]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/cfq-iosched.c
Merge branch 'cleanup-bd_claim' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98
JA
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
25bc6b07 90 struct rb_node *active;
cc09e299 91};
73e9ffdd
RK
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
93 .count = 0, .min_vdisktime = 0, }
cc09e299 94
6118b70b
JA
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
100 atomic_t ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
dae739eb
VG
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
f75edf2d 126 unsigned int allocated_slice;
c4081ba5 127 unsigned int slice_dispatch;
dae739eb
VG
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
6118b70b
JA
130 unsigned long slice_end;
131 long slice_resid;
6118b70b
JA
132
133 /* pending metadata requests */
134 int meta_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class, org_ioprio_class;
141
c4081ba5
RK
142 pid_t pid;
143
3dde36dd 144 u32 seek_history;
b2c18e1e
JM
145 sector_t last_request_pos;
146
aa6f6a3d 147 struct cfq_rb_root *service_tree;
df5fe3e8 148 struct cfq_queue *new_cfqq;
cdb16e8f 149 struct cfq_group *cfqg;
ae30c286 150 struct cfq_group *orig_cfqg;
c4e7893e
VG
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors;
6118b70b
JA
153};
154
c0324a02 155/*
718eee05 156 * First index in the service_trees.
c0324a02
CZ
157 * IDLE is handled separately, so it has negative index
158 */
159enum wl_prio_t {
c0324a02 160 BE_WORKLOAD = 0,
615f0259
VG
161 RT_WORKLOAD = 1,
162 IDLE_WORKLOAD = 2,
b4627321 163 CFQ_PRIO_NR,
c0324a02
CZ
164};
165
718eee05
CZ
166/*
167 * Second index in the service_trees.
168 */
169enum wl_type_t {
170 ASYNC_WORKLOAD = 0,
171 SYNC_NOIDLE_WORKLOAD = 1,
172 SYNC_WORKLOAD = 2
173};
174
cdb16e8f
VG
175/* This is per cgroup per device grouping structure */
176struct cfq_group {
1fa8f6d6
VG
177 /* group service_tree member */
178 struct rb_node rb_node;
179
180 /* group service_tree key */
181 u64 vdisktime;
25bc6b07 182 unsigned int weight;
1fa8f6d6
VG
183 bool on_st;
184
185 /* number of cfqq currently on this group */
186 int nr_cfqq;
187
cdb16e8f 188 /*
b4627321
VG
189 * Per group busy queus average. Useful for workload slice calc. We
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
193 */
194 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 /*
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
cdb16e8f
VG
201 * Counts are embedded in the cfq_rb_root
202 */
203 struct cfq_rb_root service_trees[2][3];
204 struct cfq_rb_root service_tree_idle;
dae739eb
VG
205
206 unsigned long saved_workload_slice;
207 enum wl_type_t saved_workload;
208 enum wl_prio_t saved_serving_prio;
25fb5169
VG
209 struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node;
b1c35769 212 atomic_t ref;
25fb5169 213#endif
80bdf0c7
VG
214 /* number of requests that are on the dispatch list or inside driver */
215 int dispatched;
cdb16e8f 216};
718eee05 217
22e2c507
JA
218/*
219 * Per block device queue structure
220 */
1da177e4 221struct cfq_data {
165125e1 222 struct request_queue *queue;
1fa8f6d6
VG
223 /* Root service tree for cfq_groups */
224 struct cfq_rb_root grp_service_tree;
cdb16e8f 225 struct cfq_group root_group;
22e2c507 226
c0324a02
CZ
227 /*
228 * The priority currently being served
22e2c507 229 */
c0324a02 230 enum wl_prio_t serving_prio;
718eee05
CZ
231 enum wl_type_t serving_type;
232 unsigned long workload_expires;
cdb16e8f 233 struct cfq_group *serving_group;
a36e71f9
JA
234
235 /*
236 * Each priority tree is sorted by next_request position. These
237 * trees are used when determining if two or more queues are
238 * interleaving requests (see cfq_close_cooperator).
239 */
240 struct rb_root prio_trees[CFQ_PRIO_LISTS];
241
22e2c507
JA
242 unsigned int busy_queues;
243
53c583d2
CZ
244 int rq_in_driver;
245 int rq_in_flight[2];
45333d5a
AC
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
25776e35 251 int hw_tag;
e459dd08
CZ
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
1da177e4 260
22e2c507
JA
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
23e018a1 265 struct work_struct unplug_work;
1da177e4 266
22e2c507
JA
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
22e2c507 269
c2dea2d1
VT
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
15c31be4 275
6d048f53 276 sector_t last_position;
1da177e4 277
1da177e4
LT
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
22e2c507 282 unsigned int cfq_fifo_expire[2];
1da177e4
LT
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
22e2c507
JA
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
80bdf0c7 288 unsigned int cfq_group_idle;
963b72fc 289 unsigned int cfq_latency;
ae30c286 290 unsigned int cfq_group_isolation;
d9ff4187 291
80b15c73 292 unsigned int cic_index;
d9ff4187 293 struct list_head cic_list;
1da177e4 294
6118b70b
JA
295 /*
296 * Fallback dummy cfqq for extreme OOM conditions
297 */
298 struct cfq_queue oom_cfqq;
365722bb 299
573412b2 300 unsigned long last_delayed_sync;
25fb5169
VG
301
302 /* List of cfq groups being managed on this device*/
303 struct hlist_head cfqg_list;
bb729bc9 304 struct rcu_head rcu;
1da177e4
LT
305};
306
25fb5169
VG
307static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
308
cdb16e8f
VG
309static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
310 enum wl_prio_t prio,
65b32a57 311 enum wl_type_t type)
c0324a02 312{
1fa8f6d6
VG
313 if (!cfqg)
314 return NULL;
315
c0324a02 316 if (prio == IDLE_WORKLOAD)
cdb16e8f 317 return &cfqg->service_tree_idle;
c0324a02 318
cdb16e8f 319 return &cfqg->service_trees[prio][type];
c0324a02
CZ
320}
321
3b18152c 322enum cfqq_state_flags {
b0b8d749
JA
323 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
324 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 325 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 326 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
327 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
328 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
329 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 330 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 331 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 332 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 333 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 334 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 335 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
336};
337
338#define CFQ_CFQQ_FNS(name) \
339static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
340{ \
fe094d98 341 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
342} \
343static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
344{ \
fe094d98 345 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
346} \
347static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
348{ \
fe094d98 349 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
350}
351
352CFQ_CFQQ_FNS(on_rr);
353CFQ_CFQQ_FNS(wait_request);
b029195d 354CFQ_CFQQ_FNS(must_dispatch);
3b18152c 355CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
356CFQ_CFQQ_FNS(fifo_expire);
357CFQ_CFQQ_FNS(idle_window);
358CFQ_CFQQ_FNS(prio_changed);
44f7c160 359CFQ_CFQQ_FNS(slice_new);
91fac317 360CFQ_CFQQ_FNS(sync);
a36e71f9 361CFQ_CFQQ_FNS(coop);
ae54abed 362CFQ_CFQQ_FNS(split_coop);
76280aff 363CFQ_CFQQ_FNS(deep);
f75edf2d 364CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
365#undef CFQ_CFQQ_FNS
366
afc24d49 367#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
368#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
369 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
370 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
371 blkg_path(&(cfqq)->cfqg->blkg), ##args);
372
373#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
375 blkg_path(&(cfqg)->blkg), ##args); \
376
377#else
7b679138
JA
378#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
380#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
381#endif
7b679138
JA
382#define cfq_log(cfqd, fmt, args...) \
383 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
384
615f0259
VG
385/* Traverses through cfq group service trees */
386#define for_each_cfqg_st(cfqg, i, j, st) \
387 for (i = 0; i <= IDLE_WORKLOAD; i++) \
388 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
389 : &cfqg->service_tree_idle; \
390 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
391 (i == IDLE_WORKLOAD && j == 0); \
392 j++, st = i < IDLE_WORKLOAD ? \
393 &cfqg->service_trees[i][j]: NULL) \
394
395
02b35081
VG
396static inline bool iops_mode(struct cfq_data *cfqd)
397{
398 /*
399 * If we are not idling on queues and it is a NCQ drive, parallel
400 * execution of requests is on and measuring time is not possible
401 * in most of the cases until and unless we drive shallower queue
402 * depths and that becomes a performance bottleneck. In such cases
403 * switch to start providing fairness in terms of number of IOs.
