb_link)
a36e71f9 644{
a36e71f9
JA
645 struct rb_node **p, *parent;
646 struct cfq_queue *cfqq = NULL;
647
648 parent = NULL;
649 p = &root->rb_node;
650 while (*p) {
651 struct rb_node **n;
652
653 parent = *p;
654 cfqq = rb_entry(parent, struct cfq_queue, p_node);
655
656 /*
657 * Sort strictly based on sector. Smallest to the left,
658 * largest to the right.
659 */
2e46e8b2 660 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 661 n = &(*p)->rb_right;
2e46e8b2 662 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
663 n = &(*p)->rb_left;
664 else
665 break;
666 p = n;
3ac6c9f8 667 cfqq = NULL;
a36e71f9
JA
668 }
669
670 *ret_parent = parent;
671 if (rb_link)
672 *rb_link = p;
3ac6c9f8 673 return cfqq;
a36e71f9
JA
674}
675
676static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
677{
a36e71f9
JA
678 struct rb_node **p, *parent;
679 struct cfq_queue *__cfqq;
680
f2d1f0ae
JA
681 if (cfqq->p_root) {
682 rb_erase(&cfqq->p_node, cfqq->p_root);
683 cfqq->p_root = NULL;
684 }
a36e71f9
JA
685
686 if (cfq_class_idle(cfqq))
687 return;
688 if (!cfqq->next_rq)
689 return;
690
f2d1f0ae 691 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
692 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
693 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
694 if (!__cfqq) {
695 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
696 rb_insert_color(&cfqq->p_node, cfqq->p_root);
697 } else
698 cfqq->p_root = NULL;
a36e71f9
JA
699}
700
498d3aa2
JA
701/*
702 * Update cfqq's position in the service tree.
703 */
edd75ffd 704static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 705{
6d048f53
JA
706 /*
707 * Resorting requires the cfqq to be on the RR list already.
708 */
a36e71f9 709 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 710 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
711 cfq_prio_tree_add(cfqd, cfqq);
712 }
6d048f53
JA
713}
714
1da177e4
LT
715/*
716 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 717 * the pending list according to last request service
1da177e4 718 */
febffd61 719static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 720{
7b679138 721 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
722 BUG_ON(cfq_cfqq_on_rr(cfqq));
723 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 724 cfqd->busy_queues++;
5db5d642
CZ
725 if (cfq_class_rt(cfqq))
726 cfqd->busy_rt_queues++;
edd75ffd 727 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
728}
729
498d3aa2
JA
730/*
731 * Called when the cfqq no longer has requests pending, remove it from
732 * the service tree.
733 */
febffd61 734static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 735{
7b679138 736 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
737 BUG_ON(!cfq_cfqq_on_rr(cfqq));
738 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 739
aa6f6a3d
CZ
740 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
741 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
742 cfqq->service_tree = NULL;
743 }
f2d1f0ae
JA
744 if (cfqq->p_root) {
745 rb_erase(&cfqq->p_node, cfqq->p_root);
746 cfqq->p_root = NULL;
747 }
d9e7620e 748
1da177e4
LT
749 BUG_ON(!cfqd->busy_queues);
750 cfqd->busy_queues--;
5db5d642
CZ
751 if (cfq_class_rt(cfqq))
752 cfqd->busy_rt_queues--;
1da177e4
LT
753}
754
755/*
756 * rb tree support functions
757 */
febffd61 758static void cfq_del_rq_rb(struct request *rq)
1da177e4 759{
5e705374 760 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 761 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 762 const int sync = rq_is_sync(rq);
1da177e4 763
b4878f24
JA
764 BUG_ON(!cfqq->queued[sync]);
765 cfqq->queued[sync]--;
1da177e4 766
5e705374 767 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 768
dd67d051 769 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 770 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
771}
772
5e705374 773static void cfq_add_rq_rb(struct request *rq)
1da177e4 774{
5e705374 775 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 776 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 777 struct request *__alias, *prev;
1da177e4 778
5380a101 779 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
780
781 /*
782 * looks a little odd, but the first insert might return an alias.
783 * if that happens, put the alias on the dispatch list
784 */
21183b07 785 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 786 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
787
788 if (!cfq_cfqq_on_rr(cfqq))
789 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
790
791 /*
792 * check if this request is a better next-serve candidate
793 */
a36e71f9 794 prev = cfqq->next_rq;
5044eed4 795 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
796
797 /*
798 * adjust priority tree position, if ->next_rq changes
799 */
800 if (prev != cfqq->next_rq)
801 cfq_prio_tree_add(cfqd, cfqq);
802
5044eed4 803 BUG_ON(!cfqq->next_rq);
1da177e4
LT
804}
805
febffd61 806static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 807{
5380a101
JA
808 elv_rb_del(&cfqq->sort_list, rq);
809 cfqq->queued[rq_is_sync(rq)]--;
5e705374 810 cfq_add_rq_rb(rq);
1da177e4
LT
811}
812
206dc69b
JA
813static struct request *
814cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 815{
206dc69b 816 struct task_struct *tsk = current;
91fac317 817 struct cfq_io_context *cic;
206dc69b 818 struct cfq_queue *cfqq;
1da177e4 819
4ac845a2 820 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
821 if (!cic)
822 return NULL;
823
824 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
825 if (cfqq) {
826 sector_t sector = bio->bi_sector + bio_sectors(bio);
827
21183b07 828 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 829 }
1da177e4 830
1da177e4
LT
831 return NULL;
832}
833
165125e1 834static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 835{
22e2c507 836 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 837
5ad531db 838 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 839 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 840 rq_in_driver(cfqd));
25776e35 841
5b93629b 842 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
843}
844
165125e1 845static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 846{
b4878f24 847 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 848 const int sync = rq_is_sync(rq);
b4878f24 849
5ad531db
JA
850 WARN_ON(!cfqd->rq_in_driver[sync]);
851 cfqd->rq_in_driver[sync]--;
7b679138 852 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 853 rq_in_driver(cfqd));
1da177e4
LT
854}
855
b4878f24 856static void cfq_remove_request(struct request *rq)
1da177e4 857{
5e705374 858 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 859
5e705374
JA
860 if (cfqq->next_rq == rq)
861 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 862
b4878f24 863 list_del_init(&rq->queuelist);
5e705374 864 cfq_del_rq_rb(rq);
374f84ac 865
45333d5a 866 cfqq->cfqd->rq_queued--;
374f84ac
JA
867 if (rq_is_meta(rq)) {
868 WARN_ON(!cfqq->meta_pending);
869 cfqq->meta_pending--;
870 }
1da177e4
LT
871}
872
165125e1
JA
873static int cfq_merge(struct request_queue *q, struct request **req,
874 struct bio *bio)
1da177e4
LT
875{
876 struct cfq_data *cfqd = q->elevator->elevator_data;
877 struct request *__rq;
1da177e4 878
206dc69b 879 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 880 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
881 *req = __rq;
882 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
883 }
884
885 return ELEVATOR_NO_MERGE;
1da177e4
LT
886}
887
165125e1 888static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 889 int type)
1da177e4 890{
21183b07 891 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 892 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 893
5e705374 894 cfq_reposition_rq_rb(cfqq, req);
1da177e4 895 }
1da177e4
LT
896}
897
898static void
165125e1 899cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
900 struct request *next)
901{
22e2c507
JA
902 /*
903 * reposition in fifo if next is older than rq
904 */
905 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 906 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 907 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
908 rq_set_fifo_time(rq, rq_fifo_time(next));
909 }
22e2c507 910
b4878f24 911 cfq_remove_request(next);
22e2c507
JA
912}
913
165125e1 914static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
915 struct bio *bio)
916{
917 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 918 struct cfq_io_context *cic;
da775265 919 struct cfq_queue *cfqq;
da775265
JA
920
921 /*
ec8acb69 922 * Disallow merge of a sync bio into an async request.
da775265 923 */
91fac317 924 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 925 return false;
da775265
JA
926
927 /*
719d3402
JA
928 * Lookup the cfqq that this bio will be queued with. Allow
929 * merge only if rq is queued there.
