]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
pipe: make F_{GET,SET}PIPE_SZ deal with byte sizes
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
25bc6b07 17#include "blk-cgroup.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34static const int cfq_hist_divisor = 4;
22e2c507 35
d9e7620e 36/*
0871714e 37 * offset from end of service tree
d9e7620e 38 */
0871714e 39#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
40
41/*
42 * below this threshold, we consider thinktime immediate
43 */
44#define CFQ_MIN_TT (2)
45
22e2c507 46#define CFQ_SLICE_SCALE (5)
45333d5a 47#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 48#define CFQ_SERVICE_SHIFT 12
22e2c507 49
3dde36dd 50#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 51#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 52#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 53#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 58#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 59
e18b890b
CL
60static struct kmem_cache *cfq_pool;
61static struct kmem_cache *cfq_ioc_pool;
1da177e4 62
245b2e70 63static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 64static struct completion *ioc_gone;
9a11b4ed 65static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 66
80b15c73
KK
67static DEFINE_SPINLOCK(cic_index_lock);
68static DEFINE_IDA(cic_index_ida);
69
22e2c507
JA
70#define CFQ_PRIO_LISTS IOPRIO_BE_NR
71#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
72#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73
206dc69b 74#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 75#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 76
cc09e299
JA
77/*
78 * Most of our rbtree usage is for sorting with min extraction, so
79 * if we cache the leftmost node we don't have to walk down the tree
80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
81 * move this into the elevator for the rq sorting as well.
82 */
83struct cfq_rb_root {
84 struct rb_root rb;
85 struct rb_node *left;
aa6f6a3d 86 unsigned count;
73e9ffdd 87 unsigned total_weight;
1fa8f6d6 88 u64 min_vdisktime;
25bc6b07 89 struct rb_node *active;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 atomic_t ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
ae30c286 149 struct cfq_group *orig_cfqg;
6118b70b
JA
150};
151
c0324a02 152/*
718eee05 153 * First index in the service_trees.
c0324a02
CZ
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
c0324a02 157 BE_WORKLOAD = 0,
615f0259
VG
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
1fa8f6d6
VG
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
58ff82f3
VG
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
cdb16e8f
VG
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
dae739eb
VG
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
25fb5169
VG
196 struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
b1c35769 199 atomic_t ref;
25fb5169 200#endif
cdb16e8f 201};
718eee05 202
22e2c507
JA
203/*
204 * Per block device queue structure
205 */
1da177e4 206struct cfq_data {
165125e1 207 struct request_queue *queue;
1fa8f6d6
VG
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
cdb16e8f 210 struct cfq_group root_group;
22e2c507 211
c0324a02
CZ
212 /*
213 * The priority currently being served
22e2c507 214 */
c0324a02 215 enum wl_prio_t serving_prio;
718eee05
CZ
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
cdb16e8f 218 struct cfq_group *serving_group;
8e550632 219 bool noidle_tree_requires_idle;
a36e71f9
JA
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
22e2c507
JA
228 unsigned int busy_queues;
229
53c583d2
CZ
230 int rq_in_driver;
231 int rq_in_flight[2];
45333d5a
AC
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
25776e35 237 int hw_tag;
e459dd08
CZ
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
1da177e4 246
22e2c507
JA
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
23e018a1 251 struct work_struct unplug_work;
1da177e4 252
22e2c507
JA
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
22e2c507 255
c2dea2d1
VT
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
15c31be4 261
6d048f53 262 sector_t last_position;
1da177e4 263
1da177e4
LT
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
22e2c507 268 unsigned int cfq_fifo_expire[2];
1da177e4
LT
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
22e2c507
JA
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
963b72fc 274 unsigned int cfq_latency;
ae30c286 275 unsigned int cfq_group_isolation;
d9ff4187 276
80b15c73 277 unsigned int cic_index;
d9ff4187 278 struct list_head cic_list;
1da177e4 279
6118b70b
JA
280 /*
281 * Fallback dummy cfqq for extreme OOM conditions
282 */
283 struct cfq_queue oom_cfqq;
365722bb 284
573412b2 285 unsigned long last_delayed_sync;
25fb5169
VG
286
287 /* List of cfq groups being managed on this device*/
288 struct hlist_head cfqg_list;
bb729bc9 289 struct rcu_head rcu;
1da177e4
LT
290};
291
25fb5169
VG
292static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
cdb16e8f
VG
294static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
65b32a57 296 enum wl_type_t type)
c0324a02 297{
1fa8f6d6
VG
298 if (!cfqg)
299 return NULL;
300
c0324a02 301 if (prio == IDLE_WORKLOAD)
cdb16e8f 302 return &cfqg->service_tree_idle;
c0324a02 303
cdb16e8f 304 return &cfqg->service_trees[prio][type];
c0324a02
CZ
305}
306
3b18152c 307enum cfqq_state_flags {
b0b8d749
JA
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 318 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
321};
322
323#define CFQ_CFQQ_FNS(name) \
324static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
325{ \
fe094d98 326 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
327} \
328static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
329{ \
fe094d98 330 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
331} \
332static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
333{ \
fe094d98 334 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
335}
336
337CFQ_CFQQ_FNS(on_rr);
338CFQ_CFQQ_FNS(wait_request);
b029195d 339CFQ_CFQQ_FNS(must_dispatch);
3b18152c 340CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
341CFQ_CFQQ_FNS(fifo_expire);
342CFQ_CFQQ_FNS(idle_window);
343CFQ_CFQQ_FNS(prio_changed);
44f7c160 344CFQ_CFQQ_FNS(slice_new);
91fac317 345CFQ_CFQQ_FNS(sync);
a36e71f9 346CFQ_CFQQ_FNS(coop);
ae54abed 347CFQ_CFQQ_FNS(split_coop);
76280aff 348CFQ_CFQQ_FNS(deep);
f75edf2d 349CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
350#undef CFQ_CFQQ_FNS
351
afc24d49 352#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
353#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356 blkg_path(&(cfqq)->cfqg->blkg), ##args);
357
358#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
360 blkg_path(&(cfqg)->blkg), ##args); \
361
362#else
7b679138
JA
363#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
365#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
366#endif
7b679138
JA
367#define cfq_log(cfqd, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
369
615f0259
VG
370/* Traverses through cfq group service trees */
371#define for_each_cfqg_st(cfqg, i, j, st) \
372 for (i = 0; i <= IDLE_WORKLOAD; i++) \
373 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374 : &cfqg->service_tree_idle; \
375 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376 (i == IDLE_WORKLOAD && j == 0); \
377 j++, st = i < IDLE_WORKLOAD ? \
378 &cfqg->service_trees[i][j]: NULL) \
379
380
c0324a02
CZ
381static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
382{
383 if (cfq_class_idle(cfqq))
384 return IDLE_WORKLOAD;
385 if (cfq_class_rt(cfqq))
386 return RT_WORKLOAD;
387 return BE_WORKLOAD;
388}
389
718eee05
CZ
390
391static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
392{
393 if (!cfq_cfqq_sync(cfqq))
394 return ASYNC_WORKLOAD;
395 if (!cfq_cfqq_idle_window(cfqq))
396 return SYNC_NOIDLE_WORKLOAD;
397 return SYNC_WORKLOAD;
398}
399
58ff82f3
VG
400static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401 struct cfq_data *cfqd,
402 struct cfq_group *cfqg)
c0324a02
CZ
403{
404 if (wl == IDLE_WORKLOAD)
cdb16e8f 405 return cfqg->service_tree_idle.count;
c0324a02 406
cdb16e8f
VG
407 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
410}
411
f26bd1f0
VG
412static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413 struct cfq_group *cfqg)
414{
415 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417}
418
165125e1 419static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 420static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 421 struct io_context *, gfp_t);
4ac845a2 422static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
423 struct io_context *);
424
425static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 426 bool is_sync)
91fac317 427{
a6151c3a 428 return cic->cfqq[is_sync];
91fac317
VT
429}
430
431static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 432 struct cfq_queue *cfqq, bool is_sync)
91fac317 433{
a6151c3a 434 cic->cfqq[is_sync] = cfqq;
91fac317
VT
435}
436
bca4b914 437#define CIC_DEAD_KEY 1ul
80b15c73 438#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
439
440static inline void *cfqd_dead_key(struct cfq_data *cfqd)
441{
80b15c73 442 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
443}
444
445static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
446{
447 struct cfq_data *cfqd = cic->key;
448
449 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
450 return NULL;
451
452 return cfqd;
453}
454
91fac317
VT
455/*
456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
457 * set (in which case it could also be direct WRITE).
458 */
a6151c3a 459static inline bool cfq_bio_sync(struct bio *bio)
91fac317 460{
a6151c3a 461 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 462}
1da177e4 463
99f95e52
AM
464/*
465 * scheduler run of queue, if there are requests pending and no one in the
466 * driver that will restart queueing
467 */
23e018a1 468static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 469{
7b679138
JA
470 if (cfqd->busy_queues) {
471 cfq_log(cfqd, "schedule dispatch");
23e018a1 472 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 473 }
99f95e52
AM
474}
475
165125e1 476static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
477{
478 struct cfq_data *cfqd = q->elevator->elevator_data;
479
f04a6424 480 return !cfqd->rq_queued;
99f95e52
AM
481}
482
44f7c160
JA
483/*
484 * Scale schedule slice based on io priority. Use the sync time slice only
485 * if a queue is marked sync and has sync io queued. A sync queue with async
486 * io only, should not get full sync slice length.
487 */
a6151c3a 488static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 489 unsigned short prio)
44f7c160 490{
d9e7620e 491 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 492
d9e7620e
JA
493 WARN_ON(prio >= IOPRIO_BE_NR);
494
495 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
496}
44f7c160 497
d9e7620e
JA
498static inline int
499cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
500{
501 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
502}
503
25bc6b07
VG
504static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
505{
506 u64 d = delta << CFQ_SERVICE_SHIFT;
507
508 d = d * BLKIO_WEIGHT_DEFAULT;
509 do_div(d, cfqg->weight);
510 return d;
511}
512
513static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
514{
515 s64 delta = (s64)(vdisktime - min_vdisktime);
516 if (delta > 0)
517 min_vdisktime = vdisktime;
518
519 return min_vdisktime;
520}
521
522static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
523{
524 s64 delta = (s64)(vdisktime - min_vdisktime);
525 if (delta < 0)
526 min_vdisktime = vdisktime;
527
528 return min_vdisktime;
529}
530
531static void update_min_vdisktime(struct cfq_rb_root *st)
532{
533 u64 vdisktime = st->min_vdisktime;
534 struct cfq_group *cfqg;
535
536 if (st->active) {
537 cfqg = rb_entry_cfqg(st->active);
538 vdisktime = cfqg->vdisktime;
539 }
540
541 if (st->left) {
542 cfqg = rb_entry_cfqg(st->left);
543 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
544 }
545
546 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
547}
548
5db5d642
CZ
549/*
550 * get averaged number of queues of RT/BE priority.
551 * average is updated, with a formula that gives more weight to higher numbers,
552 * to quickly follows sudden increases and decrease slowly
553 */
554
58ff82f3
VG
555static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
556 struct cfq_group *cfqg, bool rt)
5869619c 557{
5db5d642
CZ
558 unsigned min_q, max_q;
559 unsigned mult = cfq_hist_divisor - 1;
560 unsigned round = cfq_hist_divisor / 2;
58ff82f3 561 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 562
58ff82f3
VG
563 min_q = min(cfqg->busy_queues_avg[rt], busy);
564 max_q = max(cfqg->busy_queues_avg[rt], busy);
565 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 566 cfq_hist_divisor;
58ff82f3
VG
567 return cfqg->busy_queues_avg[rt];
568}
569
570static inline unsigned
571cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
572{
573 struct cfq_rb_root *st = &cfqd->grp_service_tree;
574
575 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
576}
577
44f7c160
JA
578static inline void
579cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
580{
5db5d642
CZ
581 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
582 if (cfqd->cfq_latency) {
58ff82f3
VG
583 /*
584 * interested queues (we consider only the ones with the same
585 * priority class in the cfq group)
586 */
587 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
588 cfq_class_rt(cfqq));
5db5d642
CZ
589 unsigned sync_slice = cfqd->cfq_slice[1];
590 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
591 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
592
593 if (expect_latency > group_slice) {
5db5d642
CZ
594 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
595 /* scale low_slice according to IO priority
596 * and sync vs async */
597 unsigned low_slice =
598 min(slice, base_low_slice * slice / sync_slice);
599 /* the adapted slice value is scaled to fit all iqs
600 * into the target latency */
58ff82f3 601 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
602 low_slice);
603 }
604 }
dae739eb 605 cfqq->slice_start = jiffies;
5db5d642 606 cfqq->slice_end = jiffies + slice;
f75edf2d 607 cfqq->allocated_slice = slice;
7b679138 608 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
609}
610
611/*
612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
613 * isn't valid until the first request from the dispatch is activated
614 * and the slice time set.
615 */
a6151c3a 616static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
617{
618 if (cfq_cfqq_slice_new(cfqq))
619 return 0;
620 if (time_before(jiffies, cfqq->slice_end))
621 return 0;
622
623 return 1;
624}
625
1da177e4 626/*
5e705374 627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 628 * We choose the request that is closest to the head right now. Distance
e8a99053 629 * behind the head is penalized and only allowed to a certain extent.
1da177e4 630 */
5e705374 631static struct request *
cf7c25cf 632cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 633{
cf7c25cf 634 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 635 unsigned long back_max;
e8a99053
AM
636#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
637#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
638 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 639
5e705374
JA
640 if (rq1 == NULL || rq1 == rq2)
641 return rq2;
642 if (rq2 == NULL)
643 return rq1;
9c2c38a1 644
5e705374
JA
645 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
646 return rq1;
647 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
648 return rq2;
374f84ac
JA
649 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
650 return rq1;
651 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
652 return rq2;
1da177e4 653
83096ebf
TH
654 s1 = blk_rq_pos(rq1);
655 s2 = blk_rq_pos(rq2);
1da177e4 656
1da177e4
LT
657 /*
658 * by definition, 1KiB is 2 sectors
659 */
660 back_max = cfqd->cfq_back_max * 2;
661
662 /*
663 * Strict one way elevator _except_ in the case where we allow
664 * short backward seeks which are biased as twice the cost of a
665 * similar forward seek.
