]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: Get rid of st->active
[mirror_ubuntu-eoan-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98
JA
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
ae30c286 149 struct cfq_group *orig_cfqg;
c4e7893e
VG
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
6118b70b
JA
152};
153
c0324a02 154/*
718eee05 155 * First index in the service_trees.
c0324a02
CZ
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
c0324a02 159 BE_WORKLOAD = 0,
615f0259
VG
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
b4627321 162 CFQ_PRIO_NR,
c0324a02
CZ
163};
164
718eee05
CZ
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
cdb16e8f
VG
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
1fa8f6d6
VG
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
25bc6b07 181 unsigned int weight;
1fa8f6d6
VG
182 bool on_st;
183
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
186
cdb16e8f 187 /*
b4627321
VG
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
192 */
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
194 /*
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
cdb16e8f
VG
200 * Counts are embedded in the cfq_rb_root
201 */
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
dae739eb
VG
204
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
25fb5169
VG
208 struct blkio_group blkg;
209#ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
b1c35769 211 atomic_t ref;
25fb5169 212#endif
80bdf0c7
VG
213 /* number of requests that are on the dispatch list or inside driver */
214 int dispatched;
cdb16e8f 215};
718eee05 216
22e2c507
JA
217/*
218 * Per block device queue structure
219 */
1da177e4 220struct cfq_data {
165125e1 221 struct request_queue *queue;
1fa8f6d6
VG
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
cdb16e8f 224 struct cfq_group root_group;
22e2c507 225
c0324a02
CZ
226 /*
227 * The priority currently being served
22e2c507 228 */
c0324a02 229 enum wl_prio_t serving_prio;
718eee05
CZ
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
cdb16e8f 232 struct cfq_group *serving_group;
a36e71f9
JA
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
22e2c507
JA
241 unsigned int busy_queues;
242
53c583d2
CZ
243 int rq_in_driver;
244 int rq_in_flight[2];
45333d5a
AC
245
246 /*
247 * queue-depth detection
248 */
249 int rq_queued;
25776e35 250 int hw_tag;
e459dd08
CZ
251 /*
252 * hw_tag can be
253 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
254 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
255 * 0 => no NCQ
256 */
257 int hw_tag_est_depth;
258 unsigned int hw_tag_samples;
1da177e4 259
22e2c507
JA
260 /*
261 * idle window management
262 */
263 struct timer_list idle_slice_timer;
23e018a1 264 struct work_struct unplug_work;
1da177e4 265
22e2c507
JA
266 struct cfq_queue *active_queue;
267 struct cfq_io_context *active_cic;
22e2c507 268
c2dea2d1
VT
269 /*
270 * async queue for each priority case
271 */
272 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
273 struct cfq_queue *async_idle_cfqq;
15c31be4 274
6d048f53 275 sector_t last_position;
1da177e4 276
1da177e4
LT
277 /*
278 * tunables, see top of file
279 */
280 unsigned int cfq_quantum;
22e2c507 281 unsigned int cfq_fifo_expire[2];
1da177e4
LT
282 unsigned int cfq_back_penalty;
283 unsigned int cfq_back_max;
22e2c507
JA
284 unsigned int cfq_slice[2];
285 unsigned int cfq_slice_async_rq;
286 unsigned int cfq_slice_idle;
80bdf0c7 287 unsigned int cfq_group_idle;
963b72fc 288 unsigned int cfq_latency;
ae30c286 289 unsigned int cfq_group_isolation;
d9ff4187 290
80b15c73 291 unsigned int cic_index;
d9ff4187 292 struct list_head cic_list;
1da177e4 293
6118b70b
JA
294 /*
295 * Fallback dummy cfqq for extreme OOM conditions
296 */
297 struct cfq_queue oom_cfqq;
365722bb 298
573412b2 299 unsigned long last_delayed_sync;
25fb5169
VG
300
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
bb729bc9 303 struct rcu_head rcu;
1da177e4
LT
304};
305
25fb5169
VG
306static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
307
cdb16e8f
VG
308static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
309 enum wl_prio_t prio,
65b32a57 310 enum wl_type_t type)
c0324a02 311{
1fa8f6d6
VG
312 if (!cfqg)
313 return NULL;
314
c0324a02 315 if (prio == IDLE_WORKLOAD)
cdb16e8f 316 return &cfqg->service_tree_idle;
c0324a02 317
cdb16e8f 318 return &cfqg->service_trees[prio][type];
c0324a02
CZ
319}
320
3b18152c 321enum cfqq_state_flags {
b0b8d749
JA
322 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
323 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 324 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 325 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
326 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
327 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
328 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 329 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 330 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 331 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 332 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 333 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 334 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
335};
336
337#define CFQ_CFQQ_FNS(name) \
338static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
339{ \
fe094d98 340 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
341} \
342static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
343{ \
fe094d98 344 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
345} \
346static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
347{ \
fe094d98 348 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
349}
350
351CFQ_CFQQ_FNS(on_rr);
352CFQ_CFQQ_FNS(wait_request);
b029195d 353CFQ_CFQQ_FNS(must_dispatch);
3b18152c 354CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
355CFQ_CFQQ_FNS(fifo_expire);
356CFQ_CFQQ_FNS(idle_window);
357CFQ_CFQQ_FNS(prio_changed);
44f7c160 358CFQ_CFQQ_FNS(slice_new);
91fac317 359CFQ_CFQQ_FNS(sync);
a36e71f9 360CFQ_CFQQ_FNS(coop);
ae54abed 361CFQ_CFQQ_FNS(split_coop);
76280aff 362CFQ_CFQQ_FNS(deep);
f75edf2d 363CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
364#undef CFQ_CFQQ_FNS
365
afc24d49 366#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
367#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
369 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
370 blkg_path(&(cfqq)->cfqg->blkg), ##args);
371
372#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
373 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
374 blkg_path(&(cfqg)->blkg), ##args); \
375
376#else
7b679138
JA
377#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
378 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
380#endif
7b679138
JA
381#define cfq_log(cfqd, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
383
615f0259
VG
384/* Traverses through cfq group service trees */
385#define for_each_cfqg_st(cfqg, i, j, st) \
386 for (i = 0; i <= IDLE_WORKLOAD; i++) \
387 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
388 : &cfqg->service_tree_idle; \
389 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
390 (i == IDLE_WORKLOAD && j == 0); \
391 j++, st = i < IDLE_WORKLOAD ? \
392 &cfqg->service_trees[i][j]: NULL) \
393
394
02b35081
VG
395static inline bool iops_mode(struct cfq_data *cfqd)
396{
397 /*
398 * If we are not idling on queues and it is a NCQ drive, parallel
399 * execution of requests is on and measuring time is not possible
400 * in most of the cases until and unless we drive shallower queue
401 * depths and that becomes a performance bottleneck. In such cases
402 * switch to start providing fairness in terms of number of IOs.
403 */
404 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
405 return true;
406 else
407 return false;
408}
409
c0324a02
CZ
410static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
411{
412 if (cfq_class_idle(cfqq))
413 return IDLE_WORKLOAD;
414 if (cfq_class_rt(cfqq))
415 return RT_WORKLOAD;
416 return BE_WORKLOAD;
417}
418
718eee05
CZ
419
420static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
421{
422 if (!cfq_cfqq_sync(cfqq))
423 return ASYNC_WORKLOAD;
424 if (!cfq_cfqq_idle_window(cfqq))
425 return SYNC_NOIDLE_WORKLOAD;
426 return SYNC_WORKLOAD;
427}
428
58ff82f3
VG
429static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
430 struct cfq_data *cfqd,
431 struct cfq_group *cfqg)
c0324a02
CZ
432{
433 if (wl == IDLE_WORKLOAD)
cdb16e8f 434 return cfqg->service_tree_idle.count;
c0324a02 435
cdb16e8f
VG
436 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
438 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
439}
440
f26bd1f0
VG
441static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
442 struct cfq_group *cfqg)
443{
444 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
445 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
446}
447
165125e1 448static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 449static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 450 struct io_context *, gfp_t);
4ac845a2 451static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
452 struct io_context *);
453
454static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 455 bool is_sync)
91fac317 456{
a6151c3a 457 return cic->cfqq[is_sync];
91fac317
VT
458}
459
460static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 461 struct cfq_queue *cfqq, bool is_sync)
91fac317 462{
a6151c3a 463 cic->cfqq[is_sync] = cfqq;
91fac317
VT
464}
465
bca4b914 466#define CIC_DEAD_KEY 1ul
80b15c73 467#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
468
469static inline void *cfqd_dead_key(struct cfq_data *cfqd)
470{
80b15c73 471 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
472}
473
474static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
475{
476 struct cfq_data *cfqd = cic->key;
477
478 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
479 return NULL;
480
481 return cfqd;
482}
483
91fac317
VT
484/*
485 * We regard a request as SYNC, if it's either a read or has the SYNC bit
486 * set (in which case it could also be direct WRITE).
487 */
a6151c3a 488static inline bool cfq_bio_sync(struct bio *bio)
91fac317 489{
7b6d91da 490 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 491}
1da177e4 492
99f95e52
AM
493/*
494 * scheduler run of queue, if there are requests pending and no one in the
495 * driver that will restart queueing
496 */
23e018a1 497static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 498{
7b679138
JA
499 if (cfqd->busy_queues) {
500 cfq_log(cfqd, "schedule dispatch");
23e018a1 501 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 502 }
99f95e52
AM
503}
504
165125e1 505static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
506{
507 struct cfq_data *cfqd = q->elevator->elevator_data;
508
f04a6424 509 return !cfqd->rq_queued;
99f95e52
AM
510}
511
44f7c160
JA
512/*
513 * Scale schedule slice based on io priority. Use the sync time slice only
514 * if a queue is marked sync and has sync io queued. A sync queue with async
515 * io only, should not get full sync slice length.
516 */
a6151c3a 517static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 518 unsigned short prio)
44f7c160 519{
d9e7620e 520 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 521
d9e7620e
JA
522 WARN_ON(prio >= IOPRIO_BE_NR);
523
524 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
525}
44f7c160 526
d9e7620e
JA
527static inline int
528cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529{
530 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
531}
532
25bc6b07
VG
533static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
534{
535 u64 d = delta << CFQ_SERVICE_SHIFT;
536
537 d = d * BLKIO_WEIGHT_DEFAULT;
538 do_div(d, cfqg->weight);
539 return d;
540}
541
542static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
543{
544 s64 delta = (s64)(vdisktime - min_vdisktime);
545 if (delta > 0)
546 min_vdisktime = vdisktime;
547
548 return min_vdisktime;
549}
550
551static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
552{
553 s64 delta = (s64)(vdisktime - min_vdisktime);
554 if (delta < 0)
555 min_vdisktime = vdisktime;
556
557 return min_vdisktime;
558}
559
560static void update_min_vdisktime(struct cfq_rb_root *st)
561{
562 u64 vdisktime = st->min_vdisktime;
563 struct cfq_group *cfqg;
564
25bc6b07
VG
565 if (st->left) {
566 cfqg = rb_entry_cfqg(st->left);
567 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
568 }
569
570 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
571}
572
5db5d642
CZ
573/*
574 * get averaged number of queues of RT/BE priority.
575 * average is updated, with a formula that gives more weight to higher numbers,
576 * to quickly follows sudden increases and decrease slowly
577 */
578
58ff82f3
VG
579static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
580 struct cfq_group *cfqg, bool rt)
5869619c 581{
5db5d642
CZ
582 unsigned min_q, max_q;
583 unsigned mult = cfq_hist_divisor - 1;
584 unsigned round = cfq_hist_divisor / 2;
58ff82f3 585 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 586
58ff82f3
VG
587 min_q = min(cfqg->busy_queues_avg[rt], busy);
588 max_q = max(cfqg->busy_queues_avg[rt], busy);
589 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 590 cfq_hist_divisor;
58ff82f3
VG
591 return cfqg->busy_queues_avg[rt];
592}
593
594static inline unsigned
595cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
596{
597 struct cfq_rb_root *st = &cfqd->grp_service_tree;
598
599 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
600}
601
44f7c160
JA
602static inline void
603cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
604{
5db5d642
CZ
605 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
606 if (cfqd->cfq_latency) {
58ff82f3
VG
607 /*
608 * interested queues (we consider only the ones with the same
609 * priority class in the cfq group)
610 */
611 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
612 cfq_class_rt(cfqq));
5db5d642
CZ
613 unsigned sync_slice = cfqd->cfq_slice[1];
614 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
615 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
616
617 if (expect_latency > group_slice) {
5db5d642
CZ
618 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
619 /* scale low_slice according to IO priority
620 * and sync vs async */
621 unsigned low_slice =
622 min(slice, base_low_slice * slice / sync_slice);
623 /* the adapted slice value is scaled to fit all iqs
624 * into the target latency */
58ff82f3 625 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
626 low_slice);
627 }
628 }
dae739eb 629 cfqq->slice_start = jiffies;
5db5d642 630 cfqq->slice_end = jiffies + slice;
f75edf2d 631 cfqq->allocated_slice = slice;
7b679138 632 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
633}
634
635/*
636 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
637 * isn't valid until the first request from the dispatch is activated
638 * and the slice time set.
639 */
a6151c3a 640static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
641{
642 if (cfq_cfqq_slice_new(cfqq))
c1e44756 643 return false;
44f7c160 644 if (time_before(jiffies, cfqq->slice_end))
c1e44756 645 return false;
44f7c160 646
c1e44756 647 return true;
44f7c160
JA
648}
649
1da177e4 650/*
5e705374 651 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 652 * We choose the request that is closest to the head right now. Distance
e8a99053 653 * behind the head is penalized and only allowed to a certain extent.
1da177e4 654 */
5e705374 655static struct request *
cf7c25cf 656cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 657{
cf7c25cf 658 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 659 unsigned long back_max;
e8a99053
AM
660#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
661#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
662 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 663
5e705374
JA
664 if (rq1 == NULL || rq1 == rq2)
665 return rq2;
666 if (rq2 == NULL)
667 return rq1;
9c2c38a1 668
5e705374
JA
669 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
670 return rq1;
671 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
672 return rq2;
7b6d91da 673 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 674 return rq1;
7b6d91da
CH
675 else if ((rq2->cmd_flags & REQ_META) &&
676 !(rq1->cmd_flags & REQ_META))
374f84ac 677 return rq2;
1da177e4 678
83096ebf
TH
679 s1 = blk_rq_pos(rq1);
680 s2 = blk_rq_pos(rq2);
1da177e4 681
1da177e4
LT
682 /*
683 * by definition, 1KiB is 2 sectors
684 */
685 back_max = cfqd->cfq_back_max * 2;
686
687 /*
688 * Strict one way elevator _except_ in the case where we allow
689 * short backward seeks which are biased as twice the cost of a
690 * similar forward seek.