da775265 930 */
4ac845a2 931 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 932 if (!cic)
a6151c3a 933 return false;
719d3402 934
91fac317 935 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 936 return cfqq == RQ_CFQQ(rq);
da775265
JA
937}
938
febffd61
JA
939static void __cfq_set_active_queue(struct cfq_data *cfqd,
940 struct cfq_queue *cfqq)
22e2c507
JA
941{
942 if (cfqq) {
7b679138 943 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 944 cfqq->slice_end = 0;
2f5cb738
JA
945 cfqq->slice_dispatch = 0;
946
2f5cb738 947 cfq_clear_cfqq_wait_request(cfqq);
b029195d 948 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
949 cfq_clear_cfqq_must_alloc_slice(cfqq);
950 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 951 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
952
953 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
954 }
955
956 cfqd->active_queue = cfqq;
957}
958
7b14e3b5
JA
959/*
960 * current cfqq expired its slice (or was too idle), select new one
961 */
962static void
963__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 964 bool timed_out)
7b14e3b5 965{
7b679138
JA
966 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
967
7b14e3b5
JA
968 if (cfq_cfqq_wait_request(cfqq))
969 del_timer(&cfqd->idle_slice_timer);
970
7b14e3b5
JA
971 cfq_clear_cfqq_wait_request(cfqq);
972
973 /*
6084cdda 974 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 975 */
7b679138 976 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 977 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
978 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
979 }
7b14e3b5 980
edd75ffd 981 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
982
983 if (cfqq == cfqd->active_queue)
984 cfqd->active_queue = NULL;
985
986 if (cfqd->active_cic) {
987 put_io_context(cfqd->active_cic->ioc);
988 cfqd->active_cic = NULL;
989 }
7b14e3b5
JA
990}
991
a6151c3a 992static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
993{
994 struct cfq_queue *cfqq = cfqd->active_queue;
995
996 if (cfqq)
6084cdda 997 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
998}
999
498d3aa2
JA
1000/*
1001 * Get next queue for service. Unless we have a queue preemption,
1002 * we'll simply select the first cfqq in the service tree.
1003 */
6d048f53 1004static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1005{
edd75ffd
JA
1006 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
1007 return NULL;
d9e7620e 1008
0871714e 1009 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
1010}
1011
498d3aa2
JA
1012/*
1013 * Get and set a new active queue for service.
1014 */
a36e71f9
JA
1015static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1016 struct cfq_queue *cfqq)
6d048f53 1017{
b3b6d040 1018 if (!cfqq)
a36e71f9 1019 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1020
22e2c507 1021 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1022 return cfqq;
22e2c507
JA
1023}
1024
d9e7620e
JA
1025static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1026 struct request *rq)
1027{
83096ebf
TH
1028 if (blk_rq_pos(rq) >= cfqd->last_position)
1029 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1030 else
83096ebf 1031 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1032}
1033
b2c18e1e
JM
1034#define CFQQ_SEEK_THR 8 * 1024
1035#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1036
b2c18e1e
JM
1037static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1038 struct request *rq)
6d048f53 1039{
b2c18e1e 1040 sector_t sdist = cfqq->seek_mean;
6d048f53 1041
b2c18e1e
JM
1042 if (!sample_valid(cfqq->seek_samples))
1043 sdist = CFQQ_SEEK_THR;
6d048f53 1044
04dc6e71 1045 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1046}
1047
a36e71f9
JA
1048static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1049 struct cfq_queue *cur_cfqq)
1050{
f2d1f0ae 1051 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1052 struct rb_node *parent, *node;
1053 struct cfq_queue *__cfqq;
1054 sector_t sector = cfqd->last_position;
1055
1056 if (RB_EMPTY_ROOT(root))
1057 return NULL;
1058
1059 /*
1060 * First, if we find a request starting at the end of the last
1061 * request, choose it.
1062 */
f2d1f0ae 1063 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1064 if (__cfqq)
1065 return __cfqq;
1066
1067 /*
1068 * If the exact sector wasn't found, the parent of the NULL leaf
1069 * will contain the closest sector.
1070 */
1071 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1072 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1073 return __cfqq;
1074
2e46e8b2 1075 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1076 node = rb_next(&__cfqq->p_node);
1077 else
1078 node = rb_prev(&__cfqq->p_node);
1079 if (!node)
1080 return NULL;
1081
1082 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1083 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1084 return __cfqq;
1085
1086 return NULL;
1087}
1088
1089/*
1090 * cfqd - obvious
1091 * cur_cfqq - passed in so that we don't decide that the current queue is
1092 * closely cooperating with itself.
1093 *
1094 * So, basically we're assuming that that cur_cfqq has dispatched at least
1095 * one request, and that cfqd->last_position reflects a position on the disk
1096 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1097 * assumption.
1098 */
1099static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1100 struct cfq_queue *cur_cfqq)
6d048f53 1101{
a36e71f9
JA
1102 struct cfq_queue *cfqq;
1103
e6c5bc73
JM
1104 if (!cfq_cfqq_sync(cur_cfqq))
1105 return NULL;
1106 if (CFQQ_SEEKY(cur_cfqq))
1107 return NULL;
1108
6d048f53 1109 /*
d9e7620e
JA
1110 * We should notice if some of the queues are cooperating, eg
1111 * working closely on the same area of the disk. In that case,
1112 * we can group them together and don't waste time idling.
6d048f53 1113 */
a36e71f9
JA
1114 cfqq = cfqq_close(cfqd, cur_cfqq);
1115 if (!cfqq)
1116 return NULL;
1117
df5fe3e8
JM
1118 /*
1119 * It only makes sense to merge sync queues.
1120 */
1121 if (!cfq_cfqq_sync(cfqq))
1122 return NULL;
e6c5bc73
JM
1123 if (CFQQ_SEEKY(cfqq))
1124 return NULL;
df5fe3e8 1125
a36e71f9 1126 return cfqq;
6d048f53
JA
1127}
1128
6d048f53 1129static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1130{
1792669c 1131 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1132 struct cfq_io_context *cic;
7b14e3b5
JA
1133 unsigned long sl;
1134
a68bbddb 1135 /*
f7d7b7a7
JA
1136 * SSD device without seek penalty, disable idling. But only do so
1137 * for devices that support queuing, otherwise we still have a problem
1138 * with sync vs async workloads.
a68bbddb 1139 */
f7d7b7a7 1140 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1141 return;
1142
dd67d051 1143 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1144 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1145
1146 /*
1147 * idle is disabled, either manually or by past process history
1148 */
6d048f53
JA
1149 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1150 return;
1151
7b679138
JA
1152 /*
1153 * still requests with the driver, don't idle
1154 */
5ad531db 1155 if (rq_in_driver(cfqd))
7b679138
JA
1156 return;
1157
22e2c507
JA
1158 /*
1159 * task has exited, don't wait
1160 */
206dc69b 1161 cic = cfqd->active_cic;
66dac98e 1162 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1163 return;
1164
355b659c
CZ
1165 /*
1166 * If our average think time is larger than the remaining time
1167 * slice, then don't idle. This avoids overrunning the allotted
1168 * time slice.
1169 */
1170 if (sample_valid(cic->ttime_samples) &&
1171 (cfqq->slice_end - jiffies < cic->ttime_mean))
1172 return;
1173
3b18152c 1174 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1175
206dc69b
JA
1176 /*
1177 * we don't want to idle for seeks, but we do want to allow
1178 * fair distribution of slice time for a process doing back-to-back
1179 * seeks. so allow a little bit of time for him to submit a new rq
1180 */
6d048f53 1181 sl = cfqd->cfq_slice_idle;
b2c18e1e 1182 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
d9e7620e 1183 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1184
7b14e3b5 1185 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1186 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1187}
1188
498d3aa2
JA
1189/*
1190 * Move request from internal lists to the request queue dispatch list.
1191 */
165125e1 1192static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1193{
3ed9a296 1194 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1195 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1196
7b679138
JA
1197 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1198
06d21886 1199 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1200 cfq_remove_request(rq);
6d048f53 1201 cfqq->dispatched++;
5380a101 1202 elv_dispatch_sort(q, rq);
3ed9a296
JA
1203
1204 if (cfq_cfqq_sync(cfqq))
1205 cfqd->sync_flight++;
1da177e4
LT
1206}
1207
1208/*
1209 * return expired entry, or NULL to just start from scratch in rbtree
1210 */
febffd61 1211static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1212{
30996f40 1213 struct request *rq = NULL;
1da177e4 1214
3b18152c 1215 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1216 return NULL;
cb887411
JA
1217
1218 cfq_mark_cfqq_fifo_expire(cfqq);
1219
89850f7e
JA
1220 if (list_empty(&cfqq->fifo))
1221 return NULL;
1da177e4 1222
89850f7e 1223 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1224 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1225 rq = NULL;
1da177e4 1226
30996f40 1227 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1228 return rq;
1da177e4
LT
1229}
1230
22e2c507
JA
1231static inline int
1232cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1233{
1234 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1235
22e2c507 1236 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1237
22e2c507 1238 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1239}
1240
df5fe3e8
JM
1241/*
1242 * Must be called with the queue_lock held.