666 */
667 if (s1 >= last)
668 d1 = s1 - last;
669 else if (s1 + back_max >= last)
670 d1 = (last - s1) * cfqd->cfq_back_penalty;
671 else
e8a99053 672 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
673
674 if (s2 >= last)
675 d2 = s2 - last;
676 else if (s2 + back_max >= last)
677 d2 = (last - s2) * cfqd->cfq_back_penalty;
678 else
e8a99053 679 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
680
681 /* Found required data */
e8a99053
AM
682
683 /*
684 * By doing switch() on the bit mask "wrap" we avoid having to
685 * check two variables for all permutations: --> faster!
686 */
687 switch (wrap) {
5e705374 688 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 689 if (d1 < d2)
5e705374 690 return rq1;
e8a99053 691 else if (d2 < d1)
5e705374 692 return rq2;
e8a99053
AM
693 else {
694 if (s1 >= s2)
5e705374 695 return rq1;
e8a99053 696 else
5e705374 697 return rq2;
e8a99053 698 }
1da177e4 699
e8a99053 700 case CFQ_RQ2_WRAP:
5e705374 701 return rq1;
e8a99053 702 case CFQ_RQ1_WRAP:
5e705374
JA
703 return rq2;
704 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
705 default:
706 /*
707 * Since both rqs are wrapped,
708 * start with the one that's further behind head
709 * (--> only *one* back seek required),
710 * since back seek takes more time than forward.
711 */
712 if (s1 <= s2)
5e705374 713 return rq1;
1da177e4 714 else
5e705374 715 return rq2;
1da177e4
LT
716 }
717}
718
498d3aa2
JA
719/*
720 * The below is leftmost cache rbtree addon
721 */
0871714e 722static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 723{
615f0259
VG
724 /* Service tree is empty */
725 if (!root->count)
726 return NULL;
727
cc09e299
JA
728 if (!root->left)
729 root->left = rb_first(&root->rb);
730
0871714e
JA
731 if (root->left)
732 return rb_entry(root->left, struct cfq_queue, rb_node);
733
734 return NULL;
cc09e299
JA
735}
736
1fa8f6d6
VG
737static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
738{
739 if (!root->left)
740 root->left = rb_first(&root->rb);
741
742 if (root->left)
743 return rb_entry_cfqg(root->left);
744
745 return NULL;
746}
747
a36e71f9
JA
748static void rb_erase_init(struct rb_node *n, struct rb_root *root)
749{
750 rb_erase(n, root);
751 RB_CLEAR_NODE(n);
752}
753
cc09e299
JA
754static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
755{
756 if (root->left == n)
757 root->left = NULL;
a36e71f9 758 rb_erase_init(n, &root->rb);
aa6f6a3d 759 --root->count;
cc09e299
JA
760}
761
1da177e4
LT
762/*
763 * would be nice to take fifo expire time into account as well
764 */
5e705374
JA
765static struct request *
766cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
767 struct request *last)
1da177e4 768{
21183b07
JA
769 struct rb_node *rbnext = rb_next(&last->rb_node);
770 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 771 struct request *next = NULL, *prev = NULL;
1da177e4 772
21183b07 773 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
774
775 if (rbprev)
5e705374 776 prev = rb_entry_rq(rbprev);
1da177e4 777
21183b07 778 if (rbnext)
5e705374 779 next = rb_entry_rq(rbnext);
21183b07
JA
780 else {
781 rbnext = rb_first(&cfqq->sort_list);
782 if (rbnext && rbnext != &last->rb_node)
5e705374 783 next = rb_entry_rq(rbnext);
21183b07 784 }
1da177e4 785
cf7c25cf 786 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
787}
788
d9e7620e
JA
789static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
790 struct cfq_queue *cfqq)
1da177e4 791{
d9e7620e
JA
792 /*
793 * just an approximation, should be ok.
794 */
cdb16e8f 795 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 796 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
797}
798
1fa8f6d6
VG
799static inline s64
800cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
801{
802 return cfqg->vdisktime - st->min_vdisktime;
803}
804
805static void
806__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
807{
808 struct rb_node **node = &st->rb.rb_node;
809 struct rb_node *parent = NULL;
810 struct cfq_group *__cfqg;
811 s64 key = cfqg_key(st, cfqg);
812 int left = 1;
813
814 while (*node != NULL) {
815 parent = *node;
816 __cfqg = rb_entry_cfqg(parent);
817
818 if (key < cfqg_key(st, __cfqg))
819 node = &parent->rb_left;
820 else {
821 node = &parent->rb_right;
822 left = 0;
823 }
824 }
825
826 if (left)
827 st->left = &cfqg->rb_node;
828
829 rb_link_node(&cfqg->rb_node, parent, node);
830 rb_insert_color(&cfqg->rb_node, &st->rb);
831}
832
833static void
834cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
835{
836 struct cfq_rb_root *st = &cfqd->grp_service_tree;
837 struct cfq_group *__cfqg;
838 struct rb_node *n;
839
840 cfqg->nr_cfqq++;
841 if (cfqg->on_st)
842 return;
843
844 /*
845 * Currently put the group at the end. Later implement something
846 * so that groups get lesser vtime based on their weights, so that
847 * if group does not loose all if it was not continously backlogged.
848 */
849 n = rb_last(&st->rb);
850 if (n) {
851 __cfqg = rb_entry_cfqg(n);
852 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
853 } else
854 cfqg->vdisktime = st->min_vdisktime;
855
856 __cfq_group_service_tree_add(st, cfqg);
857 cfqg->on_st = true;
58ff82f3 858 st->total_weight += cfqg->weight;
1fa8f6d6
VG
859}
860
861static void
862cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
863{
864 struct cfq_rb_root *st = &cfqd->grp_service_tree;
865
25bc6b07
VG
866 if (st->active == &cfqg->rb_node)
867 st->active = NULL;
868
1fa8f6d6
VG
869 BUG_ON(cfqg->nr_cfqq < 1);
870 cfqg->nr_cfqq--;
25bc6b07 871
1fa8f6d6
VG
872 /* If there are other cfq queues under this group, don't delete it */
873 if (cfqg->nr_cfqq)
874 return;
875
2868ef7b 876 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 877 cfqg->on_st = false;
58ff82f3 878 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
879 if (!RB_EMPTY_NODE(&cfqg->rb_node))
880 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 881 cfqg->saved_workload_slice = 0;
9195291e 882 blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
883}
884
885static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
886{
f75edf2d 887 unsigned int slice_used;
dae739eb
VG
888
889 /*
890 * Queue got expired before even a single request completed or
891 * got expired immediately after first request completion.
892 */
893 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
894 /*
895 * Also charge the seek time incurred to the group, otherwise
896 * if there are mutiple queues in the group, each can dispatch
897 * a single request on seeky media and cause lots of seek time
898 * and group will never know it.
899 */
900 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
901 1);
902 } else {
903 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
904 if (slice_used > cfqq->allocated_slice)
905 slice_used = cfqq->allocated_slice;
dae739eb
VG
906 }
907
9a0785b0 908 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
dae739eb
VG
909 return slice_used;
910}
911
912static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 913 struct cfq_queue *cfqq)
dae739eb
VG
914{
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
f26bd1f0
VG
916 unsigned int used_sl, charge_sl;
917 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
918 - cfqg->service_tree_idle.count;
919
920 BUG_ON(nr_sync < 0);
921 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
dae739eb 922
f26bd1f0
VG
923 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
924 charge_sl = cfqq->allocated_slice;
dae739eb
VG
925
926 /* Can't update vdisktime while group is on service tree */
927 cfq_rb_erase(&cfqg->rb_node, st);
f26bd1f0 928 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
dae739eb
VG
929 __cfq_group_service_tree_add(st, cfqg);
930
931 /* This group is being expired. Save the context */
932 if (time_after(cfqd->workload_expires, jiffies)) {
933 cfqg->saved_workload_slice = cfqd->workload_expires
934 - jiffies;
935 cfqg->saved_workload = cfqd->serving_type;
936 cfqg->saved_serving_prio = cfqd->serving_prio;
937 } else
938 cfqg->saved_workload_slice = 0;
2868ef7b
VG
939
940 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
941 st->min_vdisktime);
303a3acb 942 blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
e5ff082e 943 blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
944}
945
25fb5169
VG
946#ifdef CONFIG_CFQ_GROUP_IOSCHED
947static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
948{
949 if (blkg)
950 return container_of(blkg, struct cfq_group, blkg);
951 return NULL;
952}
953
f8d461d6
VG
954void
955cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
956{
957 cfqg_of_blkg(blkg)->weight = weight;
958}
959
25fb5169
VG
960static struct cfq_group *
961cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
962{
963 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
964 struct cfq_group *cfqg = NULL;
965 void *key = cfqd;
966 int i, j;
967 struct cfq_rb_root *st;
22084190
VG
968 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
969 unsigned int major, minor;
25fb5169 970
25fb5169 971 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
972 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
973 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
974 cfqg->blkg.dev = MKDEV(major, minor);
975 goto done;
976 }
25fb5169
VG
977 if (cfqg || !create)
978 goto done;
979
980 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
981 if (!cfqg)
982 goto done;
983
25fb5169
VG
984 for_each_cfqg_st(cfqg, i, j, st)
985 *st = CFQ_RB_ROOT;
986 RB_CLEAR_NODE(&cfqg->rb_node);
987
b1c35769
VG
988 /*
989 * Take the initial reference that will be released on destroy
990 * This can be thought of a joint reference by cgroup and
991 * elevator which will be dropped by either elevator exit
992 * or cgroup deletion path depending on who is exiting first.
993 */
994 atomic_set(&cfqg->ref, 1);
995
25fb5169 996 /* Add group onto cgroup list */
22084190
VG
997 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
998 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
999 MKDEV(major, minor));
34d0f179 1000 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1001
1002 /* Add group on cfqd list */
1003 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1004
1005done:
25fb5169
VG
1006 return cfqg;
1007}
1008
1009/*
1010 * Search for the cfq group current task belongs to. If create = 1, then also
1011 * create the cfq group if it does not exist. request_queue lock must be held.
1012 */
1013static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1014{
1015 struct cgroup *cgroup;
1016 struct cfq_group *cfqg = NULL;
1017
1018 rcu_read_lock();
1019 cgroup = task_cgroup(current, blkio_subsys_id);
1020 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1021 if (!cfqg && create)
1022 cfqg = &cfqd->root_group;
1023 rcu_read_unlock();
1024 return cfqg;
1025}
1026
7f1dc8a2
VG
1027static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1028{
1029 atomic_inc(&cfqg->ref);
1030 return cfqg;
1031}
1032
25fb5169
VG
1033static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1034{
1035 /* Currently, all async queues are mapped to root group */
1036 if (!cfq_cfqq_sync(cfqq))
1037 cfqg = &cfqq->cfqd->root_group;
1038
1039 cfqq->cfqg = cfqg;
b1c35769
VG
1040 /* cfqq reference on cfqg */
1041 atomic_inc(&cfqq->cfqg->ref);
1042}
1043
1044static void cfq_put_cfqg(struct cfq_group *cfqg)
1045{
1046 struct cfq_rb_root *st;
1047 int i, j;
1048
1049 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1050 if (!atomic_dec_and_test(&cfqg->ref))
1051 return;
1052 for_each_cfqg_st(cfqg, i, j, st)
1053 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1054 kfree(cfqg);
1055}
1056
1057static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1058{
1059 /* Something wrong if we are trying to remove same group twice */
1060 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1061
1062 hlist_del_init(&cfqg->cfqd_node);
1063
1064 /*
1065 * Put the reference taken at the time of creation so that when all
1066 * queues are gone, group can be destroyed.
1067 */
1068 cfq_put_cfqg(cfqg);
1069}
1070
1071static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1072{
1073 struct hlist_node *pos, *n;
1074 struct cfq_group *cfqg;
1075
1076 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1077 /*
1078 * If cgroup removal path got to blk_group first and removed
1079 * it from cgroup list, then it will take care of destroying
1080 * cfqg also.
1081 */
1082 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1083 cfq_destroy_cfqg(cfqd, cfqg);
1084 }
25fb5169 1085}
b1c35769
VG
1086
1087/*
1088 * Blk cgroup controller notification saying that blkio_group object is being
1089 * delinked as associated cgroup object is going away. That also means that
1090 * no new IO will come in this group. So get rid of this group as soon as
1091 * any pending IO in the group is finished.
1092 *
1093 * This function is called under rcu_read_lock(). key is the rcu protected
1094 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1095 * read lock.
1096 *
1097 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1098 * it should not be NULL as even if elevator was exiting, cgroup deltion
1099 * path got to it first.
1100 */
1101void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1102{
1103 unsigned long flags;
1104 struct cfq_data *cfqd = key;
1105
1106 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1107 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1108 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1109}
1110
25fb5169
VG
1111#else /* GROUP_IOSCHED */
1112static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1113{
1114 return &cfqd->root_group;
1115}
7f1dc8a2
VG
1116
1117static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1118{
50eaeb32 1119 return cfqg;
7f1dc8a2
VG
1120}
1121
25fb5169
VG
1122static inline void
1123cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1124 cfqq->cfqg = cfqg;
1125}
1126
b1c35769
VG
1127static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1128static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1129
25fb5169
VG
1130#endif /* GROUP_IOSCHED */
1131
498d3aa2 1132/*
c0324a02 1133 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1134 * requests waiting to be processed. It is sorted in the order that
1135 * we will service the queues.
1136 */
a36e71f9 1137static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1138 bool add_front)
d9e7620e 1139{
0871714e
JA
1140 struct rb_node **p, *parent;
1141 struct cfq_queue *__cfqq;
d9e7620e 1142 unsigned long rb_key;
c0324a02 1143 struct cfq_rb_root *service_tree;
498d3aa2 1144 int left;
dae739eb 1145 int new_cfqq = 1;
ae30c286
VG
1146 int group_changed = 0;
1147
1148#ifdef CONFIG_CFQ_GROUP_IOSCHED
1149 if (!cfqd->cfq_group_isolation
1150 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1151 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1152 /* Move this cfq to root group */
1153 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1154 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1155 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1156 cfqq->orig_cfqg = cfqq->cfqg;
1157 cfqq->cfqg = &cfqd->root_group;
1158 atomic_inc(&cfqd->root_group.ref);
1159 group_changed = 1;
1160 } else if (!cfqd->cfq_group_isolation
1161 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1162 /* cfqq is sequential now needs to go to its original group */
1163 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1164 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1165 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1166 cfq_put_cfqg(cfqq->cfqg);
1167 cfqq->cfqg = cfqq->orig_cfqg;
1168 cfqq->orig_cfqg = NULL;
1169 group_changed = 1;
1170 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1171 }
1172#endif
d9e7620e 1173
cdb16e8f 1174 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1175 cfqq_type(cfqq));
0871714e
JA
1176 if (cfq_class_idle(cfqq)) {
1177 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1178 parent = rb_last(&service_tree->rb);
0871714e
JA
1179 if (parent && parent != &cfqq->rb_node) {
1180 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181 rb_key += __cfqq->rb_key;
1182 } else
1183 rb_key += jiffies;
1184 } else if (!add_front) {
b9c8946b
JA
1185 /*
1186 * Get our rb key offset. Subtract any residual slice
1187 * value carried from last service. A negative resid
1188 * count indicates slice overrun, and this should position
1189 * the next service time further away in the tree.