404 */
405 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
406 return true;
407 else
408 return false;
409}
410
c0324a02
CZ
411static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
412{
413 if (cfq_class_idle(cfqq))
414 return IDLE_WORKLOAD;
415 if (cfq_class_rt(cfqq))
416 return RT_WORKLOAD;
417 return BE_WORKLOAD;
418}
419
718eee05
CZ
420
421static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
422{
423 if (!cfq_cfqq_sync(cfqq))
424 return ASYNC_WORKLOAD;
425 if (!cfq_cfqq_idle_window(cfqq))
426 return SYNC_NOIDLE_WORKLOAD;
427 return SYNC_WORKLOAD;
428}
429
58ff82f3
VG
430static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
431 struct cfq_data *cfqd,
432 struct cfq_group *cfqg)
c0324a02
CZ
433{
434 if (wl == IDLE_WORKLOAD)
cdb16e8f 435 return cfqg->service_tree_idle.count;
c0324a02 436
cdb16e8f
VG
437 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
438 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
439 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
440}
441
f26bd1f0
VG
442static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
443 struct cfq_group *cfqg)
444{
445 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
446 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
447}
448
165125e1 449static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 450static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 451 struct io_context *, gfp_t);
4ac845a2 452static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
453 struct io_context *);
454
455static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 456 bool is_sync)
91fac317 457{
a6151c3a 458 return cic->cfqq[is_sync];
91fac317
VT
459}
460
461static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 462 struct cfq_queue *cfqq, bool is_sync)
91fac317 463{
a6151c3a 464 cic->cfqq[is_sync] = cfqq;
91fac317
VT
465}
466
bca4b914 467#define CIC_DEAD_KEY 1ul
80b15c73 468#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
469
470static inline void *cfqd_dead_key(struct cfq_data *cfqd)
471{
80b15c73 472 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
473}
474
475static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
476{
477 struct cfq_data *cfqd = cic->key;
478
479 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
480 return NULL;
481
482 return cfqd;
483}
484
91fac317
VT
485/*
486 * We regard a request as SYNC, if it's either a read or has the SYNC bit
487 * set (in which case it could also be direct WRITE).
488 */
a6151c3a 489static inline bool cfq_bio_sync(struct bio *bio)
91fac317 490{
7b6d91da 491 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 492}
1da177e4 493
99f95e52
AM
494/*
495 * scheduler run of queue, if there are requests pending and no one in the
496 * driver that will restart queueing
497 */
23e018a1 498static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 499{
7b679138
JA
500 if (cfqd->busy_queues) {
501 cfq_log(cfqd, "schedule dispatch");
23e018a1 502 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 503 }
99f95e52
AM
504}
505
165125e1 506static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
507{
508 struct cfq_data *cfqd = q->elevator->elevator_data;
509
f04a6424 510 return !cfqd->rq_queued;
99f95e52
AM
511}
512
44f7c160
JA
513/*
514 * Scale schedule slice based on io priority. Use the sync time slice only
515 * if a queue is marked sync and has sync io queued. A sync queue with async
516 * io only, should not get full sync slice length.
517 */
a6151c3a 518static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 519 unsigned short prio)
44f7c160 520{
d9e7620e 521 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 522
d9e7620e
JA
523 WARN_ON(prio >= IOPRIO_BE_NR);
524
525 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
526}
44f7c160 527
d9e7620e
JA
528static inline int
529cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
530{
531 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
532}
533
25bc6b07
VG
534static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
535{
536 u64 d = delta << CFQ_SERVICE_SHIFT;
537
538 d = d * BLKIO_WEIGHT_DEFAULT;
539 do_div(d, cfqg->weight);
540 return d;
541}
542
543static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
544{
545 s64 delta = (s64)(vdisktime - min_vdisktime);
546 if (delta > 0)
547 min_vdisktime = vdisktime;
548
549 return min_vdisktime;
550}
551
552static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
553{
554 s64 delta = (s64)(vdisktime - min_vdisktime);
555 if (delta < 0)
556 min_vdisktime = vdisktime;
557
558 return min_vdisktime;
559}
560
561static void update_min_vdisktime(struct cfq_rb_root *st)
562{
563 u64 vdisktime = st->min_vdisktime;
564 struct cfq_group *cfqg;
565
566 if (st->active) {
567 cfqg = rb_entry_cfqg(st->active);
568 vdisktime = cfqg->vdisktime;
569 }
570
571 if (st->left) {
572 cfqg = rb_entry_cfqg(st->left);
573 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
574 }
575
576 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
577}
578
5db5d642
CZ
579/*
580 * get averaged number of queues of RT/BE priority.