1243 */
1244static int cfqq_process_refs(struct cfq_queue *cfqq)
1245{
1246 int process_refs, io_refs;
1247
1248 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1249 process_refs = atomic_read(&cfqq->ref) - io_refs;
1250 BUG_ON(process_refs < 0);
1251 return process_refs;
1252}
1253
1254static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1255{
e6c5bc73 1256 int process_refs, new_process_refs;
df5fe3e8
JM
1257 struct cfq_queue *__cfqq;
1258
1259 /* Avoid a circular list and skip interim queue merges */
1260 while ((__cfqq = new_cfqq->new_cfqq)) {
1261 if (__cfqq == cfqq)
1262 return;
1263 new_cfqq = __cfqq;
1264 }
1265
1266 process_refs = cfqq_process_refs(cfqq);
1267 /*
1268 * If the process for the cfqq has gone away, there is no
1269 * sense in merging the queues.
1270 */
1271 if (process_refs == 0)
1272 return;
1273
e6c5bc73
JM
1274 /*
1275 * Merge in the direction of the lesser amount of work.
1276 */
1277 new_process_refs = cfqq_process_refs(new_cfqq);
1278 if (new_process_refs >= process_refs) {
1279 cfqq->new_cfqq = new_cfqq;
1280 atomic_add(process_refs, &new_cfqq->ref);
1281 } else {
1282 new_cfqq->new_cfqq = cfqq;
1283 atomic_add(new_process_refs, &cfqq->ref);
1284 }
df5fe3e8
JM
1285}
1286
22e2c507 1287/*
498d3aa2
JA
1288 * Select a queue for service. If we have a current active queue,
1289 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1290 */
1b5ed5e1 1291static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1292{
a36e71f9 1293 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1294
22e2c507
JA
1295 cfqq = cfqd->active_queue;
1296 if (!cfqq)
1297 goto new_queue;
1da177e4 1298
22e2c507 1299 /*
6d048f53 1300 * The active queue has run out of time, expire it and select new.
22e2c507 1301 */
b029195d 1302 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1303 goto expire;
1da177e4 1304
22e2c507 1305 /*
6d048f53
JA
1306 * The active queue has requests and isn't expired, allow it to
1307 * dispatch.
22e2c507 1308 */
dd67d051 1309 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1310 goto keep_queue;
6d048f53 1311
a36e71f9
JA
1312 /*
1313 * If another queue has a request waiting within our mean seek
1314 * distance, let it run. The expire code will check for close
1315 * cooperators and put the close queue at the front of the service
df5fe3e8 1316 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1317 */
b3b6d040 1318 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1319 if (new_cfqq) {
1320 if (!cfqq->new_cfqq)
1321 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1322 goto expire;
df5fe3e8 1323 }
a36e71f9 1324
6d048f53
JA
1325 /*
1326 * No requests pending. If the active queue still has requests in
1327 * flight or is idling for a new request, allow either of these
1328 * conditions to happen (or time out) before selecting a new queue.
1329 */
cc197479
JA
1330 if (timer_pending(&cfqd->idle_slice_timer) ||
1331 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1332 cfqq = NULL;
1333 goto keep_queue;
22e2c507
JA
1334 }
1335
3b18152c 1336expire:
6084cdda 1337 cfq_slice_expired(cfqd, 0);
3b18152c 1338new_queue:
a36e71f9 1339 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1340keep_queue:
3b18152c 1341 return cfqq;
22e2c507
JA
1342}
1343
febffd61 1344static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1345{
1346 int dispatched = 0;
1347
1348 while (cfqq->next_rq) {
1349 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1350 dispatched++;
1351 }
1352
1353 BUG_ON(!list_empty(&cfqq->fifo));
1354 return dispatched;
1355}
1356
498d3aa2
JA
1357/*
1358 * Drain our current requests. Used for barriers and when switching
1359 * io schedulers on-the-fly.
1360 */
d9e7620e 1361static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1362{
0871714e 1363 struct cfq_queue *cfqq;
d9e7620e 1364 int dispatched = 0;
1b5ed5e1 1365
0871714e 1366 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1367 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1368
6084cdda 1369 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1370
1371 BUG_ON(cfqd->busy_queues);
1372
6923715a 1373 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1374 return dispatched;
1375}
1376
0b182d61 1377static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1378{
2f5cb738 1379 unsigned int max_dispatch;
22e2c507 1380
5ad531db
JA
1381 /*
1382 * Drain async requests before we start sync IO
1383 */
1384 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1385 return false;
5ad531db 1386
2f5cb738
JA
1387 /*
1388 * If this is an async queue and we have sync IO in flight, let it wait
1389 */
1390 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1391 return false;
2f5cb738
JA
1392
1393 max_dispatch = cfqd->cfq_quantum;
1394 if (cfq_class_idle(cfqq))
1395 max_dispatch = 1;
b4878f24 1396
2f5cb738
JA
1397 /*
1398 * Does this cfqq already have too much IO in flight?
1399 */
1400 if (cfqq->dispatched >= max_dispatch) {
1401 /*
1402 * idle queue must always only have a single IO in flight
1403 */
3ed9a296 1404 if (cfq_class_idle(cfqq))
0b182d61 1405 return false;
3ed9a296 1406
2f5cb738
JA
1407 /*
1408 * We have other queues, don't allow more IO from this one
1409 */
1410 if (cfqd->busy_queues > 1)
0b182d61 1411 return false;
9ede209e 1412
365722bb 1413 /*
8e296755 1414 * Sole queue user, allow bigger slice
365722bb 1415 */
8e296755
JA
1416 max_dispatch *= 4;
1417 }
1418
1419 /*
1420 * Async queues must wait a bit before being allowed dispatch.
1421 * We also ramp up the dispatch depth gradually for async IO,
1422 * based on the last sync IO we serviced
1423 */
963b72fc 1424 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1425 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1426 unsigned int depth;
365722bb 1427
61f0c1dc 1428 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1429 if (!depth && !cfqq->dispatched)
1430 depth = 1;
8e296755
JA
1431 if (depth < max_dispatch)
1432 max_dispatch = depth;
2f5cb738 1433 }
3ed9a296 1434
0b182d61
JA
1435 /*
1436 * If we're below the current max, allow a dispatch
1437 */
1438 return cfqq->dispatched < max_dispatch;
1439}
1440
1441/*
1442 * Dispatch a request from cfqq, moving them to the request queue
1443 * dispatch list.
1444 */
1445static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1446{
1447 struct request *rq;
1448
1449 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1450
1451 if (!cfq_may_dispatch(cfqd, cfqq))
1452 return false;
1453
1454 /*
1455 * follow expired path, else get first next available
1456 */
1457 rq = cfq_check_fifo(cfqq);
1458 if (!rq)
1459 rq = cfqq->next_rq;
1460
1461 /*
1462 * insert request into driver dispatch list
1463 */
1464 cfq_dispatch_insert(cfqd->queue, rq);
1465
1466 if (!cfqd->active_cic) {
1467 struct cfq_io_context *cic = RQ_CIC(rq);
1468
1469 atomic_long_inc(&cic->ioc->refcount);
1470 cfqd->active_cic = cic;
1471 }
1472
1473 return true;
1474}
1475
1476/*
1477 * Find the cfqq that we need to service and move a request from that to the
1478 * dispatch list
1479 */
1480static int cfq_dispatch_requests(struct request_queue *q, int force)
1481{
1482 struct cfq_data *cfqd = q->elevator->elevator_data;
1483 struct cfq_queue *cfqq;
1484
1485 if (!cfqd->busy_queues)
1486 return 0;
1487
1488 if (unlikely(force))
1489 return cfq_forced_dispatch(cfqd);
1490
1491 cfqq = cfq_select_queue(cfqd);
1492 if (!cfqq)
8e296755
JA
1493 return 0;
1494
2f5cb738 1495 /*
0b182d61 1496 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1497 */
0b182d61
JA
1498 if (!cfq_dispatch_request(cfqd, cfqq))
1499 return 0;
1500
2f5cb738 1501 cfqq->slice_dispatch++;
b029195d 1502 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1503
2f5cb738
JA
1504 /*
1505 * expire an async queue immediately if it has used up its slice. idle
1506 * queue always expire after 1 dispatch round.
1507 */
1508 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1509 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1510 cfq_class_idle(cfqq))) {
1511 cfqq->slice_end = jiffies + 1;
1512 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1513 }
1514
b217a903 1515 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1516 return 1;
1da177e4
LT
1517}
1518
1da177e4 1519/*
5e705374
JA
1520 * task holds one reference to the queue, dropped when task exits. each rq
1521 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1522 *
1523 * queue lock must be held here.