691 */
692 if (s1 >= last)
693 d1 = s1 - last;
694 else if (s1 + back_max >= last)
695 d1 = (last - s1) * cfqd->cfq_back_penalty;
696 else
e8a99053 697 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
698
699 if (s2 >= last)
700 d2 = s2 - last;
701 else if (s2 + back_max >= last)
702 d2 = (last - s2) * cfqd->cfq_back_penalty;
703 else
e8a99053 704 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
705
706 /* Found required data */
e8a99053
AM
707
708 /*
709 * By doing switch() on the bit mask "wrap" we avoid having to
710 * check two variables for all permutations: --> faster!
711 */
712 switch (wrap) {
5e705374 713 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 714 if (d1 < d2)
5e705374 715 return rq1;
e8a99053 716 else if (d2 < d1)
5e705374 717 return rq2;
e8a99053
AM
718 else {
719 if (s1 >= s2)
5e705374 720 return rq1;
e8a99053 721 else
5e705374 722 return rq2;
e8a99053 723 }
1da177e4 724
e8a99053 725 case CFQ_RQ2_WRAP:
5e705374 726 return rq1;
e8a99053 727 case CFQ_RQ1_WRAP:
5e705374
JA
728 return rq2;
729 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
730 default:
731 /*
732 * Since both rqs are wrapped,
733 * start with the one that's further behind head
734 * (--> only *one* back seek required),
735 * since back seek takes more time than forward.
736 */
737 if (s1 <= s2)
5e705374 738 return rq1;
1da177e4 739 else
5e705374 740 return rq2;
1da177e4
LT
741 }
742}
743
498d3aa2
JA
744/*
745 * The below is leftmost cache rbtree addon
746 */
0871714e 747static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 748{
615f0259
VG
749 /* Service tree is empty */
750 if (!root->count)
751 return NULL;
752
cc09e299
JA
753 if (!root->left)
754 root->left = rb_first(&root->rb);
755
0871714e
JA
756 if (root->left)
757 return rb_entry(root->left, struct cfq_queue, rb_node);
758
759 return NULL;
cc09e299
JA
760}
761
1fa8f6d6
VG
762static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
763{
764 if (!root->left)
765 root->left = rb_first(&root->rb);
766
767 if (root->left)
768 return rb_entry_cfqg(root->left);
769
770 return NULL;
771}
772
a36e71f9
JA
773static void rb_erase_init(struct rb_node *n, struct rb_root *root)
774{
775 rb_erase(n, root);
776 RB_CLEAR_NODE(n);
777}
778
cc09e299
JA
779static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
780{
781 if (root->left == n)
782 root->left = NULL;
a36e71f9 783 rb_erase_init(n, &root->rb);
aa6f6a3d 784 --root->count;
cc09e299
JA
785}
786
1da177e4
LT
787/*
788 * would be nice to take fifo expire time into account as well
789 */
5e705374
JA
790static struct request *
791cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
792 struct request *last)
1da177e4 793{
21183b07
JA
794 struct rb_node *rbnext = rb_next(&last->rb_node);
795 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 796 struct request *next = NULL, *prev = NULL;
1da177e4 797
21183b07 798 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
799
800 if (rbprev)
5e705374 801 prev = rb_entry_rq(rbprev);
1da177e4 802
21183b07 803 if (rbnext)
5e705374 804 next = rb_entry_rq(rbnext);
21183b07
JA
805 else {
806 rbnext = rb_first(&cfqq->sort_list);
807 if (rbnext && rbnext != &last->rb_node)
5e705374 808 next = rb_entry_rq(rbnext);
21183b07 809 }
1da177e4 810
cf7c25cf 811 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
812}
813
d9e7620e
JA
814static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
815 struct cfq_queue *cfqq)
1da177e4 816{
d9e7620e
JA
817 /*
818 * just an approximation, should be ok.
819 */
cdb16e8f 820 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 821 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
822}
823
1fa8f6d6
VG
824static inline s64
825cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
826{
827 return cfqg->vdisktime - st->min_vdisktime;
828}
829
830static void
831__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
832{
833 struct rb_node **node = &st->rb.rb_node;
834 struct rb_node *parent = NULL;
835 struct cfq_group *__cfqg;
836 s64 key = cfqg_key(st, cfqg);
837 int left = 1;
838
839 while (*node != NULL) {
840 parent = *node;
841 __cfqg = rb_entry_cfqg(parent);
842
843 if (key < cfqg_key(st, __cfqg))
844 node = &parent->rb_left;
845 else {
846 node = &parent->rb_right;
847 left = 0;
848 }
849 }
850
851 if (left)
852 st->left = &cfqg->rb_node;
853
854 rb_link_node(&cfqg->rb_node, parent, node);
855 rb_insert_color(&cfqg->rb_node, &st->rb);
856}
857
858static void
859cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
860{
861 struct cfq_rb_root *st = &cfqd->grp_service_tree;
862 struct cfq_group *__cfqg;
863 struct rb_node *n;
864
865 cfqg->nr_cfqq++;
866 if (cfqg->on_st)
867 return;
868
869 /*
870 * Currently put the group at the end. Later implement something
871 * so that groups get lesser vtime based on their weights, so that
872 * if group does not loose all if it was not continously backlogged.
873 */
874 n = rb_last(&st->rb);
875 if (n) {
876 __cfqg = rb_entry_cfqg(n);
877 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
878 } else
879 cfqg->vdisktime = st->min_vdisktime;
880
881 __cfq_group_service_tree_add(st, cfqg);
882 cfqg->on_st = true;
58ff82f3 883 st->total_weight += cfqg->weight;
1fa8f6d6
VG
884}
885
886static void
887cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
888{
889 struct cfq_rb_root *st = &cfqd->grp_service_tree;
890
891 BUG_ON(cfqg->nr_cfqq < 1);
892 cfqg->nr_cfqq--;
25bc6b07 893
1fa8f6d6
VG
894 /* If there are other cfq queues under this group, don't delete it */
895 if (cfqg->nr_cfqq)
896 return;
897
2868ef7b 898 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 899 cfqg->on_st = false;
58ff82f3 900 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
901 if (!RB_EMPTY_NODE(&cfqg->rb_node))
902 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 903 cfqg->saved_workload_slice = 0;
e98ef89b 904 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
905}
906
907static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
908{
f75edf2d 909 unsigned int slice_used;
dae739eb
VG
910
911 /*
912 * Queue got expired before even a single request completed or
913 * got expired immediately after first request completion.
914 */
915 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
916 /*
917 * Also charge the seek time incurred to the group, otherwise
918 * if there are mutiple queues in the group, each can dispatch
919 * a single request on seeky media and cause lots of seek time
920 * and group will never know it.
921 */
922 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
923 1);
924 } else {
925 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
926 if (slice_used > cfqq->allocated_slice)
927 slice_used = cfqq->allocated_slice;
dae739eb
VG
928 }
929
dae739eb
VG
930 return slice_used;
931}
932
933static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 934 struct cfq_queue *cfqq)
dae739eb
VG
935{
936 struct cfq_rb_root *st = &cfqd->grp_service_tree;
02b35081 937 unsigned int used_sl, charge;
f26bd1f0
VG
938 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
939 - cfqg->service_tree_idle.count;
940
941 BUG_ON(nr_sync < 0);
02b35081 942 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
dae739eb 943
02b35081
VG
944 if (iops_mode(cfqd))
945 charge = cfqq->slice_dispatch;
946 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
947 charge = cfqq->allocated_slice;
dae739eb
VG
948
949 /* Can't update vdisktime while group is on service tree */
950 cfq_rb_erase(&cfqg->rb_node, st);
02b35081 951 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
dae739eb
VG
952 __cfq_group_service_tree_add(st, cfqg);
953
954 /* This group is being expired. Save the context */
955 if (time_after(cfqd->workload_expires, jiffies)) {
956 cfqg->saved_workload_slice = cfqd->workload_expires
957 - jiffies;
958 cfqg->saved_workload = cfqd->serving_type;
959 cfqg->saved_serving_prio = cfqd->serving_prio;
960 } else
961 cfqg->saved_workload_slice = 0;
2868ef7b
VG
962
963 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
964 st->min_vdisktime);
c4e7893e
VG
965 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
966 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
967 iops_mode(cfqd), cfqq->nr_sectors);
e98ef89b
VG
968 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
969 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
970}
971
25fb5169
VG
972#ifdef CONFIG_CFQ_GROUP_IOSCHED
973static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
974{
975 if (blkg)
976 return container_of(blkg, struct cfq_group, blkg);
977 return NULL;
978}
979
fe071437
VG
980void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
981 unsigned int weight)
f8d461d6
VG
982{
983 cfqg_of_blkg(blkg)->weight = weight;
984}
985
25fb5169
VG
986static struct cfq_group *
987cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
988{
989 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
990 struct cfq_group *cfqg = NULL;
991 void *key = cfqd;
992 int i, j;
993 struct cfq_rb_root *st;
22084190
VG
994 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
995 unsigned int major, minor;
25fb5169 996
25fb5169 997 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
998 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
999 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1000 cfqg->blkg.dev = MKDEV(major, minor);
1001 goto done;
1002 }
25fb5169
VG
1003 if (cfqg || !create)
1004 goto done;
1005
1006 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1007 if (!cfqg)
1008 goto done;
1009
25fb5169
VG
1010 for_each_cfqg_st(cfqg, i, j, st)
1011 *st = CFQ_RB_ROOT;
1012 RB_CLEAR_NODE(&cfqg->rb_node);
1013
b1c35769
VG
1014 /*
1015 * Take the initial reference that will be released on destroy
1016 * This can be thought of a joint reference by cgroup and
1017 * elevator which will be dropped by either elevator exit
1018 * or cgroup deletion path depending on who is exiting first.
1019 */
1020 atomic_set(&cfqg->ref, 1);
1021
180be2a0
VG
1022 /*
1023 * Add group onto cgroup list. It might happen that bdi->dev is
1024 * not initiliazed yet. Initialize this new group without major
1025 * and minor info and this info will be filled in once a new thread
1026 * comes for IO. See code above.
1027 */
1028 if (bdi->dev) {
1029 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1030 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1031 MKDEV(major, minor));
180be2a0
VG
1032 } else
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1034 0);
1035
34d0f179 1036 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1037
1038 /* Add group on cfqd list */
1039 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1040
1041done:
25fb5169
VG
1042 return cfqg;
1043}
1044
1045/*
1046 * Search for the cfq group current task belongs to. If create = 1, then also
1047 * create the cfq group if it does not exist. request_queue lock must be held.
1048 */
1049static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1050{
1051 struct cgroup *cgroup;
1052 struct cfq_group *cfqg = NULL;
1053
1054 rcu_read_lock();
1055 cgroup = task_cgroup(current, blkio_subsys_id);
1056 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1057 if (!cfqg && create)
1058 cfqg = &cfqd->root_group;
1059 rcu_read_unlock();
1060 return cfqg;
1061}
1062
7f1dc8a2
VG
1063static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1064{
1065 atomic_inc(&cfqg->ref);
1066 return cfqg;
1067}
1068
25fb5169
VG
1069static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1070{
1071 /* Currently, all async queues are mapped to root group */
1072 if (!cfq_cfqq_sync(cfqq))
1073 cfqg = &cfqq->cfqd->root_group;
1074
1075 cfqq->cfqg = cfqg;
b1c35769
VG
1076 /* cfqq reference on cfqg */
1077 atomic_inc(&cfqq->cfqg->ref);
1078}
1079
1080static void cfq_put_cfqg(struct cfq_group *cfqg)
1081{
1082 struct cfq_rb_root *st;
1083 int i, j;
1084
1085 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1086 if (!atomic_dec_and_test(&cfqg->ref))
1087 return;
1088 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1089 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
b1c35769
VG
1090 kfree(cfqg);
1091}
1092
1093static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1094{
1095 /* Something wrong if we are trying to remove same group twice */
1096 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1097
1098 hlist_del_init(&cfqg->cfqd_node);
1099
1100 /*
1101 * Put the reference taken at the time of creation so that when all
1102 * queues are gone, group can be destroyed.
1103 */
1104 cfq_put_cfqg(cfqg);
1105}
1106
1107static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1108{
1109 struct hlist_node *pos, *n;
1110 struct cfq_group *cfqg;
1111
1112 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1113 /*
1114 * If cgroup removal path got to blk_group first and removed
1115 * it from cgroup list, then it will take care of destroying
1116 * cfqg also.
1117 */
e98ef89b 1118 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1119 cfq_destroy_cfqg(cfqd, cfqg);
1120 }
25fb5169 1121}
b1c35769
VG
1122
1123/*
1124 * Blk cgroup controller notification saying that blkio_group object is being
1125 * delinked as associated cgroup object is going away. That also means that
1126 * no new IO will come in this group. So get rid of this group as soon as
1127 * any pending IO in the group is finished.
1128 *
1129 * This function is called under rcu_read_lock(). key is the rcu protected
1130 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1131 * read lock.
1132 *
1133 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1134 * it should not be NULL as even if elevator was exiting, cgroup deltion
1135 * path got to it first.
1136 */
1137void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1138{
1139 unsigned long flags;
1140 struct cfq_data *cfqd = key;
1141
1142 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1143 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1144 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1145}
1146
25fb5169
VG
1147#else /* GROUP_IOSCHED */
1148static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1149{
1150 return &cfqd->root_group;
1151}
7f1dc8a2
VG
1152
1153static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1154{
50eaeb32 1155 return cfqg;
7f1dc8a2
VG
1156}
1157
25fb5169
VG
1158static inline void
1159cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1160 cfqq->cfqg = cfqg;
1161}
1162
b1c35769
VG
1163static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1164static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1165
25fb5169
VG
1166#endif /* GROUP_IOSCHED */
1167
498d3aa2 1168/*
c0324a02 1169 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1170 * requests waiting to be processed. It is sorted in the order that
1171 * we will service the queues.