581 * average is updated, with a formula that gives more weight to higher numbers,
582 * to quickly follows sudden increases and decrease slowly
583 */
584
58ff82f3
VG
585static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
586 struct cfq_group *cfqg, bool rt)
5869619c 587{
5db5d642
CZ
588 unsigned min_q, max_q;
589 unsigned mult = cfq_hist_divisor - 1;
590 unsigned round = cfq_hist_divisor / 2;
58ff82f3 591 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 592
58ff82f3
VG
593 min_q = min(cfqg->busy_queues_avg[rt], busy);
594 max_q = max(cfqg->busy_queues_avg[rt], busy);
595 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 596 cfq_hist_divisor;
58ff82f3
VG
597 return cfqg->busy_queues_avg[rt];
598}
599
600static inline unsigned
601cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
602{
603 struct cfq_rb_root *st = &cfqd->grp_service_tree;
604
605 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
606}
607
44f7c160
JA
608static inline void
609cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
610{
5db5d642
CZ
611 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
612 if (cfqd->cfq_latency) {
58ff82f3
VG
613 /*
614 * interested queues (we consider only the ones with the same
615 * priority class in the cfq group)
616 */
617 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
618 cfq_class_rt(cfqq));
5db5d642
CZ
619 unsigned sync_slice = cfqd->cfq_slice[1];
620 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
621 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
622
623 if (expect_latency > group_slice) {
5db5d642
CZ
624 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
625 /* scale low_slice according to IO priority
626 * and sync vs async */
627 unsigned low_slice =
628 min(slice, base_low_slice * slice / sync_slice);
629 /* the adapted slice value is scaled to fit all iqs
630 * into the target latency */
58ff82f3 631 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
632 low_slice);
633 }
634 }
dae739eb 635 cfqq->slice_start = jiffies;
5db5d642 636 cfqq->slice_end = jiffies + slice;
f75edf2d 637 cfqq->allocated_slice = slice;
7b679138 638 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
639}
640
641/*
642 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
643 * isn't valid until the first request from the dispatch is activated
644 * and the slice time set.
645 */
a6151c3a 646static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
647{
648 if (cfq_cfqq_slice_new(cfqq))
c1e44756 649 return false;
44f7c160 650 if (time_before(jiffies, cfqq->slice_end))
c1e44756 651 return false;
44f7c160 652
c1e44756 653 return true;
44f7c160
JA
654}
655
1da177e4 656/*
5e705374 657 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 658 * We choose the request that is closest to the head right now. Distance
e8a99053 659 * behind the head is penalized and only allowed to a certain extent.
1da177e4 660 */
5e705374 661static struct request *
cf7c25cf 662cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 663{
cf7c25cf 664 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 665 unsigned long back_max;
e8a99053
AM
666#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
667#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
668 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 669
5e705374
JA
670 if (rq1 == NULL || rq1 == rq2)
671 return rq2;
672 if (rq2 == NULL)
673 return rq1;
9c2c38a1 674
5e705374
JA
675 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
676 return rq1;
677 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
678 return rq2;
7b6d91da 679 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 680 return rq1;
7b6d91da
CH
681 else if ((rq2->cmd_flags & REQ_META) &&
682 !(rq1->cmd_flags & REQ_META))
374f84ac 683 return rq2;
1da177e4 684
83096ebf
TH
685 s1 = blk_rq_pos(rq1);
686 s2 = blk_rq_pos(rq2);
1da177e4 687
1da177e4
LT
688 /*
689 * by definition, 1KiB is 2 sectors
690 */
691 back_max = cfqd->cfq_back_max * 2;
692
693 /*
694 * Strict one way elevator _except_ in the case where we allow
695 * short backward seeks which are biased as twice the cost of a
696 * similar forward seek.
697 */
698 if (s1 >= last)
699 d1 = s1 - last;
700 else if (s1 + back_max >= last)
701 d1 = (last - s1) * cfqd->cfq_back_penalty;
702 else
e8a99053 703 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
704
705 if (s2 >= last)
706 d2 = s2 - last;
707 else if (s2 + back_max >= last)
708 d2 = (last - s2) * cfqd->cfq_back_penalty;
709 else
e8a99053 710 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
711
712 /* Found required data */
e8a99053
AM
713
714 /*
715 * By doing switch() on the bit mask "wrap" we avoid having to
716 * check two variables for all permutations: --> faster!
717 */
718 switch (wrap) {
5e705374 719 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 720 if (d1 < d2)
5e705374 721 return rq1;
e8a99053 722 else if (d2 < d1)
5e705374 723 return rq2;
e8a99053
AM
724 else {
725 if (s1 >= s2)
5e705374 726 return rq1;
e8a99053 727 else
5e705374 728 return rq2;
e8a99053 729 }
1da177e4 730
e8a99053 731 case CFQ_RQ2_WRAP:
5e705374 732 return rq1;
e8a99053 733 case CFQ_RQ1_WRAP:
5e705374
JA
734 return rq2;
735 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
736 default:
737 /*
738 * Since both rqs are wrapped,
739 * start with the one that's further behind head
740 * (--> only *one* back seek required),
741 * since back seek takes more time than forward.
742 */
743 if (s1 <= s2)
5e705374 744 return rq1;
1da177e4 745 else
5e705374 746 return rq2;
1da177e4
LT
747 }
748}
749
498d3aa2
JA
750/*
751 * The below is leftmost cache rbtree addon
752 */
0871714e 753static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 754{
615f0259
VG
755 /* Service tree is empty */
756 if (!root->count)
757 return NULL;
758
cc09e299
JA
759 if (!root->left)
760 root->left = rb_first(&root->rb);
761
0871714e
JA
762 if (root->left)
763 return rb_entry(root->left, struct cfq_queue, rb_node);
764
765 return NULL;
cc09e299
JA
766}
767
1fa8f6d6
VG
768static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
769{
770 if (!root->left)
771 root->left = rb_first(&root->rb);
772
773 if (root->left)
774 return rb_entry_cfqg(root->left);
775
776 return NULL;
777}
778
a36e71f9
JA
779static void rb_erase_init(struct rb_node *n, struct rb_root *root)
780{
781 rb_erase(n, root);
782 RB_CLEAR_NODE(n);
783}
784
cc09e299
JA
785static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
786{
787 if (root->left == n)
788 root->left = NULL;
a36e71f9 789 rb_erase_init(n, &root->rb);
aa6f6a3d 790 --root->count;
cc09e299
JA
791}
792
1da177e4
LT
793/*
794 * would be nice to take fifo expire time into account as well
795 */
5e705374
JA
796static struct request *
797cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
798 struct request *last)
1da177e4 799{
21183b07
JA
800 struct rb_node *rbnext = rb_next(&last->rb_node);
801 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 802 struct request *next = NULL, *prev = NULL;
1da177e4 803
21183b07 804 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
805
806 if (rbprev)
5e705374 807 prev = rb_entry_rq(rbprev);
1da177e4 808
21183b07 809 if (rbnext)
5e705374 810 next = rb_entry_rq(rbnext);
21183b07
JA
811 else {
812 rbnext = rb_first(&cfqq->sort_list);
813 if (rbnext && rbnext != &last->rb_node)
5e705374 814 next = rb_entry_rq(rbnext);
21183b07 815 }
1da177e4 816
cf7c25cf 817 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
818}
819
d9e7620e
JA
820static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
821 struct cfq_queue *cfqq)
1da177e4 822{
d9e7620e
JA
823 /*
824 * just an approximation, should be ok.