1524 */
1525static void cfq_put_queue(struct cfq_queue *cfqq)
1526{
22e2c507
JA
1527 struct cfq_data *cfqd = cfqq->cfqd;
1528
1529 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1530
1531 if (!atomic_dec_and_test(&cfqq->ref))
1532 return;
1533
7b679138 1534 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1535 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1536 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1537 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1538
28f95cbc 1539 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1540 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1541 cfq_schedule_dispatch(cfqd);
28f95cbc 1542 }
22e2c507 1543
1da177e4
LT
1544 kmem_cache_free(cfq_pool, cfqq);
1545}
1546
d6de8be7
JA
1547/*
1548 * Must always be called with the rcu_read_lock() held
1549 */
07416d29
JA
1550static void
1551__call_for_each_cic(struct io_context *ioc,
1552 void (*func)(struct io_context *, struct cfq_io_context *))
1553{
1554 struct cfq_io_context *cic;
1555 struct hlist_node *n;
1556
1557 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1558 func(ioc, cic);
1559}
1560
4ac845a2 1561/*
34e6bbf2 1562 * Call func for each cic attached to this ioc.
4ac845a2 1563 */
34e6bbf2 1564static void
4ac845a2
JA
1565call_for_each_cic(struct io_context *ioc,
1566 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1567{
4ac845a2 1568 rcu_read_lock();
07416d29 1569 __call_for_each_cic(ioc, func);
4ac845a2 1570 rcu_read_unlock();
34e6bbf2
FC
1571}
1572
1573static void cfq_cic_free_rcu(struct rcu_head *head)
1574{
1575 struct cfq_io_context *cic;
1576
1577 cic = container_of(head, struct cfq_io_context, rcu_head);
1578
1579 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1580 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1581
9a11b4ed
JA
1582 if (ioc_gone) {
1583 /*
1584 * CFQ scheduler is exiting, grab exit lock and check
1585 * the pending io context count. If it hits zero,
1586 * complete ioc_gone and set it back to NULL
1587 */
1588 spin_lock(&ioc_gone_lock);
245b2e70 1589 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1590 complete(ioc_gone);
1591 ioc_gone = NULL;
1592 }
1593 spin_unlock(&ioc_gone_lock);
1594 }
34e6bbf2 1595}
4ac845a2 1596
34e6bbf2
FC
1597static void cfq_cic_free(struct cfq_io_context *cic)
1598{
1599 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1600}
1601
1602static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1603{
1604 unsigned long flags;
1605
1606 BUG_ON(!cic->dead_key);
1607
1608 spin_lock_irqsave(&ioc->lock, flags);
1609 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1610 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1611 spin_unlock_irqrestore(&ioc->lock, flags);
1612
34e6bbf2 1613 cfq_cic_free(cic);
4ac845a2
JA
1614}
1615
d6de8be7
JA
1616/*
1617 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1618 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1619 * and ->trim() which is called with the task lock held
1620 */
4ac845a2
JA
1621static void cfq_free_io_context(struct io_context *ioc)
1622{
4ac845a2 1623 /*
34e6bbf2
FC
1624 * ioc->refcount is zero here, or we are called from elv_unregister(),
1625 * so no more cic's are allowed to be linked into this ioc. So it
1626 * should be ok to iterate over the known list, we will see all cic's
1627 * since no new ones are added.
4ac845a2 1628 */
07416d29 1629 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1630}
1631
89850f7e 1632static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1633{
df5fe3e8
JM
1634 struct cfq_queue *__cfqq, *next;
1635
28f95cbc 1636 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1637 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1638 cfq_schedule_dispatch(cfqd);
28f95cbc 1639 }
22e2c507 1640
df5fe3e8
JM
1641 /*
1642 * If this queue was scheduled to merge with another queue, be
1643 * sure to drop the reference taken on that queue (and others in
1644 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1645 */
1646 __cfqq = cfqq->new_cfqq;
1647 while (__cfqq) {
1648 if (__cfqq == cfqq) {
1649 WARN(1, "cfqq->new_cfqq loop detected\n");
1650 break;
1651 }
1652 next = __cfqq->new_cfqq;
1653 cfq_put_queue(__cfqq);
1654 __cfqq = next;
1655 }
1656
89850f7e
JA
1657 cfq_put_queue(cfqq);
1658}
22e2c507 1659
89850f7e
JA
1660static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1661 struct cfq_io_context *cic)
1662{
4faa3c81
FC
1663 struct io_context *ioc = cic->ioc;
1664
fc46379d 1665 list_del_init(&cic->queue_list);
4ac845a2
JA
1666
1667 /*
1668 * Make sure key == NULL is seen for dead queues
1669 */
fc46379d 1670 smp_wmb();
4ac845a2 1671 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1672 cic->key = NULL;
1673
4faa3c81
FC
1674 if (ioc->ioc_data == cic)
1675 rcu_assign_pointer(ioc->ioc_data, NULL);
1676
ff6657c6
JA
1677 if (cic->cfqq[BLK_RW_ASYNC]) {
1678 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1679 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1680 }
1681
ff6657c6
JA
1682 if (cic->cfqq[BLK_RW_SYNC]) {
1683 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1684 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1685 }
89850f7e
JA
1686}
1687
4ac845a2
JA
1688static void cfq_exit_single_io_context(struct io_context *ioc,
1689 struct cfq_io_context *cic)
89850f7e
JA
1690{
1691 struct cfq_data *cfqd = cic->key;
1692
89850f7e 1693 if (cfqd) {
165125e1 1694 struct request_queue *q = cfqd->queue;
4ac845a2 1695 unsigned long flags;
89850f7e 1696
4ac845a2 1697 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1698
1699 /*
1700 * Ensure we get a fresh copy of the ->key to prevent
1701 * race between exiting task and queue
1702 */
1703 smp_read_barrier_depends();
1704 if (cic->key)
1705 __cfq_exit_single_io_context(cfqd, cic);
1706
4ac845a2 1707 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1708 }
1da177e4
LT
1709}
1710
498d3aa2
JA
1711/*
1712 * The process that ioc belongs to has exited, we need to clean up
1713 * and put the internal structures we have that belongs to that process.
1714 */
e2d74ac0 1715static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1716{
4ac845a2 1717 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1718}
1719
22e2c507 1720static struct cfq_io_context *
8267e268 1721cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1722{
b5deef90 1723 struct cfq_io_context *cic;
1da177e4 1724
94f6030c
CL
1725 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1726 cfqd->queue->node);
1da177e4 1727 if (cic) {
22e2c507 1728 cic->last_end_request = jiffies;
553698f9 1729 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1730 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1731 cic->dtor = cfq_free_io_context;
1732 cic->exit = cfq_exit_io_context;
245b2e70 1733 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1734 }
1735
1736 return cic;
1737}
1738
fd0928df 1739static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1740{
1741 struct task_struct *tsk = current;
1742 int ioprio_class;
1743
3b18152c 1744 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1745 return;
1746
fd0928df 1747 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1748 switch (ioprio_class) {
fe094d98
JA
1749 default:
1750 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1751 case IOPRIO_CLASS_NONE:
1752 /*
6d63c275 1753 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1754 */
1755 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1756 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1757 break;
1758 case IOPRIO_CLASS_RT:
1759 cfqq->ioprio = task_ioprio(ioc);
1760 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1761 break;
1762 case IOPRIO_CLASS_BE:
1763 cfqq->ioprio = task_ioprio(ioc);
1764 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1765 break;
1766 case IOPRIO_CLASS_IDLE:
1767 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1768 cfqq->ioprio = 7;
1769 cfq_clear_cfqq_idle_window(cfqq);
1770 break;
22e2c507
JA
1771 }
1772
1773 /*
1774 * keep track of original prio settings in case we have to temporarily
1775 * elevate the priority of this queue
1776 */
1777 cfqq->org_ioprio = cfqq->ioprio;
1778 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1779 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1780}
1781
febffd61 1782static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1783{
478a82b0
AV
1784 struct cfq_data *cfqd = cic->key;
1785 struct cfq_queue *cfqq;
c1b707d2 1786 unsigned long flags;
35e6077c 1787
caaa5f9f
JA
1788 if (unlikely(!cfqd))
1789 return;
1790
c1b707d2 1791 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1792
ff6657c6 1793 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1794 if (cfqq) {
1795 struct cfq_queue *new_cfqq;
ff6657c6
JA
1796 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1797 GFP_ATOMIC);
caaa5f9f 1798 if (new_cfqq) {
ff6657c6 1799 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1800 cfq_put_queue(cfqq);
1801 }
22e2c507 1802 }
caaa5f9f 1803
ff6657c6 1804 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1805 if (cfqq)
1806 cfq_mark_cfqq_prio_changed(cfqq);
1807
c1b707d2 1808 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1809}
1810
fc46379d 1811static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1812{
4ac845a2 1813 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1814 ioc->ioprio_changed = 0;
22e2c507
JA
1815}
1816
d5036d77 1817static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1818 pid_t pid, bool is_sync)
d5036d77
JA
1819{
1820 RB_CLEAR_NODE(&cfqq->rb_node);
1821 RB_CLEAR_NODE(&cfqq->p_node);
1822 INIT_LIST_HEAD(&cfqq->fifo);
1823
1824 atomic_set(&cfqq->ref, 0);
1825 cfqq->cfqd = cfqd;
1826
1827 cfq_mark_cfqq_prio_changed(cfqq);
1828
1829 if (is_sync) {
1830 if (!cfq_class_idle(cfqq))
1831 cfq_mark_cfqq_idle_window(cfqq);
1832 cfq_mark_cfqq_sync(cfqq);
1833 }
1834 cfqq->pid = pid;
1835}
1836
22e2c507 1837static struct cfq_queue *
a6151c3a 1838cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 1839 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1840{
22e2c507 1841 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1842 struct cfq_io_context *cic;
22e2c507
JA
1843
1844retry:
4ac845a2 1845 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1846 /* cic always exists here */
1847 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1848
6118b70b
JA
1849 /*
1850 * Always try a new alloc if we fell back to the OOM cfqq
1851 * originally, since it should just be a temporary situation.