1172 */
a36e71f9 1173static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1174 bool add_front)
d9e7620e 1175{
0871714e
JA
1176 struct rb_node **p, *parent;
1177 struct cfq_queue *__cfqq;
d9e7620e 1178 unsigned long rb_key;
c0324a02 1179 struct cfq_rb_root *service_tree;
498d3aa2 1180 int left;
dae739eb 1181 int new_cfqq = 1;
ae30c286
VG
1182 int group_changed = 0;
1183
1184#ifdef CONFIG_CFQ_GROUP_IOSCHED
1185 if (!cfqd->cfq_group_isolation
1186 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1187 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1188 /* Move this cfq to root group */
1189 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1190 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1191 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1192 cfqq->orig_cfqg = cfqq->cfqg;
1193 cfqq->cfqg = &cfqd->root_group;
1194 atomic_inc(&cfqd->root_group.ref);
1195 group_changed = 1;
1196 } else if (!cfqd->cfq_group_isolation
1197 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1198 /* cfqq is sequential now needs to go to its original group */
1199 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1200 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1201 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1202 cfq_put_cfqg(cfqq->cfqg);
1203 cfqq->cfqg = cfqq->orig_cfqg;
1204 cfqq->orig_cfqg = NULL;
1205 group_changed = 1;
1206 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1207 }
1208#endif
d9e7620e 1209
cdb16e8f 1210 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1211 cfqq_type(cfqq));
0871714e
JA
1212 if (cfq_class_idle(cfqq)) {
1213 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1214 parent = rb_last(&service_tree->rb);
0871714e
JA
1215 if (parent && parent != &cfqq->rb_node) {
1216 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1217 rb_key += __cfqq->rb_key;
1218 } else
1219 rb_key += jiffies;
1220 } else if (!add_front) {
b9c8946b
JA
1221 /*
1222 * Get our rb key offset. Subtract any residual slice
1223 * value carried from last service. A negative resid
1224 * count indicates slice overrun, and this should position
1225 * the next service time further away in the tree.
1226 */
edd75ffd 1227 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1228 rb_key -= cfqq->slice_resid;
edd75ffd 1229 cfqq->slice_resid = 0;
48e025e6
CZ
1230 } else {
1231 rb_key = -HZ;
aa6f6a3d 1232 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1233 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1234 }
1da177e4 1235
d9e7620e 1236 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1237 new_cfqq = 0;
99f9628a 1238 /*
d9e7620e 1239 * same position, nothing more to do
99f9628a 1240 */
c0324a02
CZ
1241 if (rb_key == cfqq->rb_key &&
1242 cfqq->service_tree == service_tree)
d9e7620e 1243 return;
1da177e4 1244
aa6f6a3d
CZ
1245 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1246 cfqq->service_tree = NULL;
1da177e4 1247 }
d9e7620e 1248
498d3aa2 1249 left = 1;
0871714e 1250 parent = NULL;
aa6f6a3d
CZ
1251 cfqq->service_tree = service_tree;
1252 p = &service_tree->rb.rb_node;
d9e7620e 1253 while (*p) {
67060e37 1254 struct rb_node **n;
cc09e299 1255
d9e7620e
JA
1256 parent = *p;
1257 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1258
0c534e0a 1259 /*
c0324a02 1260 * sort by key, that represents service time.
0c534e0a 1261 */
c0324a02 1262 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1263 n = &(*p)->rb_left;
c0324a02 1264 else {
67060e37 1265 n = &(*p)->rb_right;
cc09e299 1266 left = 0;
c0324a02 1267 }
67060e37
JA
1268
1269 p = n;
d9e7620e
JA
1270 }
1271
cc09e299 1272 if (left)
aa6f6a3d 1273 service_tree->left = &cfqq->rb_node;
cc09e299 1274
d9e7620e
JA
1275 cfqq->rb_key = rb_key;
1276 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1277 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1278 service_tree->count++;
ae30c286 1279 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1280 return;
1fa8f6d6 1281 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1282}
1283
a36e71f9 1284static struct cfq_queue *
f2d1f0ae
JA
1285cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1286 sector_t sector, struct rb_node **ret_parent,
1287 struct rb_node ***rb_link)
a36e71f9 1288{
a36e71f9
JA
1289 struct rb_node **p, *parent;
1290 struct cfq_queue *cfqq = NULL;
1291
1292 parent = NULL;
1293 p = &root->rb_node;
1294 while (*p) {
1295 struct rb_node **n;
1296
1297 parent = *p;
1298 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1299
1300 /*
1301 * Sort strictly based on sector. Smallest to the left,
1302 * largest to the right.
1303 */
2e46e8b2 1304 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1305 n = &(*p)->rb_right;
2e46e8b2 1306 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1307 n = &(*p)->rb_left;
1308 else
1309 break;
1310 p = n;
3ac6c9f8 1311 cfqq = NULL;
a36e71f9
JA
1312 }
1313
1314 *ret_parent = parent;
1315 if (rb_link)
1316 *rb_link = p;
3ac6c9f8 1317 return cfqq;
a36e71f9
JA
1318}
1319
1320static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1321{
a36e71f9
JA
1322 struct rb_node **p, *parent;
1323 struct cfq_queue *__cfqq;
1324
f2d1f0ae
JA
1325 if (cfqq->p_root) {
1326 rb_erase(&cfqq->p_node, cfqq->p_root);
1327 cfqq->p_root = NULL;
1328 }
a36e71f9
JA
1329
1330 if (cfq_class_idle(cfqq))
1331 return;
1332 if (!cfqq->next_rq)
1333 return;
1334
f2d1f0ae 1335 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1336 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1337 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1338 if (!__cfqq) {
1339 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1340 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1341 } else
1342 cfqq->p_root = NULL;
a36e71f9
JA
1343}
1344
498d3aa2
JA
1345/*
1346 * Update cfqq's position in the service tree.
1347 */
edd75ffd 1348static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1349{
6d048f53
JA
1350 /*
1351 * Resorting requires the cfqq to be on the RR list already.
1352 */
a36e71f9 1353 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1354 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1355 cfq_prio_tree_add(cfqd, cfqq);
1356 }
6d048f53
JA
1357}
1358
1da177e4
LT
1359/*
1360 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1361 * the pending list according to last request service
1da177e4 1362 */
febffd61 1363static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1364{
7b679138 1365 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1366 BUG_ON(cfq_cfqq_on_rr(cfqq));
1367 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1368 cfqd->busy_queues++;
1369
edd75ffd 1370 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1371}
1372
498d3aa2
JA
1373/*
1374 * Called when the cfqq no longer has requests pending, remove it from
1375 * the service tree.
1376 */
febffd61 1377static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1378{
7b679138 1379 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1380 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1381 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1382
aa6f6a3d
CZ
1383 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1384 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1385 cfqq->service_tree = NULL;
1386 }
f2d1f0ae
JA
1387 if (cfqq->p_root) {
1388 rb_erase(&cfqq->p_node, cfqq->p_root);
1389 cfqq->p_root = NULL;
1390 }
d9e7620e 1391
1fa8f6d6 1392 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1393 BUG_ON(!cfqd->busy_queues);
1394 cfqd->busy_queues--;
1395}
1396
1397/*
1398 * rb tree support functions
1399 */
febffd61 1400static void cfq_del_rq_rb(struct request *rq)
1da177e4 1401{
5e705374 1402 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1403 const int sync = rq_is_sync(rq);
1da177e4 1404
b4878f24
JA
1405 BUG_ON(!cfqq->queued[sync]);
1406 cfqq->queued[sync]--;
1da177e4 1407
5e705374 1408 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1409
f04a6424
VG
1410 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1411 /*
1412 * Queue will be deleted from service tree when we actually
1413 * expire it later. Right now just remove it from prio tree
1414 * as it is empty.
1415 */
1416 if (cfqq->p_root) {
1417 rb_erase(&cfqq->p_node, cfqq->p_root);
1418 cfqq->p_root = NULL;
1419 }
1420 }
1da177e4
LT
1421}
1422
5e705374 1423static void cfq_add_rq_rb(struct request *rq)
1da177e4 1424{
5e705374 1425 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1426 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1427 struct request *__alias, *prev;
1da177e4 1428
5380a101 1429 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1430
1431 /*
1432 * looks a little odd, but the first insert might return an alias.
1433 * if that happens, put the alias on the dispatch list
1434 */
21183b07 1435 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1436 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1437
1438 if (!cfq_cfqq_on_rr(cfqq))
1439 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1440
1441 /*
1442 * check if this request is a better next-serve candidate
1443 */
a36e71f9 1444 prev = cfqq->next_rq;
cf7c25cf 1445 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1446
1447 /*
1448 * adjust priority tree position, if ->next_rq changes
1449 */
1450 if (prev != cfqq->next_rq)
1451 cfq_prio_tree_add(cfqd, cfqq);
1452
5044eed4 1453 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1454}
1455
febffd61 1456static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1457{
5380a101
JA
1458 elv_rb_del(&cfqq->sort_list, rq);
1459 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1460 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1461 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1462 cfq_add_rq_rb(rq);
e98ef89b 1463 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1464 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1465 rq_is_sync(rq));
1da177e4
LT
1466}
1467
206dc69b
JA
1468static struct request *
1469cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1470{
206dc69b 1471 struct task_struct *tsk = current;
91fac317 1472 struct cfq_io_context *cic;
206dc69b 1473 struct cfq_queue *cfqq;
1da177e4 1474
4ac845a2 1475 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1476 if (!cic)
1477 return NULL;
1478
1479 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1480 if (cfqq) {
1481 sector_t sector = bio->bi_sector + bio_sectors(bio);
1482
21183b07 1483 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1484 }
1da177e4 1485
1da177e4
LT
1486 return NULL;
1487}
1488
165125e1 1489static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1490{
22e2c507 1491 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1492
53c583d2 1493 cfqd->rq_in_driver++;
7b679138 1494 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1495 cfqd->rq_in_driver);
25776e35 1496
5b93629b 1497 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1498}
1499
165125e1 1500static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1501{
b4878f24
JA
1502 struct cfq_data *cfqd = q->elevator->elevator_data;
1503
53c583d2
CZ
1504 WARN_ON(!cfqd->rq_in_driver);
1505 cfqd->rq_in_driver--;
7b679138 1506 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1507 cfqd->rq_in_driver);
1da177e4
LT
1508}
1509
b4878f24 1510static void cfq_remove_request(struct request *rq)
1da177e4 1511{
5e705374 1512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1513
5e705374
JA
1514 if (cfqq->next_rq == rq)
1515 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1516
b4878f24 1517 list_del_init(&rq->queuelist);
5e705374 1518 cfq_del_rq_rb(rq);
374f84ac 1519
45333d5a 1520 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1521 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1522 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1523 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1524 WARN_ON(!cfqq->meta_pending);
1525 cfqq->meta_pending--;
1526 }
1da177e4
LT
1527}
1528
165125e1
JA
1529static int cfq_merge(struct request_queue *q, struct request **req,
1530 struct bio *bio)
1da177e4
LT
1531{
1532 struct cfq_data *cfqd = q->elevator->elevator_data;
1533 struct request *__rq;
1da177e4 1534
206dc69b 1535 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1536 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1537 *req = __rq;
1538 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1539 }
1540
1541 return ELEVATOR_NO_MERGE;
1da177e4
LT
1542}
1543
165125e1 1544static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1545 int type)
1da177e4 1546{
21183b07 1547 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1548 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1549
5e705374 1550 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1551 }
1da177e4
LT
1552}
1553
812d4026
DS
1554static void cfq_bio_merged(struct request_queue *q, struct request *req,
1555 struct bio *bio)
1556{
e98ef89b
VG
1557 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1558 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1559}
1560
1da177e4 1561static void
165125e1 1562cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1563 struct request *next)
1564{
cf7c25cf 1565 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1566 /*
1567 * reposition in fifo if next is older than rq
1568 */
1569 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1570 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1571 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1572 rq_set_fifo_time(rq, rq_fifo_time(next));
1573 }
22e2c507 1574
cf7c25cf
CZ
1575 if (cfqq->next_rq == next)
1576 cfqq->next_rq = rq;
b4878f24 1577 cfq_remove_request(next);
e98ef89b
VG
1578 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1579 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1580}
1581
165125e1 1582static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1583 struct bio *bio)
1584{
1585 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1586 struct cfq_io_context *cic;
da775265 1587 struct cfq_queue *cfqq;
da775265
JA
1588
1589 /*
ec8acb69 1590 * Disallow merge of a sync bio into an async request.
da775265 1591 */
91fac317 1592 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1593 return false;
da775265
JA
1594
1595 /*
719d3402
JA
1596 * Lookup the cfqq that this bio will be queued with. Allow
1597 * merge only if rq is queued there.
da775265 1598 */
4ac845a2 1599 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1600 if (!cic)
a6151c3a 1601 return false;
719d3402 1602
91fac317 1603 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1604 return cfqq == RQ_CFQQ(rq);
da775265
JA
1605}
1606
812df48d
DS
1607static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1608{
1609 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1610 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1611}
1612
febffd61
JA
1613static void __cfq_set_active_queue(struct cfq_data *cfqd,
1614 struct cfq_queue *cfqq)
22e2c507
JA
1615{
1616 if (cfqq) {
b1ffe737
DS
1617 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1618 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1619 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1620 cfqq->slice_start = 0;
1621 cfqq->dispatch_start = jiffies;
f75edf2d 1622 cfqq->allocated_slice = 0;
22e2c507 1623 cfqq->slice_end = 0;
2f5cb738 1624 cfqq->slice_dispatch = 0;
c4e7893e 1625 cfqq->nr_sectors = 0;
2f5cb738 1626
2f5cb738 1627 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1628 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1629 cfq_clear_cfqq_must_alloc_slice(cfqq);
1630 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1631 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1632
812df48d 1633 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1634 }
1635
1636 cfqd->active_queue = cfqq;
1637}
1638
7b14e3b5
JA
1639/*
1640 * current cfqq expired its slice (or was too idle), select new one
1641 */
1642static void
1643__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1644 bool timed_out)
7b14e3b5 1645{
7b679138
JA
1646 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1647
7b14e3b5 1648 if (cfq_cfqq_wait_request(cfqq))
812df48d 1649 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1650
7b14e3b5 1651 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1652 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1653
ae54abed
SL
1654 /*
1655 * If this cfqq is shared between multiple processes, check to
1656 * make sure that those processes are still issuing I/Os within
1657 * the mean seek distance. If not, it may be time to break the
1658 * queues apart again.
1659 */
1660 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1661 cfq_mark_cfqq_split_coop(cfqq);
1662
7b14e3b5 1663 /*
6084cdda 1664 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1665 */
7b679138 1666 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1667 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1668 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1669 }
7b14e3b5 1670
e5ff082e 1671 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1672
f04a6424
VG
1673 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1674 cfq_del_cfqq_rr(cfqd, cfqq);
1675
edd75ffd 1676 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1677
1678 if (cfqq == cfqd->active_queue)
1679 cfqd->active_queue = NULL;
1680
1681 if (cfqd->active_cic) {
1682 put_io_context(cfqd->active_cic->ioc);
1683 cfqd->active_cic = NULL;
1684 }
7b14e3b5
JA
1685}
1686
e5ff082e 1687static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1688{
1689 struct cfq_queue *cfqq = cfqd->active_queue;
1690
1691 if (cfqq)
e5ff082e 1692 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1693}
1694
498d3aa2
JA
1695/*
1696 * Get next queue for service. Unless we have a queue preemption,
1697 * we'll simply select the first cfqq in the service tree.