1190 */
edd75ffd 1191 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1192 rb_key -= cfqq->slice_resid;
edd75ffd 1193 cfqq->slice_resid = 0;
48e025e6
CZ
1194 } else {
1195 rb_key = -HZ;
aa6f6a3d 1196 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1197 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1198 }
1da177e4 1199
d9e7620e 1200 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1201 new_cfqq = 0;
99f9628a 1202 /*
d9e7620e 1203 * same position, nothing more to do
99f9628a 1204 */
c0324a02
CZ
1205 if (rb_key == cfqq->rb_key &&
1206 cfqq->service_tree == service_tree)
d9e7620e 1207 return;
1da177e4 1208
aa6f6a3d
CZ
1209 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1210 cfqq->service_tree = NULL;
1da177e4 1211 }
d9e7620e 1212
498d3aa2 1213 left = 1;
0871714e 1214 parent = NULL;
aa6f6a3d
CZ
1215 cfqq->service_tree = service_tree;
1216 p = &service_tree->rb.rb_node;
d9e7620e 1217 while (*p) {
67060e37 1218 struct rb_node **n;
cc09e299 1219
d9e7620e
JA
1220 parent = *p;
1221 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1222
0c534e0a 1223 /*
c0324a02 1224 * sort by key, that represents service time.
0c534e0a 1225 */
c0324a02 1226 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1227 n = &(*p)->rb_left;
c0324a02 1228 else {
67060e37 1229 n = &(*p)->rb_right;
cc09e299 1230 left = 0;
c0324a02 1231 }
67060e37
JA
1232
1233 p = n;
d9e7620e
JA
1234 }
1235
cc09e299 1236 if (left)
aa6f6a3d 1237 service_tree->left = &cfqq->rb_node;
cc09e299 1238
d9e7620e
JA
1239 cfqq->rb_key = rb_key;
1240 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1241 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1242 service_tree->count++;
ae30c286 1243 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1244 return;
1fa8f6d6 1245 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1246}
1247
a36e71f9 1248static struct cfq_queue *
f2d1f0ae
JA
1249cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1250 sector_t sector, struct rb_node **ret_parent,
1251 struct rb_node ***rb_link)
a36e71f9 1252{
a36e71f9
JA
1253 struct rb_node **p, *parent;
1254 struct cfq_queue *cfqq = NULL;
1255
1256 parent = NULL;
1257 p = &root->rb_node;
1258 while (*p) {
1259 struct rb_node **n;
1260
1261 parent = *p;
1262 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1263
1264 /*
1265 * Sort strictly based on sector. Smallest to the left,
1266 * largest to the right.
1267 */
2e46e8b2 1268 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1269 n = &(*p)->rb_right;
2e46e8b2 1270 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1271 n = &(*p)->rb_left;
1272 else
1273 break;
1274 p = n;
3ac6c9f8 1275 cfqq = NULL;
a36e71f9
JA
1276 }
1277
1278 *ret_parent = parent;
1279 if (rb_link)
1280 *rb_link = p;
3ac6c9f8 1281 return cfqq;
a36e71f9
JA
1282}
1283
1284static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1285{
a36e71f9
JA
1286 struct rb_node **p, *parent;
1287 struct cfq_queue *__cfqq;
1288
f2d1f0ae
JA
1289 if (cfqq->p_root) {
1290 rb_erase(&cfqq->p_node, cfqq->p_root);
1291 cfqq->p_root = NULL;
1292 }
a36e71f9
JA
1293
1294 if (cfq_class_idle(cfqq))
1295 return;
1296 if (!cfqq->next_rq)
1297 return;
1298
f2d1f0ae 1299 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1300 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1301 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1302 if (!__cfqq) {
1303 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1304 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1305 } else
1306 cfqq->p_root = NULL;
a36e71f9
JA
1307}
1308
498d3aa2
JA
1309/*
1310 * Update cfqq's position in the service tree.
1311 */
edd75ffd 1312static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1313{
6d048f53
JA
1314 /*
1315 * Resorting requires the cfqq to be on the RR list already.
1316 */
a36e71f9 1317 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1318 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1319 cfq_prio_tree_add(cfqd, cfqq);
1320 }
6d048f53
JA
1321}
1322
1da177e4
LT
1323/*
1324 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1325 * the pending list according to last request service
1da177e4 1326 */
febffd61 1327static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1328{
7b679138 1329 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1330 BUG_ON(cfq_cfqq_on_rr(cfqq));
1331 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1332 cfqd->busy_queues++;
1333
edd75ffd 1334 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1335}
1336
498d3aa2
JA
1337/*
1338 * Called when the cfqq no longer has requests pending, remove it from
1339 * the service tree.
1340 */
febffd61 1341static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1342{
7b679138 1343 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1344 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1345 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1346
aa6f6a3d
CZ
1347 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1348 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1349 cfqq->service_tree = NULL;
1350 }
f2d1f0ae
JA
1351 if (cfqq->p_root) {
1352 rb_erase(&cfqq->p_node, cfqq->p_root);
1353 cfqq->p_root = NULL;
1354 }
d9e7620e 1355
1fa8f6d6 1356 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1357 BUG_ON(!cfqd->busy_queues);
1358 cfqd->busy_queues--;
1359}
1360
1361/*
1362 * rb tree support functions
1363 */
febffd61 1364static void cfq_del_rq_rb(struct request *rq)
1da177e4 1365{
5e705374 1366 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1367 const int sync = rq_is_sync(rq);
1da177e4 1368
b4878f24
JA
1369 BUG_ON(!cfqq->queued[sync]);
1370 cfqq->queued[sync]--;
1da177e4 1371
5e705374 1372 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1373
f04a6424
VG
1374 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1375 /*
1376 * Queue will be deleted from service tree when we actually
1377 * expire it later. Right now just remove it from prio tree
1378 * as it is empty.
1379 */
1380 if (cfqq->p_root) {
1381 rb_erase(&cfqq->p_node, cfqq->p_root);
1382 cfqq->p_root = NULL;
1383 }
1384 }
1da177e4
LT
1385}
1386
5e705374 1387static void cfq_add_rq_rb(struct request *rq)
1da177e4 1388{
5e705374 1389 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1390 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1391 struct request *__alias, *prev;
1da177e4 1392
5380a101 1393 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1394
1395 /*
1396 * looks a little odd, but the first insert might return an alias.
1397 * if that happens, put the alias on the dispatch list
1398 */
21183b07 1399 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1400 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1401
1402 if (!cfq_cfqq_on_rr(cfqq))
1403 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1404
1405 /*
1406 * check if this request is a better next-serve candidate
1407 */
a36e71f9 1408 prev = cfqq->next_rq;
cf7c25cf 1409 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1410
1411 /*
1412 * adjust priority tree position, if ->next_rq changes
1413 */
1414 if (prev != cfqq->next_rq)
1415 cfq_prio_tree_add(cfqd, cfqq);
1416
5044eed4 1417 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1418}
1419
febffd61 1420static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1421{
5380a101
JA
1422 elv_rb_del(&cfqq->sort_list, rq);
1423 cfqq->queued[rq_is_sync(rq)]--;
7f1dc8a2 1424 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
cdc1184c 1425 rq_is_sync(rq));
5e705374 1426 cfq_add_rq_rb(rq);
7f1dc8a2
VG
1427 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1428 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1429 rq_is_sync(rq));
1da177e4
LT
1430}
1431
206dc69b
JA
1432static struct request *
1433cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1434{
206dc69b 1435 struct task_struct *tsk = current;
91fac317 1436 struct cfq_io_context *cic;
206dc69b 1437 struct cfq_queue *cfqq;
1da177e4 1438
4ac845a2 1439 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1440 if (!cic)
1441 return NULL;
1442
1443 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1444 if (cfqq) {
1445 sector_t sector = bio->bi_sector + bio_sectors(bio);
1446
21183b07 1447 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1448 }
1da177e4 1449
1da177e4
LT
1450 return NULL;
1451}
1452
165125e1 1453static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1454{
22e2c507 1455 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1456
53c583d2 1457 cfqd->rq_in_driver++;
7b679138 1458 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1459 cfqd->rq_in_driver);
25776e35 1460
5b93629b 1461 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1462}
1463
165125e1 1464static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1465{
b4878f24
JA
1466 struct cfq_data *cfqd = q->elevator->elevator_data;
1467
53c583d2
CZ
1468 WARN_ON(!cfqd->rq_in_driver);
1469 cfqd->rq_in_driver--;
7b679138 1470 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1471 cfqd->rq_in_driver);
1da177e4
LT
1472}
1473
b4878f24 1474static void cfq_remove_request(struct request *rq)
1da177e4 1475{
5e705374 1476 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1477
5e705374
JA
1478 if (cfqq->next_rq == rq)
1479 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1480
b4878f24 1481 list_del_init(&rq->queuelist);
5e705374 1482 cfq_del_rq_rb(rq);
374f84ac 1483
45333d5a 1484 cfqq->cfqd->rq_queued--;
7f1dc8a2 1485 blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(rq),
cdc1184c 1486 rq_is_sync(rq));
374f84ac
JA
1487 if (rq_is_meta(rq)) {
1488 WARN_ON(!cfqq->meta_pending);
1489 cfqq->meta_pending--;
1490 }
1da177e4
LT
1491}
1492
165125e1
JA
1493static int cfq_merge(struct request_queue *q, struct request **req,
1494 struct bio *bio)
1da177e4
LT
1495{
1496 struct cfq_data *cfqd = q->elevator->elevator_data;
1497 struct request *__rq;
1da177e4 1498
206dc69b 1499 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1500 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1501 *req = __rq;
1502 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1503 }
1504
1505 return ELEVATOR_NO_MERGE;
1da177e4
LT
1506}
1507
165125e1 1508static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1509 int type)
1da177e4 1510{
21183b07 1511 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1512 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1513
5e705374 1514 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1515 }
1da177e4
LT
1516}
1517
812d4026
DS
1518static void cfq_bio_merged(struct request_queue *q, struct request *req,
1519 struct bio *bio)
1520{
7f1dc8a2 1521 blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg, bio_data_dir(bio),
812d4026
DS
1522 cfq_bio_sync(bio));
1523}
1524
1da177e4 1525static void
165125e1 1526cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1527 struct request *next)
1528{
cf7c25cf 1529 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1530 /*
1531 * reposition in fifo if next is older than rq
1532 */
1533 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1534 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1535 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1536 rq_set_fifo_time(rq, rq_fifo_time(next));
1537 }
22e2c507 1538
cf7c25cf
CZ
1539 if (cfqq->next_rq == next)
1540 cfqq->next_rq = rq;
b4878f24 1541 cfq_remove_request(next);
7f1dc8a2 1542 blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg, rq_data_dir(next),
812d4026 1543 rq_is_sync(next));
22e2c507
JA
1544}
1545
165125e1 1546static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1547 struct bio *bio)
1548{
1549 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1550 struct cfq_io_context *cic;
da775265 1551 struct cfq_queue *cfqq;
da775265
JA
1552
1553 /*
ec8acb69 1554 * Disallow merge of a sync bio into an async request.
da775265 1555 */
91fac317 1556 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1557 return false;
da775265
JA
1558
1559 /*
719d3402
JA
1560 * Lookup the cfqq that this bio will be queued with. Allow
1561 * merge only if rq is queued there.
da775265 1562 */
4ac845a2 1563 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1564 if (!cic)
a6151c3a 1565 return false;
719d3402 1566
91fac317 1567 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1568 return cfqq == RQ_CFQQ(rq);
da775265
JA
1569}
1570
812df48d
DS
1571static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1572{
1573 del_timer(&cfqd->idle_slice_timer);
1574 blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1575}
1576
febffd61
JA
1577static void __cfq_set_active_queue(struct cfq_data *cfqd,
1578 struct cfq_queue *cfqq)
22e2c507
JA
1579{
1580 if (cfqq) {
b1ffe737
DS
1581 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1582 cfqd->serving_prio, cfqd->serving_type);
a11cdaa7 1583 blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1584 cfqq->slice_start = 0;
1585 cfqq->dispatch_start = jiffies;
f75edf2d 1586 cfqq->allocated_slice = 0;
22e2c507 1587 cfqq->slice_end = 0;
2f5cb738
JA
1588 cfqq->slice_dispatch = 0;
1589
2f5cb738 1590 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1591 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1592 cfq_clear_cfqq_must_alloc_slice(cfqq);
1593 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1594 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1595
812df48d 1596 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1597 }
1598
1599 cfqd->active_queue = cfqq;
1600}
1601
7b14e3b5
JA
1602/*
1603 * current cfqq expired its slice (or was too idle), select new one
1604 */
1605static void
1606__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1607 bool timed_out)
7b14e3b5 1608{
7b679138
JA
1609 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1610
7b14e3b5 1611 if (cfq_cfqq_wait_request(cfqq))
812df48d 1612 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1613
7b14e3b5 1614 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1615 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1616
ae54abed
SL
1617 /*
1618 * If this cfqq is shared between multiple processes, check to
1619 * make sure that those processes are still issuing I/Os within
1620 * the mean seek distance. If not, it may be time to break the
1621 * queues apart again.
1622 */
1623 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1624 cfq_mark_cfqq_split_coop(cfqq);
1625
7b14e3b5 1626 /*
6084cdda 1627 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1628 */
7b679138 1629 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1630 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1631 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1632 }
7b14e3b5 1633
e5ff082e 1634 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1635
f04a6424
VG
1636 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1637 cfq_del_cfqq_rr(cfqd, cfqq);
1638
edd75ffd 1639 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1640
1641 if (cfqq == cfqd->active_queue)
1642 cfqd->active_queue = NULL;
1643
dae739eb
VG
1644 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1645 cfqd->grp_service_tree.active = NULL;
1646
7b14e3b5
JA
1647 if (cfqd->active_cic) {
1648 put_io_context(cfqd->active_cic->ioc);
1649 cfqd->active_cic = NULL;
1650 }
7b14e3b5
JA
1651}
1652
e5ff082e 1653static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1654{
1655 struct cfq_queue *cfqq = cfqd->active_queue;
1656
1657 if (cfqq)
e5ff082e 1658 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1659}
1660
498d3aa2
JA
1661/*
1662 * Get next queue for service. Unless we have a queue preemption,
1663 * we'll simply select the first cfqq in the service tree.