1852 */
1853 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1854 cfqq = NULL;
22e2c507
JA
1855 if (new_cfqq) {
1856 cfqq = new_cfqq;
1857 new_cfqq = NULL;
1858 } else if (gfp_mask & __GFP_WAIT) {
1859 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1860 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1861 gfp_mask | __GFP_ZERO,
94f6030c 1862 cfqd->queue->node);
22e2c507 1863 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1864 if (new_cfqq)
1865 goto retry;
22e2c507 1866 } else {
94f6030c
CL
1867 cfqq = kmem_cache_alloc_node(cfq_pool,
1868 gfp_mask | __GFP_ZERO,
1869 cfqd->queue->node);
22e2c507
JA
1870 }
1871
6118b70b
JA
1872 if (cfqq) {
1873 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1874 cfq_init_prio_data(cfqq, ioc);
1875 cfq_log_cfqq(cfqd, cfqq, "alloced");
1876 } else
1877 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1878 }
1879
1880 if (new_cfqq)
1881 kmem_cache_free(cfq_pool, new_cfqq);
1882
22e2c507
JA
1883 return cfqq;
1884}
1885
c2dea2d1
VT
1886static struct cfq_queue **
1887cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1888{
fe094d98 1889 switch (ioprio_class) {
c2dea2d1
VT
1890 case IOPRIO_CLASS_RT:
1891 return &cfqd->async_cfqq[0][ioprio];
1892 case IOPRIO_CLASS_BE:
1893 return &cfqd->async_cfqq[1][ioprio];
1894 case IOPRIO_CLASS_IDLE:
1895 return &cfqd->async_idle_cfqq;
1896 default:
1897 BUG();
1898 }
1899}
1900
15c31be4 1901static struct cfq_queue *
a6151c3a 1902cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
1903 gfp_t gfp_mask)
1904{
fd0928df
JA
1905 const int ioprio = task_ioprio(ioc);
1906 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1907 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1908 struct cfq_queue *cfqq = NULL;
1909
c2dea2d1
VT
1910 if (!is_sync) {
1911 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1912 cfqq = *async_cfqq;
1913 }
1914
6118b70b 1915 if (!cfqq)
fd0928df 1916 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1917
1918 /*
1919 * pin the queue now that it's allocated, scheduler exit will prune it
1920 */
c2dea2d1 1921 if (!is_sync && !(*async_cfqq)) {
15c31be4 1922 atomic_inc(&cfqq->ref);
c2dea2d1 1923 *async_cfqq = cfqq;
15c31be4
JA
1924 }
1925
1926 atomic_inc(&cfqq->ref);
1927 return cfqq;
1928}
1929
498d3aa2
JA
1930/*
1931 * We drop cfq io contexts lazily, so we may find a dead one.
1932 */
dbecf3ab 1933static void
4ac845a2
JA
1934cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1935 struct cfq_io_context *cic)
dbecf3ab 1936{
4ac845a2
JA
1937 unsigned long flags;
1938
fc46379d 1939 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1940
4ac845a2
JA
1941 spin_lock_irqsave(&ioc->lock, flags);
1942
4faa3c81 1943 BUG_ON(ioc->ioc_data == cic);
597bc485 1944
4ac845a2 1945 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1946 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1947 spin_unlock_irqrestore(&ioc->lock, flags);
1948
1949 cfq_cic_free(cic);
dbecf3ab
OH
1950}
1951
e2d74ac0 1952static struct cfq_io_context *
4ac845a2 1953cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1954{
e2d74ac0 1955 struct cfq_io_context *cic;
d6de8be7 1956 unsigned long flags;
4ac845a2 1957 void *k;
e2d74ac0 1958
91fac317
VT
1959 if (unlikely(!ioc))
1960 return NULL;
1961
d6de8be7
JA
1962 rcu_read_lock();
1963
597bc485
JA
1964 /*
1965 * we maintain a last-hit cache, to avoid browsing over the tree
1966 */
4ac845a2 1967 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1968 if (cic && cic->key == cfqd) {
1969 rcu_read_unlock();
597bc485 1970 return cic;
d6de8be7 1971 }
597bc485 1972
4ac845a2 1973 do {
4ac845a2
JA
1974 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1975 rcu_read_unlock();
1976 if (!cic)
1977 break;
be3b0753
OH
1978 /* ->key must be copied to avoid race with cfq_exit_queue() */
1979 k = cic->key;
1980 if (unlikely(!k)) {
4ac845a2 1981 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1982 rcu_read_lock();
4ac845a2 1983 continue;
dbecf3ab 1984 }
e2d74ac0 1985
d6de8be7 1986 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1987 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1988 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1989 break;
1990 } while (1);
e2d74ac0 1991
4ac845a2 1992 return cic;
e2d74ac0
JA
1993}
1994
4ac845a2
JA
1995/*
1996 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1997 * the process specific cfq io context when entered from the block layer.
1998 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1999 */
febffd61
JA
2000static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2001 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2002{
0261d688 2003 unsigned long flags;
4ac845a2 2004 int ret;
e2d74ac0 2005
4ac845a2
JA
2006 ret = radix_tree_preload(gfp_mask);
2007 if (!ret) {
2008 cic->ioc = ioc;
2009 cic->key = cfqd;
e2d74ac0 2010
4ac845a2
JA
2011 spin_lock_irqsave(&ioc->lock, flags);
2012 ret = radix_tree_insert(&ioc->radix_root,
2013 (unsigned long) cfqd, cic);
ffc4e759
JA
2014 if (!ret)
2015 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2016 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2017
4ac845a2
JA
2018 radix_tree_preload_end();
2019
2020 if (!ret) {
2021 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2022 list_add(&cic->queue_list, &cfqd->cic_list);
2023 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2024 }
e2d74ac0
JA
2025 }
2026
4ac845a2
JA
2027 if (ret)
2028 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2029
4ac845a2 2030 return ret;
e2d74ac0
JA
2031}
2032
1da177e4
LT
2033/*
2034 * Setup general io context and cfq io context. There can be several cfq
2035 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2036 * than one device managed by cfq.
1da177e4
LT
2037 */
2038static struct cfq_io_context *
e2d74ac0 2039cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2040{
22e2c507 2041 struct io_context *ioc = NULL;
1da177e4 2042 struct cfq_io_context *cic;
1da177e4 2043
22e2c507 2044 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2045
b5deef90 2046 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2047 if (!ioc)
2048 return NULL;
2049
4ac845a2 2050 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2051 if (cic)
2052 goto out;
1da177e4 2053
e2d74ac0
JA
2054 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2055 if (cic == NULL)
2056 goto err;
1da177e4 2057
4ac845a2
JA
2058 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2059 goto err_free;
2060
1da177e4 2061out:
fc46379d
JA
2062 smp_read_barrier_depends();
2063 if (unlikely(ioc->ioprio_changed))
2064 cfq_ioc_set_ioprio(ioc);
2065
1da177e4 2066 return cic;
4ac845a2
JA
2067err_free:
2068 cfq_cic_free(cic);
1da177e4
LT
2069err:
2070 put_io_context(ioc);
2071 return NULL;
2072}
2073
22e2c507
JA
2074static void
2075cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2076{
aaf1228d
JA
2077 unsigned long elapsed = jiffies - cic->last_end_request;
2078 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2079
22e2c507
JA
2080 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2081 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2082 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2083}
1da177e4 2084
206dc69b 2085static void
b2c18e1e 2086cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2087 struct request *rq)
206dc69b
JA
2088{
2089 sector_t sdist;
2090 u64 total;
2091
b2c18e1e 2092 if (!cfqq->last_request_pos)
4d00aa47 2093 sdist = 0;
b2c18e1e
JM
2094 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2095 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2096 else
b2c18e1e 2097 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2098
2099 /*
2100 * Don't allow the seek distance to get too large from the
2101 * odd fragment, pagein, etc
2102 */
b2c18e1e
JM
2103 if (cfqq->seek_samples <= 60) /* second&third seek */
2104 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2105 else
b2c18e1e 2106 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2107
b2c18e1e
JM
2108 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2109 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2110 total = cfqq->seek_total + (cfqq->seek_samples/2);
2111 do_div(total, cfqq->seek_samples);
2112 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2113
2114 /*
2115 * If this cfqq is shared between multiple processes, check to
2116 * make sure that those processes are still issuing I/Os within
2117 * the mean seek distance. If not, it may be time to break the
2118 * queues apart again.