825 */
cdb16e8f 826 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 827 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
828}
829
1fa8f6d6
VG
830static inline s64
831cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
832{
833 return cfqg->vdisktime - st->min_vdisktime;
834}
835
836static void
837__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
838{
839 struct rb_node **node = &st->rb.rb_node;
840 struct rb_node *parent = NULL;
841 struct cfq_group *__cfqg;
842 s64 key = cfqg_key(st, cfqg);
843 int left = 1;
844
845 while (*node != NULL) {
846 parent = *node;
847 __cfqg = rb_entry_cfqg(parent);
848
849 if (key < cfqg_key(st, __cfqg))
850 node = &parent->rb_left;
851 else {
852 node = &parent->rb_right;
853 left = 0;
854 }
855 }
856
857 if (left)
858 st->left = &cfqg->rb_node;
859
860 rb_link_node(&cfqg->rb_node, parent, node);
861 rb_insert_color(&cfqg->rb_node, &st->rb);
862}
863
864static void
865cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
866{
867 struct cfq_rb_root *st = &cfqd->grp_service_tree;
868 struct cfq_group *__cfqg;
869 struct rb_node *n;
870
871 cfqg->nr_cfqq++;
872 if (cfqg->on_st)
873 return;
874
875 /*
876 * Currently put the group at the end. Later implement something
877 * so that groups get lesser vtime based on their weights, so that
878 * if group does not loose all if it was not continously backlogged.
879 */
880 n = rb_last(&st->rb);
881 if (n) {
882 __cfqg = rb_entry_cfqg(n);
883 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
884 } else
885 cfqg->vdisktime = st->min_vdisktime;
886
887 __cfq_group_service_tree_add(st, cfqg);
888 cfqg->on_st = true;
58ff82f3 889 st->total_weight += cfqg->weight;
1fa8f6d6
VG
890}
891
892static void
893cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
894{
895 struct cfq_rb_root *st = &cfqd->grp_service_tree;
896
25bc6b07
VG
897 if (st->active == &cfqg->rb_node)
898 st->active = NULL;
899
1fa8f6d6
VG
900 BUG_ON(cfqg->nr_cfqq < 1);
901 cfqg->nr_cfqq--;
25bc6b07 902
1fa8f6d6
VG
903 /* If there are other cfq queues under this group, don't delete it */
904 if (cfqg->nr_cfqq)
905 return;
906
2868ef7b 907 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 908 cfqg->on_st = false;
58ff82f3 909 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
910 if (!RB_EMPTY_NODE(&cfqg->rb_node))
911 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 912 cfqg->saved_workload_slice = 0;
e98ef89b 913 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
914}
915
916static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
917{
f75edf2d 918 unsigned int slice_used;
dae739eb
VG
919
920 /*
921 * Queue got expired before even a single request completed or
922 * got expired immediately after first request completion.
923 */
924 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
925 /*
926 * Also charge the seek time incurred to the group, otherwise
927 * if there are mutiple queues in the group, each can dispatch
928 * a single request on seeky media and cause lots of seek time
929 * and group will never know it.
930 */
931 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
932 1);
933 } else {
934 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
935 if (slice_used > cfqq->allocated_slice)
936 slice_used = cfqq->allocated_slice;
dae739eb
VG
937 }
938
dae739eb
VG
939 return slice_used;
940}
941
942static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 943 struct cfq_queue *cfqq)
dae739eb
VG
944{
945 struct cfq_rb_root *st = &cfqd->grp_service_tree;
02b35081 946 unsigned int used_sl, charge;
f26bd1f0
VG
947 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
948 - cfqg->service_tree_idle.count;
949
950 BUG_ON(nr_sync < 0);
02b35081 951 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
dae739eb 952
02b35081
VG
953 if (iops_mode(cfqd))
954 charge = cfqq->slice_dispatch;
955 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
956 charge = cfqq->allocated_slice;
dae739eb
VG
957
958 /* Can't update vdisktime while group is on service tree */
959 cfq_rb_erase(&cfqg->rb_node, st);
02b35081 960 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
dae739eb
VG
961 __cfq_group_service_tree_add(st, cfqg);
962
963 /* This group is being expired. Save the context */
964 if (time_after(cfqd->workload_expires, jiffies)) {
965 cfqg->saved_workload_slice = cfqd->workload_expires
966 - jiffies;
967 cfqg->saved_workload = cfqd->serving_type;
968 cfqg->saved_serving_prio = cfqd->serving_prio;
969 } else
970 cfqg->saved_workload_slice = 0;
2868ef7b
VG
971
972 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
973 st->min_vdisktime);
c4e7893e
VG
974 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
975 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
976 iops_mode(cfqd), cfqq->nr_sectors);
e98ef89b
VG
977 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
978 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
979}
980
25fb5169
VG
981#ifdef CONFIG_CFQ_GROUP_IOSCHED
982static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
983{
984 if (blkg)
985 return container_of(blkg, struct cfq_group, blkg);
986 return NULL;
987}
988
fe071437
VG
989void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
990 unsigned int weight)
f8d461d6
VG
991{
992 cfqg_of_blkg(blkg)->weight = weight;
993}
994
25fb5169
VG
995static struct cfq_group *
996cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
997{
998 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
999 struct cfq_group *cfqg = NULL;
1000 void *key = cfqd;
1001 int i, j;
1002 struct cfq_rb_root *st;
22084190
VG
1003 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1004 unsigned int major, minor;
25fb5169 1005
25fb5169 1006 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
1007 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1008 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1009 cfqg->blkg.dev = MKDEV(major, minor);
1010 goto done;
1011 }
25fb5169
VG
1012 if (cfqg || !create)
1013 goto done;
1014
1015 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1016 if (!cfqg)
1017 goto done;
1018
25fb5169
VG
1019 for_each_cfqg_st(cfqg, i, j, st)
1020 *st = CFQ_RB_ROOT;
1021 RB_CLEAR_NODE(&cfqg->rb_node);
1022
b1c35769
VG
1023 /*
1024 * Take the initial reference that will be released on destroy
1025 * This can be thought of a joint reference by cgroup and
1026 * elevator which will be dropped by either elevator exit
1027 * or cgroup deletion path depending on who is exiting first.