1664 */
6d048f53 1665static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1666{
c0324a02 1667 struct cfq_rb_root *service_tree =
cdb16e8f 1668 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1669 cfqd->serving_type);
d9e7620e 1670
f04a6424
VG
1671 if (!cfqd->rq_queued)
1672 return NULL;
1673
1fa8f6d6
VG
1674 /* There is nothing to dispatch */
1675 if (!service_tree)
1676 return NULL;
c0324a02
CZ
1677 if (RB_EMPTY_ROOT(&service_tree->rb))
1678 return NULL;
1679 return cfq_rb_first(service_tree);
6d048f53
JA
1680}
1681
f04a6424
VG
1682static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1683{
25fb5169 1684 struct cfq_group *cfqg;
f04a6424
VG
1685 struct cfq_queue *cfqq;
1686 int i, j;
1687 struct cfq_rb_root *st;
1688
1689 if (!cfqd->rq_queued)
1690 return NULL;
1691
25fb5169
VG
1692 cfqg = cfq_get_next_cfqg(cfqd);
1693 if (!cfqg)
1694 return NULL;
1695
f04a6424
VG
1696 for_each_cfqg_st(cfqg, i, j, st)
1697 if ((cfqq = cfq_rb_first(st)) != NULL)
1698 return cfqq;
1699 return NULL;
1700}
1701
498d3aa2
JA
1702/*
1703 * Get and set a new active queue for service.
1704 */
a36e71f9
JA
1705static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1706 struct cfq_queue *cfqq)
6d048f53 1707{
e00ef799 1708 if (!cfqq)
a36e71f9 1709 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1710
22e2c507 1711 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1712 return cfqq;
22e2c507
JA
1713}
1714
d9e7620e
JA
1715static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1716 struct request *rq)
1717{
83096ebf
TH
1718 if (blk_rq_pos(rq) >= cfqd->last_position)
1719 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1720 else
83096ebf 1721 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1722}
1723
b2c18e1e 1724static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1725 struct request *rq)
6d048f53 1726{
e9ce335d 1727 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1728}
1729
a36e71f9
JA
1730static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1731 struct cfq_queue *cur_cfqq)
1732{
f2d1f0ae 1733 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1734 struct rb_node *parent, *node;
1735 struct cfq_queue *__cfqq;
1736 sector_t sector = cfqd->last_position;
1737
1738 if (RB_EMPTY_ROOT(root))
1739 return NULL;
1740
1741 /*
1742 * First, if we find a request starting at the end of the last
1743 * request, choose it.
1744 */
f2d1f0ae 1745 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1746 if (__cfqq)
1747 return __cfqq;
1748
1749 /*
1750 * If the exact sector wasn't found, the parent of the NULL leaf
1751 * will contain the closest sector.
1752 */
1753 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1754 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1755 return __cfqq;
1756
2e46e8b2 1757 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1758 node = rb_next(&__cfqq->p_node);
1759 else
1760 node = rb_prev(&__cfqq->p_node);
1761 if (!node)
1762 return NULL;
1763
1764 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1765 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1766 return __cfqq;
1767
1768 return NULL;
1769}
1770
1771/*
1772 * cfqd - obvious
1773 * cur_cfqq - passed in so that we don't decide that the current queue is
1774 * closely cooperating with itself.
1775 *
1776 * So, basically we're assuming that that cur_cfqq has dispatched at least
1777 * one request, and that cfqd->last_position reflects a position on the disk
1778 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1779 * assumption.
1780 */
1781static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1782 struct cfq_queue *cur_cfqq)
6d048f53 1783{
a36e71f9
JA
1784 struct cfq_queue *cfqq;
1785
39c01b21
DS
1786 if (cfq_class_idle(cur_cfqq))
1787 return NULL;
e6c5bc73
JM
1788 if (!cfq_cfqq_sync(cur_cfqq))
1789 return NULL;
1790 if (CFQQ_SEEKY(cur_cfqq))
1791 return NULL;
1792
b9d8f4c7
GJ
1793 /*
1794 * Don't search priority tree if it's the only queue in the group.
1795 */
1796 if (cur_cfqq->cfqg->nr_cfqq == 1)
1797 return NULL;
1798
6d048f53 1799 /*
d9e7620e
JA
1800 * We should notice if some of the queues are cooperating, eg
1801 * working closely on the same area of the disk. In that case,
1802 * we can group them together and don't waste time idling.
6d048f53 1803 */
a36e71f9
JA
1804 cfqq = cfqq_close(cfqd, cur_cfqq);
1805 if (!cfqq)
1806 return NULL;
1807
8682e1f1
VG
1808 /* If new queue belongs to different cfq_group, don't choose it */
1809 if (cur_cfqq->cfqg != cfqq->cfqg)
1810 return NULL;
1811
df5fe3e8
JM
1812 /*
1813 * It only makes sense to merge sync queues.
1814 */
1815 if (!cfq_cfqq_sync(cfqq))
1816 return NULL;
e6c5bc73
JM
1817 if (CFQQ_SEEKY(cfqq))
1818 return NULL;
df5fe3e8 1819
c0324a02
CZ
1820 /*
1821 * Do not merge queues of different priority classes
1822 */
1823 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1824 return NULL;
1825
a36e71f9 1826 return cfqq;
6d048f53
JA
1827}
1828
a6d44e98
CZ
1829/*
1830 * Determine whether we should enforce idle window for this queue.
1831 */
1832
1833static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1834{
1835 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1836 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1837
f04a6424
VG
1838 BUG_ON(!service_tree);
1839 BUG_ON(!service_tree->count);
1840
a6d44e98
CZ
1841 /* We never do for idle class queues. */
1842 if (prio == IDLE_WORKLOAD)
1843 return false;
1844
1845 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1846 if (cfq_cfqq_idle_window(cfqq) &&
1847 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1848 return true;
1849
1850 /*
1851 * Otherwise, we do only if they are the last ones
1852 * in their service tree.
1853 */
b1ffe737
DS
1854 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1855 return 1;
1856 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1857 service_tree->count);
1858 return 0;
a6d44e98
CZ
1859}
1860
6d048f53 1861static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1862{
1792669c 1863 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1864 struct cfq_io_context *cic;
7b14e3b5
JA
1865 unsigned long sl;
1866
a68bbddb 1867 /*
f7d7b7a7
JA
1868 * SSD device without seek penalty, disable idling. But only do so
1869 * for devices that support queuing, otherwise we still have a problem
1870 * with sync vs async workloads.
a68bbddb 1871 */
f7d7b7a7 1872 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1873 return;
1874
dd67d051 1875 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1876 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1877
1878 /*
1879 * idle is disabled, either manually or by past process history
1880 */
a6d44e98 1881 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1882 return;
1883
7b679138 1884 /*
8e550632 1885 * still active requests from this queue, don't idle
7b679138 1886 */
8e550632 1887 if (cfqq->dispatched)
7b679138
JA
1888 return;
1889
22e2c507
JA
1890 /*
1891 * task has exited, don't wait
1892 */
206dc69b 1893 cic = cfqd->active_cic;
66dac98e 1894 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1895 return;
1896
355b659c
CZ
1897 /*
1898 * If our average think time is larger than the remaining time
1899 * slice, then don't idle. This avoids overrunning the allotted
1900 * time slice.
1901 */
1902 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1903 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1904 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1905 cic->ttime_mean);
355b659c 1906 return;
b1ffe737 1907 }
355b659c 1908
3b18152c 1909 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1910
6d048f53 1911 sl = cfqd->cfq_slice_idle;
206dc69b 1912
7b14e3b5 1913 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
812df48d 1914 blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
9481ffdc 1915 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1916}
1917
498d3aa2
JA
1918/*
1919 * Move request from internal lists to the request queue dispatch list.
1920 */
165125e1 1921static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1922{
3ed9a296 1923 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1924 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1925
7b679138
JA
1926 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1927
06d21886 1928 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1929 cfq_remove_request(rq);
6d048f53 1930 cfqq->dispatched++;
5380a101 1931 elv_dispatch_sort(q, rq);
3ed9a296 1932
53c583d2 1933 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
84c124da
DS
1934 blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1935 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1936}
1937
1938/*
1939 * return expired entry, or NULL to just start from scratch in rbtree
1940 */
febffd61 1941static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1942{
30996f40 1943 struct request *rq = NULL;
1da177e4 1944
3b18152c 1945 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1946 return NULL;
cb887411
JA
1947
1948 cfq_mark_cfqq_fifo_expire(cfqq);
1949
89850f7e
JA
1950 if (list_empty(&cfqq->fifo))
1951 return NULL;
1da177e4 1952
89850f7e 1953 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1954 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1955 rq = NULL;
1da177e4 1956
30996f40 1957 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1958 return rq;
1da177e4
LT
1959}
1960
22e2c507
JA
1961static inline int
1962cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1963{
1964 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1965
22e2c507 1966 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1967
22e2c507 1968 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1969}
1970
df5fe3e8
JM
1971/*
1972 * Must be called with the queue_lock held.
1973 */
1974static int cfqq_process_refs(struct cfq_queue *cfqq)
1975{
1976 int process_refs, io_refs;
1977
1978 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1979 process_refs = atomic_read(&cfqq->ref) - io_refs;
1980 BUG_ON(process_refs < 0);
1981 return process_refs;
1982}
1983
1984static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1985{
e6c5bc73 1986 int process_refs, new_process_refs;
df5fe3e8
JM
1987 struct cfq_queue *__cfqq;
1988
1989 /* Avoid a circular list and skip interim queue merges */
1990 while ((__cfqq = new_cfqq->new_cfqq)) {
1991 if (__cfqq == cfqq)
1992 return;
1993 new_cfqq = __cfqq;
1994 }
1995
1996 process_refs = cfqq_process_refs(cfqq);
1997 /*
1998 * If the process for the cfqq has gone away, there is no
1999 * sense in merging the queues.
2000 */
2001 if (process_refs == 0)
2002 return;
2003
e6c5bc73
JM
2004 /*
2005 * Merge in the direction of the lesser amount of work.
2006 */
2007 new_process_refs = cfqq_process_refs(new_cfqq);
2008 if (new_process_refs >= process_refs) {
2009 cfqq->new_cfqq = new_cfqq;
2010 atomic_add(process_refs, &new_cfqq->ref);
2011 } else {
2012 new_cfqq->new_cfqq = cfqq;
2013 atomic_add(new_process_refs, &cfqq->ref);
2014 }
df5fe3e8
JM
2015}
2016
cdb16e8f 2017static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2018 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2019{
2020 struct cfq_queue *queue;
2021 int i;
2022 bool key_valid = false;
2023 unsigned long lowest_key = 0;
2024 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2025
65b32a57
VG
2026 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2027 /* select the one with lowest rb_key */
2028 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2029 if (queue &&
2030 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2031 lowest_key = queue->rb_key;
2032 cur_best = i;
2033 key_valid = true;
2034 }
2035 }
2036
2037 return cur_best;
2038}
2039
cdb16e8f 2040static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2041{
718eee05
CZ
2042 unsigned slice;
2043 unsigned count;
cdb16e8f 2044 struct cfq_rb_root *st;
58ff82f3 2045 unsigned group_slice;
718eee05 2046
1fa8f6d6
VG
2047 if (!cfqg) {
2048 cfqd->serving_prio = IDLE_WORKLOAD;
2049 cfqd->workload_expires = jiffies + 1;
2050 return;
2051 }
2052
718eee05 2053 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2054 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2055 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2056 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2057 cfqd->serving_prio = BE_WORKLOAD;
2058 else {
2059 cfqd->serving_prio = IDLE_WORKLOAD;
2060 cfqd->workload_expires = jiffies + 1;
2061 return;
2062 }
2063
2064 /*
2065 * For RT and BE, we have to choose also the type
2066 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2067 * expiration time
2068 */
65b32a57 2069 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2070 count = st->count;
718eee05
CZ
2071
2072 /*
65b32a57 2073 * check workload expiration, and that we still have other queues ready
718eee05 2074 */
65b32a57 2075 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2076 return;
2077
2078 /* otherwise select new workload type */
2079 cfqd->serving_type =
65b32a57
VG
2080 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2081 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2082 count = st->count;
718eee05
CZ
2083
2084 /*
2085 * the workload slice is computed as a fraction of target latency
2086 * proportional to the number of queues in that workload, over
2087 * all the queues in the same priority class
2088 */
58ff82f3
VG
2089 group_slice = cfq_group_slice(cfqd, cfqg);
2090
2091 slice = group_slice * count /
2092 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2093 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2094
f26bd1f0
VG
2095 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2096 unsigned int tmp;
2097
2098 /*
2099 * Async queues are currently system wide. Just taking
2100 * proportion of queues with-in same group will lead to higher
2101 * async ratio system wide as generally root group is going
2102 * to have higher weight. A more accurate thing would be to
2103 * calculate system wide asnc/sync ratio.
2104 */
2105 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2106 tmp = tmp/cfqd->busy_queues;
2107 slice = min_t(unsigned, slice, tmp);
2108
718eee05
CZ
2109 /* async workload slice is scaled down according to
2110 * the sync/async slice ratio. */
2111 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2112 } else
718eee05
CZ
2113 /* sync workload slice is at least 2 * cfq_slice_idle */
2114 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2115
2116 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2117 cfq_log(cfqd, "workload slice:%d", slice);
718eee05 2118 cfqd->workload_expires = jiffies + slice;
8e550632 2119 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2120}
2121
1fa8f6d6
VG
2122static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2123{
2124 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2125 struct cfq_group *cfqg;
1fa8f6d6
VG
2126
2127 if (RB_EMPTY_ROOT(&st->rb))
2128 return NULL;
25bc6b07
VG
2129 cfqg = cfq_rb_first_group(st);
2130 st->active = &cfqg->rb_node;
2131 update_min_vdisktime(st);
2132 return cfqg;
1fa8f6d6
VG
2133}
2134
cdb16e8f
VG
2135static void cfq_choose_cfqg(struct cfq_data *cfqd)
2136{
1fa8f6d6
VG
2137 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2138
2139 cfqd->serving_group = cfqg;
dae739eb
VG
2140
2141 /* Restore the workload type data */
2142 if (cfqg->saved_workload_slice) {
2143 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2144 cfqd->serving_type = cfqg->saved_workload;
2145 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2146 } else
2147 cfqd->workload_expires = jiffies - 1;
2148
1fa8f6d6 2149 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2150}
2151
22e2c507 2152/*
498d3aa2
JA
2153 * Select a queue for service. If we have a current active queue,
2154 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2155 */
1b5ed5e1 2156static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2157{
a36e71f9 2158 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2159
22e2c507
JA
2160 cfqq = cfqd->active_queue;
2161 if (!cfqq)
2162 goto new_queue;
1da177e4 2163
f04a6424
VG
2164 if (!cfqd->rq_queued)
2165 return NULL;
c244bb50
VG
2166
2167 /*
2168 * We were waiting for group to get backlogged. Expire the queue
2169 */
2170 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2171 goto expire;
2172
22e2c507 2173 /*
6d048f53 2174 * The active queue has run out of time, expire it and select new.