2119 */
2120 if (cfq_cfqq_coop(cfqq)) {
2121 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2122 cfqq->seeky_start = jiffies;
2123 else if (!CFQQ_SEEKY(cfqq))
2124 cfqq->seeky_start = 0;
2125 }
206dc69b 2126}
1da177e4 2127
22e2c507
JA
2128/*
2129 * Disable idle window if the process thinks too long or seeks so much that
2130 * it doesn't matter
2131 */
2132static void
2133cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2134 struct cfq_io_context *cic)
2135{
7b679138 2136 int old_idle, enable_idle;
1be92f2f 2137
0871714e
JA
2138 /*
2139 * Don't idle for async or idle io prio class
2140 */
2141 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2142 return;
2143
c265a7f4 2144 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2145
66dac98e 2146 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
b2c18e1e 2147 (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2148 enable_idle = 0;
2149 else if (sample_valid(cic->ttime_samples)) {
ec60e4f6 2150 unsigned int slice_idle = cfqd->cfq_slice_idle;
b2c18e1e 2151 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
ec60e4f6
CZ
2152 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2153 if (cic->ttime_mean > slice_idle)
22e2c507
JA
2154 enable_idle = 0;
2155 else
2156 enable_idle = 1;
1da177e4
LT
2157 }
2158
7b679138
JA
2159 if (old_idle != enable_idle) {
2160 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2161 if (enable_idle)
2162 cfq_mark_cfqq_idle_window(cfqq);
2163 else
2164 cfq_clear_cfqq_idle_window(cfqq);
2165 }
22e2c507 2166}
1da177e4 2167
22e2c507
JA
2168/*
2169 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2170 * no or if we aren't sure, a 1 will cause a preempt.
2171 */
a6151c3a 2172static bool
22e2c507 2173cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2174 struct request *rq)
22e2c507 2175{
6d048f53 2176 struct cfq_queue *cfqq;
22e2c507 2177
6d048f53
JA
2178 cfqq = cfqd->active_queue;
2179 if (!cfqq)
a6151c3a 2180 return false;
22e2c507 2181
6d048f53 2182 if (cfq_slice_used(cfqq))
a6151c3a 2183 return true;
6d048f53
JA
2184
2185 if (cfq_class_idle(new_cfqq))
a6151c3a 2186 return false;
22e2c507
JA
2187
2188 if (cfq_class_idle(cfqq))
a6151c3a 2189 return true;
1e3335de 2190
374f84ac
JA
2191 /*
2192 * if the new request is sync, but the currently running queue is
2193 * not, let the sync request have priority.
2194 */
5e705374 2195 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2196 return true;
1e3335de 2197
374f84ac
JA
2198 /*
2199 * So both queues are sync. Let the new request get disk time if
2200 * it's a metadata request and the current queue is doing regular IO.
2201 */
2202 if (rq_is_meta(rq) && !cfqq->meta_pending)
a6151c3a 2203 return false;
22e2c507 2204
3a9a3f6c
DS
2205 /*
2206 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2207 */
2208 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2209 return true;
3a9a3f6c 2210
1e3335de 2211 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2212 return false;
1e3335de
JA
2213
2214 /*
2215 * if this request is as-good as one we would expect from the
2216 * current cfqq, let it preempt
2217 */
b2c18e1e 2218 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2219 return true;
1e3335de 2220
a6151c3a 2221 return false;
22e2c507
JA
2222}
2223
2224/*
2225 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2226 * let it have half of its nominal slice.
2227 */
2228static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2229{
7b679138 2230 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2231 cfq_slice_expired(cfqd, 1);
22e2c507 2232
bf572256
JA
2233 /*
2234 * Put the new queue at the front of the of the current list,
2235 * so we know that it will be selected next.
2236 */
2237 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2238
2239 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2240
44f7c160
JA
2241 cfqq->slice_end = 0;
2242 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2243}
2244
22e2c507 2245/*
5e705374 2246 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2247 * something we should do about it
2248 */
2249static void
5e705374
JA
2250cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2251 struct request *rq)
22e2c507 2252{
5e705374 2253 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2254
45333d5a 2255 cfqd->rq_queued++;
374f84ac
JA
2256 if (rq_is_meta(rq))
2257 cfqq->meta_pending++;
2258
9c2c38a1 2259 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2260 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2261 cfq_update_idle_window(cfqd, cfqq, cic);
2262
b2c18e1e 2263 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2264
2265 if (cfqq == cfqd->active_queue) {
2266 /*
b029195d
JA
2267 * Remember that we saw a request from this process, but
2268 * don't start queuing just yet. Otherwise we risk seeing lots
2269 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2270 * and merging. If the request is already larger than a single
2271 * page, let it rip immediately. For that case we assume that
2d870722
JA
2272 * merging is already done. Ditto for a busy system that
2273 * has other work pending, don't risk delaying until the
2274 * idle timer unplug to continue working.
22e2c507 2275 */
d6ceb25e 2276 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2277 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2278 cfqd->busy_queues > 1) {
d6ceb25e 2279 del_timer(&cfqd->idle_slice_timer);
a7f55792 2280 __blk_run_queue(cfqd->queue);
d6ceb25e 2281 }
b029195d 2282 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2283 }
5e705374 2284 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2285 /*
2286 * not the active queue - expire current slice if it is
2287 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2288 * has some old slice time left and is of higher priority or
2289 * this new queue is RT and the current one is BE
22e2c507
JA
2290 */
2291 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2292 __blk_run_queue(cfqd->queue);
22e2c507 2293 }
1da177e4
LT
2294}
2295
165125e1 2296static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2297{
b4878f24 2298 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2299 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2300
7b679138 2301 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2302 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2303
30996f40 2304 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2305 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2306 cfq_add_rq_rb(rq);
22e2c507 2307
5e705374 2308 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2309}
2310
45333d5a
AC
2311/*
2312 * Update hw_tag based on peak queue depth over 50 samples under
2313 * sufficient load.
2314 */
2315static void cfq_update_hw_tag(struct cfq_data *cfqd)
2316{
1a1238a7
SL
2317 struct cfq_queue *cfqq = cfqd->active_queue;
2318
5ad531db
JA
2319 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2320 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2321
2322 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2323 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2324 return;
2325
1a1238a7
SL
2326 /*
2327 * If active queue hasn't enough requests and can idle, cfq might not
2328 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2329 * case
2330 */
2331 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2332 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2333 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2334 return;
2335
45333d5a
AC
2336 if (cfqd->hw_tag_samples++ < 50)
2337 return;
2338
2339 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2340 cfqd->hw_tag = 1;
2341 else
2342 cfqd->hw_tag = 0;
2343
2344 cfqd->hw_tag_samples = 0;
2345 cfqd->rq_in_driver_peak = 0;
2346}
2347
165125e1 2348static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2349{
5e705374 2350 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2351 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2352 const int sync = rq_is_sync(rq);
b4878f24 2353 unsigned long now;
1da177e4 2354
b4878f24 2355 now = jiffies;
7b679138 2356 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2357
45333d5a
AC
2358 cfq_update_hw_tag(cfqd);
2359
5ad531db 2360 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2361 WARN_ON(!cfqq->dispatched);
5ad531db 2362 cfqd->rq_in_driver[sync]--;
6d048f53 2363 cfqq->dispatched--;
1da177e4 2364
3ed9a296
JA
2365 if (cfq_cfqq_sync(cfqq))
2366 cfqd->sync_flight--;
2367
365722bb 2368 if (sync) {
5e705374 2369 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2370 cfqd->last_end_sync_rq = now;
2371 }
caaa5f9f
JA
2372
2373 /*
2374 * If this is the active queue, check if it needs to be expired,
2375 * or if we want to idle in case it has no pending requests.
2376 */
2377 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2378 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2379
44f7c160
JA
2380 if (cfq_cfqq_slice_new(cfqq)) {
2381 cfq_set_prio_slice(cfqd, cfqq);
2382 cfq_clear_cfqq_slice_new(cfqq);
2383 }
a36e71f9
JA
2384 /*
2385 * If there are no requests waiting in this queue, and
2386 * there are other queues ready to issue requests, AND
2387 * those other queues are issuing requests within our
2388 * mean seek distance, give them a chance to run instead
2389 * of idling.
