]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: fix think time allowed for seekers
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
245b2e70 51static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
6118b70b
JA
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116};
117
22e2c507
JA
118/*
119 * Per block device queue structure
120 */
1da177e4 121struct cfq_data {
165125e1 122 struct request_queue *queue;
22e2c507
JA
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
cc09e299 127 struct cfq_rb_root service_tree;
a36e71f9
JA
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
22e2c507
JA
136 unsigned int busy_queues;
137
5ad531db 138 int rq_in_driver[2];
3ed9a296 139 int sync_flight;
45333d5a
AC
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
25776e35 145 int hw_tag;
45333d5a
AC
146 int hw_tag_samples;
147 int rq_in_driver_peak;
1da177e4 148
22e2c507
JA
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
23e018a1 153 struct work_struct unplug_work;
1da177e4 154
22e2c507
JA
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
22e2c507 157
c2dea2d1
VT
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
15c31be4 163
6d048f53 164 sector_t last_position;
1da177e4 165
1da177e4
LT
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
22e2c507 170 unsigned int cfq_fifo_expire[2];
1da177e4
LT
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
22e2c507
JA
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
963b72fc 176 unsigned int cfq_latency;
d9ff4187
AV
177
178 struct list_head cic_list;
1da177e4 179
6118b70b
JA
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
365722bb
VG
184
185 unsigned long last_end_sync_rq;
1da177e4
LT
186};
187
3b18152c 188enum cfqq_state_flags {
b0b8d749
JA
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
199};
200
201#define CFQ_CFQQ_FNS(name) \
202static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203{ \
fe094d98 204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
205} \
206static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207{ \
fe094d98 208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
209} \
210static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211{ \
fe094d98 212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
213}
214
215CFQ_CFQQ_FNS(on_rr);
216CFQ_CFQQ_FNS(wait_request);
b029195d 217CFQ_CFQQ_FNS(must_dispatch);
3b18152c 218CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
219CFQ_CFQQ_FNS(fifo_expire);
220CFQ_CFQQ_FNS(idle_window);
221CFQ_CFQQ_FNS(prio_changed);
44f7c160 222CFQ_CFQQ_FNS(slice_new);
91fac317 223CFQ_CFQQ_FNS(sync);
a36e71f9 224CFQ_CFQQ_FNS(coop);
3b18152c
JA
225#undef CFQ_CFQQ_FNS
226
7b679138
JA
227#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229#define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
165125e1 232static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 233static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 234 struct io_context *, gfp_t);
4ac845a2 235static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
236 struct io_context *);
237
5ad531db
JA
238static inline int rq_in_driver(struct cfq_data *cfqd)
239{
240 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241}
242
91fac317
VT
243static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244 int is_sync)
245{
246 return cic->cfqq[!!is_sync];
247}
248
249static inline void cic_set_cfqq(struct cfq_io_context *cic,
250 struct cfq_queue *cfqq, int is_sync)
251{
252 cic->cfqq[!!is_sync] = cfqq;
253}
254
255/*
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
258 */
259static inline int cfq_bio_sync(struct bio *bio)
260{
1f98a13f 261 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
91fac317
VT
262 return 1;
263
264 return 0;
265}
1da177e4 266
99f95e52
AM
267/*
268 * scheduler run of queue, if there are requests pending and no one in the
269 * driver that will restart queueing
270 */
23e018a1 271static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 272{
7b679138
JA
273 if (cfqd->busy_queues) {
274 cfq_log(cfqd, "schedule dispatch");
23e018a1 275 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 276 }
99f95e52
AM
277}
278
165125e1 279static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
280{
281 struct cfq_data *cfqd = q->elevator->elevator_data;
282
b4878f24 283 return !cfqd->busy_queues;
99f95e52
AM
284}
285
44f7c160
JA
286/*
287 * Scale schedule slice based on io priority. Use the sync time slice only
288 * if a queue is marked sync and has sync io queued. A sync queue with async
289 * io only, should not get full sync slice length.
290 */
d9e7620e
JA
291static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
292 unsigned short prio)
44f7c160 293{
d9e7620e 294 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 295
d9e7620e
JA
296 WARN_ON(prio >= IOPRIO_BE_NR);
297
298 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
299}
44f7c160 300
d9e7620e
JA
301static inline int
302cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
303{
304 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
305}
306
307static inline void
308cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
309{
310 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 311 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
312}
313
314/*
315 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
316 * isn't valid until the first request from the dispatch is activated
317 * and the slice time set.
318 */
319static inline int cfq_slice_used(struct cfq_queue *cfqq)
320{
321 if (cfq_cfqq_slice_new(cfqq))
322 return 0;
323 if (time_before(jiffies, cfqq->slice_end))
324 return 0;
325
326 return 1;
327}
328
1da177e4 329/*
5e705374 330 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 331 * We choose the request that is closest to the head right now. Distance
e8a99053 332 * behind the head is penalized and only allowed to a certain extent.
1da177e4 333 */
5e705374
JA
334static struct request *
335cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
336{
337 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 338 unsigned long back_max;
e8a99053
AM
339#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
340#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
341 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 342
5e705374
JA
343 if (rq1 == NULL || rq1 == rq2)
344 return rq2;
345 if (rq2 == NULL)
346 return rq1;
9c2c38a1 347
5e705374
JA
348 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
349 return rq1;
350 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
351 return rq2;
374f84ac
JA
352 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
353 return rq1;
354 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
355 return rq2;
1da177e4 356
83096ebf
TH
357 s1 = blk_rq_pos(rq1);
358 s2 = blk_rq_pos(rq2);
1da177e4 359
6d048f53 360 last = cfqd->last_position;
1da177e4 361
1da177e4
LT
362 /*
363 * by definition, 1KiB is 2 sectors
364 */
365 back_max = cfqd->cfq_back_max * 2;
366
367 /*
368 * Strict one way elevator _except_ in the case where we allow
369 * short backward seeks which are biased as twice the cost of a
370 * similar forward seek.
371 */
372 if (s1 >= last)
373 d1 = s1 - last;
374 else if (s1 + back_max >= last)
375 d1 = (last - s1) * cfqd->cfq_back_penalty;
376 else
e8a99053 377 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
378
379 if (s2 >= last)
380 d2 = s2 - last;
381 else if (s2 + back_max >= last)
382 d2 = (last - s2) * cfqd->cfq_back_penalty;
383 else
e8a99053 384 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
385
386 /* Found required data */
e8a99053
AM
387
388 /*
389 * By doing switch() on the bit mask "wrap" we avoid having to
390 * check two variables for all permutations: --> faster!
391 */
392 switch (wrap) {
5e705374 393 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 394 if (d1 < d2)
5e705374 395 return rq1;
e8a99053 396 else if (d2 < d1)
5e705374 397 return rq2;
e8a99053
AM
398 else {
399 if (s1 >= s2)
5e705374 400 return rq1;
e8a99053 401 else
5e705374 402 return rq2;
e8a99053 403 }
1da177e4 404
e8a99053 405 case CFQ_RQ2_WRAP:
5e705374 406 return rq1;
e8a99053 407 case CFQ_RQ1_WRAP:
5e705374
JA
408 return rq2;
409 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
410 default:
411 /*
412 * Since both rqs are wrapped,
413 * start with the one that's further behind head
414 * (--> only *one* back seek required),
415 * since back seek takes more time than forward.
416 */
417 if (s1 <= s2)
5e705374 418 return rq1;
1da177e4 419 else
5e705374 420 return rq2;
1da177e4
LT
421 }
422}
423
498d3aa2
JA
424/*
425 * The below is leftmost cache rbtree addon
426 */
0871714e 427static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
428{
429 if (!root->left)
430 root->left = rb_first(&root->rb);
431
0871714e
JA
432 if (root->left)
433 return rb_entry(root->left, struct cfq_queue, rb_node);
434
435 return NULL;
cc09e299
JA
436}
437
a36e71f9
JA
438static void rb_erase_init(struct rb_node *n, struct rb_root *root)
439{
440 rb_erase(n, root);
441 RB_CLEAR_NODE(n);
442}
443
cc09e299
JA
444static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
445{
446 if (root->left == n)
447 root->left = NULL;
a36e71f9 448 rb_erase_init(n, &root->rb);
cc09e299
JA
449}
450
1da177e4
LT
451/*
452 * would be nice to take fifo expire time into account as well
453 */
5e705374
JA
454static struct request *
455cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
456 struct request *last)
1da177e4 457{
21183b07
JA
458 struct rb_node *rbnext = rb_next(&last->rb_node);
459 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 460 struct request *next = NULL, *prev = NULL;
1da177e4 461
21183b07 462 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
463
464 if (rbprev)
5e705374 465 prev = rb_entry_rq(rbprev);
1da177e4 466
21183b07 467 if (rbnext)
5e705374 468 next = rb_entry_rq(rbnext);
21183b07
JA
469 else {
470 rbnext = rb_first(&cfqq->sort_list);
471 if (rbnext && rbnext != &last->rb_node)
5e705374 472 next = rb_entry_rq(rbnext);
21183b07 473 }
1da177e4 474
21183b07 475 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
476}
477
d9e7620e
JA
478static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
479 struct cfq_queue *cfqq)
1da177e4 480{
d9e7620e
JA
481 /*
482 * just an approximation, should be ok.
483 */
67e6b49e
JA
484 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
485 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
486}
487
498d3aa2
JA
488/*
489 * The cfqd->service_tree holds all pending cfq_queue's that have
490 * requests waiting to be processed. It is sorted in the order that
491 * we will service the queues.