22e2c507 2175 */
7667aa06
VG
2176 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2177 /*
2178 * If slice had not expired at the completion of last request
2179 * we might not have turned on wait_busy flag. Don't expire
2180 * the queue yet. Allow the group to get backlogged.
2181 *
2182 * The very fact that we have used the slice, that means we
2183 * have been idling all along on this queue and it should be
2184 * ok to wait for this request to complete.
2185 */
82bbbf28
VG
2186 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2187 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2188 cfqq = NULL;
7667aa06 2189 goto keep_queue;
82bbbf28 2190 } else
7667aa06
VG
2191 goto expire;
2192 }
1da177e4 2193
22e2c507 2194 /*
6d048f53
JA
2195 * The active queue has requests and isn't expired, allow it to
2196 * dispatch.
22e2c507 2197 */
dd67d051 2198 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2199 goto keep_queue;
6d048f53 2200
a36e71f9
JA
2201 /*
2202 * If another queue has a request waiting within our mean seek
2203 * distance, let it run. The expire code will check for close
2204 * cooperators and put the close queue at the front of the service
df5fe3e8 2205 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2206 */
b3b6d040 2207 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2208 if (new_cfqq) {
2209 if (!cfqq->new_cfqq)
2210 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2211 goto expire;
df5fe3e8 2212 }
a36e71f9 2213
6d048f53
JA
2214 /*
2215 * No requests pending. If the active queue still has requests in
2216 * flight or is idling for a new request, allow either of these
2217 * conditions to happen (or time out) before selecting a new queue.
2218 */
cc197479 2219 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2220 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2221 cfqq = NULL;
2222 goto keep_queue;
22e2c507
JA
2223 }
2224
3b18152c 2225expire:
e5ff082e 2226 cfq_slice_expired(cfqd, 0);
3b18152c 2227new_queue:
718eee05
CZ
2228 /*
2229 * Current queue expired. Check if we have to switch to a new
2230 * service tree
2231 */
2232 if (!new_cfqq)
cdb16e8f 2233 cfq_choose_cfqg(cfqd);
718eee05 2234
a36e71f9 2235 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2236keep_queue:
3b18152c 2237 return cfqq;
22e2c507
JA
2238}
2239
febffd61 2240static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2241{
2242 int dispatched = 0;
2243
2244 while (cfqq->next_rq) {
2245 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2246 dispatched++;
2247 }
2248
2249 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2250
2251 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2252 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2253 return dispatched;
2254}
2255
498d3aa2
JA
2256/*
2257 * Drain our current requests. Used for barriers and when switching
2258 * io schedulers on-the-fly.
2259 */
d9e7620e 2260static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2261{
0871714e 2262 struct cfq_queue *cfqq;
d9e7620e 2263 int dispatched = 0;
cdb16e8f 2264
3440c49f 2265 /* Expire the timeslice of the current active queue first */
e5ff082e 2266 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2267 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2268 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2269 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2270 }
1b5ed5e1 2271
1b5ed5e1
TH
2272 BUG_ON(cfqd->busy_queues);
2273
6923715a 2274 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2275 return dispatched;
2276}
2277
abc3c744
SL
2278static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2279 struct cfq_queue *cfqq)
2280{
2281 /* the queue hasn't finished any request, can't estimate */
2282 if (cfq_cfqq_slice_new(cfqq))
2283 return 1;
2284 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2285 cfqq->slice_end))
2286 return 1;
2287
2288 return 0;
2289}
2290
0b182d61 2291static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2292{
2f5cb738 2293 unsigned int max_dispatch;
22e2c507 2294
5ad531db
JA
2295 /*
2296 * Drain async requests before we start sync IO
2297 */
53c583d2 2298 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2299 return false;
5ad531db 2300
2f5cb738
JA
2301 /*
2302 * If this is an async queue and we have sync IO in flight, let it wait
2303 */
53c583d2 2304 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2305 return false;
2f5cb738 2306
abc3c744 2307 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2308 if (cfq_class_idle(cfqq))
2309 max_dispatch = 1;
b4878f24 2310
2f5cb738
JA
2311 /*
2312 * Does this cfqq already have too much IO in flight?
2313 */
2314 if (cfqq->dispatched >= max_dispatch) {
2315 /*
2316 * idle queue must always only have a single IO in flight
2317 */
3ed9a296 2318 if (cfq_class_idle(cfqq))
0b182d61 2319 return false;
3ed9a296 2320
2f5cb738
JA
2321 /*
2322 * We have other queues, don't allow more IO from this one
2323 */
abc3c744 2324 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2325 return false;
9ede209e 2326
365722bb 2327 /*
474b18cc 2328 * Sole queue user, no limit
365722bb 2329 */
abc3c744
SL
2330 if (cfqd->busy_queues == 1)
2331 max_dispatch = -1;
2332 else
2333 /*
2334 * Normally we start throttling cfqq when cfq_quantum/2
2335 * requests have been dispatched. But we can drive
2336 * deeper queue depths at the beginning of slice
2337 * subjected to upper limit of cfq_quantum.
2338 * */
2339 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2340 }
2341
2342 /*
2343 * Async queues must wait a bit before being allowed dispatch.
2344 * We also ramp up the dispatch depth gradually for async IO,
2345 * based on the last sync IO we serviced
2346 */
963b72fc 2347 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2348 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2349 unsigned int depth;
365722bb 2350
61f0c1dc 2351 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2352 if (!depth && !cfqq->dispatched)
2353 depth = 1;
8e296755
JA
2354 if (depth < max_dispatch)
2355 max_dispatch = depth;
2f5cb738 2356 }
3ed9a296 2357
0b182d61
JA
2358 /*
2359 * If we're below the current max, allow a dispatch
2360 */
2361 return cfqq->dispatched < max_dispatch;
2362}
2363
2364/*
2365 * Dispatch a request from cfqq, moving them to the request queue
2366 * dispatch list.
2367 */
2368static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2369{
2370 struct request *rq;
2371
2372 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2373
2374 if (!cfq_may_dispatch(cfqd, cfqq))
2375 return false;
2376
2377 /*
2378 * follow expired path, else get first next available
2379 */
2380 rq = cfq_check_fifo(cfqq);
2381 if (!rq)
2382 rq = cfqq->next_rq;
2383
2384 /*
2385 * insert request into driver dispatch list
2386 */
2387 cfq_dispatch_insert(cfqd->queue, rq);
2388
2389 if (!cfqd->active_cic) {
2390 struct cfq_io_context *cic = RQ_CIC(rq);
2391
2392 atomic_long_inc(&cic->ioc->refcount);
2393 cfqd->active_cic = cic;
2394 }
2395
2396 return true;
2397}
2398
2399/*
2400 * Find the cfqq that we need to service and move a request from that to the
2401 * dispatch list
2402 */
2403static int cfq_dispatch_requests(struct request_queue *q, int force)
2404{
2405 struct cfq_data *cfqd = q->elevator->elevator_data;
2406 struct cfq_queue *cfqq;
2407
2408 if (!cfqd->busy_queues)
2409 return 0;
2410
2411 if (unlikely(force))
2412 return cfq_forced_dispatch(cfqd);
2413
2414 cfqq = cfq_select_queue(cfqd);
2415 if (!cfqq)
8e296755
JA
2416 return 0;
2417
2f5cb738 2418 /*
0b182d61 2419 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2420 */
0b182d61
JA
2421 if (!cfq_dispatch_request(cfqd, cfqq))
2422 return 0;
2423
2f5cb738 2424 cfqq->slice_dispatch++;
b029195d 2425 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2426
2f5cb738
JA
2427 /*
2428 * expire an async queue immediately if it has used up its slice. idle
2429 * queue always expire after 1 dispatch round.
2430 */
2431 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2432 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2433 cfq_class_idle(cfqq))) {
2434 cfqq->slice_end = jiffies + 1;
e5ff082e 2435 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2436 }
2437
b217a903 2438 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2439 return 1;
1da177e4
LT
2440}
2441
1da177e4 2442/*
5e705374
JA
2443 * task holds one reference to the queue, dropped when task exits. each rq
2444 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2445 *
b1c35769 2446 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2447 * queue lock must be held here.
2448 */
2449static void cfq_put_queue(struct cfq_queue *cfqq)
2450{
22e2c507 2451 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2452 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2453
2454 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2455
2456 if (!atomic_dec_and_test(&cfqq->ref))
2457 return;
2458
7b679138 2459 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2460 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2461 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2462 cfqg = cfqq->cfqg;
878eaddd 2463 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2464
28f95cbc 2465 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2466 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2467 cfq_schedule_dispatch(cfqd);
28f95cbc 2468 }
22e2c507 2469
f04a6424 2470 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2471 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2472 cfq_put_cfqg(cfqg);
878eaddd
VG
2473 if (orig_cfqg)
2474 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2475}
2476
d6de8be7
JA
2477/*
2478 * Must always be called with the rcu_read_lock() held
2479 */
07416d29
JA
2480static void
2481__call_for_each_cic(struct io_context *ioc,
2482 void (*func)(struct io_context *, struct cfq_io_context *))
2483{
2484 struct cfq_io_context *cic;
2485 struct hlist_node *n;
2486
2487 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2488 func(ioc, cic);
2489}
2490
4ac845a2 2491/*
34e6bbf2 2492 * Call func for each cic attached to this ioc.
4ac845a2 2493 */
34e6bbf2 2494static void
4ac845a2
JA
2495call_for_each_cic(struct io_context *ioc,
2496 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2497{
4ac845a2 2498 rcu_read_lock();
07416d29 2499 __call_for_each_cic(ioc, func);
4ac845a2 2500 rcu_read_unlock();
34e6bbf2
FC
2501}
2502
2503static void cfq_cic_free_rcu(struct rcu_head *head)
2504{
2505 struct cfq_io_context *cic;
2506
2507 cic = container_of(head, struct cfq_io_context, rcu_head);
2508
2509 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2510 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2511
9a11b4ed
JA
2512 if (ioc_gone) {
2513 /*
2514 * CFQ scheduler is exiting, grab exit lock and check
2515 * the pending io context count. If it hits zero,
2516 * complete ioc_gone and set it back to NULL
2517 */
2518 spin_lock(&ioc_gone_lock);
245b2e70 2519 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2520 complete(ioc_gone);
2521 ioc_gone = NULL;
2522 }
2523 spin_unlock(&ioc_gone_lock);
2524 }
34e6bbf2 2525}
4ac845a2 2526
34e6bbf2
FC
2527static void cfq_cic_free(struct cfq_io_context *cic)
2528{
2529 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2530}
2531
2532static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2533{
2534 unsigned long flags;
bca4b914 2535 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2536
bca4b914 2537 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2538
2539 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2540 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2541 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2542 spin_unlock_irqrestore(&ioc->lock, flags);
2543
34e6bbf2 2544 cfq_cic_free(cic);
4ac845a2
JA
2545}
2546
d6de8be7
JA
2547/*
2548 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2549 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2550 * and ->trim() which is called with the task lock held
2551 */
4ac845a2
JA
2552static void cfq_free_io_context(struct io_context *ioc)
2553{
4ac845a2 2554 /*
34e6bbf2
FC
2555 * ioc->refcount is zero here, or we are called from elv_unregister(),
2556 * so no more cic's are allowed to be linked into this ioc. So it
2557 * should be ok to iterate over the known list, we will see all cic's
2558 * since no new ones are added.
4ac845a2 2559 */
07416d29 2560 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2561}
2562
89850f7e 2563static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2564{
df5fe3e8
JM
2565 struct cfq_queue *__cfqq, *next;
2566
28f95cbc 2567 if (unlikely(cfqq == cfqd->active_queue)) {
e5ff082e 2568 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2569 cfq_schedule_dispatch(cfqd);
28f95cbc 2570 }
22e2c507 2571
df5fe3e8
JM
2572 /*
2573 * If this queue was scheduled to merge with another queue, be
2574 * sure to drop the reference taken on that queue (and others in
2575 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2576 */
2577 __cfqq = cfqq->new_cfqq;
2578 while (__cfqq) {
2579 if (__cfqq == cfqq) {
2580 WARN(1, "cfqq->new_cfqq loop detected\n");
2581 break;
2582 }
2583 next = __cfqq->new_cfqq;
2584 cfq_put_queue(__cfqq);
2585 __cfqq = next;
2586 }
2587
89850f7e
JA
2588 cfq_put_queue(cfqq);
2589}
22e2c507 2590
89850f7e
JA
2591static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2592 struct cfq_io_context *cic)
2593{
4faa3c81
FC
2594 struct io_context *ioc = cic->ioc;
2595
fc46379d 2596 list_del_init(&cic->queue_list);
4ac845a2
JA
2597
2598 /*
bca4b914 2599 * Make sure dead mark is seen for dead queues
4ac845a2 2600 */
fc46379d 2601 smp_wmb();
bca4b914 2602 cic->key = cfqd_dead_key(cfqd);
fc46379d 2603
4faa3c81
FC
2604 if (ioc->ioc_data == cic)
2605 rcu_assign_pointer(ioc->ioc_data, NULL);
2606
ff6657c6
JA
2607 if (cic->cfqq[BLK_RW_ASYNC]) {
2608 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2609 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2610 }
2611
ff6657c6
JA
2612 if (cic->cfqq[BLK_RW_SYNC]) {
2613 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2614 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2615 }
89850f7e
JA
2616}
2617
4ac845a2
JA
2618static void cfq_exit_single_io_context(struct io_context *ioc,
2619 struct cfq_io_context *cic)
89850f7e 2620{
bca4b914 2621 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2622
89850f7e 2623 if (cfqd) {
165125e1 2624 struct request_queue *q = cfqd->queue;
4ac845a2 2625 unsigned long flags;
89850f7e 2626
4ac845a2 2627 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2628
2629 /*
2630 * Ensure we get a fresh copy of the ->key to prevent
2631 * race between exiting task and queue
2632 */
2633 smp_read_barrier_depends();
bca4b914 2634 if (cic->key == cfqd)
62c1fe9d
JA
2635 __cfq_exit_single_io_context(cfqd, cic);
2636
4ac845a2 2637 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2638 }
1da177e4
LT
2639}
2640
498d3aa2
JA
2641/*
2642 * The process that ioc belongs to has exited, we need to clean up
2643 * and put the internal structures we have that belongs to that process.