1698 */
6d048f53 1699static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1700{
c0324a02 1701 struct cfq_rb_root *service_tree =
cdb16e8f 1702 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1703 cfqd->serving_type);
d9e7620e 1704
f04a6424
VG
1705 if (!cfqd->rq_queued)
1706 return NULL;
1707
1fa8f6d6
VG
1708 /* There is nothing to dispatch */
1709 if (!service_tree)
1710 return NULL;
c0324a02
CZ
1711 if (RB_EMPTY_ROOT(&service_tree->rb))
1712 return NULL;
1713 return cfq_rb_first(service_tree);
6d048f53
JA
1714}
1715
f04a6424
VG
1716static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1717{
25fb5169 1718 struct cfq_group *cfqg;
f04a6424
VG
1719 struct cfq_queue *cfqq;
1720 int i, j;
1721 struct cfq_rb_root *st;
1722
1723 if (!cfqd->rq_queued)
1724 return NULL;
1725
25fb5169
VG
1726 cfqg = cfq_get_next_cfqg(cfqd);
1727 if (!cfqg)
1728 return NULL;
1729
f04a6424
VG
1730 for_each_cfqg_st(cfqg, i, j, st)
1731 if ((cfqq = cfq_rb_first(st)) != NULL)
1732 return cfqq;
1733 return NULL;
1734}
1735
498d3aa2
JA
1736/*
1737 * Get and set a new active queue for service.
1738 */
a36e71f9
JA
1739static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1740 struct cfq_queue *cfqq)
6d048f53 1741{
e00ef799 1742 if (!cfqq)
a36e71f9 1743 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1744
22e2c507 1745 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1746 return cfqq;
22e2c507
JA
1747}
1748
d9e7620e
JA
1749static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1750 struct request *rq)
1751{
83096ebf
TH
1752 if (blk_rq_pos(rq) >= cfqd->last_position)
1753 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1754 else
83096ebf 1755 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1756}
1757
b2c18e1e 1758static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1759 struct request *rq)
6d048f53 1760{
e9ce335d 1761 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1762}
1763
a36e71f9
JA
1764static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1765 struct cfq_queue *cur_cfqq)
1766{
f2d1f0ae 1767 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1768 struct rb_node *parent, *node;
1769 struct cfq_queue *__cfqq;
1770 sector_t sector = cfqd->last_position;
1771
1772 if (RB_EMPTY_ROOT(root))
1773 return NULL;
1774
1775 /*
1776 * First, if we find a request starting at the end of the last
1777 * request, choose it.
1778 */
f2d1f0ae 1779 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1780 if (__cfqq)
1781 return __cfqq;
1782
1783 /*
1784 * If the exact sector wasn't found, the parent of the NULL leaf
1785 * will contain the closest sector.
1786 */
1787 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1788 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1789 return __cfqq;
1790
2e46e8b2 1791 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1792 node = rb_next(&__cfqq->p_node);
1793 else
1794 node = rb_prev(&__cfqq->p_node);
1795 if (!node)
1796 return NULL;
1797
1798 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1799 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1800 return __cfqq;
1801
1802 return NULL;
1803}
1804
1805/*
1806 * cfqd - obvious
1807 * cur_cfqq - passed in so that we don't decide that the current queue is
1808 * closely cooperating with itself.
1809 *
1810 * So, basically we're assuming that that cur_cfqq has dispatched at least
1811 * one request, and that cfqd->last_position reflects a position on the disk
1812 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1813 * assumption.
1814 */
1815static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1816 struct cfq_queue *cur_cfqq)
6d048f53 1817{
a36e71f9
JA
1818 struct cfq_queue *cfqq;
1819
39c01b21
DS
1820 if (cfq_class_idle(cur_cfqq))
1821 return NULL;
e6c5bc73
JM
1822 if (!cfq_cfqq_sync(cur_cfqq))
1823 return NULL;
1824 if (CFQQ_SEEKY(cur_cfqq))
1825 return NULL;
1826
b9d8f4c7
GJ
1827 /*
1828 * Don't search priority tree if it's the only queue in the group.
1829 */
1830 if (cur_cfqq->cfqg->nr_cfqq == 1)
1831 return NULL;
1832
6d048f53 1833 /*
d9e7620e
JA
1834 * We should notice if some of the queues are cooperating, eg
1835 * working closely on the same area of the disk. In that case,
1836 * we can group them together and don't waste time idling.
6d048f53 1837 */
a36e71f9
JA
1838 cfqq = cfqq_close(cfqd, cur_cfqq);
1839 if (!cfqq)
1840 return NULL;
1841
8682e1f1
VG
1842 /* If new queue belongs to different cfq_group, don't choose it */
1843 if (cur_cfqq->cfqg != cfqq->cfqg)
1844 return NULL;
1845
df5fe3e8
JM
1846 /*
1847 * It only makes sense to merge sync queues.
1848 */
1849 if (!cfq_cfqq_sync(cfqq))
1850 return NULL;
e6c5bc73
JM
1851 if (CFQQ_SEEKY(cfqq))
1852 return NULL;
df5fe3e8 1853
c0324a02
CZ
1854 /*
1855 * Do not merge queues of different priority classes
1856 */
1857 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1858 return NULL;
1859
a36e71f9 1860 return cfqq;
6d048f53
JA
1861}
1862
a6d44e98
CZ
1863/*
1864 * Determine whether we should enforce idle window for this queue.
1865 */
1866
1867static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1868{
1869 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1870 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1871
f04a6424
VG
1872 BUG_ON(!service_tree);
1873 BUG_ON(!service_tree->count);
1874
b6508c16
VG
1875 if (!cfqd->cfq_slice_idle)
1876 return false;
1877
a6d44e98
CZ
1878 /* We never do for idle class queues. */
1879 if (prio == IDLE_WORKLOAD)
1880 return false;
1881
1882 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1883 if (cfq_cfqq_idle_window(cfqq) &&
1884 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1885 return true;
1886
1887 /*
1888 * Otherwise, we do only if they are the last ones
1889 * in their service tree.
1890 */
b1ffe737 1891 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1892 return true;
b1ffe737
DS
1893 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1894 service_tree->count);
c1e44756 1895 return false;
a6d44e98
CZ
1896}
1897
6d048f53 1898static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1899{
1792669c 1900 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1901 struct cfq_io_context *cic;
80bdf0c7 1902 unsigned long sl, group_idle = 0;
7b14e3b5 1903
a68bbddb 1904 /*
f7d7b7a7
JA
1905 * SSD device without seek penalty, disable idling. But only do so
1906 * for devices that support queuing, otherwise we still have a problem
1907 * with sync vs async workloads.
a68bbddb 1908 */
f7d7b7a7 1909 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1910 return;
1911
dd67d051 1912 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1913 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1914
1915 /*
1916 * idle is disabled, either manually or by past process history
1917 */
80bdf0c7
VG
1918 if (!cfq_should_idle(cfqd, cfqq)) {
1919 /* no queue idling. Check for group idling */
1920 if (cfqd->cfq_group_idle)
1921 group_idle = cfqd->cfq_group_idle;
1922 else
1923 return;
1924 }
6d048f53 1925
7b679138 1926 /*
8e550632 1927 * still active requests from this queue, don't idle
7b679138 1928 */
8e550632 1929 if (cfqq->dispatched)
7b679138
JA
1930 return;
1931
22e2c507
JA
1932 /*
1933 * task has exited, don't wait
1934 */
206dc69b 1935 cic = cfqd->active_cic;
66dac98e 1936 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1937 return;
1938
355b659c
CZ
1939 /*
1940 * If our average think time is larger than the remaining time
1941 * slice, then don't idle. This avoids overrunning the allotted
1942 * time slice.
1943 */
1944 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1945 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1946 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1947 cic->ttime_mean);
355b659c 1948 return;
b1ffe737 1949 }
355b659c 1950
80bdf0c7
VG
1951 /* There are other queues in the group, don't do group idle */
1952 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1953 return;
1954
3b18152c 1955 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1956
80bdf0c7
VG
1957 if (group_idle)
1958 sl = cfqd->cfq_group_idle;
1959 else
1960 sl = cfqd->cfq_slice_idle;
206dc69b 1961
7b14e3b5 1962 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1963 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
1964 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1965 group_idle ? 1 : 0);
1da177e4
LT
1966}
1967
498d3aa2
JA
1968/*
1969 * Move request from internal lists to the request queue dispatch list.
1970 */
165125e1 1971static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1972{
3ed9a296 1973 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1974 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1975
7b679138
JA
1976 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1977
06d21886 1978 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1979 cfq_remove_request(rq);
6d048f53 1980 cfqq->dispatched++;
80bdf0c7 1981 (RQ_CFQG(rq))->dispatched++;
5380a101 1982 elv_dispatch_sort(q, rq);
3ed9a296 1983
53c583d2 1984 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 1985 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 1986 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1987 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1988}
1989
1990/*
1991 * return expired entry, or NULL to just start from scratch in rbtree
1992 */
febffd61 1993static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1994{
30996f40 1995 struct request *rq = NULL;
1da177e4 1996
3b18152c 1997 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1998 return NULL;
cb887411
JA
1999
2000 cfq_mark_cfqq_fifo_expire(cfqq);
2001
89850f7e
JA
2002 if (list_empty(&cfqq->fifo))
2003 return NULL;
1da177e4 2004
89850f7e 2005 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2006 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2007 rq = NULL;
1da177e4 2008
30996f40 2009 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2010 return rq;
1da177e4
LT
2011}
2012
22e2c507
JA
2013static inline int
2014cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2015{
2016 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2017
22e2c507 2018 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2019
22e2c507 2020 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
2021}
2022
df5fe3e8
JM
2023/*
2024 * Must be called with the queue_lock held.
2025 */
2026static int cfqq_process_refs(struct cfq_queue *cfqq)
2027{
2028 int process_refs, io_refs;
2029
2030 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2031 process_refs = atomic_read(&cfqq->ref) - io_refs;
2032 BUG_ON(process_refs < 0);
2033 return process_refs;
2034}
2035
2036static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2037{
e6c5bc73 2038 int process_refs, new_process_refs;
df5fe3e8
JM
2039 struct cfq_queue *__cfqq;
2040
c10b61f0
JM
2041 /*
2042 * If there are no process references on the new_cfqq, then it is
2043 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2044 * chain may have dropped their last reference (not just their
2045 * last process reference).
2046 */
2047 if (!cfqq_process_refs(new_cfqq))
2048 return;
2049
df5fe3e8
JM
2050 /* Avoid a circular list and skip interim queue merges */
2051 while ((__cfqq = new_cfqq->new_cfqq)) {
2052 if (__cfqq == cfqq)
2053 return;
2054 new_cfqq = __cfqq;
2055 }
2056
2057 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2058 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2059 /*
2060 * If the process for the cfqq has gone away, there is no
2061 * sense in merging the queues.
2062 */
c10b61f0 2063 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2064 return;
2065
e6c5bc73
JM
2066 /*
2067 * Merge in the direction of the lesser amount of work.
2068 */
e6c5bc73
JM
2069 if (new_process_refs >= process_refs) {
2070 cfqq->new_cfqq = new_cfqq;
2071 atomic_add(process_refs, &new_cfqq->ref);
2072 } else {
2073 new_cfqq->new_cfqq = cfqq;
2074 atomic_add(new_process_refs, &cfqq->ref);
2075 }
df5fe3e8
JM
2076}
2077
cdb16e8f 2078static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2079 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2080{
2081 struct cfq_queue *queue;
2082 int i;
2083 bool key_valid = false;
2084 unsigned long lowest_key = 0;
2085 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2086
65b32a57
VG
2087 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2088 /* select the one with lowest rb_key */
2089 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2090 if (queue &&
2091 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2092 lowest_key = queue->rb_key;
2093 cur_best = i;
2094 key_valid = true;
2095 }
2096 }
2097
2098 return cur_best;
2099}
2100
cdb16e8f 2101static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2102{
718eee05
CZ
2103 unsigned slice;
2104 unsigned count;
cdb16e8f 2105 struct cfq_rb_root *st;
58ff82f3 2106 unsigned group_slice;
718eee05 2107
1fa8f6d6
VG
2108 if (!cfqg) {
2109 cfqd->serving_prio = IDLE_WORKLOAD;
2110 cfqd->workload_expires = jiffies + 1;
2111 return;
2112 }
2113
718eee05 2114 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2115 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2116 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2117 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2118 cfqd->serving_prio = BE_WORKLOAD;
2119 else {
2120 cfqd->serving_prio = IDLE_WORKLOAD;
2121 cfqd->workload_expires = jiffies + 1;
2122 return;
2123 }
2124
2125 /*
2126 * For RT and BE, we have to choose also the type
2127 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2128 * expiration time
2129 */
65b32a57 2130 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2131 count = st->count;
718eee05
CZ
2132
2133 /*
65b32a57 2134 * check workload expiration, and that we still have other queues ready
718eee05 2135 */
65b32a57 2136 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2137 return;
2138
2139 /* otherwise select new workload type */
2140 cfqd->serving_type =
65b32a57
VG
2141 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2142 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2143 count = st->count;
718eee05
CZ
2144
2145 /*
2146 * the workload slice is computed as a fraction of target latency
2147 * proportional to the number of queues in that workload, over
2148 * all the queues in the same priority class
2149 */
58ff82f3
VG
2150 group_slice = cfq_group_slice(cfqd, cfqg);
2151
2152 slice = group_slice * count /
2153 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2154 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2155
f26bd1f0
VG
2156 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2157 unsigned int tmp;
2158
2159 /*
2160 * Async queues are currently system wide. Just taking
2161 * proportion of queues with-in same group will lead to higher
2162 * async ratio system wide as generally root group is going
2163 * to have higher weight. A more accurate thing would be to
2164 * calculate system wide asnc/sync ratio.
2165 */
2166 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2167 tmp = tmp/cfqd->busy_queues;
2168 slice = min_t(unsigned, slice, tmp);
2169
718eee05
CZ
2170 /* async workload slice is scaled down according to
2171 * the sync/async slice ratio. */
2172 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2173 } else
718eee05
CZ
2174 /* sync workload slice is at least 2 * cfq_slice_idle */
2175 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2176
2177 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2178 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2179 cfqd->workload_expires = jiffies + slice;
2180}
2181
1fa8f6d6
VG
2182static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2183{
2184 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2185 struct cfq_group *cfqg;
1fa8f6d6
VG
2186
2187 if (RB_EMPTY_ROOT(&st->rb))
2188 return NULL;
25bc6b07 2189 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2190 update_min_vdisktime(st);
2191 return cfqg;
1fa8f6d6
VG
2192}
2193
cdb16e8f
VG
2194static void cfq_choose_cfqg(struct cfq_data *cfqd)
2195{
1fa8f6d6
VG
2196 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2197
2198 cfqd->serving_group = cfqg;
dae739eb
VG
2199
2200 /* Restore the workload type data */
2201 if (cfqg->saved_workload_slice) {
2202 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2203 cfqd->serving_type = cfqg->saved_workload;
2204 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2205 } else
2206 cfqd->workload_expires = jiffies - 1;
2207
1fa8f6d6 2208 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2209}
2210
22e2c507 2211/*
498d3aa2
JA
2212 * Select a queue for service. If we have a current active queue,
2213 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2214 */
1b5ed5e1 2215static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2216{
a36e71f9 2217 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2218
22e2c507
JA
2219 cfqq = cfqd->active_queue;
2220 if (!cfqq)
2221 goto new_queue;
1da177e4 2222
f04a6424
VG
2223 if (!cfqd->rq_queued)
2224 return NULL;
c244bb50
VG
2225
2226 /*
2227 * We were waiting for group to get backlogged. Expire the queue
2228 */
2229 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2230 goto expire;
2231
22e2c507 2232 /*
6d048f53 2233 * The active queue has run out of time, expire it and select new.