492 */
a36e71f9
JA
493static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
494 int add_front)
d9e7620e 495{
0871714e
JA
496 struct rb_node **p, *parent;
497 struct cfq_queue *__cfqq;
d9e7620e 498 unsigned long rb_key;
498d3aa2 499 int left;
d9e7620e 500
0871714e
JA
501 if (cfq_class_idle(cfqq)) {
502 rb_key = CFQ_IDLE_DELAY;
503 parent = rb_last(&cfqd->service_tree.rb);
504 if (parent && parent != &cfqq->rb_node) {
505 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
506 rb_key += __cfqq->rb_key;
507 } else
508 rb_key += jiffies;
509 } else if (!add_front) {
b9c8946b
JA
510 /*
511 * Get our rb key offset. Subtract any residual slice
512 * value carried from last service. A negative resid
513 * count indicates slice overrun, and this should position
514 * the next service time further away in the tree.
515 */
edd75ffd 516 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 517 rb_key -= cfqq->slice_resid;
edd75ffd 518 cfqq->slice_resid = 0;
48e025e6
CZ
519 } else {
520 rb_key = -HZ;
521 __cfqq = cfq_rb_first(&cfqd->service_tree);
522 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
523 }
1da177e4 524
d9e7620e 525 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 526 /*
d9e7620e 527 * same position, nothing more to do
99f9628a 528 */
d9e7620e
JA
529 if (rb_key == cfqq->rb_key)
530 return;
1da177e4 531
cc09e299 532 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 533 }
d9e7620e 534
498d3aa2 535 left = 1;
0871714e
JA
536 parent = NULL;
537 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 538 while (*p) {
67060e37 539 struct rb_node **n;
cc09e299 540
d9e7620e
JA
541 parent = *p;
542 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
543
0c534e0a
JA
544 /*
545 * sort RT queues first, we always want to give
67060e37
JA
546 * preference to them. IDLE queues goes to the back.
547 * after that, sort on the next service time.
0c534e0a
JA
548 */
549 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 550 n = &(*p)->rb_left;
0c534e0a 551 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
552 n = &(*p)->rb_right;
553 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
554 n = &(*p)->rb_left;
555 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
556 n = &(*p)->rb_right;
48e025e6 557 else if (time_before(rb_key, __cfqq->rb_key))
67060e37
JA
558 n = &(*p)->rb_left;
559 else
560 n = &(*p)->rb_right;
561
562 if (n == &(*p)->rb_right)
cc09e299 563 left = 0;
67060e37
JA
564
565 p = n;
d9e7620e
JA
566 }
567
cc09e299
JA
568 if (left)
569 cfqd->service_tree.left = &cfqq->rb_node;
570
d9e7620e
JA
571 cfqq->rb_key = rb_key;
572 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 573 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
574}
575
a36e71f9 576static struct cfq_queue *
f2d1f0ae
JA
577cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
578 sector_t sector, struct rb_node **ret_parent,
579 struct rb_node ***rb_link)
a36e71f9 580{
a36e71f9
JA
581 struct rb_node **p, *parent;
582 struct cfq_queue *cfqq = NULL;
583
584 parent = NULL;
585 p = &root->rb_node;
586 while (*p) {
587 struct rb_node **n;
588
589 parent = *p;
590 cfqq = rb_entry(parent, struct cfq_queue, p_node);
591
592 /*
593 * Sort strictly based on sector. Smallest to the left,
594 * largest to the right.
595 */
2e46e8b2 596 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 597 n = &(*p)->rb_right;
2e46e8b2 598 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
599 n = &(*p)->rb_left;
600 else
601 break;
602 p = n;
3ac6c9f8 603 cfqq = NULL;
a36e71f9
JA
604 }
605
606 *ret_parent = parent;
607 if (rb_link)
608 *rb_link = p;
3ac6c9f8 609 return cfqq;
a36e71f9
JA
610}
611
612static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
613{
a36e71f9
JA
614 struct rb_node **p, *parent;
615 struct cfq_queue *__cfqq;
616
f2d1f0ae
JA
617 if (cfqq->p_root) {
618 rb_erase(&cfqq->p_node, cfqq->p_root);
619 cfqq->p_root = NULL;
620 }
a36e71f9
JA
621
622 if (cfq_class_idle(cfqq))
623 return;
624 if (!cfqq->next_rq)
625 return;
626
f2d1f0ae 627 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
628 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
629 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
630 if (!__cfqq) {
631 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
632 rb_insert_color(&cfqq->p_node, cfqq->p_root);
633 } else
634 cfqq->p_root = NULL;
a36e71f9
JA
635}
636
498d3aa2
JA
637/*
638 * Update cfqq's position in the service tree.
639 */
edd75ffd 640static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 641{
6d048f53
JA
642 /*
643 * Resorting requires the cfqq to be on the RR list already.
644 */
a36e71f9 645 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 646 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
647 cfq_prio_tree_add(cfqd, cfqq);
648 }
6d048f53
JA
649}
650
1da177e4
LT
651/*
652 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 653 * the pending list according to last request service
1da177e4 654 */
febffd61 655static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 656{
7b679138 657 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
658 BUG_ON(cfq_cfqq_on_rr(cfqq));
659 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
660 cfqd->busy_queues++;
661
edd75ffd 662 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
663}
664
498d3aa2
JA
665/*
666 * Called when the cfqq no longer has requests pending, remove it from
667 * the service tree.
668 */
febffd61 669static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 670{
7b679138 671 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
672 BUG_ON(!cfq_cfqq_on_rr(cfqq));
673 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 674
cc09e299
JA
675 if (!RB_EMPTY_NODE(&cfqq->rb_node))
676 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
677 if (cfqq->p_root) {
678 rb_erase(&cfqq->p_node, cfqq->p_root);
679 cfqq->p_root = NULL;
680 }
d9e7620e 681
1da177e4
LT
682 BUG_ON(!cfqd->busy_queues);
683 cfqd->busy_queues--;
684}
685
686/*
687 * rb tree support functions
688 */
febffd61 689static void cfq_del_rq_rb(struct request *rq)
1da177e4 690{
5e705374 691 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 692 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 693 const int sync = rq_is_sync(rq);
1da177e4 694
b4878f24
JA
695 BUG_ON(!cfqq->queued[sync]);
696 cfqq->queued[sync]--;
1da177e4 697
5e705374 698 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 699
dd67d051 700 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 701 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
702}
703
5e705374 704static void cfq_add_rq_rb(struct request *rq)
1da177e4 705{
5e705374 706 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 707 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 708 struct request *__alias, *prev;
1da177e4 709
5380a101 710 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
711
712 /*
713 * looks a little odd, but the first insert might return an alias.
714 * if that happens, put the alias on the dispatch list
715 */
21183b07 716 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 717 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
718
719 if (!cfq_cfqq_on_rr(cfqq))
720 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
721
722 /*
723 * check if this request is a better next-serve candidate
724 */
a36e71f9 725 prev = cfqq->next_rq;
5044eed4 726 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
727
728 /*
729 * adjust priority tree position, if ->next_rq changes
730 */
731 if (prev != cfqq->next_rq)
732 cfq_prio_tree_add(cfqd, cfqq);
733
5044eed4 734 BUG_ON(!cfqq->next_rq);
1da177e4
LT
735}
736
febffd61 737static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 738{
5380a101
JA
739 elv_rb_del(&cfqq->sort_list, rq);
740 cfqq->queued[rq_is_sync(rq)]--;
5e705374 741 cfq_add_rq_rb(rq);
1da177e4
LT
742}
743
206dc69b
JA
744static struct request *
745cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 746{
206dc69b 747 struct task_struct *tsk = current;
91fac317 748 struct cfq_io_context *cic;
206dc69b 749 struct cfq_queue *cfqq;
1da177e4 750
4ac845a2 751 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
752 if (!cic)
753 return NULL;
754
755 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
756 if (cfqq) {
757 sector_t sector = bio->bi_sector + bio_sectors(bio);
758
21183b07 759 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 760 }
1da177e4 761
1da177e4
LT
762 return NULL;
763}
764
165125e1 765static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 766{
22e2c507 767 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 768
5ad531db 769 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 770 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 771 rq_in_driver(cfqd));
25776e35 772
5b93629b 773 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
774}
775
165125e1 776static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 777{
b4878f24 778 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 779 const int sync = rq_is_sync(rq);
b4878f24 780
5ad531db
JA
781 WARN_ON(!cfqd->rq_in_driver[sync]);
782 cfqd->rq_in_driver[sync]--;
7b679138 783 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 784 rq_in_driver(cfqd));
1da177e4
LT
785}
786
b4878f24 787static void cfq_remove_request(struct request *rq)
1da177e4 788{
5e705374 789 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 790
5e705374
JA
791 if (cfqq->next_rq == rq)
792 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 793
b4878f24 794 list_del_init(&rq->queuelist);
5e705374 795 cfq_del_rq_rb(rq);
374f84ac 796
45333d5a 797 cfqq->cfqd->rq_queued--;
374f84ac
JA
798 if (rq_is_meta(rq)) {
799 WARN_ON(!cfqq->meta_pending);
800 cfqq->meta_pending--;
801 }
1da177e4
LT
802}
803
165125e1
JA
804static int cfq_merge(struct request_queue *q, struct request **req,
805 struct bio *bio)
1da177e4
LT
806{
807 struct cfq_data *cfqd = q->elevator->elevator_data;
808 struct request *__rq;
1da177e4 809
206dc69b 810 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 811 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
812 *req = __rq;
813 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
814 }
815
816 return ELEVATOR_NO_MERGE;
1da177e4
LT
817}
818
165125e1 819static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 820 int type)
1da177e4 821{
21183b07 822 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 823 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 824
5e705374 825 cfq_reposition_rq_rb(cfqq, req);
1da177e4 826 }
1da177e4
LT
827}
828
829static void
165125e1 830cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
831 struct request *next)
832{
22e2c507
JA
833 /*
834 * reposition in fifo if next is older than rq
835 */
836 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 837 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 838 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
839 rq_set_fifo_time(rq, rq_fifo_time(next));
840 }
22e2c507 841
b4878f24 842 cfq_remove_request(next);
22e2c507
JA
843}
844
165125e1 845static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
846 struct bio *bio)
847{
848 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 849 struct cfq_io_context *cic;
da775265 850 struct cfq_queue *cfqq;
da775265
JA
851
852 /*
ec8acb69 853 * Disallow merge of a sync bio into an async request.