1028 */
1029 atomic_set(&cfqg->ref, 1);
1030
180be2a0
VG
1031 /*
1032 * Add group onto cgroup list. It might happen that bdi->dev is
1033 * not initiliazed yet. Initialize this new group without major
1034 * and minor info and this info will be filled in once a new thread
1035 * comes for IO. See code above.
1036 */
1037 if (bdi->dev) {
1038 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1039 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1040 MKDEV(major, minor));
180be2a0
VG
1041 } else
1042 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1043 0);
1044
34d0f179 1045 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1046
1047 /* Add group on cfqd list */
1048 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1049
1050done:
25fb5169
VG
1051 return cfqg;
1052}
1053
1054/*
1055 * Search for the cfq group current task belongs to. If create = 1, then also
1056 * create the cfq group if it does not exist. request_queue lock must be held.
1057 */
1058static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1059{
1060 struct cgroup *cgroup;
1061 struct cfq_group *cfqg = NULL;
1062
1063 rcu_read_lock();
1064 cgroup = task_cgroup(current, blkio_subsys_id);
1065 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1066 if (!cfqg && create)
1067 cfqg = &cfqd->root_group;
1068 rcu_read_unlock();
1069 return cfqg;
1070}
1071
7f1dc8a2
VG
1072static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1073{
1074 atomic_inc(&cfqg->ref);
1075 return cfqg;
1076}
1077
25fb5169
VG
1078static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1079{
1080 /* Currently, all async queues are mapped to root group */
1081 if (!cfq_cfqq_sync(cfqq))
1082 cfqg = &cfqq->cfqd->root_group;
1083
1084 cfqq->cfqg = cfqg;
b1c35769
VG
1085 /* cfqq reference on cfqg */
1086 atomic_inc(&cfqq->cfqg->ref);
1087}
1088
1089static void cfq_put_cfqg(struct cfq_group *cfqg)
1090{
1091 struct cfq_rb_root *st;
1092 int i, j;
1093
1094 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1095 if (!atomic_dec_and_test(&cfqg->ref))
1096 return;
1097 for_each_cfqg_st(cfqg, i, j, st)
1098 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1099 kfree(cfqg);
1100}
1101
1102static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1103{
1104 /* Something wrong if we are trying to remove same group twice */
1105 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1106
1107 hlist_del_init(&cfqg->cfqd_node);
1108
1109 /*
1110 * Put the reference taken at the time of creation so that when all
1111 * queues are gone, group can be destroyed.
1112 */
1113 cfq_put_cfqg(cfqg);
1114}
1115
1116static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1117{
1118 struct hlist_node *pos, *n;
1119 struct cfq_group *cfqg;
1120
1121 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1122 /*
1123 * If cgroup removal path got to blk_group first and removed
1124 * it from cgroup list, then it will take care of destroying
1125 * cfqg also.
1126 */
e98ef89b 1127 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1128 cfq_destroy_cfqg(cfqd, cfqg);
1129 }
25fb5169 1130}
b1c35769
VG
1131
1132/*
1133 * Blk cgroup controller notification saying that blkio_group object is being
1134 * delinked as associated cgroup object is going away. That also means that
1135 * no new IO will come in this group. So get rid of this group as soon as
1136 * any pending IO in the group is finished.
1137 *
1138 * This function is called under rcu_read_lock(). key is the rcu protected
1139 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1140 * read lock.
1141 *
1142 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1143 * it should not be NULL as even if elevator was exiting, cgroup deltion
1144 * path got to it first.
1145 */
1146void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1147{
1148 unsigned long flags;
1149 struct cfq_data *cfqd = key;
1150
1151 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1152 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1153 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1154}
1155
25fb5169
VG
1156#else /* GROUP_IOSCHED */
1157static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1158{
1159 return &cfqd->root_group;
1160}
7f1dc8a2
VG
1161
1162static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1163{
50eaeb32 1164 return cfqg;
7f1dc8a2
VG
1165}
1166
25fb5169
VG
1167static inline void
1168cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1169 cfqq->cfqg = cfqg;
1170}
1171
b1c35769
VG
1172static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1173static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1174
25fb5169
VG
1175#endif /* GROUP_IOSCHED */
1176
498d3aa2 1177/*
c0324a02 1178 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1179 * requests waiting to be processed. It is sorted in the order that
1180 * we will service the queues.
1181 */
a36e71f9 1182static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1183 bool add_front)
d9e7620e 1184{
0871714e
JA
1185 struct rb_node **p, *parent;
1186 struct cfq_queue *__cfqq;
d9e7620e 1187 unsigned long rb_key;
c0324a02 1188 struct cfq_rb_root *service_tree;
498d3aa2 1189 int left;
dae739eb 1190 int new_cfqq = 1;
ae30c286
VG
1191 int group_changed = 0;
1192
1193#ifdef CONFIG_CFQ_GROUP_IOSCHED
1194 if (!cfqd->cfq_group_isolation
1195 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1196 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1197 /* Move this cfq to root group */
1198 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1199 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1200 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1201 cfqq->orig_cfqg = cfqq->cfqg;
1202 cfqq->cfqg = &cfqd->root_group;
1203 atomic_inc(&cfqd->root_group.ref);
1204 group_changed = 1;
1205 } else if (!cfqd->cfq_group_isolation
1206 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1207 /* cfqq is sequential now needs to go to its original group */
1208 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1209 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1210 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1211 cfq_put_cfqg(cfqq->cfqg);
1212 cfqq->cfqg = cfqq->orig_cfqg;
1213 cfqq->orig_cfqg = NULL;
1214 group_changed = 1;
1215 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1216 }
1217#endif
d9e7620e 1218
cdb16e8f 1219 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1220 cfqq_type(cfqq));
0871714e
JA
1221 if (cfq_class_idle(cfqq)) {
1222 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1223 parent = rb_last(&service_tree->rb);
0871714e
JA
1224 if (parent && parent != &cfqq->rb_node) {
1225 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1226 rb_key += __cfqq->rb_key;
1227 } else
1228 rb_key += jiffies;
1229 } else if (!add_front) {
b9c8946b
JA
1230 /*
1231 * Get our rb key offset. Subtract any residual slice
1232 * value carried from last service. A negative resid
1233 * count indicates slice overrun, and this should position
1234 * the next service time further away in the tree.