22e2c507 2234 */
7667aa06
VG
2235 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2236 /*
2237 * If slice had not expired at the completion of last request
2238 * we might not have turned on wait_busy flag. Don't expire
2239 * the queue yet. Allow the group to get backlogged.
2240 *
2241 * The very fact that we have used the slice, that means we
2242 * have been idling all along on this queue and it should be
2243 * ok to wait for this request to complete.
2244 */
82bbbf28
VG
2245 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2246 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2247 cfqq = NULL;
7667aa06 2248 goto keep_queue;
82bbbf28 2249 } else
80bdf0c7 2250 goto check_group_idle;
7667aa06 2251 }
1da177e4 2252
22e2c507 2253 /*
6d048f53
JA
2254 * The active queue has requests and isn't expired, allow it to
2255 * dispatch.
22e2c507 2256 */
dd67d051 2257 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2258 goto keep_queue;
6d048f53 2259
a36e71f9
JA
2260 /*
2261 * If another queue has a request waiting within our mean seek
2262 * distance, let it run. The expire code will check for close
2263 * cooperators and put the close queue at the front of the service
df5fe3e8 2264 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2265 */
b3b6d040 2266 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2267 if (new_cfqq) {
2268 if (!cfqq->new_cfqq)
2269 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2270 goto expire;
df5fe3e8 2271 }
a36e71f9 2272
6d048f53
JA
2273 /*
2274 * No requests pending. If the active queue still has requests in
2275 * flight or is idling for a new request, allow either of these
2276 * conditions to happen (or time out) before selecting a new queue.
2277 */
80bdf0c7
VG
2278 if (timer_pending(&cfqd->idle_slice_timer)) {
2279 cfqq = NULL;
2280 goto keep_queue;
2281 }
2282
8e1ac665
SL
2283 /*
2284 * This is a deep seek queue, but the device is much faster than
2285 * the queue can deliver, don't idle
2286 **/
2287 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2288 (cfq_cfqq_slice_new(cfqq) ||
2289 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2290 cfq_clear_cfqq_deep(cfqq);
2291 cfq_clear_cfqq_idle_window(cfqq);
2292 }
2293
80bdf0c7
VG
2294 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2295 cfqq = NULL;
2296 goto keep_queue;
2297 }
2298
2299 /*
2300 * If group idle is enabled and there are requests dispatched from
2301 * this group, wait for requests to complete.
2302 */
2303check_group_idle:
2304 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2305 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2306 cfqq = NULL;
2307 goto keep_queue;
22e2c507
JA
2308 }
2309
3b18152c 2310expire:
e5ff082e 2311 cfq_slice_expired(cfqd, 0);
3b18152c 2312new_queue:
718eee05
CZ
2313 /*
2314 * Current queue expired. Check if we have to switch to a new
2315 * service tree
2316 */
2317 if (!new_cfqq)
cdb16e8f 2318 cfq_choose_cfqg(cfqd);
718eee05 2319
a36e71f9 2320 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2321keep_queue:
3b18152c 2322 return cfqq;
22e2c507
JA
2323}
2324
febffd61 2325static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2326{
2327 int dispatched = 0;
2328
2329 while (cfqq->next_rq) {
2330 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2331 dispatched++;
2332 }
2333
2334 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2335
2336 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2337 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2338 return dispatched;
2339}
2340
498d3aa2
JA
2341/*
2342 * Drain our current requests. Used for barriers and when switching
2343 * io schedulers on-the-fly.
2344 */
d9e7620e 2345static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2346{
0871714e 2347 struct cfq_queue *cfqq;
d9e7620e 2348 int dispatched = 0;
cdb16e8f 2349
3440c49f 2350 /* Expire the timeslice of the current active queue first */
e5ff082e 2351 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2352 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2353 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2354 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2355 }
1b5ed5e1 2356
1b5ed5e1
TH
2357 BUG_ON(cfqd->busy_queues);
2358
6923715a 2359 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2360 return dispatched;
2361}
2362
abc3c744
SL
2363static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2364 struct cfq_queue *cfqq)
2365{
2366 /* the queue hasn't finished any request, can't estimate */
2367 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2368 return true;
abc3c744
SL
2369 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2370 cfqq->slice_end))
c1e44756 2371 return true;
abc3c744 2372
c1e44756 2373 return false;
abc3c744
SL
2374}
2375
0b182d61 2376static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2377{
2f5cb738 2378 unsigned int max_dispatch;
22e2c507 2379
5ad531db
JA
2380 /*
2381 * Drain async requests before we start sync IO
2382 */
53c583d2 2383 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2384 return false;
5ad531db 2385
2f5cb738
JA
2386 /*
2387 * If this is an async queue and we have sync IO in flight, let it wait
2388 */
53c583d2 2389 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2390 return false;
2f5cb738 2391
abc3c744 2392 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2393 if (cfq_class_idle(cfqq))
2394 max_dispatch = 1;
b4878f24 2395
2f5cb738
JA
2396 /*
2397 * Does this cfqq already have too much IO in flight?
2398 */
2399 if (cfqq->dispatched >= max_dispatch) {
2400 /*
2401 * idle queue must always only have a single IO in flight
2402 */
3ed9a296 2403 if (cfq_class_idle(cfqq))
0b182d61 2404 return false;
3ed9a296 2405
2f5cb738
JA
2406 /*
2407 * We have other queues, don't allow more IO from this one
2408 */
abc3c744 2409 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2410 return false;
9ede209e 2411
365722bb 2412 /*
474b18cc 2413 * Sole queue user, no limit
365722bb 2414 */
abc3c744
SL
2415 if (cfqd->busy_queues == 1)
2416 max_dispatch = -1;
2417 else
2418 /*
2419 * Normally we start throttling cfqq when cfq_quantum/2
2420 * requests have been dispatched. But we can drive
2421 * deeper queue depths at the beginning of slice
2422 * subjected to upper limit of cfq_quantum.
2423 * */
2424 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2425 }
2426
2427 /*
2428 * Async queues must wait a bit before being allowed dispatch.
2429 * We also ramp up the dispatch depth gradually for async IO,
2430 * based on the last sync IO we serviced
2431 */
963b72fc 2432 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2433 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2434 unsigned int depth;
365722bb 2435
61f0c1dc 2436 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2437 if (!depth && !cfqq->dispatched)
2438 depth = 1;
8e296755
JA
2439 if (depth < max_dispatch)
2440 max_dispatch = depth;
2f5cb738 2441 }
3ed9a296 2442
0b182d61
JA
2443 /*
2444 * If we're below the current max, allow a dispatch
2445 */
2446 return cfqq->dispatched < max_dispatch;
2447}
2448
2449/*
2450 * Dispatch a request from cfqq, moving them to the request queue
2451 * dispatch list.
2452 */
2453static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2454{
2455 struct request *rq;
2456
2457 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2458
2459 if (!cfq_may_dispatch(cfqd, cfqq))
2460 return false;
2461
2462 /*
2463 * follow expired path, else get first next available
2464 */
2465 rq = cfq_check_fifo(cfqq);
2466 if (!rq)
2467 rq = cfqq->next_rq;
2468
2469 /*
2470 * insert request into driver dispatch list
2471 */
2472 cfq_dispatch_insert(cfqd->queue, rq);
2473
2474 if (!cfqd->active_cic) {
2475 struct cfq_io_context *cic = RQ_CIC(rq);
2476
2477 atomic_long_inc(&cic->ioc->refcount);
2478 cfqd->active_cic = cic;
2479 }
2480
2481 return true;
2482}
2483
2484/*
2485 * Find the cfqq that we need to service and move a request from that to the
2486 * dispatch list
2487 */
2488static int cfq_dispatch_requests(struct request_queue *q, int force)
2489{
2490 struct cfq_data *cfqd = q->elevator->elevator_data;
2491 struct cfq_queue *cfqq;
2492
2493 if (!cfqd->busy_queues)
2494 return 0;
2495
2496 if (unlikely(force))
2497 return cfq_forced_dispatch(cfqd);
2498
2499 cfqq = cfq_select_queue(cfqd);
2500 if (!cfqq)
8e296755
JA
2501 return 0;
2502
2f5cb738 2503 /*
0b182d61 2504 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2505 */
0b182d61
JA
2506 if (!cfq_dispatch_request(cfqd, cfqq))
2507 return 0;
2508
2f5cb738 2509 cfqq->slice_dispatch++;
b029195d 2510 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2511
2f5cb738
JA
2512 /*
2513 * expire an async queue immediately if it has used up its slice. idle
2514 * queue always expire after 1 dispatch round.
2515 */
2516 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2517 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2518 cfq_class_idle(cfqq))) {
2519 cfqq->slice_end = jiffies + 1;
e5ff082e 2520 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2521 }
2522
b217a903 2523 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2524 return 1;
1da177e4
LT
2525}
2526
1da177e4 2527/*
5e705374
JA
2528 * task holds one reference to the queue, dropped when task exits. each rq
2529 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2530 *
b1c35769 2531 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2532 * queue lock must be held here.
2533 */
2534static void cfq_put_queue(struct cfq_queue *cfqq)
2535{
22e2c507 2536 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2537 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2538
2539 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2540
2541 if (!atomic_dec_and_test(&cfqq->ref))
2542 return;
2543
7b679138 2544 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2545 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2546 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2547 cfqg = cfqq->cfqg;
878eaddd 2548 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2549
28f95cbc 2550 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2551 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2552 cfq_schedule_dispatch(cfqd);
28f95cbc 2553 }
22e2c507 2554
f04a6424 2555 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2556 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2557 cfq_put_cfqg(cfqg);
878eaddd
VG
2558 if (orig_cfqg)
2559 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2560}
2561
d6de8be7
JA
2562/*
2563 * Must always be called with the rcu_read_lock() held
2564 */
07416d29
JA
2565static void
2566__call_for_each_cic(struct io_context *ioc,
2567 void (*func)(struct io_context *, struct cfq_io_context *))
2568{
2569 struct cfq_io_context *cic;
2570 struct hlist_node *n;
2571
2572 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2573 func(ioc, cic);
2574}
2575
4ac845a2 2576/*
34e6bbf2 2577 * Call func for each cic attached to this ioc.
4ac845a2 2578 */
34e6bbf2 2579static void
4ac845a2
JA
2580call_for_each_cic(struct io_context *ioc,
2581 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2582{
4ac845a2 2583 rcu_read_lock();
07416d29 2584 __call_for_each_cic(ioc, func);
4ac845a2 2585 rcu_read_unlock();
34e6bbf2
FC
2586}
2587
2588static void cfq_cic_free_rcu(struct rcu_head *head)
2589{
2590 struct cfq_io_context *cic;
2591
2592 cic = container_of(head, struct cfq_io_context, rcu_head);
2593
2594 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2595 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2596
9a11b4ed
JA
2597 if (ioc_gone) {
2598 /*
2599 * CFQ scheduler is exiting, grab exit lock and check
2600 * the pending io context count. If it hits zero,
2601 * complete ioc_gone and set it back to NULL
2602 */
2603 spin_lock(&ioc_gone_lock);
245b2e70 2604 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2605 complete(ioc_gone);
2606 ioc_gone = NULL;
2607 }
2608 spin_unlock(&ioc_gone_lock);
2609 }
34e6bbf2 2610}
4ac845a2 2611
34e6bbf2
FC
2612static void cfq_cic_free(struct cfq_io_context *cic)
2613{
2614 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2615}
2616
2617static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2618{
2619 unsigned long flags;
bca4b914 2620 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2621
bca4b914 2622 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2623
2624 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2625 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2626 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2627 spin_unlock_irqrestore(&ioc->lock, flags);
2628
34e6bbf2 2629 cfq_cic_free(cic);
4ac845a2
JA
2630}
2631
d6de8be7
JA
2632/*
2633 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2634 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2635 * and ->trim() which is called with the task lock held
2636 */
4ac845a2
JA
2637static void cfq_free_io_context(struct io_context *ioc)
2638{
4ac845a2 2639 /*
34e6bbf2
FC
2640 * ioc->refcount is zero here, or we are called from elv_unregister(),
2641 * so no more cic's are allowed to be linked into this ioc. So it
2642 * should be ok to iterate over the known list, we will see all cic's
2643 * since no new ones are added.
4ac845a2 2644 */
07416d29 2645 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2646}
2647
d02a2c07 2648static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2649{
df5fe3e8
JM
2650 struct cfq_queue *__cfqq, *next;
2651
df5fe3e8
JM
2652 /*
2653 * If this queue was scheduled to merge with another queue, be
2654 * sure to drop the reference taken on that queue (and others in
2655 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2656 */
2657 __cfqq = cfqq->new_cfqq;
2658 while (__cfqq) {
2659 if (__cfqq == cfqq) {
2660 WARN(1, "cfqq->new_cfqq loop detected\n");
2661 break;
2662 }
2663 next = __cfqq->new_cfqq;
2664 cfq_put_queue(__cfqq);
2665 __cfqq = next;
2666 }
d02a2c07
SL
2667}
2668
2669static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2670{
2671 if (unlikely(cfqq == cfqd->active_queue)) {
2672 __cfq_slice_expired(cfqd, cfqq, 0);
2673 cfq_schedule_dispatch(cfqd);
2674 }
2675
2676 cfq_put_cooperator(cfqq);
df5fe3e8 2677
89850f7e
JA
2678 cfq_put_queue(cfqq);
2679}
22e2c507 2680
89850f7e
JA
2681static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2682 struct cfq_io_context *cic)
2683{
4faa3c81
FC
2684 struct io_context *ioc = cic->ioc;
2685
fc46379d 2686 list_del_init(&cic->queue_list);
4ac845a2
JA
2687
2688 /*
bca4b914 2689 * Make sure dead mark is seen for dead queues
4ac845a2 2690 */
fc46379d 2691 smp_wmb();
bca4b914 2692 cic->key = cfqd_dead_key(cfqd);
fc46379d 2693
4faa3c81
FC
2694 if (ioc->ioc_data == cic)
2695 rcu_assign_pointer(ioc->ioc_data, NULL);
2696
ff6657c6
JA
2697 if (cic->cfqq[BLK_RW_ASYNC]) {
2698 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2699 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2700 }
2701
ff6657c6
JA
2702 if (cic->cfqq[BLK_RW_SYNC]) {
2703 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2704 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2705 }
89850f7e
JA
2706}
2707
4ac845a2
JA
2708static void cfq_exit_single_io_context(struct io_context *ioc,
2709 struct cfq_io_context *cic)
89850f7e 2710{
bca4b914 2711 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2712
89850f7e 2713 if (cfqd) {
165125e1 2714 struct request_queue *q = cfqd->queue;
4ac845a2 2715 unsigned long flags;
89850f7e 2716
4ac845a2 2717 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2718
2719 /*
2720 * Ensure we get a fresh copy of the ->key to prevent
2721 * race between exiting task and queue
2722 */
2723 smp_read_barrier_depends();
bca4b914 2724 if (cic->key == cfqd)
62c1fe9d
JA
2725 __cfq_exit_single_io_context(cfqd, cic);
2726
4ac845a2 2727 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2728 }
1da177e4
LT
2729}
2730
498d3aa2
JA
2731/*
2732 * The process that ioc belongs to has exited, we need to clean up
2733 * and put the internal structures we have that belongs to that process.