da775265 854 */
91fac317 855 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
856 return 0;
857
858 /*
719d3402
JA
859 * Lookup the cfqq that this bio will be queued with. Allow
860 * merge only if rq is queued there.
da775265 861 */
4ac845a2 862 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
863 if (!cic)
864 return 0;
719d3402 865
91fac317 866 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
867 if (cfqq == RQ_CFQQ(rq))
868 return 1;
da775265 869
ec8acb69 870 return 0;
da775265
JA
871}
872
febffd61
JA
873static void __cfq_set_active_queue(struct cfq_data *cfqd,
874 struct cfq_queue *cfqq)
22e2c507
JA
875{
876 if (cfqq) {
7b679138 877 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 878 cfqq->slice_end = 0;
2f5cb738
JA
879 cfqq->slice_dispatch = 0;
880
2f5cb738 881 cfq_clear_cfqq_wait_request(cfqq);
b029195d 882 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
883 cfq_clear_cfqq_must_alloc_slice(cfqq);
884 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 885 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
886
887 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
888 }
889
890 cfqd->active_queue = cfqq;
891}
892
7b14e3b5
JA
893/*
894 * current cfqq expired its slice (or was too idle), select new one
895 */
896static void
897__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 898 int timed_out)
7b14e3b5 899{
7b679138
JA
900 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
901
7b14e3b5
JA
902 if (cfq_cfqq_wait_request(cfqq))
903 del_timer(&cfqd->idle_slice_timer);
904
7b14e3b5
JA
905 cfq_clear_cfqq_wait_request(cfqq);
906
907 /*
6084cdda 908 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 909 */
7b679138 910 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 911 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
912 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
913 }
7b14e3b5 914
edd75ffd 915 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
916
917 if (cfqq == cfqd->active_queue)
918 cfqd->active_queue = NULL;
919
920 if (cfqd->active_cic) {
921 put_io_context(cfqd->active_cic->ioc);
922 cfqd->active_cic = NULL;
923 }
7b14e3b5
JA
924}
925
6084cdda 926static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
927{
928 struct cfq_queue *cfqq = cfqd->active_queue;
929
930 if (cfqq)
6084cdda 931 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
932}
933
498d3aa2
JA
934/*
935 * Get next queue for service. Unless we have a queue preemption,
936 * we'll simply select the first cfqq in the service tree.
937 */
6d048f53 938static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 939{
edd75ffd
JA
940 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
941 return NULL;
d9e7620e 942
0871714e 943 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
944}
945
498d3aa2
JA
946/*
947 * Get and set a new active queue for service.
948 */
a36e71f9
JA
949static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
950 struct cfq_queue *cfqq)
6d048f53 951{
a36e71f9
JA
952 if (!cfqq) {
953 cfqq = cfq_get_next_queue(cfqd);
954 if (cfqq)
955 cfq_clear_cfqq_coop(cfqq);
956 }
6d048f53 957
22e2c507 958 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 959 return cfqq;
22e2c507
JA
960}
961
d9e7620e
JA
962static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
963 struct request *rq)
964{
83096ebf
TH
965 if (blk_rq_pos(rq) >= cfqd->last_position)
966 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 967 else
83096ebf 968 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
969}
970
04dc6e71
JM
971#define CIC_SEEK_THR 8 * 1024
972#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
973
6d048f53
JA
974static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
975{
976 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 977 sector_t sdist = cic->seek_mean;
6d048f53
JA
978
979 if (!sample_valid(cic->seek_samples))
04dc6e71 980 sdist = CIC_SEEK_THR;
6d048f53 981
04dc6e71 982 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
983}
984
a36e71f9
JA
985static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
986 struct cfq_queue *cur_cfqq)
987{
f2d1f0ae 988 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
989 struct rb_node *parent, *node;
990 struct cfq_queue *__cfqq;
991 sector_t sector = cfqd->last_position;
992
993 if (RB_EMPTY_ROOT(root))
994 return NULL;
995
996 /*
997 * First, if we find a request starting at the end of the last
998 * request, choose it.
999 */
f2d1f0ae 1000 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1001 if (__cfqq)
1002 return __cfqq;
1003
1004 /*
1005 * If the exact sector wasn't found, the parent of the NULL leaf
1006 * will contain the closest sector.
1007 */
1008 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1009 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1010 return __cfqq;
1011
2e46e8b2 1012 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1013 node = rb_next(&__cfqq->p_node);
1014 else
1015 node = rb_prev(&__cfqq->p_node);
1016 if (!node)
1017 return NULL;
1018
1019 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1020 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1021 return __cfqq;
1022
1023 return NULL;
1024}
1025
1026/*
1027 * cfqd - obvious
1028 * cur_cfqq - passed in so that we don't decide that the current queue is
1029 * closely cooperating with itself.
1030 *
1031 * So, basically we're assuming that that cur_cfqq has dispatched at least
1032 * one request, and that cfqd->last_position reflects a position on the disk
1033 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1034 * assumption.
1035 */
1036static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1037 struct cfq_queue *cur_cfqq,
1038 int probe)
6d048f53 1039{
a36e71f9
JA
1040 struct cfq_queue *cfqq;
1041
1042 /*
1043 * A valid cfq_io_context is necessary to compare requests against
1044 * the seek_mean of the current cfqq.
1045 */
1046 if (!cfqd->active_cic)
1047 return NULL;
1048
6d048f53 1049 /*
d9e7620e
JA
1050 * We should notice if some of the queues are cooperating, eg
1051 * working closely on the same area of the disk. In that case,
1052 * we can group them together and don't waste time idling.
6d048f53 1053 */
a36e71f9
JA
1054 cfqq = cfqq_close(cfqd, cur_cfqq);
1055 if (!cfqq)
1056 return NULL;
1057
1058 if (cfq_cfqq_coop(cfqq))
1059 return NULL;
1060
1061 if (!probe)
1062 cfq_mark_cfqq_coop(cfqq);
1063 return cfqq;
6d048f53
JA
1064}
1065
6d048f53 1066static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1067{
1792669c 1068 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1069 struct cfq_io_context *cic;
7b14e3b5
JA
1070 unsigned long sl;
1071
a68bbddb 1072 /*
f7d7b7a7
JA
1073 * SSD device without seek penalty, disable idling. But only do so
1074 * for devices that support queuing, otherwise we still have a problem
1075 * with sync vs async workloads.
a68bbddb 1076 */
f7d7b7a7 1077 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1078 return;
1079
dd67d051 1080 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1081 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1082
1083 /*
1084 * idle is disabled, either manually or by past process history
1085 */
6d048f53
JA
1086 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1087 return;
1088
7b679138
JA
1089 /*
1090 * still requests with the driver, don't idle
1091 */
5ad531db 1092 if (rq_in_driver(cfqd))
7b679138
JA
1093 return;
1094
22e2c507
JA
1095 /*
1096 * task has exited, don't wait
1097 */
206dc69b 1098 cic = cfqd->active_cic;
66dac98e 1099 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1100 return;
1101
3b18152c 1102 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1103
206dc69b
JA
1104 /*
1105 * we don't want to idle for seeks, but we do want to allow
1106 * fair distribution of slice time for a process doing back-to-back
1107 * seeks. so allow a little bit of time for him to submit a new rq
1108 */
6d048f53 1109 sl = cfqd->cfq_slice_idle;
caaa5f9f 1110 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1111 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1112
7b14e3b5 1113 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1114 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1115}
1116
498d3aa2
JA
1117/*
1118 * Move request from internal lists to the request queue dispatch list.
1119 */
165125e1 1120static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1121{
3ed9a296 1122 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1123 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1124
7b679138
JA
1125 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1126
06d21886 1127 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1128 cfq_remove_request(rq);
6d048f53 1129 cfqq->dispatched++;
5380a101 1130 elv_dispatch_sort(q, rq);
3ed9a296
JA
1131
1132 if (cfq_cfqq_sync(cfqq))
1133 cfqd->sync_flight++;
1da177e4
LT
1134}
1135
1136/*
1137 * return expired entry, or NULL to just start from scratch in rbtree
1138 */
febffd61 1139static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1140{
30996f40 1141 struct request *rq = NULL;
1da177e4 1142
3b18152c 1143 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1144 return NULL;
cb887411
JA
1145
1146 cfq_mark_cfqq_fifo_expire(cfqq);
1147
89850f7e
JA
1148 if (list_empty(&cfqq->fifo))
1149 return NULL;
1da177e4 1150
89850f7e 1151 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1152 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1153 rq = NULL;
1da177e4 1154
30996f40 1155 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1156 return rq;
1da177e4
LT
1157}
1158
22e2c507
JA
1159static inline int
1160cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1161{
1162 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1163
22e2c507 1164 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1165
22e2c507 1166 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1167}
1168
22e2c507 1169/*
498d3aa2
JA
1170 * Select a queue for service. If we have a current active queue,
1171 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1172 */
1b5ed5e1 1173static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1174{
a36e71f9 1175 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1176
22e2c507
JA
1177 cfqq = cfqd->active_queue;
1178 if (!cfqq)
1179 goto new_queue;
1da177e4 1180
22e2c507 1181 /*
6d048f53 1182 * The active queue has run out of time, expire it and select new.