2644 */
e2d74ac0 2645static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2646{
4ac845a2 2647 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2648}
2649
22e2c507 2650static struct cfq_io_context *
8267e268 2651cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2652{
b5deef90 2653 struct cfq_io_context *cic;
1da177e4 2654
94f6030c
CL
2655 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2656 cfqd->queue->node);
1da177e4 2657 if (cic) {
22e2c507 2658 cic->last_end_request = jiffies;
553698f9 2659 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2660 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2661 cic->dtor = cfq_free_io_context;
2662 cic->exit = cfq_exit_io_context;
245b2e70 2663 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2664 }
2665
2666 return cic;
2667}
2668
fd0928df 2669static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2670{
2671 struct task_struct *tsk = current;
2672 int ioprio_class;
2673
3b18152c 2674 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2675 return;
2676
fd0928df 2677 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2678 switch (ioprio_class) {
fe094d98
JA
2679 default:
2680 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2681 case IOPRIO_CLASS_NONE:
2682 /*
6d63c275 2683 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2684 */
2685 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2686 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2687 break;
2688 case IOPRIO_CLASS_RT:
2689 cfqq->ioprio = task_ioprio(ioc);
2690 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2691 break;
2692 case IOPRIO_CLASS_BE:
2693 cfqq->ioprio = task_ioprio(ioc);
2694 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2695 break;
2696 case IOPRIO_CLASS_IDLE:
2697 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2698 cfqq->ioprio = 7;
2699 cfq_clear_cfqq_idle_window(cfqq);
2700 break;
22e2c507
JA
2701 }
2702
2703 /*
2704 * keep track of original prio settings in case we have to temporarily
2705 * elevate the priority of this queue
2706 */
2707 cfqq->org_ioprio = cfqq->ioprio;
2708 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2709 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2710}
2711
febffd61 2712static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2713{
bca4b914 2714 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2715 struct cfq_queue *cfqq;
c1b707d2 2716 unsigned long flags;
35e6077c 2717
caaa5f9f
JA
2718 if (unlikely(!cfqd))
2719 return;
2720
c1b707d2 2721 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2722
ff6657c6 2723 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2724 if (cfqq) {
2725 struct cfq_queue *new_cfqq;
ff6657c6
JA
2726 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2727 GFP_ATOMIC);
caaa5f9f 2728 if (new_cfqq) {
ff6657c6 2729 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2730 cfq_put_queue(cfqq);
2731 }
22e2c507 2732 }
caaa5f9f 2733
ff6657c6 2734 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2735 if (cfqq)
2736 cfq_mark_cfqq_prio_changed(cfqq);
2737
c1b707d2 2738 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2739}
2740
fc46379d 2741static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2742{
4ac845a2 2743 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2744 ioc->ioprio_changed = 0;
22e2c507
JA
2745}
2746
d5036d77 2747static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2748 pid_t pid, bool is_sync)
d5036d77
JA
2749{
2750 RB_CLEAR_NODE(&cfqq->rb_node);
2751 RB_CLEAR_NODE(&cfqq->p_node);
2752 INIT_LIST_HEAD(&cfqq->fifo);
2753
2754 atomic_set(&cfqq->ref, 0);
2755 cfqq->cfqd = cfqd;
2756
2757 cfq_mark_cfqq_prio_changed(cfqq);
2758
2759 if (is_sync) {
2760 if (!cfq_class_idle(cfqq))
2761 cfq_mark_cfqq_idle_window(cfqq);
2762 cfq_mark_cfqq_sync(cfqq);
2763 }
2764 cfqq->pid = pid;
2765}
2766
24610333
VG
2767#ifdef CONFIG_CFQ_GROUP_IOSCHED
2768static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2769{
2770 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2771 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2772 unsigned long flags;
2773 struct request_queue *q;
2774
2775 if (unlikely(!cfqd))
2776 return;
2777
2778 q = cfqd->queue;
2779
2780 spin_lock_irqsave(q->queue_lock, flags);
2781
2782 if (sync_cfqq) {
2783 /*
2784 * Drop reference to sync queue. A new sync queue will be
2785 * assigned in new group upon arrival of a fresh request.
2786 */
2787 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2788 cic_set_cfqq(cic, NULL, 1);
2789 cfq_put_queue(sync_cfqq);
2790 }
2791
2792 spin_unlock_irqrestore(q->queue_lock, flags);
2793}
2794
2795static void cfq_ioc_set_cgroup(struct io_context *ioc)
2796{
2797 call_for_each_cic(ioc, changed_cgroup);
2798 ioc->cgroup_changed = 0;
2799}
2800#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2801
22e2c507 2802static struct cfq_queue *
a6151c3a 2803cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2804 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2805{
22e2c507 2806 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2807 struct cfq_io_context *cic;
cdb16e8f 2808 struct cfq_group *cfqg;
22e2c507
JA
2809
2810retry:
cdb16e8f 2811 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2812 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2813 /* cic always exists here */
2814 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2815
6118b70b
JA
2816 /*
2817 * Always try a new alloc if we fell back to the OOM cfqq
2818 * originally, since it should just be a temporary situation.
2819 */
2820 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2821 cfqq = NULL;
22e2c507
JA
2822 if (new_cfqq) {
2823 cfqq = new_cfqq;
2824 new_cfqq = NULL;
2825 } else if (gfp_mask & __GFP_WAIT) {
2826 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2827 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2828 gfp_mask | __GFP_ZERO,
94f6030c 2829 cfqd->queue->node);
22e2c507 2830 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2831 if (new_cfqq)
2832 goto retry;
22e2c507 2833 } else {
94f6030c
CL
2834 cfqq = kmem_cache_alloc_node(cfq_pool,
2835 gfp_mask | __GFP_ZERO,
2836 cfqd->queue->node);
22e2c507
JA
2837 }
2838
6118b70b
JA
2839 if (cfqq) {
2840 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2841 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2842 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2843 cfq_log_cfqq(cfqd, cfqq, "alloced");
2844 } else
2845 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2846 }
2847
2848 if (new_cfqq)
2849 kmem_cache_free(cfq_pool, new_cfqq);
2850
22e2c507
JA
2851 return cfqq;
2852}
2853
c2dea2d1
VT
2854static struct cfq_queue **
2855cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2856{
fe094d98 2857 switch (ioprio_class) {
c2dea2d1
VT
2858 case IOPRIO_CLASS_RT:
2859 return &cfqd->async_cfqq[0][ioprio];
2860 case IOPRIO_CLASS_BE:
2861 return &cfqd->async_cfqq[1][ioprio];
2862 case IOPRIO_CLASS_IDLE:
2863 return &cfqd->async_idle_cfqq;
2864 default:
2865 BUG();
2866 }
2867}
2868
15c31be4 2869static struct cfq_queue *
a6151c3a 2870cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2871 gfp_t gfp_mask)
2872{
fd0928df
JA
2873 const int ioprio = task_ioprio(ioc);
2874 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2875 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2876 struct cfq_queue *cfqq = NULL;
2877
c2dea2d1
VT
2878 if (!is_sync) {
2879 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2880 cfqq = *async_cfqq;
2881 }
2882
6118b70b 2883 if (!cfqq)
fd0928df 2884 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2885
2886 /*
2887 * pin the queue now that it's allocated, scheduler exit will prune it
2888 */
c2dea2d1 2889 if (!is_sync && !(*async_cfqq)) {
15c31be4 2890 atomic_inc(&cfqq->ref);
c2dea2d1 2891 *async_cfqq = cfqq;
15c31be4
JA
2892 }
2893
2894 atomic_inc(&cfqq->ref);
2895 return cfqq;
2896}
2897
498d3aa2
JA
2898/*
2899 * We drop cfq io contexts lazily, so we may find a dead one.
2900 */
dbecf3ab 2901static void
4ac845a2
JA
2902cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2903 struct cfq_io_context *cic)
dbecf3ab 2904{
4ac845a2
JA
2905 unsigned long flags;
2906
fc46379d 2907 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 2908 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 2909
4ac845a2
JA
2910 spin_lock_irqsave(&ioc->lock, flags);
2911
4faa3c81 2912 BUG_ON(ioc->ioc_data == cic);
597bc485 2913
80b15c73 2914 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 2915 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2916 spin_unlock_irqrestore(&ioc->lock, flags);
2917
2918 cfq_cic_free(cic);
dbecf3ab
OH
2919}
2920
e2d74ac0 2921static struct cfq_io_context *
4ac845a2 2922cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2923{
e2d74ac0 2924 struct cfq_io_context *cic;
d6de8be7 2925 unsigned long flags;
e2d74ac0 2926
91fac317
VT
2927 if (unlikely(!ioc))
2928 return NULL;
2929
d6de8be7
JA
2930 rcu_read_lock();
2931
597bc485
JA
2932 /*
2933 * we maintain a last-hit cache, to avoid browsing over the tree
2934 */
4ac845a2 2935 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2936 if (cic && cic->key == cfqd) {
2937 rcu_read_unlock();
597bc485 2938 return cic;
d6de8be7 2939 }
597bc485 2940
4ac845a2 2941 do {
80b15c73 2942 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
2943 rcu_read_unlock();
2944 if (!cic)
2945 break;
bca4b914 2946 if (unlikely(cic->key != cfqd)) {
4ac845a2 2947 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2948 rcu_read_lock();
4ac845a2 2949 continue;
dbecf3ab 2950 }
e2d74ac0 2951
d6de8be7 2952 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2953 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2954 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2955 break;
2956 } while (1);
e2d74ac0 2957
4ac845a2 2958 return cic;
e2d74ac0
JA
2959}
2960
4ac845a2
JA
2961/*
2962 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2963 * the process specific cfq io context when entered from the block layer.
2964 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2965 */
febffd61
JA
2966static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2967 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2968{
0261d688 2969 unsigned long flags;
4ac845a2 2970 int ret;
e2d74ac0 2971
4ac845a2
JA
2972 ret = radix_tree_preload(gfp_mask);
2973 if (!ret) {
2974 cic->ioc = ioc;
2975 cic->key = cfqd;
e2d74ac0 2976
4ac845a2
JA
2977 spin_lock_irqsave(&ioc->lock, flags);
2978 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 2979 cfqd->cic_index, cic);
ffc4e759
JA
2980 if (!ret)
2981 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2982 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2983
4ac845a2
JA
2984 radix_tree_preload_end();
2985
2986 if (!ret) {
2987 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2988 list_add(&cic->queue_list, &cfqd->cic_list);
2989 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2990 }
e2d74ac0
JA
2991 }
2992
4ac845a2
JA
2993 if (ret)
2994 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2995
4ac845a2 2996 return ret;
e2d74ac0
JA
2997}
2998
1da177e4
LT
2999/*
3000 * Setup general io context and cfq io context. There can be several cfq
3001 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3002 * than one device managed by cfq.
1da177e4
LT
3003 */
3004static struct cfq_io_context *
e2d74ac0 3005cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3006{
22e2c507 3007 struct io_context *ioc = NULL;
1da177e4 3008 struct cfq_io_context *cic;
1da177e4 3009
22e2c507 3010 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3011
b5deef90 3012 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3013 if (!ioc)
3014 return NULL;
3015
4ac845a2 3016 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3017 if (cic)
3018 goto out;
1da177e4 3019
e2d74ac0
JA
3020 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3021 if (cic == NULL)
3022 goto err;
1da177e4 3023
4ac845a2
JA
3024 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3025 goto err_free;
3026
1da177e4 3027out:
fc46379d
JA
3028 smp_read_barrier_depends();
3029 if (unlikely(ioc->ioprio_changed))
3030 cfq_ioc_set_ioprio(ioc);
3031
24610333
VG
3032#ifdef CONFIG_CFQ_GROUP_IOSCHED
3033 if (unlikely(ioc->cgroup_changed))
3034 cfq_ioc_set_cgroup(ioc);
3035#endif
1da177e4 3036 return cic;
4ac845a2
JA
3037err_free:
3038 cfq_cic_free(cic);
1da177e4
LT
3039err:
3040 put_io_context(ioc);
3041 return NULL;
3042}
3043
22e2c507
JA
3044static void
3045cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3046{
aaf1228d
JA
3047 unsigned long elapsed = jiffies - cic->last_end_request;
3048 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3049
22e2c507
JA
3050 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3051 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3052 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3053}
1da177e4 3054
206dc69b 3055static void
b2c18e1e 3056cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3057 struct request *rq)
206dc69b 3058{
3dde36dd 3059 sector_t sdist = 0;
41647e7a 3060 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3061 if (cfqq->last_request_pos) {
3062 if (cfqq->last_request_pos < blk_rq_pos(rq))
3063 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3064 else
3065 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3066 }
206dc69b 3067
3dde36dd 3068 cfqq->seek_history <<= 1;
41647e7a
CZ
3069 if (blk_queue_nonrot(cfqd->queue))
3070 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3071 else
3072 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3073}
1da177e4 3074
22e2c507
JA
3075/*
3076 * Disable idle window if the process thinks too long or seeks so much that
3077 * it doesn't matter
3078 */
3079static void
3080cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3081 struct cfq_io_context *cic)
3082{
7b679138 3083 int old_idle, enable_idle;
1be92f2f 3084
0871714e
JA
3085 /*
3086 * Don't idle for async or idle io prio class
3087 */
3088 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3089 return;
3090
c265a7f4 3091 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3092
76280aff
CZ
3093 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3094 cfq_mark_cfqq_deep(cfqq);
3095
66dac98e 3096 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3097 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3098 enable_idle = 0;
3099 else if (sample_valid(cic->ttime_samples)) {
718eee05 3100 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3101 enable_idle = 0;
3102 else
3103 enable_idle = 1;
1da177e4
LT
3104 }
3105
7b679138
JA
3106 if (old_idle != enable_idle) {
3107 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3108 if (enable_idle)
3109 cfq_mark_cfqq_idle_window(cfqq);
3110 else
3111 cfq_clear_cfqq_idle_window(cfqq);
3112 }
22e2c507 3113}
1da177e4 3114
22e2c507
JA
3115/*
3116 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3117 * no or if we aren't sure, a 1 will cause a preempt.