2734 */
e2d74ac0 2735static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2736{
4ac845a2 2737 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2738}
2739
22e2c507 2740static struct cfq_io_context *
8267e268 2741cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2742{
b5deef90 2743 struct cfq_io_context *cic;
1da177e4 2744
94f6030c
CL
2745 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2746 cfqd->queue->node);
1da177e4 2747 if (cic) {
22e2c507 2748 cic->last_end_request = jiffies;
553698f9 2749 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2750 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2751 cic->dtor = cfq_free_io_context;
2752 cic->exit = cfq_exit_io_context;
245b2e70 2753 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2754 }
2755
2756 return cic;
2757}
2758
fd0928df 2759static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2760{
2761 struct task_struct *tsk = current;
2762 int ioprio_class;
2763
3b18152c 2764 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2765 return;
2766
fd0928df 2767 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2768 switch (ioprio_class) {
fe094d98
JA
2769 default:
2770 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2771 case IOPRIO_CLASS_NONE:
2772 /*
6d63c275 2773 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2774 */
2775 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2776 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2777 break;
2778 case IOPRIO_CLASS_RT:
2779 cfqq->ioprio = task_ioprio(ioc);
2780 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2781 break;
2782 case IOPRIO_CLASS_BE:
2783 cfqq->ioprio = task_ioprio(ioc);
2784 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2785 break;
2786 case IOPRIO_CLASS_IDLE:
2787 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2788 cfqq->ioprio = 7;
2789 cfq_clear_cfqq_idle_window(cfqq);
2790 break;
22e2c507
JA
2791 }
2792
2793 /*
2794 * keep track of original prio settings in case we have to temporarily
2795 * elevate the priority of this queue
2796 */
2797 cfqq->org_ioprio = cfqq->ioprio;
2798 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2799 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2800}
2801
febffd61 2802static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2803{
bca4b914 2804 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2805 struct cfq_queue *cfqq;
c1b707d2 2806 unsigned long flags;
35e6077c 2807
caaa5f9f
JA
2808 if (unlikely(!cfqd))
2809 return;
2810
c1b707d2 2811 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2812
ff6657c6 2813 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2814 if (cfqq) {
2815 struct cfq_queue *new_cfqq;
ff6657c6
JA
2816 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2817 GFP_ATOMIC);
caaa5f9f 2818 if (new_cfqq) {
ff6657c6 2819 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2820 cfq_put_queue(cfqq);
2821 }
22e2c507 2822 }
caaa5f9f 2823
ff6657c6 2824 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2825 if (cfqq)
2826 cfq_mark_cfqq_prio_changed(cfqq);
2827
c1b707d2 2828 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2829}
2830
fc46379d 2831static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2832{
4ac845a2 2833 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2834 ioc->ioprio_changed = 0;
22e2c507
JA
2835}
2836
d5036d77 2837static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2838 pid_t pid, bool is_sync)
d5036d77
JA
2839{
2840 RB_CLEAR_NODE(&cfqq->rb_node);
2841 RB_CLEAR_NODE(&cfqq->p_node);
2842 INIT_LIST_HEAD(&cfqq->fifo);
2843
2844 atomic_set(&cfqq->ref, 0);
2845 cfqq->cfqd = cfqd;
2846
2847 cfq_mark_cfqq_prio_changed(cfqq);
2848
2849 if (is_sync) {
2850 if (!cfq_class_idle(cfqq))
2851 cfq_mark_cfqq_idle_window(cfqq);
2852 cfq_mark_cfqq_sync(cfqq);
2853 }
2854 cfqq->pid = pid;
2855}
2856
24610333
VG
2857#ifdef CONFIG_CFQ_GROUP_IOSCHED
2858static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2859{
2860 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2861 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2862 unsigned long flags;
2863 struct request_queue *q;
2864
2865 if (unlikely(!cfqd))
2866 return;
2867
2868 q = cfqd->queue;
2869
2870 spin_lock_irqsave(q->queue_lock, flags);
2871
2872 if (sync_cfqq) {
2873 /*
2874 * Drop reference to sync queue. A new sync queue will be
2875 * assigned in new group upon arrival of a fresh request.
2876 */
2877 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2878 cic_set_cfqq(cic, NULL, 1);
2879 cfq_put_queue(sync_cfqq);
2880 }
2881
2882 spin_unlock_irqrestore(q->queue_lock, flags);
2883}
2884
2885static void cfq_ioc_set_cgroup(struct io_context *ioc)
2886{
2887 call_for_each_cic(ioc, changed_cgroup);
2888 ioc->cgroup_changed = 0;
2889}
2890#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2891
22e2c507 2892static struct cfq_queue *
a6151c3a 2893cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2894 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2895{
22e2c507 2896 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2897 struct cfq_io_context *cic;
cdb16e8f 2898 struct cfq_group *cfqg;
22e2c507
JA
2899
2900retry:
cdb16e8f 2901 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2902 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2903 /* cic always exists here */
2904 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2905
6118b70b
JA
2906 /*
2907 * Always try a new alloc if we fell back to the OOM cfqq
2908 * originally, since it should just be a temporary situation.
2909 */
2910 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2911 cfqq = NULL;
22e2c507
JA
2912 if (new_cfqq) {
2913 cfqq = new_cfqq;
2914 new_cfqq = NULL;
2915 } else if (gfp_mask & __GFP_WAIT) {
2916 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2917 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2918 gfp_mask | __GFP_ZERO,
94f6030c 2919 cfqd->queue->node);
22e2c507 2920 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2921 if (new_cfqq)
2922 goto retry;
22e2c507 2923 } else {
94f6030c
CL
2924 cfqq = kmem_cache_alloc_node(cfq_pool,
2925 gfp_mask | __GFP_ZERO,
2926 cfqd->queue->node);
22e2c507
JA
2927 }
2928
6118b70b
JA
2929 if (cfqq) {
2930 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2931 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2932 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2933 cfq_log_cfqq(cfqd, cfqq, "alloced");
2934 } else
2935 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2936 }
2937
2938 if (new_cfqq)
2939 kmem_cache_free(cfq_pool, new_cfqq);
2940
22e2c507
JA
2941 return cfqq;
2942}
2943
c2dea2d1
VT
2944static struct cfq_queue **
2945cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2946{
fe094d98 2947 switch (ioprio_class) {
c2dea2d1
VT
2948 case IOPRIO_CLASS_RT:
2949 return &cfqd->async_cfqq[0][ioprio];
2950 case IOPRIO_CLASS_BE:
2951 return &cfqd->async_cfqq[1][ioprio];
2952 case IOPRIO_CLASS_IDLE:
2953 return &cfqd->async_idle_cfqq;
2954 default:
2955 BUG();
2956 }
2957}
2958
15c31be4 2959static struct cfq_queue *
a6151c3a 2960cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2961 gfp_t gfp_mask)
2962{
fd0928df
JA
2963 const int ioprio = task_ioprio(ioc);
2964 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2965 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2966 struct cfq_queue *cfqq = NULL;
2967
c2dea2d1
VT
2968 if (!is_sync) {
2969 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2970 cfqq = *async_cfqq;
2971 }
2972
6118b70b 2973 if (!cfqq)
fd0928df 2974 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2975
2976 /*
2977 * pin the queue now that it's allocated, scheduler exit will prune it
2978 */
c2dea2d1 2979 if (!is_sync && !(*async_cfqq)) {
15c31be4 2980 atomic_inc(&cfqq->ref);
c2dea2d1 2981 *async_cfqq = cfqq;
15c31be4
JA
2982 }
2983
2984 atomic_inc(&cfqq->ref);
2985 return cfqq;
2986}
2987
498d3aa2
JA
2988/*
2989 * We drop cfq io contexts lazily, so we may find a dead one.
2990 */
dbecf3ab 2991static void
4ac845a2
JA
2992cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2993 struct cfq_io_context *cic)
dbecf3ab 2994{
4ac845a2
JA
2995 unsigned long flags;
2996
fc46379d 2997 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 2998 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 2999
4ac845a2
JA
3000 spin_lock_irqsave(&ioc->lock, flags);
3001
4faa3c81 3002 BUG_ON(ioc->ioc_data == cic);
597bc485 3003
80b15c73 3004 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3005 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3006 spin_unlock_irqrestore(&ioc->lock, flags);
3007
3008 cfq_cic_free(cic);
dbecf3ab
OH
3009}
3010
e2d74ac0 3011static struct cfq_io_context *
4ac845a2 3012cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3013{
e2d74ac0 3014 struct cfq_io_context *cic;
d6de8be7 3015 unsigned long flags;
e2d74ac0 3016
91fac317
VT
3017 if (unlikely(!ioc))
3018 return NULL;
3019
d6de8be7
JA
3020 rcu_read_lock();
3021
597bc485
JA
3022 /*
3023 * we maintain a last-hit cache, to avoid browsing over the tree
3024 */
4ac845a2 3025 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3026 if (cic && cic->key == cfqd) {
3027 rcu_read_unlock();
597bc485 3028 return cic;
d6de8be7 3029 }
597bc485 3030
4ac845a2 3031 do {
80b15c73 3032 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3033 rcu_read_unlock();
3034 if (!cic)
3035 break;
bca4b914 3036 if (unlikely(cic->key != cfqd)) {
4ac845a2 3037 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3038 rcu_read_lock();
4ac845a2 3039 continue;
dbecf3ab 3040 }
e2d74ac0 3041
d6de8be7 3042 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3043 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3044 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3045 break;
3046 } while (1);
e2d74ac0 3047
4ac845a2 3048 return cic;
e2d74ac0
JA
3049}
3050
4ac845a2
JA
3051/*
3052 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3053 * the process specific cfq io context when entered from the block layer.
3054 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3055 */
febffd61
JA
3056static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3057 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3058{
0261d688 3059 unsigned long flags;
4ac845a2 3060 int ret;
e2d74ac0 3061
4ac845a2
JA
3062 ret = radix_tree_preload(gfp_mask);
3063 if (!ret) {
3064 cic->ioc = ioc;
3065 cic->key = cfqd;
e2d74ac0 3066
4ac845a2
JA
3067 spin_lock_irqsave(&ioc->lock, flags);
3068 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3069 cfqd->cic_index, cic);
ffc4e759
JA
3070 if (!ret)
3071 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3072 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3073
4ac845a2
JA
3074 radix_tree_preload_end();
3075
3076 if (!ret) {
3077 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3078 list_add(&cic->queue_list, &cfqd->cic_list);
3079 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3080 }
e2d74ac0
JA
3081 }
3082
4ac845a2
JA
3083 if (ret)
3084 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3085
4ac845a2 3086 return ret;
e2d74ac0
JA
3087}
3088
1da177e4
LT
3089/*
3090 * Setup general io context and cfq io context. There can be several cfq
3091 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3092 * than one device managed by cfq.
1da177e4
LT
3093 */
3094static struct cfq_io_context *
e2d74ac0 3095cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3096{
22e2c507 3097 struct io_context *ioc = NULL;
1da177e4 3098 struct cfq_io_context *cic;
1da177e4 3099
22e2c507 3100 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3101
b5deef90 3102 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3103 if (!ioc)
3104 return NULL;
3105
4ac845a2 3106 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3107 if (cic)
3108 goto out;
1da177e4 3109
e2d74ac0
JA
3110 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3111 if (cic == NULL)
3112 goto err;
1da177e4 3113
4ac845a2
JA
3114 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3115 goto err_free;
3116
1da177e4 3117out:
fc46379d
JA
3118 smp_read_barrier_depends();
3119 if (unlikely(ioc->ioprio_changed))
3120 cfq_ioc_set_ioprio(ioc);
3121
24610333
VG
3122#ifdef CONFIG_CFQ_GROUP_IOSCHED
3123 if (unlikely(ioc->cgroup_changed))
3124 cfq_ioc_set_cgroup(ioc);
3125#endif
1da177e4 3126 return cic;
4ac845a2
JA
3127err_free:
3128 cfq_cic_free(cic);
1da177e4
LT
3129err:
3130 put_io_context(ioc);
3131 return NULL;
3132}
3133
22e2c507
JA
3134static void
3135cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3136{
aaf1228d
JA
3137 unsigned long elapsed = jiffies - cic->last_end_request;
3138 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3139
22e2c507
JA
3140 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3141 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3142 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3143}
1da177e4 3144
206dc69b 3145static void
b2c18e1e 3146cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3147 struct request *rq)
206dc69b 3148{
3dde36dd 3149 sector_t sdist = 0;
41647e7a 3150 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3151 if (cfqq->last_request_pos) {
3152 if (cfqq->last_request_pos < blk_rq_pos(rq))
3153 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3154 else
3155 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3156 }
206dc69b 3157
3dde36dd 3158 cfqq->seek_history <<= 1;
41647e7a
CZ
3159 if (blk_queue_nonrot(cfqd->queue))
3160 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3161 else
3162 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3163}
1da177e4 3164
22e2c507
JA
3165/*
3166 * Disable idle window if the process thinks too long or seeks so much that
3167 * it doesn't matter
3168 */
3169static void
3170cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3171 struct cfq_io_context *cic)
3172{
7b679138 3173 int old_idle, enable_idle;
1be92f2f 3174
0871714e
JA
3175 /*
3176 * Don't idle for async or idle io prio class
3177 */
3178 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3179 return;
3180
c265a7f4 3181 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3182
76280aff
CZ
3183 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3184 cfq_mark_cfqq_deep(cfqq);
3185
749ef9f8
CZ
3186 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3187 enable_idle = 0;
3188 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3189 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3190 enable_idle = 0;
3191 else if (sample_valid(cic->ttime_samples)) {
718eee05 3192 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3193 enable_idle = 0;
3194 else
3195 enable_idle = 1;
1da177e4
LT
3196 }
3197
7b679138
JA
3198 if (old_idle != enable_idle) {
3199 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3200 if (enable_idle)
3201 cfq_mark_cfqq_idle_window(cfqq);
3202 else
3203 cfq_clear_cfqq_idle_window(cfqq);
3204 }
22e2c507 3205}
1da177e4 3206
22e2c507
JA
3207/*
3208 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3209 * no or if we aren't sure, a 1 will cause a preempt.