22e2c507 1183 */
b029195d 1184 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1185 goto expire;
1da177e4 1186
22e2c507 1187 /*
6d048f53
JA
1188 * The active queue has requests and isn't expired, allow it to
1189 * dispatch.
22e2c507 1190 */
dd67d051 1191 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1192 goto keep_queue;
6d048f53 1193
a36e71f9
JA
1194 /*
1195 * If another queue has a request waiting within our mean seek
1196 * distance, let it run. The expire code will check for close
1197 * cooperators and put the close queue at the front of the service
1198 * tree.
1199 */
1200 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1201 if (new_cfqq)
1202 goto expire;
1203
6d048f53
JA
1204 /*
1205 * No requests pending. If the active queue still has requests in
1206 * flight or is idling for a new request, allow either of these
1207 * conditions to happen (or time out) before selecting a new queue.
1208 */
cc197479
JA
1209 if (timer_pending(&cfqd->idle_slice_timer) ||
1210 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1211 cfqq = NULL;
1212 goto keep_queue;
22e2c507
JA
1213 }
1214
3b18152c 1215expire:
6084cdda 1216 cfq_slice_expired(cfqd, 0);
3b18152c 1217new_queue:
a36e71f9 1218 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1219keep_queue:
3b18152c 1220 return cfqq;
22e2c507
JA
1221}
1222
febffd61 1223static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1224{
1225 int dispatched = 0;
1226
1227 while (cfqq->next_rq) {
1228 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1229 dispatched++;
1230 }
1231
1232 BUG_ON(!list_empty(&cfqq->fifo));
1233 return dispatched;
1234}
1235
498d3aa2
JA
1236/*
1237 * Drain our current requests. Used for barriers and when switching
1238 * io schedulers on-the-fly.
1239 */
d9e7620e 1240static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1241{
0871714e 1242 struct cfq_queue *cfqq;
d9e7620e 1243 int dispatched = 0;
1b5ed5e1 1244
0871714e 1245 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1246 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1247
6084cdda 1248 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1249
1250 BUG_ON(cfqd->busy_queues);
1251
6923715a 1252 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1253 return dispatched;
1254}
1255
0b182d61 1256static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1257{
2f5cb738 1258 unsigned int max_dispatch;
22e2c507 1259
5ad531db
JA
1260 /*
1261 * Drain async requests before we start sync IO
1262 */
1263 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1264 return false;
5ad531db 1265
2f5cb738
JA
1266 /*
1267 * If this is an async queue and we have sync IO in flight, let it wait
1268 */
1269 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1270 return false;
2f5cb738
JA
1271
1272 max_dispatch = cfqd->cfq_quantum;
1273 if (cfq_class_idle(cfqq))
1274 max_dispatch = 1;
b4878f24 1275
2f5cb738
JA
1276 /*
1277 * Does this cfqq already have too much IO in flight?
1278 */
1279 if (cfqq->dispatched >= max_dispatch) {
1280 /*
1281 * idle queue must always only have a single IO in flight
1282 */
3ed9a296 1283 if (cfq_class_idle(cfqq))
0b182d61 1284 return false;
3ed9a296 1285
2f5cb738
JA
1286 /*
1287 * We have other queues, don't allow more IO from this one
1288 */
1289 if (cfqd->busy_queues > 1)
0b182d61 1290 return false;
9ede209e 1291
365722bb 1292 /*
8e296755 1293 * Sole queue user, allow bigger slice
365722bb 1294 */
8e296755
JA
1295 max_dispatch *= 4;
1296 }
1297
1298 /*
1299 * Async queues must wait a bit before being allowed dispatch.
1300 * We also ramp up the dispatch depth gradually for async IO,
1301 * based on the last sync IO we serviced
1302 */
963b72fc 1303 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1304 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1305 unsigned int depth;
365722bb 1306
61f0c1dc 1307 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1308 if (!depth && !cfqq->dispatched)
1309 depth = 1;
8e296755
JA
1310 if (depth < max_dispatch)
1311 max_dispatch = depth;
2f5cb738 1312 }
3ed9a296 1313
0b182d61
JA
1314 /*
1315 * If we're below the current max, allow a dispatch
1316 */
1317 return cfqq->dispatched < max_dispatch;
1318}
1319
1320/*
1321 * Dispatch a request from cfqq, moving them to the request queue
1322 * dispatch list.
1323 */
1324static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1325{
1326 struct request *rq;
1327
1328 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1329
1330 if (!cfq_may_dispatch(cfqd, cfqq))
1331 return false;
1332
1333 /*
1334 * follow expired path, else get first next available
1335 */
1336 rq = cfq_check_fifo(cfqq);
1337 if (!rq)
1338 rq = cfqq->next_rq;
1339
1340 /*
1341 * insert request into driver dispatch list
1342 */
1343 cfq_dispatch_insert(cfqd->queue, rq);
1344
1345 if (!cfqd->active_cic) {
1346 struct cfq_io_context *cic = RQ_CIC(rq);
1347
1348 atomic_long_inc(&cic->ioc->refcount);
1349 cfqd->active_cic = cic;
1350 }
1351
1352 return true;
1353}
1354
1355/*
1356 * Find the cfqq that we need to service and move a request from that to the
1357 * dispatch list
1358 */
1359static int cfq_dispatch_requests(struct request_queue *q, int force)
1360{
1361 struct cfq_data *cfqd = q->elevator->elevator_data;
1362 struct cfq_queue *cfqq;
1363
1364 if (!cfqd->busy_queues)
1365 return 0;
1366
1367 if (unlikely(force))
1368 return cfq_forced_dispatch(cfqd);
1369
1370 cfqq = cfq_select_queue(cfqd);
1371 if (!cfqq)
8e296755
JA
1372 return 0;
1373
2f5cb738 1374 /*
0b182d61 1375 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1376 */
0b182d61
JA
1377 if (!cfq_dispatch_request(cfqd, cfqq))
1378 return 0;
1379
2f5cb738 1380 cfqq->slice_dispatch++;
b029195d 1381 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1382
2f5cb738
JA
1383 /*
1384 * expire an async queue immediately if it has used up its slice. idle
1385 * queue always expire after 1 dispatch round.
1386 */
1387 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1388 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1389 cfq_class_idle(cfqq))) {
1390 cfqq->slice_end = jiffies + 1;
1391 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1392 }
1393
b217a903 1394 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1395 return 1;
1da177e4
LT
1396}
1397
1da177e4 1398/*
5e705374
JA
1399 * task holds one reference to the queue, dropped when task exits. each rq
1400 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1401 *
1402 * queue lock must be held here.
1403 */
1404static void cfq_put_queue(struct cfq_queue *cfqq)
1405{
22e2c507
JA
1406 struct cfq_data *cfqd = cfqq->cfqd;
1407
1408 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1409
1410 if (!atomic_dec_and_test(&cfqq->ref))
1411 return;
1412
7b679138 1413 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1414 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1415 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1416 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1417
28f95cbc 1418 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1419 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1420 cfq_schedule_dispatch(cfqd);
28f95cbc 1421 }
22e2c507 1422
1da177e4
LT
1423 kmem_cache_free(cfq_pool, cfqq);
1424}
1425
d6de8be7
JA
1426/*
1427 * Must always be called with the rcu_read_lock() held
1428 */
07416d29
JA
1429static void
1430__call_for_each_cic(struct io_context *ioc,
1431 void (*func)(struct io_context *, struct cfq_io_context *))
1432{
1433 struct cfq_io_context *cic;
1434 struct hlist_node *n;
1435
1436 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1437 func(ioc, cic);
1438}
1439
4ac845a2 1440/*
34e6bbf2 1441 * Call func for each cic attached to this ioc.
4ac845a2 1442 */
34e6bbf2 1443static void
4ac845a2
JA
1444call_for_each_cic(struct io_context *ioc,
1445 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1446{
4ac845a2 1447 rcu_read_lock();
07416d29 1448 __call_for_each_cic(ioc, func);
4ac845a2 1449 rcu_read_unlock();
34e6bbf2
FC
1450}
1451
1452static void cfq_cic_free_rcu(struct rcu_head *head)
1453{
1454 struct cfq_io_context *cic;
1455
1456 cic = container_of(head, struct cfq_io_context, rcu_head);
1457
1458 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1459 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1460
9a11b4ed
JA
1461 if (ioc_gone) {
1462 /*
1463 * CFQ scheduler is exiting, grab exit lock and check
1464 * the pending io context count. If it hits zero,
1465 * complete ioc_gone and set it back to NULL
1466 */
1467 spin_lock(&ioc_gone_lock);
245b2e70 1468 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1469 complete(ioc_gone);
1470 ioc_gone = NULL;
1471 }
1472 spin_unlock(&ioc_gone_lock);
1473 }
34e6bbf2 1474}
4ac845a2 1475
34e6bbf2
FC
1476static void cfq_cic_free(struct cfq_io_context *cic)
1477{
1478 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1479}
1480
1481static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1482{
1483 unsigned long flags;
1484
1485 BUG_ON(!cic->dead_key);
1486
1487 spin_lock_irqsave(&ioc->lock, flags);
1488 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1489 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1490 spin_unlock_irqrestore(&ioc->lock, flags);
1491
34e6bbf2 1492 cfq_cic_free(cic);
4ac845a2
JA
1493}
1494
d6de8be7
JA
1495/*
1496 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1497 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1498 * and ->trim() which is called with the task lock held
1499 */
4ac845a2
JA
1500static void cfq_free_io_context(struct io_context *ioc)
1501{
4ac845a2 1502 /*
34e6bbf2
FC
1503 * ioc->refcount is zero here, or we are called from elv_unregister(),
1504 * so no more cic's are allowed to be linked into this ioc. So it
1505 * should be ok to iterate over the known list, we will see all cic's
1506 * since no new ones are added.