3118 */
a6151c3a 3119static bool
22e2c507 3120cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3121 struct request *rq)
22e2c507 3122{
6d048f53 3123 struct cfq_queue *cfqq;
22e2c507 3124
6d048f53
JA
3125 cfqq = cfqd->active_queue;
3126 if (!cfqq)
a6151c3a 3127 return false;
22e2c507 3128
6d048f53 3129 if (cfq_class_idle(new_cfqq))
a6151c3a 3130 return false;
22e2c507
JA
3131
3132 if (cfq_class_idle(cfqq))
a6151c3a 3133 return true;
1e3335de 3134
875feb63
DS
3135 /*
3136 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3137 */
3138 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3139 return false;
3140
374f84ac
JA
3141 /*
3142 * if the new request is sync, but the currently running queue is
3143 * not, let the sync request have priority.
3144 */
5e705374 3145 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3146 return true;
1e3335de 3147
8682e1f1
VG
3148 if (new_cfqq->cfqg != cfqq->cfqg)
3149 return false;
3150
3151 if (cfq_slice_used(cfqq))
3152 return true;
3153
3154 /* Allow preemption only if we are idling on sync-noidle tree */
3155 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3156 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3157 new_cfqq->service_tree->count == 2 &&
3158 RB_EMPTY_ROOT(&cfqq->sort_list))
3159 return true;
3160
374f84ac
JA
3161 /*
3162 * So both queues are sync. Let the new request get disk time if
3163 * it's a metadata request and the current queue is doing regular IO.
3164 */
3165 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 3166 return true;
22e2c507 3167
3a9a3f6c
DS
3168 /*
3169 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3170 */
3171 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3172 return true;
3a9a3f6c 3173
1e3335de 3174 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3175 return false;
1e3335de
JA
3176
3177 /*
3178 * if this request is as-good as one we would expect from the
3179 * current cfqq, let it preempt
3180 */
e9ce335d 3181 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3182 return true;
1e3335de 3183
a6151c3a 3184 return false;
22e2c507
JA
3185}
3186
3187/*
3188 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3189 * let it have half of its nominal slice.
3190 */
3191static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3192{
7b679138 3193 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3194 cfq_slice_expired(cfqd, 1);
22e2c507 3195
bf572256
JA
3196 /*
3197 * Put the new queue at the front of the of the current list,
3198 * so we know that it will be selected next.
3199 */
3200 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3201
3202 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3203
44f7c160
JA
3204 cfqq->slice_end = 0;
3205 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3206}
3207
22e2c507 3208/*
5e705374 3209 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3210 * something we should do about it
3211 */
3212static void
5e705374
JA
3213cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3214 struct request *rq)
22e2c507 3215{
5e705374 3216 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3217
45333d5a 3218 cfqd->rq_queued++;
374f84ac
JA
3219 if (rq_is_meta(rq))
3220 cfqq->meta_pending++;
3221
9c2c38a1 3222 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3223 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3224 cfq_update_idle_window(cfqd, cfqq, cic);
3225
b2c18e1e 3226 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3227
3228 if (cfqq == cfqd->active_queue) {
3229 /*
b029195d
JA
3230 * Remember that we saw a request from this process, but
3231 * don't start queuing just yet. Otherwise we risk seeing lots
3232 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3233 * and merging. If the request is already larger than a single
3234 * page, let it rip immediately. For that case we assume that
2d870722
JA
3235 * merging is already done. Ditto for a busy system that
3236 * has other work pending, don't risk delaying until the
3237 * idle timer unplug to continue working.
22e2c507 3238 */
d6ceb25e 3239 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3240 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3241 cfqd->busy_queues > 1) {
812df48d 3242 cfq_del_timer(cfqd, cfqq);
554554f6 3243 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3244 __blk_run_queue(cfqd->queue);
a11cdaa7
DS
3245 } else {
3246 blkiocg_update_idle_time_stats(
3247 &cfqq->cfqg->blkg);
bf791937 3248 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3249 }
d6ceb25e 3250 }
5e705374 3251 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3252 /*
3253 * not the active queue - expire current slice if it is
3254 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3255 * has some old slice time left and is of higher priority or
3256 * this new queue is RT and the current one is BE
22e2c507
JA
3257 */
3258 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3259 __blk_run_queue(cfqd->queue);
22e2c507 3260 }
1da177e4
LT
3261}
3262
165125e1 3263static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3264{
b4878f24 3265 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3266 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3267
7b679138 3268 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3269 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3270
30996f40 3271 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3272 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3273 cfq_add_rq_rb(rq);
7f1dc8a2 3274 blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3275 &cfqd->serving_group->blkg, rq_data_dir(rq),
3276 rq_is_sync(rq));
5e705374 3277 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3278}
3279
45333d5a
AC
3280/*
3281 * Update hw_tag based on peak queue depth over 50 samples under
3282 * sufficient load.
3283 */
3284static void cfq_update_hw_tag(struct cfq_data *cfqd)
3285{
1a1238a7
SL
3286 struct cfq_queue *cfqq = cfqd->active_queue;
3287
53c583d2
CZ
3288 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3289 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3290
3291 if (cfqd->hw_tag == 1)
3292 return;
45333d5a
AC
3293
3294 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3295 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3296 return;
3297
1a1238a7
SL
3298 /*
3299 * If active queue hasn't enough requests and can idle, cfq might not
3300 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3301 * case
3302 */
3303 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3304 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3305 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3306 return;
3307
45333d5a
AC
3308 if (cfqd->hw_tag_samples++ < 50)
3309 return;
3310
e459dd08 3311 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3312 cfqd->hw_tag = 1;
3313 else
3314 cfqd->hw_tag = 0;
45333d5a
AC
3315}
3316
7667aa06
VG
3317static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3318{
3319 struct cfq_io_context *cic = cfqd->active_cic;
3320
3321 /* If there are other queues in the group, don't wait */
3322 if (cfqq->cfqg->nr_cfqq > 1)
3323 return false;
3324
3325 if (cfq_slice_used(cfqq))
3326 return true;
3327
3328 /* if slice left is less than think time, wait busy */
3329 if (cic && sample_valid(cic->ttime_samples)
3330 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3331 return true;
3332
3333 /*
3334 * If think times is less than a jiffy than ttime_mean=0 and above
3335 * will not be true. It might happen that slice has not expired yet
3336 * but will expire soon (4-5 ns) during select_queue(). To cover the
3337 * case where think time is less than a jiffy, mark the queue wait
3338 * busy if only 1 jiffy is left in the slice.
3339 */
3340 if (cfqq->slice_end - jiffies == 1)
3341 return true;
3342
3343 return false;
3344}
3345
165125e1 3346static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3347{
5e705374 3348 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3349 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3350 const int sync = rq_is_sync(rq);
b4878f24 3351 unsigned long now;
1da177e4 3352
b4878f24 3353 now = jiffies;
2868ef7b 3354 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3355
45333d5a
AC
3356 cfq_update_hw_tag(cfqd);
3357
53c583d2 3358 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3359 WARN_ON(!cfqq->dispatched);
53c583d2 3360 cfqd->rq_in_driver--;
6d048f53 3361 cfqq->dispatched--;
84c124da
DS
3362 blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
3363 rq_io_start_time_ns(rq), rq_data_dir(rq),
3364 rq_is_sync(rq));
1da177e4 3365
53c583d2 3366 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3367
365722bb 3368 if (sync) {
5e705374 3369 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3370 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3371 cfqd->last_delayed_sync = now;
365722bb 3372 }
caaa5f9f
JA
3373
3374 /*
3375 * If this is the active queue, check if it needs to be expired,
3376 * or if we want to idle in case it has no pending requests.
3377 */
3378 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3379 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3380
44f7c160
JA
3381 if (cfq_cfqq_slice_new(cfqq)) {
3382 cfq_set_prio_slice(cfqd, cfqq);
3383 cfq_clear_cfqq_slice_new(cfqq);
3384 }
f75edf2d
VG
3385
3386 /*
7667aa06
VG
3387 * Should we wait for next request to come in before we expire
3388 * the queue.
f75edf2d 3389 */
7667aa06 3390 if (cfq_should_wait_busy(cfqd, cfqq)) {
f75edf2d
VG
3391 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3392 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3393 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3394 }
3395
a36e71f9 3396 /*
8e550632
CZ
3397 * Idling is not enabled on:
3398 * - expired queues
3399 * - idle-priority queues
3400 * - async queues
3401 * - queues with still some requests queued
3402 * - when there is a close cooperator
a36e71f9 3403 */
0871714e 3404 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3405 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3406 else if (sync && cfqq_empty &&
3407 !cfq_close_cooperator(cfqd, cfqq)) {
3408 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3409 /*
3410 * Idling is enabled for SYNC_WORKLOAD.
3411 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3412 * only if we processed at least one !rq_noidle request
3413 */
3414 if (cfqd->serving_type == SYNC_WORKLOAD
c04645e5
VG
3415 || cfqd->noidle_tree_requires_idle
3416 || cfqq->cfqg->nr_cfqq == 1)
8e550632
CZ
3417 cfq_arm_slice_timer(cfqd);
3418 }
caaa5f9f 3419 }
6d048f53 3420
53c583d2 3421 if (!cfqd->rq_in_driver)
23e018a1 3422 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3423}
3424
22e2c507
JA
3425/*
3426 * we temporarily boost lower priority queues if they are holding fs exclusive
3427 * resources. they are boosted to normal prio (CLASS_BE/4)
3428 */
3429static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3430{
22e2c507
JA
3431 if (has_fs_excl()) {
3432 /*
3433 * boost idle prio on transactions that would lock out other
3434 * users of the filesystem
3435 */
3436 if (cfq_class_idle(cfqq))
3437 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3438 if (cfqq->ioprio > IOPRIO_NORM)
3439 cfqq->ioprio = IOPRIO_NORM;
3440 } else {
3441 /*
dddb7451 3442 * unboost the queue (if needed)
22e2c507 3443 */
dddb7451
CZ
3444 cfqq->ioprio_class = cfqq->org_ioprio_class;
3445 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3446 }
22e2c507 3447}
1da177e4 3448
89850f7e 3449static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3450{
1b379d8d 3451 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3452 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3453 return ELV_MQUEUE_MUST;
3b18152c 3454 }
1da177e4 3455
22e2c507 3456 return ELV_MQUEUE_MAY;
22e2c507
JA
3457}
3458
165125e1 3459static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3460{
3461 struct cfq_data *cfqd = q->elevator->elevator_data;
3462 struct task_struct *tsk = current;
91fac317 3463 struct cfq_io_context *cic;
22e2c507
JA
3464 struct cfq_queue *cfqq;
3465
3466 /*
3467 * don't force setup of a queue from here, as a call to may_queue
3468 * does not necessarily imply that a request actually will be queued.
3469 * so just lookup a possibly existing queue, or return 'may queue'
3470 * if that fails
3471 */
4ac845a2 3472 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3473 if (!cic)
3474 return ELV_MQUEUE_MAY;
3475
b0b78f81 3476 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3477 if (cfqq) {
fd0928df 3478 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3479 cfq_prio_boost(cfqq);
3480
89850f7e 3481 return __cfq_may_queue(cfqq);
22e2c507
JA
3482 }
3483
3484 return ELV_MQUEUE_MAY;
1da177e4
LT
3485}
3486
1da177e4
LT
3487/*
3488 * queue lock held here
3489 */
bb37b94c 3490static void cfq_put_request(struct request *rq)
1da177e4 3491{
5e705374 3492 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3493
5e705374 3494 if (cfqq) {
22e2c507 3495 const int rw = rq_data_dir(rq);
1da177e4 3496
22e2c507
JA
3497 BUG_ON(!cfqq->allocated[rw]);
3498 cfqq->allocated[rw]--;
1da177e4 3499
5e705374 3500 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3501
1da177e4 3502 rq->elevator_private = NULL;
5e705374 3503 rq->elevator_private2 = NULL;
1da177e4 3504
7f1dc8a2
VG
3505 /* Put down rq reference on cfqg */
3506 cfq_put_cfqg(RQ_CFQG(rq));
3507 rq->elevator_private3 = NULL;
3508
1da177e4
LT
3509 cfq_put_queue(cfqq);
3510 }
3511}
3512
df5fe3e8
JM
3513static struct cfq_queue *
3514cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3515 struct cfq_queue *cfqq)
3516{
3517 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3518 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3519 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3520 cfq_put_queue(cfqq);
3521 return cic_to_cfqq(cic, 1);
3522}
3523
e6c5bc73
JM
3524/*
3525 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3526 * was the last process referring to said cfqq.
3527 */
3528static struct cfq_queue *
3529split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3530{
3531 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3532 cfqq->pid = current->pid;
3533 cfq_clear_cfqq_coop(cfqq);
ae54abed 3534 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3535 return cfqq;
3536 }
3537
3538 cic_set_cfqq(cic, NULL, 1);
3539 cfq_put_queue(cfqq);
3540 return NULL;
3541}
1da177e4 3542/*
22e2c507 3543 * Allocate cfq data structures associated with this request.
1da177e4 3544 */
22e2c507 3545static int
165125e1 3546cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3547{
3548 struct cfq_data *cfqd = q->elevator->elevator_data;
3549 struct cfq_io_context *cic;
3550 const int rw = rq_data_dir(rq);
a6151c3a 3551 const bool is_sync = rq_is_sync(rq);
22e2c507 3552 struct cfq_queue *cfqq;
1da177e4
LT
3553 unsigned long flags;
3554
3555 might_sleep_if(gfp_mask & __GFP_WAIT);
3556
e2d74ac0 3557 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3558
1da177e4
LT
3559 spin_lock_irqsave(q->queue_lock, flags);
3560
22e2c507
JA
3561 if (!cic)
3562 goto queue_fail;
3563
e6c5bc73 3564new_queue:
91fac317 3565 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3566 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3567 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3568 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3569 } else {
e6c5bc73
JM
3570 /*
3571 * If the queue was seeky for too long, break it apart.
3572 */
ae54abed 3573 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3574 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3575 cfqq = split_cfqq(cic, cfqq);
3576 if (!cfqq)
3577 goto new_queue;
3578 }
3579
df5fe3e8
JM
3580 /*
3581 * Check to see if this queue is scheduled to merge with
3582 * another, closely cooperating queue. The merging of
3583 * queues happens here as it must be done in process context.