2390 */
0871714e 2391 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2392 cfq_slice_expired(cfqd, 1);
b3b6d040 2393 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2394 sync && !rq_noidle(rq))
6d048f53 2395 cfq_arm_slice_timer(cfqd);
caaa5f9f 2396 }
6d048f53 2397
5ad531db 2398 if (!rq_in_driver(cfqd))
23e018a1 2399 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2400}
2401
22e2c507
JA
2402/*
2403 * we temporarily boost lower priority queues if they are holding fs exclusive
2404 * resources. they are boosted to normal prio (CLASS_BE/4)
2405 */
2406static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2407{
22e2c507
JA
2408 if (has_fs_excl()) {
2409 /*
2410 * boost idle prio on transactions that would lock out other
2411 * users of the filesystem
2412 */
2413 if (cfq_class_idle(cfqq))
2414 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2415 if (cfqq->ioprio > IOPRIO_NORM)
2416 cfqq->ioprio = IOPRIO_NORM;
2417 } else {
2418 /*
2419 * check if we need to unboost the queue
2420 */
2421 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2422 cfqq->ioprio_class = cfqq->org_ioprio_class;
2423 if (cfqq->ioprio != cfqq->org_ioprio)
2424 cfqq->ioprio = cfqq->org_ioprio;
2425 }
22e2c507 2426}
1da177e4 2427
89850f7e 2428static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2429{
1b379d8d 2430 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2431 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2432 return ELV_MQUEUE_MUST;
3b18152c 2433 }
1da177e4 2434
22e2c507 2435 return ELV_MQUEUE_MAY;
22e2c507
JA
2436}
2437
165125e1 2438static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2439{
2440 struct cfq_data *cfqd = q->elevator->elevator_data;
2441 struct task_struct *tsk = current;
91fac317 2442 struct cfq_io_context *cic;
22e2c507
JA
2443 struct cfq_queue *cfqq;
2444
2445 /*
2446 * don't force setup of a queue from here, as a call to may_queue
2447 * does not necessarily imply that a request actually will be queued.
2448 * so just lookup a possibly existing queue, or return 'may queue'
2449 * if that fails
2450 */
4ac845a2 2451 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2452 if (!cic)
2453 return ELV_MQUEUE_MAY;
2454
b0b78f81 2455 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2456 if (cfqq) {
fd0928df 2457 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2458 cfq_prio_boost(cfqq);
2459
89850f7e 2460 return __cfq_may_queue(cfqq);
22e2c507
JA
2461 }
2462
2463 return ELV_MQUEUE_MAY;
1da177e4
LT
2464}
2465
1da177e4
LT
2466/*
2467 * queue lock held here
2468 */
bb37b94c 2469static void cfq_put_request(struct request *rq)
1da177e4 2470{
5e705374 2471 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2472
5e705374 2473 if (cfqq) {
22e2c507 2474 const int rw = rq_data_dir(rq);
1da177e4 2475
22e2c507
JA
2476 BUG_ON(!cfqq->allocated[rw]);
2477 cfqq->allocated[rw]--;
1da177e4 2478
5e705374 2479 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2480
1da177e4 2481 rq->elevator_private = NULL;
5e705374 2482 rq->elevator_private2 = NULL;
1da177e4 2483
1da177e4
LT
2484 cfq_put_queue(cfqq);
2485 }
2486}
2487
df5fe3e8
JM
2488static struct cfq_queue *
2489cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2490 struct cfq_queue *cfqq)
2491{
2492 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2493 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2494 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2495 cfq_put_queue(cfqq);
2496 return cic_to_cfqq(cic, 1);
2497}
2498
e6c5bc73
JM
2499static int should_split_cfqq(struct cfq_queue *cfqq)
2500{
2501 if (cfqq->seeky_start &&
2502 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2503 return 1;
2504 return 0;
2505}
2506
2507/*
2508 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2509 * was the last process referring to said cfqq.
2510 */
2511static struct cfq_queue *
2512split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2513{
2514 if (cfqq_process_refs(cfqq) == 1) {
2515 cfqq->seeky_start = 0;
2516 cfqq->pid = current->pid;
2517 cfq_clear_cfqq_coop(cfqq);
2518 return cfqq;
2519 }
2520
2521 cic_set_cfqq(cic, NULL, 1);
2522 cfq_put_queue(cfqq);
2523 return NULL;
2524}
1da177e4 2525/*
22e2c507 2526 * Allocate cfq data structures associated with this request.
1da177e4 2527 */
22e2c507 2528static int
165125e1 2529cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2530{
2531 struct cfq_data *cfqd = q->elevator->elevator_data;
2532 struct cfq_io_context *cic;
2533 const int rw = rq_data_dir(rq);
a6151c3a 2534 const bool is_sync = rq_is_sync(rq);
22e2c507 2535 struct cfq_queue *cfqq;
1da177e4
LT
2536 unsigned long flags;
2537
2538 might_sleep_if(gfp_mask & __GFP_WAIT);
2539
e2d74ac0 2540 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2541
1da177e4
LT
2542 spin_lock_irqsave(q->queue_lock, flags);
2543
22e2c507
JA
2544 if (!cic)
2545 goto queue_fail;
2546
e6c5bc73 2547new_queue:
91fac317 2548 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2549 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2550 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2551 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2552 } else {
e6c5bc73
JM
2553 /*
2554 * If the queue was seeky for too long, break it apart.
2555 */
2556 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2557 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2558 cfqq = split_cfqq(cic, cfqq);
2559 if (!cfqq)
2560 goto new_queue;
2561 }
2562
df5fe3e8
JM
2563 /*
2564 * Check to see if this queue is scheduled to merge with
2565 * another, closely cooperating queue. The merging of
2566 * queues happens here as it must be done in process context.
2567 * The reference on new_cfqq was taken in merge_cfqqs.
2568 */
2569 if (cfqq->new_cfqq)
2570 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2571 }
1da177e4
LT
2572
2573 cfqq->allocated[rw]++;
22e2c507 2574 atomic_inc(&cfqq->ref);
1da177e4 2575
5e705374 2576 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2577
5e705374
JA
2578 rq->elevator_private = cic;
2579 rq->elevator_private2 = cfqq;
2580 return 0;
1da177e4 2581
22e2c507
JA
2582queue_fail:
2583 if (cic)
2584 put_io_context(cic->ioc);
89850f7e 2585
23e018a1 2586 cfq_schedule_dispatch(cfqd);
1da177e4 2587 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2588 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2589 return 1;
2590}
2591
65f27f38 2592static void cfq_kick_queue(struct work_struct *work)
22e2c507 2593{
65f27f38 2594 struct cfq_data *cfqd =
23e018a1 2595 container_of(work, struct cfq_data, unplug_work);
165125e1 2596 struct request_queue *q = cfqd->queue;
22e2c507 2597
40bb54d1 2598 spin_lock_irq(q->queue_lock);
a7f55792 2599 __blk_run_queue(cfqd->queue);
40bb54d1 2600 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2601}
2602
2603/*
2604 * Timer running if the active_queue is currently idling inside its time slice
2605 */
2606static void cfq_idle_slice_timer(unsigned long data)
2607{
2608 struct cfq_data *cfqd = (struct cfq_data *) data;
2609 struct cfq_queue *cfqq;
2610 unsigned long flags;
3c6bd2f8 2611 int timed_out = 1;
22e2c507 2612
7b679138
JA
2613 cfq_log(cfqd, "idle timer fired");
2614
22e2c507
JA
2615 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2616
fe094d98
JA
2617 cfqq = cfqd->active_queue;
2618 if (cfqq) {
3c6bd2f8
JA
2619 timed_out = 0;
2620
b029195d
JA
2621 /*
2622 * We saw a request before the queue expired, let it through
2623 */
2624 if (cfq_cfqq_must_dispatch(cfqq))
2625 goto out_kick;
2626
22e2c507
JA
2627 /*
2628 * expired
2629 */
44f7c160 2630 if (cfq_slice_used(cfqq))
22e2c507
JA
2631 goto expire;
2632
2633 /*
2634 * only expire and reinvoke request handler, if there are
2635 * other queues with pending requests
2636 */
caaa5f9f 2637 if (!cfqd->busy_queues)
22e2c507 2638 goto out_cont;
22e2c507
JA
2639
2640 /*
2641 * not expired and it has a request pending, let it dispatch
2642 */
75e50984 2643 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2644 goto out_kick;
22e2c507
JA
2645 }
2646expire:
6084cdda 2647 cfq_slice_expired(cfqd, timed_out);
22e2c507 2648out_kick:
23e018a1 2649 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2650out_cont:
2651 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2652}
2653
3b18152c
JA
2654static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2655{
2656 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2657 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2658}
22e2c507 2659
c2dea2d1
VT
2660static void cfq_put_async_queues(struct cfq_data *cfqd)
2661{
2662 int i;
2663
2664 for (i = 0; i < IOPRIO_BE_NR; i++) {
2665 if (cfqd->async_cfqq[0][i])
2666 cfq_put_queue(cfqd->async_cfqq[0][i]);
2667 if (cfqd->async_cfqq[1][i])
2668 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2669 }
2389d1ef
ON
2670
2671 if (cfqd->async_idle_cfqq)
2672 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2673}
2674
b374d18a 2675static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2676{
22e2c507 2677 struct cfq_data *cfqd = e->elevator_data;
165125e1 2678 struct request_queue *q = cfqd->queue;
22e2c507 2679
3b18152c 2680 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2681
d9ff4187 2682 spin_lock_irq(q->queue_lock);
e2d74ac0 2683
d9ff4187 2684 if (cfqd->active_queue)
6084cdda 2685 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2686
2687 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2688 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2689 struct cfq_io_context,
2690 queue_list);
89850f7e
JA
2691
2692 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2693 }
e2d74ac0 2694
c2dea2d1 2695 cfq_put_async_queues(cfqd);
15c31be4 2696
d9ff4187 2697 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2698
2699 cfq_shutdown_timer_wq(cfqd);
2700
a90d742e 2701 kfree(cfqd);
1da177e4
LT
2702}
2703
165125e1 2704static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2705{
2706 struct cfq_data *cfqd;
26a2ac00 2707 int i;
1da177e4 2708
94f6030c 2709 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2710 if (!cfqd)
bc1c1169 2711 return NULL;
1da177e4 2712
cc09e299 2713 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2714
2715 /*
2716 * Not strictly needed (since RB_ROOT just clears the node and we
2717 * zeroed cfqd on alloc), but better be safe in case someone decides
2718 * to add magic to the rb code
2719 */
2720 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2721 cfqd->prio_trees[i] = RB_ROOT;
2722
6118b70b
JA
2723 /*
2724 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2725 * Grab a permanent reference to it, so that the normal code flow
2726 * will not attempt to free it.