1235 */
edd75ffd 1236 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1237 rb_key -= cfqq->slice_resid;
edd75ffd 1238 cfqq->slice_resid = 0;
48e025e6
CZ
1239 } else {
1240 rb_key = -HZ;
aa6f6a3d 1241 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1242 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1243 }
1da177e4 1244
d9e7620e 1245 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1246 new_cfqq = 0;
99f9628a 1247 /*
d9e7620e 1248 * same position, nothing more to do
99f9628a 1249 */
c0324a02
CZ
1250 if (rb_key == cfqq->rb_key &&
1251 cfqq->service_tree == service_tree)
d9e7620e 1252 return;
1da177e4 1253
aa6f6a3d
CZ
1254 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1255 cfqq->service_tree = NULL;
1da177e4 1256 }
d9e7620e 1257
498d3aa2 1258 left = 1;
0871714e 1259 parent = NULL;
aa6f6a3d
CZ
1260 cfqq->service_tree = service_tree;
1261 p = &service_tree->rb.rb_node;
d9e7620e 1262 while (*p) {
67060e37 1263 struct rb_node **n;
cc09e299 1264
d9e7620e
JA
1265 parent = *p;
1266 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1267
0c534e0a 1268 /*
c0324a02 1269 * sort by key, that represents service time.
0c534e0a 1270 */
c0324a02 1271 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1272 n = &(*p)->rb_left;
c0324a02 1273 else {
67060e37 1274 n = &(*p)->rb_right;
cc09e299 1275 left = 0;
c0324a02 1276 }
67060e37
JA
1277
1278 p = n;
d9e7620e
JA
1279 }
1280
cc09e299 1281 if (left)
aa6f6a3d 1282 service_tree->left = &cfqq->rb_node;
cc09e299 1283
d9e7620e
JA
1284 cfqq->rb_key = rb_key;
1285 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1286 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1287 service_tree->count++;
ae30c286 1288 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1289 return;
1fa8f6d6 1290 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1291}
1292
a36e71f9 1293static struct cfq_queue *
f2d1f0ae
JA
1294cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1295 sector_t sector, struct rb_node **ret_parent,
1296 struct rb_node ***rb_link)
a36e71f9 1297{
a36e71f9
JA
1298 struct rb_node **p, *parent;
1299 struct cfq_queue *cfqq = NULL;
1300
1301 parent = NULL;
1302 p = &root->rb_node;
1303 while (*p) {
1304 struct rb_node **n;
1305
1306 parent = *p;
1307 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1308
1309 /*
1310 * Sort strictly based on sector. Smallest to the left,
1311 * largest to the right.
1312 */
2e46e8b2 1313 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1314 n = &(*p)->rb_right;
2e46e8b2 1315 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1316 n = &(*p)->rb_left;
1317 else
1318 break;
1319 p = n;
3ac6c9f8 1320 cfqq = NULL;
a36e71f9
JA
1321 }
1322
1323 *ret_parent = parent;
1324 if (rb_link)
1325 *rb_link = p;
3ac6c9f8 1326 return cfqq;
a36e71f9
JA
1327}
1328
1329static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1330{
a36e71f9
JA
1331 struct rb_node **p, *parent;
1332 struct cfq_queue *__cfqq;
1333
f2d1f0ae
JA
1334 if (cfqq->p_root) {
1335 rb_erase(&cfqq->p_node, cfqq->p_root);
1336 cfqq->p_root = NULL;
1337 }
a36e71f9
JA
1338
1339 if (cfq_class_idle(cfqq))
1340 return;
1341 if (!cfqq->next_rq)
1342 return;
1343
f2d1f0ae 1344 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1345 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1346 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1347 if (!__cfqq) {
1348 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1349 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1350 } else
1351 cfqq->p_root = NULL;
a36e71f9
JA
1352}
1353
498d3aa2
JA
1354/*
1355 * Update cfqq's position in the service tree.
1356 */
edd75ffd 1357static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1358{
6d048f53
JA
1359 /*
1360 * Resorting requires the cfqq to be on the RR list already.
1361 */
a36e71f9 1362 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1363 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1364 cfq_prio_tree_add(cfqd, cfqq);
1365 }
6d048f53
JA
1366}
1367
1da177e4
LT
1368/*
1369 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1370 * the pending list according to last request service
1da177e4 1371 */
febffd61 1372static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1373{
7b679138 1374 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1375 BUG_ON(cfq_cfqq_on_rr(cfqq));
1376 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1377 cfqd->busy_queues++;
1378
edd75ffd 1379 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1380}
1381
498d3aa2
JA
1382/*
1383 * Called when the cfqq no longer has requests pending, remove it from
1384 * the service tree.
1385 */
febffd61 1386static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1387{
7b679138 1388 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1389 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1390 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1391
aa6f6a3d
CZ
1392 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1393 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1394 cfqq->service_tree = NULL;
1395 }
f2d1f0ae
JA
1396 if (cfqq->p_root) {
1397 rb_erase(&cfqq->p_node, cfqq->p_root);
1398 cfqq->p_root = NULL;
1399 }
d9e7620e 1400
1fa8f6d6 1401 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1402 BUG_ON(!cfqd->busy_queues);
1403 cfqd->busy_queues--;
1404}
1405
1406/*
1407 * rb tree support functions
1408 */
febffd61 1409static void cfq_del_rq_rb(struct request *rq)
1da177e4 1410{
5e705374 1411 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1412 const int sync = rq_is_sync(rq);
1da177e4 1413
b4878f24
JA
1414 BUG_ON(!cfqq->queued[sync]);
1415 cfqq->queued[sync]--;
1da177e4 1416
5e705374 1417 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1418
f04a6424
VG
1419 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1420 /*
1421 * Queue will be deleted from service tree when we actually
1422 * expire it later. Right now just remove it from prio tree
1423 * as it is empty.
1424 */
1425 if (cfqq->p_root) {
1426 rb_erase(&cfqq->p_node, cfqq->p_root);
1427 cfqq->p_root = NULL;
1428 }
1429 }
1da177e4
LT
1430}
1431
5e705374 1432static void cfq_add_rq_rb(struct request *rq)
1da177e4 1433{
5e705374 1434 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1435 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1436 struct request *__alias, *prev;
1da177e4 1437
5380a101 1438 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1439
1440 /*
1441 * looks a little odd, but the first insert might return an alias.