3584 * The reference on new_cfqq was taken in merge_cfqqs.
3585 */
3586 if (cfqq->new_cfqq)
3587 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3588 }
1da177e4
LT
3589
3590 cfqq->allocated[rw]++;
22e2c507 3591 atomic_inc(&cfqq->ref);
1da177e4 3592
5e705374 3593 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3594
5e705374
JA
3595 rq->elevator_private = cic;
3596 rq->elevator_private2 = cfqq;
7f1dc8a2 3597 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3598 return 0;
1da177e4 3599
22e2c507
JA
3600queue_fail:
3601 if (cic)
3602 put_io_context(cic->ioc);
89850f7e 3603
23e018a1 3604 cfq_schedule_dispatch(cfqd);
1da177e4 3605 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3606 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3607 return 1;
3608}
3609
65f27f38 3610static void cfq_kick_queue(struct work_struct *work)
22e2c507 3611{
65f27f38 3612 struct cfq_data *cfqd =
23e018a1 3613 container_of(work, struct cfq_data, unplug_work);
165125e1 3614 struct request_queue *q = cfqd->queue;
22e2c507 3615
40bb54d1 3616 spin_lock_irq(q->queue_lock);
a7f55792 3617 __blk_run_queue(cfqd->queue);
40bb54d1 3618 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3619}
3620
3621/*
3622 * Timer running if the active_queue is currently idling inside its time slice
3623 */
3624static void cfq_idle_slice_timer(unsigned long data)
3625{
3626 struct cfq_data *cfqd = (struct cfq_data *) data;
3627 struct cfq_queue *cfqq;
3628 unsigned long flags;
3c6bd2f8 3629 int timed_out = 1;
22e2c507 3630
7b679138
JA
3631 cfq_log(cfqd, "idle timer fired");
3632
22e2c507
JA
3633 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3634
fe094d98
JA
3635 cfqq = cfqd->active_queue;
3636 if (cfqq) {
3c6bd2f8
JA
3637 timed_out = 0;
3638
b029195d
JA
3639 /*
3640 * We saw a request before the queue expired, let it through
3641 */
3642 if (cfq_cfqq_must_dispatch(cfqq))
3643 goto out_kick;
3644
22e2c507
JA
3645 /*
3646 * expired
3647 */
44f7c160 3648 if (cfq_slice_used(cfqq))
22e2c507
JA
3649 goto expire;
3650
3651 /*
3652 * only expire and reinvoke request handler, if there are
3653 * other queues with pending requests
3654 */
caaa5f9f 3655 if (!cfqd->busy_queues)
22e2c507 3656 goto out_cont;
22e2c507
JA
3657
3658 /*
3659 * not expired and it has a request pending, let it dispatch
3660 */
75e50984 3661 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3662 goto out_kick;
76280aff
CZ
3663
3664 /*
3665 * Queue depth flag is reset only when the idle didn't succeed
3666 */
3667 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3668 }
3669expire:
e5ff082e 3670 cfq_slice_expired(cfqd, timed_out);
22e2c507 3671out_kick:
23e018a1 3672 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3673out_cont:
3674 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3675}
3676
3b18152c
JA
3677static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3678{
3679 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3680 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3681}
22e2c507 3682
c2dea2d1
VT
3683static void cfq_put_async_queues(struct cfq_data *cfqd)
3684{
3685 int i;
3686
3687 for (i = 0; i < IOPRIO_BE_NR; i++) {
3688 if (cfqd->async_cfqq[0][i])
3689 cfq_put_queue(cfqd->async_cfqq[0][i]);
3690 if (cfqd->async_cfqq[1][i])
3691 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3692 }
2389d1ef
ON
3693
3694 if (cfqd->async_idle_cfqq)
3695 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3696}
3697
bb729bc9
JA
3698static void cfq_cfqd_free(struct rcu_head *head)
3699{
3700 kfree(container_of(head, struct cfq_data, rcu));
3701}
3702
b374d18a 3703static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3704{
22e2c507 3705 struct cfq_data *cfqd = e->elevator_data;
165125e1 3706 struct request_queue *q = cfqd->queue;
22e2c507 3707
3b18152c 3708 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3709
d9ff4187 3710 spin_lock_irq(q->queue_lock);
e2d74ac0 3711
d9ff4187 3712 if (cfqd->active_queue)
e5ff082e 3713 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3714
3715 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3716 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3717 struct cfq_io_context,
3718 queue_list);
89850f7e
JA
3719
3720 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3721 }
e2d74ac0 3722
c2dea2d1 3723 cfq_put_async_queues(cfqd);
b1c35769
VG
3724 cfq_release_cfq_groups(cfqd);
3725 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3726
d9ff4187 3727 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3728
3729 cfq_shutdown_timer_wq(cfqd);
3730
80b15c73
KK
3731 spin_lock(&cic_index_lock);
3732 ida_remove(&cic_index_ida, cfqd->cic_index);
3733 spin_unlock(&cic_index_lock);
3734
b1c35769 3735 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3736 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3737}
3738
80b15c73
KK
3739static int cfq_alloc_cic_index(void)
3740{
3741 int index, error;
3742
3743 do {
3744 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3745 return -ENOMEM;
3746
3747 spin_lock(&cic_index_lock);
3748 error = ida_get_new(&cic_index_ida, &index);
3749 spin_unlock(&cic_index_lock);
3750 if (error && error != -EAGAIN)
3751 return error;
3752 } while (error);
3753
3754 return index;
3755}
3756
165125e1 3757static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3758{
3759 struct cfq_data *cfqd;
718eee05 3760 int i, j;
cdb16e8f 3761 struct cfq_group *cfqg;
615f0259 3762 struct cfq_rb_root *st;
1da177e4 3763
80b15c73
KK
3764 i = cfq_alloc_cic_index();
3765 if (i < 0)
3766 return NULL;
3767
94f6030c 3768 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3769 if (!cfqd)
bc1c1169 3770 return NULL;
1da177e4 3771
80b15c73
KK
3772 cfqd->cic_index = i;
3773
1fa8f6d6
VG
3774 /* Init root service tree */
3775 cfqd->grp_service_tree = CFQ_RB_ROOT;
3776
cdb16e8f
VG
3777 /* Init root group */
3778 cfqg = &cfqd->root_group;
615f0259
VG
3779 for_each_cfqg_st(cfqg, i, j, st)
3780 *st = CFQ_RB_ROOT;
1fa8f6d6 3781 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3782
25bc6b07
VG
3783 /* Give preference to root group over other groups */
3784 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3785
25fb5169 3786#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3787 /*
3788 * Take a reference to root group which we never drop. This is just
3789 * to make sure that cfq_put_cfqg() does not try to kfree root group
3790 */
3791 atomic_set(&cfqg->ref, 1);
dcf097b2 3792 rcu_read_lock();
22084190
VG
3793 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3794 0);
dcf097b2 3795 rcu_read_unlock();
25fb5169 3796#endif
26a2ac00
JA
3797 /*
3798 * Not strictly needed (since RB_ROOT just clears the node and we
3799 * zeroed cfqd on alloc), but better be safe in case someone decides
3800 * to add magic to the rb code
3801 */
3802 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3803 cfqd->prio_trees[i] = RB_ROOT;
3804
6118b70b
JA
3805 /*
3806 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3807 * Grab a permanent reference to it, so that the normal code flow
3808 * will not attempt to free it.
3809 */
3810 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3811 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3812 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3813
d9ff4187 3814 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3815
1da177e4 3816 cfqd->queue = q;
1da177e4 3817
22e2c507
JA
3818 init_timer(&cfqd->idle_slice_timer);
3819 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3820 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3821
23e018a1 3822 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3823
1da177e4 3824 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3825 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3826 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3827 cfqd->cfq_back_max = cfq_back_max;
3828 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3829 cfqd->cfq_slice[0] = cfq_slice_async;
3830 cfqd->cfq_slice[1] = cfq_slice_sync;
3831 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3832 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3833 cfqd->cfq_latency = 1;
ae30c286 3834 cfqd->cfq_group_isolation = 0;
e459dd08 3835 cfqd->hw_tag = -1;
edc71131
CZ
3836 /*
3837 * we optimistically start assuming sync ops weren't delayed in last
3838 * second, in order to have larger depth for async operations.
3839 */
573412b2 3840 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3841 return cfqd;
1da177e4
LT
3842}
3843
3844static void cfq_slab_kill(void)
3845{
d6de8be7
JA
3846 /*
3847 * Caller already ensured that pending RCU callbacks are completed,
3848 * so we should have no busy allocations at this point.
3849 */
1da177e4
LT
3850 if (cfq_pool)
3851 kmem_cache_destroy(cfq_pool);
3852 if (cfq_ioc_pool)
3853 kmem_cache_destroy(cfq_ioc_pool);
3854}
3855
3856static int __init cfq_slab_setup(void)
3857{
0a31bd5f 3858 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3859 if (!cfq_pool)
3860 goto fail;
3861
34e6bbf2 3862 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3863 if (!cfq_ioc_pool)
3864 goto fail;
3865
3866 return 0;
3867fail:
3868 cfq_slab_kill();
3869 return -ENOMEM;
3870}
3871
1da177e4
LT
3872/*
3873 * sysfs parts below -->
3874 */
1da177e4
LT
3875static ssize_t
3876cfq_var_show(unsigned int var, char *page)
3877{
3878 return sprintf(page, "%d\n", var);
3879}
3880
3881static ssize_t
3882cfq_var_store(unsigned int *var, const char *page, size_t count)
3883{
3884 char *p = (char *) page;
3885
3886 *var = simple_strtoul(p, &p, 10);
3887 return count;
3888}
3889
1da177e4 3890#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3891static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3892{ \
3d1ab40f 3893 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3894 unsigned int __data = __VAR; \
3895 if (__CONV) \
3896 __data = jiffies_to_msecs(__data); \
3897 return cfq_var_show(__data, (page)); \
3898}
3899SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3900SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3901SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3902SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3903SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3904SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3905SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3906SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3907SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3908SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 3909SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
3910#undef SHOW_FUNCTION
3911
3912#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3913static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3914{ \
3d1ab40f 3915 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3916 unsigned int __data; \
3917 int ret = cfq_var_store(&__data, (page), count); \
3918 if (__data < (MIN)) \
3919 __data = (MIN); \
3920 else if (__data > (MAX)) \
3921 __data = (MAX); \
3922 if (__CONV) \
3923 *(__PTR) = msecs_to_jiffies(__data); \
3924 else \
3925 *(__PTR) = __data; \
3926 return ret; \
3927}
3928STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3929STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3930 UINT_MAX, 1);
3931STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3932 UINT_MAX, 1);
e572ec7e 3933STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3934STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3935 UINT_MAX, 0);
22e2c507
JA
3936STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3937STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3938STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3939STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3940 UINT_MAX, 0);
963b72fc 3941STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 3942STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
3943#undef STORE_FUNCTION
3944
e572ec7e
AV
3945#define CFQ_ATTR(name) \
3946 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3947
3948static struct elv_fs_entry cfq_attrs[] = {
3949 CFQ_ATTR(quantum),
e572ec7e
AV
3950 CFQ_ATTR(fifo_expire_sync),
3951 CFQ_ATTR(fifo_expire_async),
3952 CFQ_ATTR(back_seek_max),
3953 CFQ_ATTR(back_seek_penalty),
3954 CFQ_ATTR(slice_sync),
3955 CFQ_ATTR(slice_async),
3956 CFQ_ATTR(slice_async_rq),
3957 CFQ_ATTR(slice_idle),
963b72fc 3958 CFQ_ATTR(low_latency),
ae30c286 3959 CFQ_ATTR(group_isolation),
e572ec7e 3960 __ATTR_NULL
1da177e4
LT
3961};
3962
1da177e4
LT
3963static struct elevator_type iosched_cfq = {
3964 .ops = {
3965 .elevator_merge_fn = cfq_merge,
3966 .elevator_merged_fn = cfq_merged_request,
3967 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3968 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3969 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3970 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3971 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3972 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3973 .elevator_deactivate_req_fn = cfq_deactivate_request,
3974 .elevator_queue_empty_fn = cfq_queue_empty,
3975 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3976 .elevator_former_req_fn = elv_rb_former_request,
3977 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3978 .elevator_set_req_fn = cfq_set_request,
3979 .elevator_put_req_fn = cfq_put_request,
3980 .elevator_may_queue_fn = cfq_may_queue,
3981 .elevator_init_fn = cfq_init_queue,
3982 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3983 .trim = cfq_free_io_context,
1da177e4 3984 },
3d1ab40f 3985 .elevator_attrs = cfq_attrs,
1da177e4
LT
3986 .elevator_name = "cfq",
3987 .elevator_owner = THIS_MODULE,
3988};
3989
3e252066
VG
3990#ifdef CONFIG_CFQ_GROUP_IOSCHED
3991static struct blkio_policy_type blkio_policy_cfq = {
3992 .ops = {
3993 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3994 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3995 },
3996};
3997#else
3998static struct blkio_policy_type blkio_policy_cfq;
3999#endif
4000
1da177e4
LT
4001static int __init cfq_init(void)
4002{
22e2c507
JA
4003 /*
4004 * could be 0 on HZ < 1000 setups
4005 */
4006 if (!cfq_slice_async)
4007 cfq_slice_async = 1;
4008 if (!cfq_slice_idle)
4009 cfq_slice_idle = 1;
4010
1da177e4
LT
4011 if (cfq_slab_setup())
4012 return -ENOMEM;
4013
2fdd82bd 4014 elv_register(&iosched_cfq);
3e252066 4015 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4016
2fdd82bd 4017 return 0;
1da177e4
LT
4018}
4019
4020static void __exit cfq_exit(void)
4021{
6e9a4738 4022 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4023 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4024 elv_unregister(&iosched_cfq);
334e94de 4025 ioc_gone = &all_gone;
fba82272
OH
4026 /* ioc_gone's update must be visible before reading ioc_count */
4027 smp_wmb();
d6de8be7
JA
4028
4029 /*
4030 * this also protects us from entering cfq_slab_kill() with
4031 * pending RCU callbacks
4032 */
245b2e70 4033 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4034 wait_for_completion(&all_gone);
80b15c73 4035 ida_destroy(&cic_index_ida);
83521d3e 4036 cfq_slab_kill();
1da177e4
LT
4037}
4038
4039module_init(cfq_init);
4040module_exit(cfq_exit);
4041
4042MODULE_AUTHOR("Jens Axboe");
4043MODULE_LICENSE("GPL");
4044MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");