3210 */
a6151c3a 3211static bool
22e2c507 3212cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3213 struct request *rq)
22e2c507 3214{
6d048f53 3215 struct cfq_queue *cfqq;
22e2c507 3216
6d048f53
JA
3217 cfqq = cfqd->active_queue;
3218 if (!cfqq)
a6151c3a 3219 return false;
22e2c507 3220
6d048f53 3221 if (cfq_class_idle(new_cfqq))
a6151c3a 3222 return false;
22e2c507
JA
3223
3224 if (cfq_class_idle(cfqq))
a6151c3a 3225 return true;
1e3335de 3226
875feb63
DS
3227 /*
3228 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3229 */
3230 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3231 return false;
3232
374f84ac
JA
3233 /*
3234 * if the new request is sync, but the currently running queue is
3235 * not, let the sync request have priority.
3236 */
5e705374 3237 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3238 return true;
1e3335de 3239
8682e1f1
VG
3240 if (new_cfqq->cfqg != cfqq->cfqg)
3241 return false;
3242
3243 if (cfq_slice_used(cfqq))
3244 return true;
3245
3246 /* Allow preemption only if we are idling on sync-noidle tree */
3247 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3248 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3249 new_cfqq->service_tree->count == 2 &&
3250 RB_EMPTY_ROOT(&cfqq->sort_list))
3251 return true;
3252
374f84ac
JA
3253 /*
3254 * So both queues are sync. Let the new request get disk time if
3255 * it's a metadata request and the current queue is doing regular IO.
3256 */
7b6d91da 3257 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3258 return true;
22e2c507 3259
3a9a3f6c
DS
3260 /*
3261 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3262 */
3263 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3264 return true;
3a9a3f6c 3265
d2d59e18
SL
3266 /* An idle queue should not be idle now for some reason */
3267 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3268 return true;
3269
1e3335de 3270 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3271 return false;
1e3335de
JA
3272
3273 /*
3274 * if this request is as-good as one we would expect from the
3275 * current cfqq, let it preempt
3276 */
e9ce335d 3277 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3278 return true;
1e3335de 3279
a6151c3a 3280 return false;
22e2c507
JA
3281}
3282
3283/*
3284 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3285 * let it have half of its nominal slice.
3286 */
3287static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3288{
7b679138 3289 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3290 cfq_slice_expired(cfqd, 1);
22e2c507 3291
bf572256
JA
3292 /*
3293 * Put the new queue at the front of the of the current list,
3294 * so we know that it will be selected next.
3295 */
3296 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3297
3298 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3299
44f7c160
JA
3300 cfqq->slice_end = 0;
3301 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3302}
3303
22e2c507 3304/*
5e705374 3305 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3306 * something we should do about it
3307 */
3308static void
5e705374
JA
3309cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3310 struct request *rq)
22e2c507 3311{
5e705374 3312 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3313
45333d5a 3314 cfqd->rq_queued++;
7b6d91da 3315 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3316 cfqq->meta_pending++;
3317
9c2c38a1 3318 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3319 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3320 cfq_update_idle_window(cfqd, cfqq, cic);
3321
b2c18e1e 3322 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3323
3324 if (cfqq == cfqd->active_queue) {
3325 /*
b029195d
JA
3326 * Remember that we saw a request from this process, but
3327 * don't start queuing just yet. Otherwise we risk seeing lots
3328 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3329 * and merging. If the request is already larger than a single
3330 * page, let it rip immediately. For that case we assume that
2d870722
JA
3331 * merging is already done. Ditto for a busy system that
3332 * has other work pending, don't risk delaying until the
3333 * idle timer unplug to continue working.
22e2c507 3334 */
d6ceb25e 3335 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3336 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3337 cfqd->busy_queues > 1) {
812df48d 3338 cfq_del_timer(cfqd, cfqq);
554554f6 3339 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3340 __blk_run_queue(cfqd->queue);
a11cdaa7 3341 } else {
e98ef89b 3342 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3343 &cfqq->cfqg->blkg);
bf791937 3344 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3345 }
d6ceb25e 3346 }
5e705374 3347 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3348 /*
3349 * not the active queue - expire current slice if it is
3350 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3351 * has some old slice time left and is of higher priority or
3352 * this new queue is RT and the current one is BE
22e2c507
JA
3353 */
3354 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3355 __blk_run_queue(cfqd->queue);
22e2c507 3356 }
1da177e4
LT
3357}
3358
165125e1 3359static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3360{
b4878f24 3361 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3362 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3363
7b679138 3364 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3365 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3366
30996f40 3367 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3368 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3369 cfq_add_rq_rb(rq);
e98ef89b 3370 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3371 &cfqd->serving_group->blkg, rq_data_dir(rq),
3372 rq_is_sync(rq));
5e705374 3373 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3374}
3375
45333d5a
AC
3376/*
3377 * Update hw_tag based on peak queue depth over 50 samples under
3378 * sufficient load.
3379 */
3380static void cfq_update_hw_tag(struct cfq_data *cfqd)
3381{
1a1238a7
SL
3382 struct cfq_queue *cfqq = cfqd->active_queue;
3383
53c583d2
CZ
3384 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3385 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3386
3387 if (cfqd->hw_tag == 1)
3388 return;
45333d5a
AC
3389
3390 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3391 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3392 return;
3393
1a1238a7
SL
3394 /*
3395 * If active queue hasn't enough requests and can idle, cfq might not
3396 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3397 * case
3398 */
3399 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3400 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3401 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3402 return;
3403
45333d5a
AC
3404 if (cfqd->hw_tag_samples++ < 50)
3405 return;
3406
e459dd08 3407 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3408 cfqd->hw_tag = 1;
3409 else
3410 cfqd->hw_tag = 0;
45333d5a
AC
3411}
3412
7667aa06
VG
3413static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3414{
3415 struct cfq_io_context *cic = cfqd->active_cic;
3416
3417 /* If there are other queues in the group, don't wait */
3418 if (cfqq->cfqg->nr_cfqq > 1)
3419 return false;
3420
3421 if (cfq_slice_used(cfqq))
3422 return true;
3423
3424 /* if slice left is less than think time, wait busy */
3425 if (cic && sample_valid(cic->ttime_samples)
3426 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3427 return true;
3428
3429 /*
3430 * If think times is less than a jiffy than ttime_mean=0 and above
3431 * will not be true. It might happen that slice has not expired yet
3432 * but will expire soon (4-5 ns) during select_queue(). To cover the
3433 * case where think time is less than a jiffy, mark the queue wait
3434 * busy if only 1 jiffy is left in the slice.
3435 */
3436 if (cfqq->slice_end - jiffies == 1)
3437 return true;
3438
3439 return false;
3440}
3441
165125e1 3442static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3443{
5e705374 3444 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3445 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3446 const int sync = rq_is_sync(rq);
b4878f24 3447 unsigned long now;
1da177e4 3448
b4878f24 3449 now = jiffies;
33659ebb
CH
3450 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3451 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3452
45333d5a
AC
3453 cfq_update_hw_tag(cfqd);
3454
53c583d2 3455 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3456 WARN_ON(!cfqq->dispatched);
53c583d2 3457 cfqd->rq_in_driver--;
6d048f53 3458 cfqq->dispatched--;
80bdf0c7 3459 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3460 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3461 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3462 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3463
53c583d2 3464 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3465
365722bb 3466 if (sync) {
5e705374 3467 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3468 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3469 cfqd->last_delayed_sync = now;
365722bb 3470 }
caaa5f9f
JA
3471
3472 /*
3473 * If this is the active queue, check if it needs to be expired,
3474 * or if we want to idle in case it has no pending requests.
3475 */
3476 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3477 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3478
44f7c160
JA
3479 if (cfq_cfqq_slice_new(cfqq)) {
3480 cfq_set_prio_slice(cfqd, cfqq);
3481 cfq_clear_cfqq_slice_new(cfqq);
3482 }
f75edf2d
VG
3483
3484 /*
7667aa06
VG
3485 * Should we wait for next request to come in before we expire
3486 * the queue.
f75edf2d 3487 */
7667aa06 3488 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3489 unsigned long extend_sl = cfqd->cfq_slice_idle;
3490 if (!cfqd->cfq_slice_idle)
3491 extend_sl = cfqd->cfq_group_idle;
3492 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3493 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3494 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3495 }
3496
a36e71f9 3497 /*
8e550632
CZ
3498 * Idling is not enabled on:
3499 * - expired queues
3500 * - idle-priority queues
3501 * - async queues
3502 * - queues with still some requests queued
3503 * - when there is a close cooperator
a36e71f9 3504 */
0871714e 3505 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3506 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3507 else if (sync && cfqq_empty &&
3508 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3509 cfq_arm_slice_timer(cfqd);
8e550632 3510 }
caaa5f9f 3511 }
6d048f53 3512
2b9408a4 3513 if (!cfqd->rq_in_driver)
d2d59e18 3514 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3515}
3516
22e2c507
JA
3517/*
3518 * we temporarily boost lower priority queues if they are holding fs exclusive
3519 * resources. they are boosted to normal prio (CLASS_BE/4)
3520 */
3521static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3522{
22e2c507
JA
3523 if (has_fs_excl()) {
3524 /*
3525 * boost idle prio on transactions that would lock out other
3526 * users of the filesystem
3527 */
3528 if (cfq_class_idle(cfqq))
3529 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3530 if (cfqq->ioprio > IOPRIO_NORM)
3531 cfqq->ioprio = IOPRIO_NORM;
3532 } else {
3533 /*
dddb7451 3534 * unboost the queue (if needed)
22e2c507 3535 */
dddb7451
CZ
3536 cfqq->ioprio_class = cfqq->org_ioprio_class;
3537 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3538 }
22e2c507 3539}
1da177e4 3540
89850f7e 3541static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3542{
1b379d8d 3543 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3544 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3545 return ELV_MQUEUE_MUST;
3b18152c 3546 }
1da177e4 3547
22e2c507 3548 return ELV_MQUEUE_MAY;
22e2c507
JA
3549}
3550
165125e1 3551static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3552{
3553 struct cfq_data *cfqd = q->elevator->elevator_data;
3554 struct task_struct *tsk = current;
91fac317 3555 struct cfq_io_context *cic;
22e2c507
JA
3556 struct cfq_queue *cfqq;
3557
3558 /*
3559 * don't force setup of a queue from here, as a call to may_queue
3560 * does not necessarily imply that a request actually will be queued.
3561 * so just lookup a possibly existing queue, or return 'may queue'
3562 * if that fails
3563 */
4ac845a2 3564 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3565 if (!cic)
3566 return ELV_MQUEUE_MAY;
3567
b0b78f81 3568 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3569 if (cfqq) {
fd0928df 3570 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3571 cfq_prio_boost(cfqq);
3572
89850f7e 3573 return __cfq_may_queue(cfqq);
22e2c507
JA
3574 }
3575
3576 return ELV_MQUEUE_MAY;
1da177e4
LT
3577}
3578
1da177e4
LT
3579/*
3580 * queue lock held here
3581 */
bb37b94c 3582static void cfq_put_request(struct request *rq)
1da177e4 3583{
5e705374 3584 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3585
5e705374 3586 if (cfqq) {
22e2c507 3587 const int rw = rq_data_dir(rq);
1da177e4 3588
22e2c507
JA
3589 BUG_ON(!cfqq->allocated[rw]);
3590 cfqq->allocated[rw]--;
1da177e4 3591
5e705374 3592 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3593
1da177e4 3594 rq->elevator_private = NULL;
5e705374 3595 rq->elevator_private2 = NULL;
1da177e4 3596
7f1dc8a2
VG
3597 /* Put down rq reference on cfqg */
3598 cfq_put_cfqg(RQ_CFQG(rq));
3599 rq->elevator_private3 = NULL;
3600
1da177e4
LT
3601 cfq_put_queue(cfqq);
3602 }
3603}
3604
df5fe3e8
JM
3605static struct cfq_queue *
3606cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3607 struct cfq_queue *cfqq)
3608{
3609 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3610 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3611 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3612 cfq_put_queue(cfqq);
3613 return cic_to_cfqq(cic, 1);
3614}
3615
e6c5bc73
JM
3616/*
3617 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3618 * was the last process referring to said cfqq.
3619 */
3620static struct cfq_queue *
3621split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3622{
3623 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3624 cfqq->pid = current->pid;
3625 cfq_clear_cfqq_coop(cfqq);
ae54abed 3626 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3627 return cfqq;
3628 }
3629
3630 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3631
3632 cfq_put_cooperator(cfqq);
3633
e6c5bc73
JM
3634 cfq_put_queue(cfqq);
3635 return NULL;
3636}
1da177e4 3637/*
22e2c507 3638 * Allocate cfq data structures associated with this request.
1da177e4 3639 */
22e2c507 3640static int
165125e1 3641cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3642{
3643 struct cfq_data *cfqd = q->elevator->elevator_data;
3644 struct cfq_io_context *cic;
3645 const int rw = rq_data_dir(rq);
a6151c3a 3646 const bool is_sync = rq_is_sync(rq);
22e2c507 3647 struct cfq_queue *cfqq;
1da177e4
LT
3648 unsigned long flags;
3649
3650 might_sleep_if(gfp_mask & __GFP_WAIT);
3651
e2d74ac0 3652 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3653
1da177e4
LT
3654 spin_lock_irqsave(q->queue_lock, flags);
3655
22e2c507
JA
3656 if (!cic)
3657 goto queue_fail;
3658
e6c5bc73 3659new_queue:
91fac317 3660 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3661 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3662 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3663 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3664 } else {
e6c5bc73
JM
3665 /*
3666 * If the queue was seeky for too long, break it apart.
3667 */
ae54abed 3668 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3669 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3670 cfqq = split_cfqq(cic, cfqq);
3671 if (!cfqq)
3672 goto new_queue;
3673 }
3674
df5fe3e8
JM
3675 /*
3676 * Check to see if this queue is scheduled to merge with
3677 * another, closely cooperating queue. The merging of
3678 * queues happens here as it must be done in process context.
3679 * The reference on new_cfqq was taken in merge_cfqqs.