4ac845a2 1507 */
07416d29 1508 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1509}
1510
89850f7e 1511static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1512{
28f95cbc 1513 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1514 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1515 cfq_schedule_dispatch(cfqd);
28f95cbc 1516 }
22e2c507 1517
89850f7e
JA
1518 cfq_put_queue(cfqq);
1519}
22e2c507 1520
89850f7e
JA
1521static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1522 struct cfq_io_context *cic)
1523{
4faa3c81
FC
1524 struct io_context *ioc = cic->ioc;
1525
fc46379d 1526 list_del_init(&cic->queue_list);
4ac845a2
JA
1527
1528 /*
1529 * Make sure key == NULL is seen for dead queues
1530 */
fc46379d 1531 smp_wmb();
4ac845a2 1532 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1533 cic->key = NULL;
1534
4faa3c81
FC
1535 if (ioc->ioc_data == cic)
1536 rcu_assign_pointer(ioc->ioc_data, NULL);
1537
ff6657c6
JA
1538 if (cic->cfqq[BLK_RW_ASYNC]) {
1539 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1540 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1541 }
1542
ff6657c6
JA
1543 if (cic->cfqq[BLK_RW_SYNC]) {
1544 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1545 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1546 }
89850f7e
JA
1547}
1548
4ac845a2
JA
1549static void cfq_exit_single_io_context(struct io_context *ioc,
1550 struct cfq_io_context *cic)
89850f7e
JA
1551{
1552 struct cfq_data *cfqd = cic->key;
1553
89850f7e 1554 if (cfqd) {
165125e1 1555 struct request_queue *q = cfqd->queue;
4ac845a2 1556 unsigned long flags;
89850f7e 1557
4ac845a2 1558 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1559
1560 /*
1561 * Ensure we get a fresh copy of the ->key to prevent
1562 * race between exiting task and queue
1563 */
1564 smp_read_barrier_depends();
1565 if (cic->key)
1566 __cfq_exit_single_io_context(cfqd, cic);
1567
4ac845a2 1568 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1569 }
1da177e4
LT
1570}
1571
498d3aa2
JA
1572/*
1573 * The process that ioc belongs to has exited, we need to clean up
1574 * and put the internal structures we have that belongs to that process.
1575 */
e2d74ac0 1576static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1577{
4ac845a2 1578 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1579}
1580
22e2c507 1581static struct cfq_io_context *
8267e268 1582cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1583{
b5deef90 1584 struct cfq_io_context *cic;
1da177e4 1585
94f6030c
CL
1586 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1587 cfqd->queue->node);
1da177e4 1588 if (cic) {
22e2c507 1589 cic->last_end_request = jiffies;
553698f9 1590 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1591 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1592 cic->dtor = cfq_free_io_context;
1593 cic->exit = cfq_exit_io_context;
245b2e70 1594 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1595 }
1596
1597 return cic;
1598}
1599
fd0928df 1600static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1601{
1602 struct task_struct *tsk = current;
1603 int ioprio_class;
1604
3b18152c 1605 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1606 return;
1607
fd0928df 1608 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1609 switch (ioprio_class) {
fe094d98
JA
1610 default:
1611 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1612 case IOPRIO_CLASS_NONE:
1613 /*
6d63c275 1614 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1615 */
1616 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1617 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1618 break;
1619 case IOPRIO_CLASS_RT:
1620 cfqq->ioprio = task_ioprio(ioc);
1621 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1622 break;
1623 case IOPRIO_CLASS_BE:
1624 cfqq->ioprio = task_ioprio(ioc);
1625 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1626 break;
1627 case IOPRIO_CLASS_IDLE:
1628 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1629 cfqq->ioprio = 7;
1630 cfq_clear_cfqq_idle_window(cfqq);
1631 break;
22e2c507
JA
1632 }
1633
1634 /*
1635 * keep track of original prio settings in case we have to temporarily
1636 * elevate the priority of this queue
1637 */
1638 cfqq->org_ioprio = cfqq->ioprio;
1639 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1640 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1641}
1642
febffd61 1643static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1644{
478a82b0
AV
1645 struct cfq_data *cfqd = cic->key;
1646 struct cfq_queue *cfqq;
c1b707d2 1647 unsigned long flags;
35e6077c 1648
caaa5f9f
JA
1649 if (unlikely(!cfqd))
1650 return;
1651
c1b707d2 1652 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1653
ff6657c6 1654 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1655 if (cfqq) {
1656 struct cfq_queue *new_cfqq;
ff6657c6
JA
1657 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1658 GFP_ATOMIC);
caaa5f9f 1659 if (new_cfqq) {
ff6657c6 1660 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1661 cfq_put_queue(cfqq);
1662 }
22e2c507 1663 }
caaa5f9f 1664
ff6657c6 1665 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1666 if (cfqq)
1667 cfq_mark_cfqq_prio_changed(cfqq);
1668
c1b707d2 1669 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1670}
1671
fc46379d 1672static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1673{
4ac845a2 1674 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1675 ioc->ioprio_changed = 0;
22e2c507
JA
1676}
1677
d5036d77
JA
1678static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1679 pid_t pid, int is_sync)
1680{
1681 RB_CLEAR_NODE(&cfqq->rb_node);
1682 RB_CLEAR_NODE(&cfqq->p_node);
1683 INIT_LIST_HEAD(&cfqq->fifo);
1684
1685 atomic_set(&cfqq->ref, 0);
1686 cfqq->cfqd = cfqd;
1687
1688 cfq_mark_cfqq_prio_changed(cfqq);
1689
1690 if (is_sync) {
1691 if (!cfq_class_idle(cfqq))
1692 cfq_mark_cfqq_idle_window(cfqq);
1693 cfq_mark_cfqq_sync(cfqq);
1694 }
1695 cfqq->pid = pid;
1696}
1697
22e2c507 1698static struct cfq_queue *
15c31be4 1699cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1700 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1701{
22e2c507 1702 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1703 struct cfq_io_context *cic;
22e2c507
JA
1704
1705retry:
4ac845a2 1706 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1707 /* cic always exists here */
1708 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1709
6118b70b
JA
1710 /*
1711 * Always try a new alloc if we fell back to the OOM cfqq
1712 * originally, since it should just be a temporary situation.
1713 */
1714 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1715 cfqq = NULL;
22e2c507
JA
1716 if (new_cfqq) {
1717 cfqq = new_cfqq;
1718 new_cfqq = NULL;
1719 } else if (gfp_mask & __GFP_WAIT) {
1720 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1721 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1722 gfp_mask | __GFP_ZERO,
94f6030c 1723 cfqd->queue->node);
22e2c507 1724 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1725 if (new_cfqq)
1726 goto retry;
22e2c507 1727 } else {
94f6030c
CL
1728 cfqq = kmem_cache_alloc_node(cfq_pool,
1729 gfp_mask | __GFP_ZERO,
1730 cfqd->queue->node);
22e2c507
JA
1731 }
1732
6118b70b
JA
1733 if (cfqq) {
1734 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1735 cfq_init_prio_data(cfqq, ioc);
1736 cfq_log_cfqq(cfqd, cfqq, "alloced");
1737 } else
1738 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1739 }
1740
1741 if (new_cfqq)
1742 kmem_cache_free(cfq_pool, new_cfqq);
1743
22e2c507
JA
1744 return cfqq;
1745}
1746
c2dea2d1
VT
1747static struct cfq_queue **
1748cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1749{
fe094d98 1750 switch (ioprio_class) {
c2dea2d1
VT
1751 case IOPRIO_CLASS_RT:
1752 return &cfqd->async_cfqq[0][ioprio];
1753 case IOPRIO_CLASS_BE:
1754 return &cfqd->async_cfqq[1][ioprio];
1755 case IOPRIO_CLASS_IDLE:
1756 return &cfqd->async_idle_cfqq;
1757 default:
1758 BUG();
1759 }
1760}
1761
15c31be4 1762static struct cfq_queue *
fd0928df 1763cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1764 gfp_t gfp_mask)
1765{
fd0928df
JA
1766 const int ioprio = task_ioprio(ioc);
1767 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1768 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1769 struct cfq_queue *cfqq = NULL;
1770
c2dea2d1
VT
1771 if (!is_sync) {
1772 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1773 cfqq = *async_cfqq;
1774 }
1775
6118b70b 1776 if (!cfqq)
fd0928df 1777 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1778
1779 /*
1780 * pin the queue now that it's allocated, scheduler exit will prune it
1781 */
c2dea2d1 1782 if (!is_sync && !(*async_cfqq)) {
15c31be4 1783 atomic_inc(&cfqq->ref);
c2dea2d1 1784 *async_cfqq = cfqq;
15c31be4
JA
1785 }
1786
1787 atomic_inc(&cfqq->ref);
1788 return cfqq;
1789}
1790
498d3aa2
JA
1791/*
1792 * We drop cfq io contexts lazily, so we may find a dead one.