1442 * if that happens, put the alias on the dispatch list
1443 */
21183b07 1444 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1445 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1446
1447 if (!cfq_cfqq_on_rr(cfqq))
1448 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1449
1450 /*
1451 * check if this request is a better next-serve candidate
1452 */
a36e71f9 1453 prev = cfqq->next_rq;
cf7c25cf 1454 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1455
1456 /*
1457 * adjust priority tree position, if ->next_rq changes
1458 */
1459 if (prev != cfqq->next_rq)
1460 cfq_prio_tree_add(cfqd, cfqq);
1461
5044eed4 1462 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1463}
1464
febffd61 1465static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1466{
5380a101
JA
1467 elv_rb_del(&cfqq->sort_list, rq);
1468 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1469 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1470 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1471 cfq_add_rq_rb(rq);
e98ef89b 1472 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1473 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1474 rq_is_sync(rq));
1da177e4
LT
1475}
1476
206dc69b
JA
1477static struct request *
1478cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1479{
206dc69b 1480 struct task_struct *tsk = current;
91fac317 1481 struct cfq_io_context *cic;
206dc69b 1482 struct cfq_queue *cfqq;
1da177e4 1483
4ac845a2 1484 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1485 if (!cic)
1486 return NULL;
1487
1488 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1489 if (cfqq) {
1490 sector_t sector = bio->bi_sector + bio_sectors(bio);
1491
21183b07 1492 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1493 }
1da177e4 1494
1da177e4
LT
1495 return NULL;
1496}
1497
165125e1 1498static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1499{
22e2c507 1500 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1501
53c583d2 1502 cfqd->rq_in_driver++;
7b679138 1503 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1504 cfqd->rq_in_driver);
25776e35 1505
5b93629b 1506 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1507}
1508
165125e1 1509static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1510{
b4878f24
JA
1511 struct cfq_data *cfqd = q->elevator->elevator_data;
1512
53c583d2
CZ
1513 WARN_ON(!cfqd->rq_in_driver);
1514 cfqd->rq_in_driver--;
7b679138 1515 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1516 cfqd->rq_in_driver);
1da177e4
LT
1517}
1518
b4878f24 1519static void cfq_remove_request(struct request *rq)
1da177e4 1520{
5e705374 1521 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1522
5e705374
JA
1523 if (cfqq->next_rq == rq)
1524 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1525
b4878f24 1526 list_del_init(&rq->queuelist);
5e705374 1527 cfq_del_rq_rb(rq);
374f84ac 1528
45333d5a 1529 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1530 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1531 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1532 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1533 WARN_ON(!cfqq->meta_pending);
1534 cfqq->meta_pending--;
1535 }
1da177e4
LT
1536}
1537
165125e1
JA
1538static int cfq_merge(struct request_queue *q, struct request **req,
1539 struct bio *bio)
1da177e4
LT
1540{
1541 struct cfq_data *cfqd = q->elevator->elevator_data;
1542 struct request *__rq;
1da177e4 1543
206dc69b 1544 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1545 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1546 *req = __rq;
1547 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1548 }
1549
1550 return ELEVATOR_NO_MERGE;
1da177e4
LT
1551}
1552
165125e1 1553static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1554 int type)
1da177e4 1555{
21183b07 1556 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1557 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1558
5e705374 1559 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1560 }
1da177e4
LT
1561}
1562
812d4026
DS
1563static void cfq_bio_merged(struct request_queue *q, struct request *req,
1564 struct bio *bio)
1565{
e98ef89b
VG
1566 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1567 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1568}
1569
1da177e4 1570static void
165125e1 1571cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1572 struct request *next)
1573{
cf7c25cf 1574 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1575 /*
1576 * reposition in fifo if next is older than rq
1577 */
1578 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1579 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1580 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1581 rq_set_fifo_time(rq, rq_fifo_time(next));
1582 }
22e2c507 1583
cf7c25cf
CZ
1584 if (cfqq->next_rq == next)
1585 cfqq->next_rq = rq;
b4878f24 1586 cfq_remove_request(next);
e98ef89b
VG
1587 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1588 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1589}
1590
165125e1 1591static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1592 struct bio *bio)
1593{
1594 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1595 struct cfq_io_context *cic;
da775265 1596 struct cfq_queue *cfqq;
da775265
JA
1597
1598 /*
ec8acb69 1599 * Disallow merge of a sync bio into an async request.
da775265 1600 */
91fac317 1601 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1602 return false;
da775265
JA
1603
1604 /*
719d3402
JA
1605 * Lookup the cfqq that this bio will be queued with. Allow
1606 * merge only if rq is queued there.
da775265 1607 */
4ac845a2 1608 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1609 if (!cic)
a6151c3a 1610 return false;
719d3402 1611
91fac317 1612 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1613 return cfqq == RQ_CFQQ(rq);
da775265
JA
1614}
1615
812df48d
DS
1616static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1617{
1618 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1619 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1620}
1621
febffd61
JA
1622static void __cfq_set_active_queue(struct cfq_data *cfqd,
1623 struct cfq_queue *cfqq)
22e2c507
JA
1624{
1625 if (cfqq) {
b1ffe737
DS
1626 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1627 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1628 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1629 cfqq->slice_start = 0;
1630 cfqq->dispatch_start = jiffies;
f75edf2d 1631 cfqq->allocated_slice = 0;
22e2c507 1632 cfqq->slice_end = 0;
2f5cb738 1633 cfqq->slice_dispatch = 0;
c4e7893e 1634 cfqq->nr_sectors = 0;
2f5cb738 1635
2f5cb738 1636 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1637 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1638 cfq_clear_cfqq_must_alloc_slice(cfqq);
1639 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1640 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1641
812df48d 1642 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1643 }
1644
1645 cfqd->active_queue = cfqq;
1646}
1647
7b14e3b5
JA
1648/*
1649 * current cfqq expired its slice (or was too idle), select new one
1650 */
1651static void
1652__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1653 bool timed_out)
7b14e3b5 1654{
7b679138
JA
1655 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1656
7b14e3b5 1657 if (cfq_cfqq_wait_request(cfqq))
812df48d 1658 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1659
7b14e3b5 1660 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1661 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1662
ae54abed
SL
1663 /*
1664 * If this cfqq is shared between multiple processes, check to
1665 * make sure that those processes are still issuing I/Os within
1666 * the mean seek distance. If not, it may be time to break the
1667 * queues apart again.
1668 */
1669 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1670 cfq_mark_cfqq_split_coop(cfqq);
1671
7b14e3b5 1672 /*
6084cdda 1673 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1674 */
7b679138 1675 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1676 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1677 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1678 }
7b14e3b5 1679
e5ff082e 1680 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1681
f04a6424
VG
1682 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1683 cfq_del_cfqq_rr(cfqd, cfqq);
1684
edd75ffd 1685 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1686
1687 if (cfqq == cfqd->active_queue)
1688 cfqd->active_queue = NULL;
1689
dae739eb
VG
1690 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1691 cfqd->grp_service_tree.active = NULL;
1692
7b14e3b5
JA
1693 if (cfqd->active_cic) {
1694 put_io_context(cfqd->active_cic->ioc);
1695 cfqd->active_cic = NULL;
1696 }
7b14e3b5
JA
1697}
1698
e5ff082e 1699static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1700{
1701 struct cfq_queue *cfqq = cfqd->active_queue;
1702
1703 if (cfqq)
e5ff082e 1704 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1705}
1706
498d3aa2
JA
1707/*
1708 * Get next queue for service. Unless we have a queue preemption,
1709 * we'll simply select the first cfqq in the service tree.