3680 */
3681 if (cfqq->new_cfqq)
3682 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3683 }
1da177e4
LT
3684
3685 cfqq->allocated[rw]++;
22e2c507 3686 atomic_inc(&cfqq->ref);
1da177e4 3687
5e705374 3688 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3689
5e705374
JA
3690 rq->elevator_private = cic;
3691 rq->elevator_private2 = cfqq;
7f1dc8a2 3692 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3693 return 0;
1da177e4 3694
22e2c507
JA
3695queue_fail:
3696 if (cic)
3697 put_io_context(cic->ioc);
89850f7e 3698
23e018a1 3699 cfq_schedule_dispatch(cfqd);
1da177e4 3700 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3701 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3702 return 1;
3703}
3704
65f27f38 3705static void cfq_kick_queue(struct work_struct *work)
22e2c507 3706{
65f27f38 3707 struct cfq_data *cfqd =
23e018a1 3708 container_of(work, struct cfq_data, unplug_work);
165125e1 3709 struct request_queue *q = cfqd->queue;
22e2c507 3710
40bb54d1 3711 spin_lock_irq(q->queue_lock);
a7f55792 3712 __blk_run_queue(cfqd->queue);
40bb54d1 3713 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3714}
3715
3716/*
3717 * Timer running if the active_queue is currently idling inside its time slice
3718 */
3719static void cfq_idle_slice_timer(unsigned long data)
3720{
3721 struct cfq_data *cfqd = (struct cfq_data *) data;
3722 struct cfq_queue *cfqq;
3723 unsigned long flags;
3c6bd2f8 3724 int timed_out = 1;
22e2c507 3725
7b679138
JA
3726 cfq_log(cfqd, "idle timer fired");
3727
22e2c507
JA
3728 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3729
fe094d98
JA
3730 cfqq = cfqd->active_queue;
3731 if (cfqq) {
3c6bd2f8
JA
3732 timed_out = 0;
3733
b029195d
JA
3734 /*
3735 * We saw a request before the queue expired, let it through
3736 */
3737 if (cfq_cfqq_must_dispatch(cfqq))
3738 goto out_kick;
3739
22e2c507
JA
3740 /*
3741 * expired
3742 */
44f7c160 3743 if (cfq_slice_used(cfqq))
22e2c507
JA
3744 goto expire;
3745
3746 /*
3747 * only expire and reinvoke request handler, if there are
3748 * other queues with pending requests
3749 */
caaa5f9f 3750 if (!cfqd->busy_queues)
22e2c507 3751 goto out_cont;
22e2c507
JA
3752
3753 /*
3754 * not expired and it has a request pending, let it dispatch
3755 */
75e50984 3756 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3757 goto out_kick;
76280aff
CZ
3758
3759 /*
3760 * Queue depth flag is reset only when the idle didn't succeed
3761 */
3762 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3763 }
3764expire:
e5ff082e 3765 cfq_slice_expired(cfqd, timed_out);
22e2c507 3766out_kick:
23e018a1 3767 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3768out_cont:
3769 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3770}
3771
3b18152c
JA
3772static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3773{
3774 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3775 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3776}
22e2c507 3777
c2dea2d1
VT
3778static void cfq_put_async_queues(struct cfq_data *cfqd)
3779{
3780 int i;
3781
3782 for (i = 0; i < IOPRIO_BE_NR; i++) {
3783 if (cfqd->async_cfqq[0][i])
3784 cfq_put_queue(cfqd->async_cfqq[0][i]);
3785 if (cfqd->async_cfqq[1][i])
3786 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3787 }
2389d1ef
ON
3788
3789 if (cfqd->async_idle_cfqq)
3790 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3791}
3792
bb729bc9
JA
3793static void cfq_cfqd_free(struct rcu_head *head)
3794{
3795 kfree(container_of(head, struct cfq_data, rcu));
3796}
3797
b374d18a 3798static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3799{
22e2c507 3800 struct cfq_data *cfqd = e->elevator_data;
165125e1 3801 struct request_queue *q = cfqd->queue;
22e2c507 3802
3b18152c 3803 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3804
d9ff4187 3805 spin_lock_irq(q->queue_lock);
e2d74ac0 3806
d9ff4187 3807 if (cfqd->active_queue)
e5ff082e 3808 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3809
3810 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3811 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3812 struct cfq_io_context,
3813 queue_list);
89850f7e
JA
3814
3815 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3816 }
e2d74ac0 3817
c2dea2d1 3818 cfq_put_async_queues(cfqd);
b1c35769 3819 cfq_release_cfq_groups(cfqd);
e98ef89b 3820 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3821
d9ff4187 3822 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3823
3824 cfq_shutdown_timer_wq(cfqd);
3825
80b15c73
KK
3826 spin_lock(&cic_index_lock);
3827 ida_remove(&cic_index_ida, cfqd->cic_index);
3828 spin_unlock(&cic_index_lock);
3829
b1c35769 3830 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3831 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3832}
3833
80b15c73
KK
3834static int cfq_alloc_cic_index(void)
3835{
3836 int index, error;
3837
3838 do {
3839 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3840 return -ENOMEM;
3841
3842 spin_lock(&cic_index_lock);
3843 error = ida_get_new(&cic_index_ida, &index);
3844 spin_unlock(&cic_index_lock);
3845 if (error && error != -EAGAIN)
3846 return error;
3847 } while (error);
3848
3849 return index;
3850}
3851
165125e1 3852static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3853{
3854 struct cfq_data *cfqd;
718eee05 3855 int i, j;
cdb16e8f 3856 struct cfq_group *cfqg;
615f0259 3857 struct cfq_rb_root *st;
1da177e4 3858
80b15c73
KK
3859 i = cfq_alloc_cic_index();
3860 if (i < 0)
3861 return NULL;
3862
94f6030c 3863 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3864 if (!cfqd)
bc1c1169 3865 return NULL;
1da177e4 3866
80b15c73
KK
3867 cfqd->cic_index = i;
3868
1fa8f6d6
VG
3869 /* Init root service tree */
3870 cfqd->grp_service_tree = CFQ_RB_ROOT;
3871
cdb16e8f
VG
3872 /* Init root group */
3873 cfqg = &cfqd->root_group;
615f0259
VG
3874 for_each_cfqg_st(cfqg, i, j, st)
3875 *st = CFQ_RB_ROOT;
1fa8f6d6 3876 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3877
25bc6b07
VG
3878 /* Give preference to root group over other groups */
3879 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3880
25fb5169 3881#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3882 /*
3883 * Take a reference to root group which we never drop. This is just
3884 * to make sure that cfq_put_cfqg() does not try to kfree root group
3885 */
3886 atomic_set(&cfqg->ref, 1);
dcf097b2 3887 rcu_read_lock();
e98ef89b
VG
3888 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3889 (void *)cfqd, 0);
dcf097b2 3890 rcu_read_unlock();
25fb5169 3891#endif
26a2ac00
JA
3892 /*
3893 * Not strictly needed (since RB_ROOT just clears the node and we
3894 * zeroed cfqd on alloc), but better be safe in case someone decides
3895 * to add magic to the rb code
3896 */
3897 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3898 cfqd->prio_trees[i] = RB_ROOT;
3899
6118b70b
JA
3900 /*
3901 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3902 * Grab a permanent reference to it, so that the normal code flow
3903 * will not attempt to free it.
3904 */
3905 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3906 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3907 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3908
d9ff4187 3909 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3910
1da177e4 3911 cfqd->queue = q;
1da177e4 3912
22e2c507
JA
3913 init_timer(&cfqd->idle_slice_timer);
3914 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3915 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3916
23e018a1 3917 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3918
1da177e4 3919 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3920 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3921 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3922 cfqd->cfq_back_max = cfq_back_max;
3923 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3924 cfqd->cfq_slice[0] = cfq_slice_async;
3925 cfqd->cfq_slice[1] = cfq_slice_sync;
3926 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3927 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3928 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3929 cfqd->cfq_latency = 1;
ae30c286 3930 cfqd->cfq_group_isolation = 0;
e459dd08 3931 cfqd->hw_tag = -1;
edc71131
CZ
3932 /*
3933 * we optimistically start assuming sync ops weren't delayed in last
3934 * second, in order to have larger depth for async operations.
3935 */
573412b2 3936 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3937 return cfqd;
1da177e4
LT
3938}
3939
3940static void cfq_slab_kill(void)
3941{
d6de8be7
JA
3942 /*
3943 * Caller already ensured that pending RCU callbacks are completed,
3944 * so we should have no busy allocations at this point.
3945 */
1da177e4
LT
3946 if (cfq_pool)
3947 kmem_cache_destroy(cfq_pool);
3948 if (cfq_ioc_pool)
3949 kmem_cache_destroy(cfq_ioc_pool);
3950}
3951
3952static int __init cfq_slab_setup(void)
3953{
0a31bd5f 3954 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3955 if (!cfq_pool)
3956 goto fail;
3957
34e6bbf2 3958 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3959 if (!cfq_ioc_pool)
3960 goto fail;
3961
3962 return 0;
3963fail:
3964 cfq_slab_kill();
3965 return -ENOMEM;
3966}
3967
1da177e4
LT
3968/*
3969 * sysfs parts below -->
3970 */
1da177e4
LT
3971static ssize_t
3972cfq_var_show(unsigned int var, char *page)
3973{
3974 return sprintf(page, "%d\n", var);
3975}
3976
3977static ssize_t
3978cfq_var_store(unsigned int *var, const char *page, size_t count)
3979{
3980 char *p = (char *) page;
3981
3982 *var = simple_strtoul(p, &p, 10);
3983 return count;
3984}
3985
1da177e4 3986#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3987static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3988{ \
3d1ab40f 3989 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3990 unsigned int __data = __VAR; \
3991 if (__CONV) \
3992 __data = jiffies_to_msecs(__data); \
3993 return cfq_var_show(__data, (page)); \
3994}
3995SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3996SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3997SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3998SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3999SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4000SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4001SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4002SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4003SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4004SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4005SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 4006SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
4007#undef SHOW_FUNCTION
4008
4009#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4010static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4011{ \
3d1ab40f 4012 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4013 unsigned int __data; \
4014 int ret = cfq_var_store(&__data, (page), count); \
4015 if (__data < (MIN)) \
4016 __data = (MIN); \
4017 else if (__data > (MAX)) \
4018 __data = (MAX); \
4019 if (__CONV) \
4020 *(__PTR) = msecs_to_jiffies(__data); \
4021 else \
4022 *(__PTR) = __data; \
4023 return ret; \
4024}
4025STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4026STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4027 UINT_MAX, 1);
4028STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4029 UINT_MAX, 1);
e572ec7e 4030STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4031STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4032 UINT_MAX, 0);
22e2c507 4033STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4034STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4035STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4036STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4037STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4038 UINT_MAX, 0);
963b72fc 4039STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 4040STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
4041#undef STORE_FUNCTION
4042
e572ec7e
AV
4043#define CFQ_ATTR(name) \
4044 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4045
4046static struct elv_fs_entry cfq_attrs[] = {
4047 CFQ_ATTR(quantum),
e572ec7e
AV
4048 CFQ_ATTR(fifo_expire_sync),
4049 CFQ_ATTR(fifo_expire_async),
4050 CFQ_ATTR(back_seek_max),
4051 CFQ_ATTR(back_seek_penalty),
4052 CFQ_ATTR(slice_sync),
4053 CFQ_ATTR(slice_async),
4054 CFQ_ATTR(slice_async_rq),
4055 CFQ_ATTR(slice_idle),
80bdf0c7 4056 CFQ_ATTR(group_idle),
963b72fc 4057 CFQ_ATTR(low_latency),
ae30c286 4058 CFQ_ATTR(group_isolation),
e572ec7e 4059 __ATTR_NULL
1da177e4
LT
4060};
4061
1da177e4
LT
4062static struct elevator_type iosched_cfq = {
4063 .ops = {
4064 .elevator_merge_fn = cfq_merge,
4065 .elevator_merged_fn = cfq_merged_request,
4066 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4067 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4068 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4069 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4070 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4071 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
4072 .elevator_deactivate_req_fn = cfq_deactivate_request,
4073 .elevator_queue_empty_fn = cfq_queue_empty,
4074 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4075 .elevator_former_req_fn = elv_rb_former_request,
4076 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4077 .elevator_set_req_fn = cfq_set_request,
4078 .elevator_put_req_fn = cfq_put_request,
4079 .elevator_may_queue_fn = cfq_may_queue,
4080 .elevator_init_fn = cfq_init_queue,
4081 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4082 .trim = cfq_free_io_context,
1da177e4 4083 },
3d1ab40f 4084 .elevator_attrs = cfq_attrs,
1da177e4
LT
4085 .elevator_name = "cfq",
4086 .elevator_owner = THIS_MODULE,
4087};
4088
3e252066
VG
4089#ifdef CONFIG_CFQ_GROUP_IOSCHED
4090static struct blkio_policy_type blkio_policy_cfq = {
4091 .ops = {
4092 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4093 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4094 },
062a644d 4095 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4096};
4097#else
4098static struct blkio_policy_type blkio_policy_cfq;
4099#endif
4100
1da177e4
LT
4101static int __init cfq_init(void)
4102{
22e2c507
JA
4103 /*
4104 * could be 0 on HZ < 1000 setups
4105 */
4106 if (!cfq_slice_async)
4107 cfq_slice_async = 1;
4108 if (!cfq_slice_idle)
4109 cfq_slice_idle = 1;
4110
80bdf0c7
VG
4111#ifdef CONFIG_CFQ_GROUP_IOSCHED
4112 if (!cfq_group_idle)
4113 cfq_group_idle = 1;
4114#else
4115 cfq_group_idle = 0;
4116#endif
1da177e4
LT
4117 if (cfq_slab_setup())
4118 return -ENOMEM;
4119
2fdd82bd 4120 elv_register(&iosched_cfq);
3e252066 4121 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4122
2fdd82bd 4123 return 0;
1da177e4
LT
4124}
4125
4126static void __exit cfq_exit(void)
4127{
6e9a4738 4128 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4129 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4130 elv_unregister(&iosched_cfq);
334e94de 4131 ioc_gone = &all_gone;
fba82272
OH
4132 /* ioc_gone's update must be visible before reading ioc_count */
4133 smp_wmb();
d6de8be7
JA
4134
4135 /*
4136 * this also protects us from entering cfq_slab_kill() with
4137 * pending RCU callbacks
4138 */
245b2e70 4139 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4140 wait_for_completion(&all_gone);
80b15c73 4141 ida_destroy(&cic_index_ida);
83521d3e 4142 cfq_slab_kill();
1da177e4
LT
4143}
4144
4145module_init(cfq_init);
4146module_exit(cfq_exit);
4147
4148MODULE_AUTHOR("Jens Axboe");
4149MODULE_LICENSE("GPL");
4150MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");