1793 */
dbecf3ab 1794static void
4ac845a2
JA
1795cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1796 struct cfq_io_context *cic)
dbecf3ab 1797{
4ac845a2
JA
1798 unsigned long flags;
1799
fc46379d 1800 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1801
4ac845a2
JA
1802 spin_lock_irqsave(&ioc->lock, flags);
1803
4faa3c81 1804 BUG_ON(ioc->ioc_data == cic);
597bc485 1805
4ac845a2 1806 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1807 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1808 spin_unlock_irqrestore(&ioc->lock, flags);
1809
1810 cfq_cic_free(cic);
dbecf3ab
OH
1811}
1812
e2d74ac0 1813static struct cfq_io_context *
4ac845a2 1814cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1815{
e2d74ac0 1816 struct cfq_io_context *cic;
d6de8be7 1817 unsigned long flags;
4ac845a2 1818 void *k;
e2d74ac0 1819
91fac317
VT
1820 if (unlikely(!ioc))
1821 return NULL;
1822
d6de8be7
JA
1823 rcu_read_lock();
1824
597bc485
JA
1825 /*
1826 * we maintain a last-hit cache, to avoid browsing over the tree
1827 */
4ac845a2 1828 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1829 if (cic && cic->key == cfqd) {
1830 rcu_read_unlock();
597bc485 1831 return cic;
d6de8be7 1832 }
597bc485 1833
4ac845a2 1834 do {
4ac845a2
JA
1835 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1836 rcu_read_unlock();
1837 if (!cic)
1838 break;
be3b0753
OH
1839 /* ->key must be copied to avoid race with cfq_exit_queue() */
1840 k = cic->key;
1841 if (unlikely(!k)) {
4ac845a2 1842 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1843 rcu_read_lock();
4ac845a2 1844 continue;
dbecf3ab 1845 }
e2d74ac0 1846
d6de8be7 1847 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1848 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1849 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1850 break;
1851 } while (1);
e2d74ac0 1852
4ac845a2 1853 return cic;
e2d74ac0
JA
1854}
1855
4ac845a2
JA
1856/*
1857 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1858 * the process specific cfq io context when entered from the block layer.
1859 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1860 */
febffd61
JA
1861static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1862 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1863{
0261d688 1864 unsigned long flags;
4ac845a2 1865 int ret;
e2d74ac0 1866
4ac845a2
JA
1867 ret = radix_tree_preload(gfp_mask);
1868 if (!ret) {
1869 cic->ioc = ioc;
1870 cic->key = cfqd;
e2d74ac0 1871
4ac845a2
JA
1872 spin_lock_irqsave(&ioc->lock, flags);
1873 ret = radix_tree_insert(&ioc->radix_root,
1874 (unsigned long) cfqd, cic);
ffc4e759
JA
1875 if (!ret)
1876 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1877 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1878
4ac845a2
JA
1879 radix_tree_preload_end();
1880
1881 if (!ret) {
1882 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1883 list_add(&cic->queue_list, &cfqd->cic_list);
1884 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1885 }
e2d74ac0
JA
1886 }
1887
4ac845a2
JA
1888 if (ret)
1889 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1890
4ac845a2 1891 return ret;
e2d74ac0
JA
1892}
1893
1da177e4
LT
1894/*
1895 * Setup general io context and cfq io context. There can be several cfq
1896 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1897 * than one device managed by cfq.
1da177e4
LT
1898 */
1899static struct cfq_io_context *
e2d74ac0 1900cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1901{
22e2c507 1902 struct io_context *ioc = NULL;
1da177e4 1903 struct cfq_io_context *cic;
1da177e4 1904
22e2c507 1905 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1906
b5deef90 1907 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1908 if (!ioc)
1909 return NULL;
1910
4ac845a2 1911 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1912 if (cic)
1913 goto out;
1da177e4 1914
e2d74ac0
JA
1915 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1916 if (cic == NULL)
1917 goto err;
1da177e4 1918
4ac845a2
JA
1919 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1920 goto err_free;
1921
1da177e4 1922out:
fc46379d
JA
1923 smp_read_barrier_depends();
1924 if (unlikely(ioc->ioprio_changed))
1925 cfq_ioc_set_ioprio(ioc);
1926
1da177e4 1927 return cic;
4ac845a2
JA
1928err_free:
1929 cfq_cic_free(cic);
1da177e4
LT
1930err:
1931 put_io_context(ioc);
1932 return NULL;
1933}
1934
22e2c507
JA
1935static void
1936cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1937{
aaf1228d
JA
1938 unsigned long elapsed = jiffies - cic->last_end_request;
1939 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1940
22e2c507
JA
1941 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1942 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1943 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1944}
1da177e4 1945
206dc69b 1946static void
6d048f53
JA
1947cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1948 struct request *rq)
206dc69b
JA
1949{
1950 sector_t sdist;
1951 u64 total;
1952
4d00aa47
JM
1953 if (!cic->last_request_pos)
1954 sdist = 0;
83096ebf
TH
1955 else if (cic->last_request_pos < blk_rq_pos(rq))
1956 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1957 else
83096ebf 1958 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1959
1960 /*
1961 * Don't allow the seek distance to get too large from the
1962 * odd fragment, pagein, etc
1963 */
1964 if (cic->seek_samples <= 60) /* second&third seek */
1965 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1966 else
1967 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1968
1969 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1970 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1971 total = cic->seek_total + (cic->seek_samples/2);
1972 do_div(total, cic->seek_samples);
1973 cic->seek_mean = (sector_t)total;
1974}
1da177e4 1975
22e2c507
JA
1976/*
1977 * Disable idle window if the process thinks too long or seeks so much that
1978 * it doesn't matter
1979 */
1980static void
1981cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1982 struct cfq_io_context *cic)
1983{
7b679138 1984 int old_idle, enable_idle;
1be92f2f 1985
0871714e
JA
1986 /*
1987 * Don't idle for async or idle io prio class
1988 */
1989 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1990 return;
1991
c265a7f4 1992 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1993
66dac98e 1994 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
963b72fc 1995 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1996 enable_idle = 0;
1997 else if (sample_valid(cic->ttime_samples)) {
ec60e4f6
CZ
1998 unsigned int slice_idle = cfqd->cfq_slice_idle;
1999 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
2000 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2001 if (cic->ttime_mean > slice_idle)
22e2c507
JA
2002 enable_idle = 0;
2003 else
2004 enable_idle = 1;
1da177e4
LT
2005 }
2006
7b679138
JA
2007 if (old_idle != enable_idle) {
2008 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2009 if (enable_idle)
2010 cfq_mark_cfqq_idle_window(cfqq);
2011 else
2012 cfq_clear_cfqq_idle_window(cfqq);
2013 }
22e2c507 2014}
1da177e4 2015
22e2c507
JA
2016/*
2017 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2018 * no or if we aren't sure, a 1 will cause a preempt.
2019 */
2020static int
2021cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2022 struct request *rq)
22e2c507 2023{
6d048f53 2024 struct cfq_queue *cfqq;
22e2c507 2025
6d048f53
JA
2026 cfqq = cfqd->active_queue;
2027 if (!cfqq)
22e2c507
JA
2028 return 0;
2029
6d048f53
JA
2030 if (cfq_slice_used(cfqq))
2031 return 1;
2032
2033 if (cfq_class_idle(new_cfqq))
caaa5f9f 2034 return 0;
22e2c507
JA
2035
2036 if (cfq_class_idle(cfqq))
2037 return 1;
1e3335de 2038
374f84ac
JA
2039 /*
2040 * if the new request is sync, but the currently running queue is
2041 * not, let the sync request have priority.
2042 */
5e705374 2043 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 2044 return 1;
1e3335de 2045
374f84ac
JA
2046 /*
2047 * So both queues are sync. Let the new request get disk time if
2048 * it's a metadata request and the current queue is doing regular IO.
2049 */
2050 if (rq_is_meta(rq) && !cfqq->meta_pending)
2051 return 1;
22e2c507 2052
3a9a3f6c
DS
2053 /*
2054 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2055 */
2056 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2057 return 1;
2058
1e3335de
JA
2059 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2060 return 0;
2061
2062 /*
2063 * if this request is as-good as one we would expect from the
2064 * current cfqq, let it preempt
2065 */
6d048f53 2066 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2067 return 1;
2068
22e2c507
JA
2069 return 0;
2070}
2071
2072/*
2073 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2074 * let it have half of its nominal slice.
2075 */
2076static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2077{
7b679138 2078 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2079 cfq_slice_expired(cfqd, 1);
22e2c507 2080
bf572256
JA
2081 /*
2082 * Put the new queue at the front of the of the current list,
2083 * so we know that it will be selected next.
2084 */
2085 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2086
2087 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2088
44f7c160
JA
2089 cfqq->slice_end = 0;
2090 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2091}
2092
22e2c507 2093/*
5e705374 2094 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2095 * something we should do about it
2096 */
2097static void
5e705374
JA
2098cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2099 struct request *rq)
22e2c507 2100{
5e705374 2101 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2102
45333d5a 2103 cfqd->rq_queued++;
374f84ac
JA
2104 if (rq_is_meta(rq))
2105 cfqq->meta_pending++;
2106
9c2c38a1 2107 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2108 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2109 cfq_update_idle_window(cfqd, cfqq, cic);
2110
83096ebf 2111 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2112
2113 if (cfqq == cfqd->active_queue) {
2114 /*
b029195d
JA
2115 * Remember that we saw a request from this process, but
2116 * don't start queuing just yet. Otherwise we risk seeing lots
2117 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2118 * and merging. If the request is already larger than a single
2119 * page, let it rip immediately. For that case we assume that
2d870722
JA
2120 * merging is already done. Ditto for a busy system that
2121 * has other work pending, don't risk delaying until the
2122 * idle timer unplug to continue working.