2727 */
2728 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2729 atomic_inc(&cfqd->oom_cfqq.ref);
2730
d9ff4187 2731 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2732
1da177e4 2733 cfqd->queue = q;
1da177e4 2734
22e2c507
JA
2735 init_timer(&cfqd->idle_slice_timer);
2736 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2737 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2738
23e018a1 2739 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2740
1da177e4 2741 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2742 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2743 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2744 cfqd->cfq_back_max = cfq_back_max;
2745 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2746 cfqd->cfq_slice[0] = cfq_slice_async;
2747 cfqd->cfq_slice[1] = cfq_slice_sync;
2748 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2749 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2750 cfqd->cfq_latency = 1;
45333d5a 2751 cfqd->hw_tag = 1;
365722bb 2752 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2753 return cfqd;
1da177e4
LT
2754}
2755
2756static void cfq_slab_kill(void)
2757{
d6de8be7
JA
2758 /*
2759 * Caller already ensured that pending RCU callbacks are completed,
2760 * so we should have no busy allocations at this point.
2761 */
1da177e4
LT
2762 if (cfq_pool)
2763 kmem_cache_destroy(cfq_pool);
2764 if (cfq_ioc_pool)
2765 kmem_cache_destroy(cfq_ioc_pool);
2766}
2767
2768static int __init cfq_slab_setup(void)
2769{
0a31bd5f 2770 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2771 if (!cfq_pool)
2772 goto fail;
2773
34e6bbf2 2774 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2775 if (!cfq_ioc_pool)
2776 goto fail;
2777
2778 return 0;
2779fail:
2780 cfq_slab_kill();
2781 return -ENOMEM;
2782}
2783
1da177e4
LT
2784/*
2785 * sysfs parts below -->
2786 */
1da177e4
LT
2787static ssize_t
2788cfq_var_show(unsigned int var, char *page)
2789{
2790 return sprintf(page, "%d\n", var);
2791}
2792
2793static ssize_t
2794cfq_var_store(unsigned int *var, const char *page, size_t count)
2795{
2796 char *p = (char *) page;
2797
2798 *var = simple_strtoul(p, &p, 10);
2799 return count;
2800}
2801
1da177e4 2802#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2803static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2804{ \
3d1ab40f 2805 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2806 unsigned int __data = __VAR; \
2807 if (__CONV) \
2808 __data = jiffies_to_msecs(__data); \
2809 return cfq_var_show(__data, (page)); \
2810}
2811SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2812SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2813SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2814SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2815SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2816SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2817SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2818SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2819SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2820SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2821#undef SHOW_FUNCTION
2822
2823#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2824static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2825{ \
3d1ab40f 2826 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2827 unsigned int __data; \
2828 int ret = cfq_var_store(&__data, (page), count); \
2829 if (__data < (MIN)) \
2830 __data = (MIN); \
2831 else if (__data > (MAX)) \
2832 __data = (MAX); \
2833 if (__CONV) \
2834 *(__PTR) = msecs_to_jiffies(__data); \
2835 else \
2836 *(__PTR) = __data; \
2837 return ret; \
2838}
2839STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2840STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2841 UINT_MAX, 1);
2842STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2843 UINT_MAX, 1);
e572ec7e 2844STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2845STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2846 UINT_MAX, 0);
22e2c507
JA
2847STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2848STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2849STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2850STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2851 UINT_MAX, 0);
963b72fc 2852STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2853#undef STORE_FUNCTION
2854
e572ec7e
AV
2855#define CFQ_ATTR(name) \
2856 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2857
2858static struct elv_fs_entry cfq_attrs[] = {
2859 CFQ_ATTR(quantum),
e572ec7e
AV
2860 CFQ_ATTR(fifo_expire_sync),
2861 CFQ_ATTR(fifo_expire_async),
2862 CFQ_ATTR(back_seek_max),
2863 CFQ_ATTR(back_seek_penalty),
2864 CFQ_ATTR(slice_sync),
2865 CFQ_ATTR(slice_async),
2866 CFQ_ATTR(slice_async_rq),
2867 CFQ_ATTR(slice_idle),
963b72fc 2868 CFQ_ATTR(low_latency),
e572ec7e 2869 __ATTR_NULL
1da177e4
LT
2870};
2871
1da177e4
LT
2872static struct elevator_type iosched_cfq = {
2873 .ops = {
2874 .elevator_merge_fn = cfq_merge,
2875 .elevator_merged_fn = cfq_merged_request,
2876 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2877 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2878 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2879 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2880 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2881 .elevator_deactivate_req_fn = cfq_deactivate_request,
2882 .elevator_queue_empty_fn = cfq_queue_empty,
2883 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2884 .elevator_former_req_fn = elv_rb_former_request,
2885 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2886 .elevator_set_req_fn = cfq_set_request,
2887 .elevator_put_req_fn = cfq_put_request,
2888 .elevator_may_queue_fn = cfq_may_queue,
2889 .elevator_init_fn = cfq_init_queue,
2890 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2891 .trim = cfq_free_io_context,
1da177e4 2892 },
3d1ab40f 2893 .elevator_attrs = cfq_attrs,
1da177e4
LT
2894 .elevator_name = "cfq",
2895 .elevator_owner = THIS_MODULE,
2896};
2897
2898static int __init cfq_init(void)
2899{
22e2c507
JA
2900 /*
2901 * could be 0 on HZ < 1000 setups
2902 */
2903 if (!cfq_slice_async)
2904 cfq_slice_async = 1;
2905 if (!cfq_slice_idle)
2906 cfq_slice_idle = 1;
2907
1da177e4
LT
2908 if (cfq_slab_setup())
2909 return -ENOMEM;
2910
2fdd82bd 2911 elv_register(&iosched_cfq);
1da177e4 2912
2fdd82bd 2913 return 0;
1da177e4
LT
2914}
2915
2916static void __exit cfq_exit(void)
2917{
6e9a4738 2918 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2919 elv_unregister(&iosched_cfq);
334e94de 2920 ioc_gone = &all_gone;
fba82272
OH
2921 /* ioc_gone's update must be visible before reading ioc_count */
2922 smp_wmb();
d6de8be7
JA
2923
2924 /*
2925 * this also protects us from entering cfq_slab_kill() with
2926 * pending RCU callbacks
2927 */
245b2e70 2928 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2929 wait_for_completion(&all_gone);
83521d3e 2930 cfq_slab_kill();
1da177e4
LT
2931}
2932
2933module_init(cfq_init);
2934module_exit(cfq_exit);
2935
2936MODULE_AUTHOR("Jens Axboe");
2937MODULE_LICENSE("GPL");
2938MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");