22e2c507 2123 */
d6ceb25e 2124 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2125 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2126 cfqd->busy_queues > 1) {
d6ceb25e 2127 del_timer(&cfqd->idle_slice_timer);
a7f55792 2128 __blk_run_queue(cfqd->queue);
d6ceb25e 2129 }
b029195d 2130 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2131 }
5e705374 2132 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2133 /*
2134 * not the active queue - expire current slice if it is
2135 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2136 * has some old slice time left and is of higher priority or
2137 * this new queue is RT and the current one is BE
22e2c507
JA
2138 */
2139 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2140 __blk_run_queue(cfqd->queue);
22e2c507 2141 }
1da177e4
LT
2142}
2143
165125e1 2144static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2145{
b4878f24 2146 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2147 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2148
7b679138 2149 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2150 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2151
5e705374 2152 cfq_add_rq_rb(rq);
1da177e4 2153
30996f40 2154 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507
JA
2155 list_add_tail(&rq->queuelist, &cfqq->fifo);
2156
5e705374 2157 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2158}
2159
45333d5a
AC
2160/*
2161 * Update hw_tag based on peak queue depth over 50 samples under
2162 * sufficient load.
2163 */
2164static void cfq_update_hw_tag(struct cfq_data *cfqd)
2165{
5ad531db
JA
2166 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2167 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2168
2169 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2170 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2171 return;
2172
2173 if (cfqd->hw_tag_samples++ < 50)
2174 return;
2175
2176 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2177 cfqd->hw_tag = 1;
2178 else
2179 cfqd->hw_tag = 0;
2180
2181 cfqd->hw_tag_samples = 0;
2182 cfqd->rq_in_driver_peak = 0;
2183}
2184
165125e1 2185static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2186{
5e705374 2187 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2188 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2189 const int sync = rq_is_sync(rq);
b4878f24 2190 unsigned long now;
1da177e4 2191
b4878f24 2192 now = jiffies;
7b679138 2193 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2194
45333d5a
AC
2195 cfq_update_hw_tag(cfqd);
2196
5ad531db 2197 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2198 WARN_ON(!cfqq->dispatched);
5ad531db 2199 cfqd->rq_in_driver[sync]--;
6d048f53 2200 cfqq->dispatched--;
1da177e4 2201
3ed9a296
JA
2202 if (cfq_cfqq_sync(cfqq))
2203 cfqd->sync_flight--;
2204
365722bb 2205 if (sync) {
5e705374 2206 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2207 cfqd->last_end_sync_rq = now;
2208 }
caaa5f9f
JA
2209
2210 /*
2211 * If this is the active queue, check if it needs to be expired,
2212 * or if we want to idle in case it has no pending requests.
2213 */
2214 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2215 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2216
44f7c160
JA
2217 if (cfq_cfqq_slice_new(cfqq)) {
2218 cfq_set_prio_slice(cfqd, cfqq);
2219 cfq_clear_cfqq_slice_new(cfqq);
2220 }
a36e71f9
JA
2221 /*
2222 * If there are no requests waiting in this queue, and
2223 * there are other queues ready to issue requests, AND
2224 * those other queues are issuing requests within our
2225 * mean seek distance, give them a chance to run instead
2226 * of idling.
2227 */
0871714e 2228 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2229 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2230 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2231 sync && !rq_noidle(rq))
6d048f53 2232 cfq_arm_slice_timer(cfqd);
caaa5f9f 2233 }
6d048f53 2234
5ad531db 2235 if (!rq_in_driver(cfqd))
23e018a1 2236 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2237}
2238
22e2c507
JA
2239/*
2240 * we temporarily boost lower priority queues if they are holding fs exclusive
2241 * resources. they are boosted to normal prio (CLASS_BE/4)
2242 */
2243static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2244{
22e2c507
JA
2245 if (has_fs_excl()) {
2246 /*
2247 * boost idle prio on transactions that would lock out other
2248 * users of the filesystem
2249 */
2250 if (cfq_class_idle(cfqq))
2251 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2252 if (cfqq->ioprio > IOPRIO_NORM)
2253 cfqq->ioprio = IOPRIO_NORM;
2254 } else {
2255 /*
2256 * check if we need to unboost the queue
2257 */
2258 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2259 cfqq->ioprio_class = cfqq->org_ioprio_class;
2260 if (cfqq->ioprio != cfqq->org_ioprio)
2261 cfqq->ioprio = cfqq->org_ioprio;
2262 }
22e2c507 2263}
1da177e4 2264
89850f7e 2265static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2266{
1b379d8d 2267 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2268 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2269 return ELV_MQUEUE_MUST;
3b18152c 2270 }
1da177e4 2271
22e2c507 2272 return ELV_MQUEUE_MAY;
22e2c507
JA
2273}
2274
165125e1 2275static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2276{
2277 struct cfq_data *cfqd = q->elevator->elevator_data;
2278 struct task_struct *tsk = current;
91fac317 2279 struct cfq_io_context *cic;
22e2c507
JA
2280 struct cfq_queue *cfqq;
2281
2282 /*
2283 * don't force setup of a queue from here, as a call to may_queue
2284 * does not necessarily imply that a request actually will be queued.
2285 * so just lookup a possibly existing queue, or return 'may queue'
2286 * if that fails
2287 */
4ac845a2 2288 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2289 if (!cic)
2290 return ELV_MQUEUE_MAY;
2291
b0b78f81 2292 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2293 if (cfqq) {
fd0928df 2294 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2295 cfq_prio_boost(cfqq);
2296
89850f7e 2297 return __cfq_may_queue(cfqq);
22e2c507
JA
2298 }
2299
2300 return ELV_MQUEUE_MAY;
1da177e4
LT
2301}
2302
1da177e4
LT
2303/*
2304 * queue lock held here
2305 */
bb37b94c 2306static void cfq_put_request(struct request *rq)
1da177e4 2307{
5e705374 2308 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2309
5e705374 2310 if (cfqq) {
22e2c507 2311 const int rw = rq_data_dir(rq);
1da177e4 2312
22e2c507
JA
2313 BUG_ON(!cfqq->allocated[rw]);
2314 cfqq->allocated[rw]--;
1da177e4 2315
5e705374 2316 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2317
1da177e4 2318 rq->elevator_private = NULL;
5e705374 2319 rq->elevator_private2 = NULL;
1da177e4 2320
1da177e4
LT
2321 cfq_put_queue(cfqq);
2322 }
2323}
2324
2325/*
22e2c507 2326 * Allocate cfq data structures associated with this request.
1da177e4 2327 */
22e2c507 2328static int
165125e1 2329cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2330{
2331 struct cfq_data *cfqd = q->elevator->elevator_data;
2332 struct cfq_io_context *cic;
2333 const int rw = rq_data_dir(rq);
7749a8d4 2334 const int is_sync = rq_is_sync(rq);
22e2c507 2335 struct cfq_queue *cfqq;
1da177e4
LT
2336 unsigned long flags;
2337
2338 might_sleep_if(gfp_mask & __GFP_WAIT);
2339
e2d74ac0 2340 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2341
1da177e4
LT
2342 spin_lock_irqsave(q->queue_lock, flags);
2343
22e2c507
JA
2344 if (!cic)
2345 goto queue_fail;
2346
91fac317 2347 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2348 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2349 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317
VT
2350 cic_set_cfqq(cic, cfqq, is_sync);
2351 }
1da177e4
LT
2352
2353 cfqq->allocated[rw]++;
22e2c507 2354 atomic_inc(&cfqq->ref);
1da177e4 2355
5e705374 2356 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2357
5e705374
JA
2358 rq->elevator_private = cic;
2359 rq->elevator_private2 = cfqq;
2360 return 0;
1da177e4 2361
22e2c507
JA
2362queue_fail:
2363 if (cic)
2364 put_io_context(cic->ioc);
89850f7e 2365
23e018a1 2366 cfq_schedule_dispatch(cfqd);
1da177e4 2367 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2368 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2369 return 1;
2370}
2371
65f27f38 2372static void cfq_kick_queue(struct work_struct *work)
22e2c507 2373{
65f27f38 2374 struct cfq_data *cfqd =
23e018a1 2375 container_of(work, struct cfq_data, unplug_work);
165125e1 2376 struct request_queue *q = cfqd->queue;
22e2c507 2377
40bb54d1 2378 spin_lock_irq(q->queue_lock);
a7f55792 2379 __blk_run_queue(cfqd->queue);
40bb54d1 2380 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2381}
2382
2383/*
2384 * Timer running if the active_queue is currently idling inside its time slice
2385 */
2386static void cfq_idle_slice_timer(unsigned long data)
2387{
2388 struct cfq_data *cfqd = (struct cfq_data *) data;
2389 struct cfq_queue *cfqq;
2390 unsigned long flags;
3c6bd2f8 2391 int timed_out = 1;
22e2c507 2392
7b679138
JA
2393 cfq_log(cfqd, "idle timer fired");
2394
22e2c507
JA
2395 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2396
fe094d98
JA
2397 cfqq = cfqd->active_queue;
2398 if (cfqq) {
3c6bd2f8
JA
2399 timed_out = 0;
2400
b029195d
JA
2401 /*
2402 * We saw a request before the queue expired, let it through
2403 */
2404 if (cfq_cfqq_must_dispatch(cfqq))
2405 goto out_kick;
2406
22e2c507
JA
2407 /*
2408 * expired
2409 */
44f7c160 2410 if (cfq_slice_used(cfqq))
22e2c507
JA
2411 goto expire;
2412
2413 /*
2414 * only expire and reinvoke request handler, if there are
2415 * other queues with pending requests
2416 */
caaa5f9f 2417 if (!cfqd->busy_queues)
22e2c507 2418 goto out_cont;
22e2c507
JA
2419
2420 /*
2421 * not expired and it has a request pending, let it dispatch
2422 */
75e50984 2423 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2424 goto out_kick;
22e2c507
JA
2425 }
2426expire:
6084cdda 2427 cfq_slice_expired(cfqd, timed_out);
22e2c507 2428out_kick:
23e018a1 2429 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2430out_cont:
2431 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2432}
2433
3b18152c
JA
2434static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2435{
2436 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2437 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2438}
22e2c507 2439
c2dea2d1
VT
2440static void cfq_put_async_queues(struct cfq_data *cfqd)
2441{
2442 int i;
2443
2444 for (i = 0; i < IOPRIO_BE_NR; i++) {
2445 if (cfqd->async_cfqq[0][i])
2446 cfq_put_queue(cfqd->async_cfqq[0][i]);
2447 if (cfqd->async_cfqq[1][i])
2448 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2449 }
2389d1ef
ON
2450
2451 if (cfqd->async_idle_cfqq)
2452 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2453}
2454
b374d18a 2455static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2456{
22e2c507 2457 struct cfq_data *cfqd = e->elevator_data;
165125e1 2458 struct request_queue *q = cfqd->queue;
22e2c507 2459
3b18152c 2460 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2461
d9ff4187 2462 spin_lock_irq(q->queue_lock);
e2d74ac0 2463
d9ff4187 2464 if (cfqd->active_queue)
6084cdda 2465 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2466
2467 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2468 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2469 struct cfq_io_context,
2470 queue_list);
89850f7e
JA
2471
2472 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2473 }
e2d74ac0 2474
c2dea2d1 2475 cfq_put_async_queues(cfqd);
15c31be4 2476
d9ff4187 2477 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2478
2479 cfq_shutdown_timer_wq(cfqd);
2480
a90d742e 2481 kfree(cfqd);
1da177e4
LT
2482}
2483
165125e1 2484static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2485{
2486 struct cfq_data *cfqd;
26a2ac00 2487 int i;
1da177e4 2488
94f6030c 2489 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2490 if (!cfqd)
bc1c1169 2491 return NULL;
1da177e4 2492
cc09e299 2493 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2494
2495 /*
2496 * Not strictly needed (since RB_ROOT just clears the node and we
2497 * zeroed cfqd on alloc), but better be safe in case someone decides
2498 * to add magic to the rb code
2499 */
2500 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2501 cfqd->prio_trees[i] = RB_ROOT;
2502
6118b70b
JA
2503 /*
2504 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2505 * Grab a permanent reference to it, so that the normal code flow
2506 * will not attempt to free it.
2507 */
2508 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2509 atomic_inc(&cfqd->oom_cfqq.ref);
2510
d9ff4187 2511 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2512
1da177e4 2513 cfqd->queue = q;
1da177e4 2514
22e2c507
JA
2515 init_timer(&cfqd->idle_slice_timer);
2516 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2517 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2518
23e018a1 2519 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2520
1da177e4 2521 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2522 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2523 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2524 cfqd->cfq_back_max = cfq_back_max;
2525 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2526 cfqd->cfq_slice[0] = cfq_slice_async;
2527 cfqd->cfq_slice[1] = cfq_slice_sync;
2528 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2529 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2530 cfqd->cfq_latency = 1;
45333d5a 2531 cfqd->hw_tag = 1;
365722bb 2532 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2533 return cfqd;
1da177e4
LT
2534}
2535
2536static void cfq_slab_kill(void)
2537{
d6de8be7
JA
2538 /*
2539 * Caller already ensured that pending RCU callbacks are completed,
2540 * so we should have no busy allocations at this point.
2541 */
1da177e4
LT
2542 if (cfq_pool)
2543 kmem_cache_destroy(cfq_pool);
2544 if (cfq_ioc_pool)
2545 kmem_cache_destroy(cfq_ioc_pool);
2546}
2547
2548static int __init cfq_slab_setup(void)
2549{
0a31bd5f 2550 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2551 if (!cfq_pool)
2552 goto fail;
2553
34e6bbf2 2554 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2555 if (!cfq_ioc_pool)
2556 goto fail;
2557
2558 return 0;
2559fail:
2560 cfq_slab_kill();
2561 return -ENOMEM;
2562}
2563
1da177e4
LT
2564/*
2565 * sysfs parts below -->
2566 */
1da177e4
LT
2567static ssize_t
2568cfq_var_show(unsigned int var, char *page)
2569{
2570 return sprintf(page, "%d\n", var);
2571}
2572
2573static ssize_t
2574cfq_var_store(unsigned int *var, const char *page, size_t count)
2575{
2576 char *p = (char *) page;
2577
2578 *var = simple_strtoul(p, &p, 10);
2579 return count;
2580}
2581
1da177e4 2582#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2583static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2584{ \
3d1ab40f 2585 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2586 unsigned int __data = __VAR; \
2587 if (__CONV) \
2588 __data = jiffies_to_msecs(__data); \
2589 return cfq_var_show(__data, (page)); \
2590}
2591SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2592SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2593SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2594SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2595SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2596SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2597SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2598SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2599SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2600SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2601#undef SHOW_FUNCTION
2602
2603#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2604static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2605{ \
3d1ab40f 2606 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2607 unsigned int __data; \
2608 int ret = cfq_var_store(&__data, (page), count); \
2609 if (__data < (MIN)) \
2610 __data = (MIN); \
2611 else if (__data > (MAX)) \
2612 __data = (MAX); \
2613 if (__CONV) \
2614 *(__PTR) = msecs_to_jiffies(__data); \
2615 else \
2616 *(__PTR) = __data; \
2617 return ret; \
2618}
2619STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2620STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2621 UINT_MAX, 1);
2622STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2623 UINT_MAX, 1);
e572ec7e 2624STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2625STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2626 UINT_MAX, 0);
22e2c507
JA
2627STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2628STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2629STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2630STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2631 UINT_MAX, 0);
963b72fc 2632STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2633#undef STORE_FUNCTION
2634
e572ec7e
AV
2635#define CFQ_ATTR(name) \
2636 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2637
2638static struct elv_fs_entry cfq_attrs[] = {
2639 CFQ_ATTR(quantum),
e572ec7e
AV
2640 CFQ_ATTR(fifo_expire_sync),
2641 CFQ_ATTR(fifo_expire_async),
2642 CFQ_ATTR(back_seek_max),
2643 CFQ_ATTR(back_seek_penalty),
2644 CFQ_ATTR(slice_sync),
2645 CFQ_ATTR(slice_async),
2646 CFQ_ATTR(slice_async_rq),
2647 CFQ_ATTR(slice_idle),
963b72fc 2648 CFQ_ATTR(low_latency),
e572ec7e 2649 __ATTR_NULL
1da177e4
LT
2650};
2651
1da177e4
LT
2652static struct elevator_type iosched_cfq = {
2653 .ops = {
2654 .elevator_merge_fn = cfq_merge,
2655 .elevator_merged_fn = cfq_merged_request,
2656 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2657 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2658 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2659 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2660 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2661 .elevator_deactivate_req_fn = cfq_deactivate_request,
2662 .elevator_queue_empty_fn = cfq_queue_empty,
2663 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2664 .elevator_former_req_fn = elv_rb_former_request,
2665 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2666 .elevator_set_req_fn = cfq_set_request,
2667 .elevator_put_req_fn = cfq_put_request,
2668 .elevator_may_queue_fn = cfq_may_queue,
2669 .elevator_init_fn = cfq_init_queue,
2670 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2671 .trim = cfq_free_io_context,
1da177e4 2672 },
3d1ab40f 2673 .elevator_attrs = cfq_attrs,
1da177e4
LT
2674 .elevator_name = "cfq",
2675 .elevator_owner = THIS_MODULE,
2676};
2677
2678static int __init cfq_init(void)
2679{
22e2c507
JA
2680 /*
2681 * could be 0 on HZ < 1000 setups
2682 */
2683 if (!cfq_slice_async)
2684 cfq_slice_async = 1;
2685 if (!cfq_slice_idle)
2686 cfq_slice_idle = 1;
2687
1da177e4
LT
2688 if (cfq_slab_setup())
2689 return -ENOMEM;
2690
2fdd82bd 2691 elv_register(&iosched_cfq);
1da177e4 2692
2fdd82bd 2693 return 0;
1da177e4
LT
2694}
2695
2696static void __exit cfq_exit(void)
2697{
6e9a4738 2698 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2699 elv_unregister(&iosched_cfq);
334e94de 2700 ioc_gone = &all_gone;
fba82272
OH
2701 /* ioc_gone's update must be visible before reading ioc_count */
2702 smp_wmb();
d6de8be7
JA
2703
2704 /*
2705 * this also protects us from entering cfq_slab_kill() with
2706 * pending RCU callbacks
2707 */
245b2e70 2708 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2709 wait_for_completion(&all_gone);
83521d3e 2710 cfq_slab_kill();
1da177e4
LT
2711}
2712
2713module_init(cfq_init);
2714module_exit(cfq_exit);
2715
2716MODULE_AUTHOR("Jens Axboe");
2717MODULE_LICENSE("GPL");
2718MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");