1710 */
6d048f53 1711static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1712{
c0324a02 1713 struct cfq_rb_root *service_tree =
cdb16e8f 1714 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1715 cfqd->serving_type);
d9e7620e 1716
f04a6424
VG
1717 if (!cfqd->rq_queued)
1718 return NULL;
1719
1fa8f6d6
VG
1720 /* There is nothing to dispatch */
1721 if (!service_tree)
1722 return NULL;
c0324a02
CZ
1723 if (RB_EMPTY_ROOT(&service_tree->rb))
1724 return NULL;
1725 return cfq_rb_first(service_tree);
6d048f53
JA
1726}
1727
f04a6424
VG
1728static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1729{
25fb5169 1730 struct cfq_group *cfqg;
f04a6424
VG
1731 struct cfq_queue *cfqq;
1732 int i, j;
1733 struct cfq_rb_root *st;
1734
1735 if (!cfqd->rq_queued)
1736 return NULL;
1737
25fb5169
VG
1738 cfqg = cfq_get_next_cfqg(cfqd);
1739 if (!cfqg)
1740 return NULL;
1741
f04a6424
VG
1742 for_each_cfqg_st(cfqg, i, j, st)
1743 if ((cfqq = cfq_rb_first(st)) != NULL)
1744 return cfqq;
1745 return NULL;
1746}
1747
498d3aa2
JA
1748/*
1749 * Get and set a new active queue for service.
1750 */
a36e71f9
JA
1751static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1752 struct cfq_queue *cfqq)
6d048f53 1753{
e00ef799 1754 if (!cfqq)
a36e71f9 1755 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1756
22e2c507 1757 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1758 return cfqq;
22e2c507
JA
1759}
1760
d9e7620e
JA
1761static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1762 struct request *rq)
1763{
83096ebf
TH
1764 if (blk_rq_pos(rq) >= cfqd->last_position)
1765 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1766 else
83096ebf 1767 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1768}
1769
b2c18e1e 1770static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1771 struct request *rq)
6d048f53 1772{
e9ce335d 1773 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1774}
1775
a36e71f9
JA
1776static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1777 struct cfq_queue *cur_cfqq)
1778{
f2d1f0ae 1779 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1780 struct rb_node *parent, *node;
1781 struct cfq_queue *__cfqq;
1782 sector_t sector = cfqd->last_position;
1783
1784 if (RB_EMPTY_ROOT(root))
1785 return NULL;
1786
1787 /*
1788 * First, if we find a request starting at the end of the last
1789 * request, choose it.
1790 */
f2d1f0ae 1791 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1792 if (__cfqq)
1793 return __cfqq;
1794
1795 /*
1796 * If the exact sector wasn't found, the parent of the NULL leaf
1797 * will contain the closest sector.
1798 */
1799 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1800 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1801 return __cfqq;
1802
2e46e8b2 1803 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1804 node = rb_next(&__cfqq->p_node);
1805 else
1806 node = rb_prev(&__cfqq->p_node);
1807 if (!node)
1808 return NULL;
1809
1810 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1811 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1812 return __cfqq;
1813
1814 return NULL;
1815}
1816
1817/*
1818 * cfqd - obvious
1819 * cur_cfqq - passed in so that we don't decide that the current queue is
1820 * closely cooperating with itself.
1821 *
1822 * So, basically we're assuming that that cur_cfqq has dispatched at least
1823 * one request, and that cfqd->last_position reflects a position on the disk
1824 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1825 * assumption.
1826 */
1827static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1828 struct cfq_queue *cur_cfqq)
6d048f53 1829{
a36e71f9
JA
1830 struct cfq_queue *cfqq;
1831
39c01b21
DS
1832 if (cfq_class_idle(cur_cfqq))
1833 return NULL;
e6c5bc73
JM
1834 if (!cfq_cfqq_sync(cur_cfqq))
1835 return NULL;
1836 if (CFQQ_SEEKY(cur_cfqq))
1837 return NULL;
1838
b9d8f4c7
GJ
1839 /*
1840 * Don't search priority tree if it's the only queue in the group.
1841 */
1842 if (cur_cfqq->cfqg->nr_cfqq == 1)
1843 return NULL;
1844
6d048f53 1845 /*
d9e7620e
JA
1846 * We should notice if some of the queues are cooperating, eg
1847 * working closely on the same area of the disk. In that case,
1848 * we can group them together and don't waste time idling.
6d048f53 1849 */
a36e71f9
JA
1850 cfqq = cfqq_close(cfqd, cur_cfqq);
1851 if (!cfqq)
1852 return NULL;
1853
8682e1f1
VG
1854 /* If new queue belongs to different cfq_group, don't choose it */
1855 if (cur_cfqq->cfqg != cfqq->cfqg)
1856 return NULL;
1857
df5fe3e8
JM
1858 /*
1859 * It only makes sense to merge sync queues.
1860 */
1861 if (!cfq_cfqq_sync(cfqq))
1862 return NULL;
e6c5bc73
JM
1863 if (CFQQ_SEEKY(cfqq))
1864 return NULL;
df5fe3e8 1865
c0324a02
CZ
1866 /*
1867 * Do not merge queues of different priority classes
1868 */
1869 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1870 return NULL;
1871
a36e71f9 1872 return cfqq;
6d048f53
JA
1873}
1874
a6d44e98
CZ
1875/*
1876 * Determine whether we should enforce idle window for this queue.
1877 */
1878
1879static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1880{
1881 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1882 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1883
f04a6424
VG
1884 BUG_ON(!service_tree);
1885 BUG_ON(!service_tree->count);
1886
b6508c16
VG
1887 if (!cfqd->cfq_slice_idle)
1888 return false;
1889
a6d44e98
CZ
1890 /* We never do for idle class queues. */
1891 if (prio == IDLE_WORKLOAD)
1892 return false;
1893
1894 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1895 if (cfq_cfqq_idle_window(cfqq) &&
1896 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1897 return true;
1898
1899 /*
1900 * Otherwise, we do only if they are the last ones
1901 * in their service tree.
1902 */
b1ffe737 1903 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1904 return true;
b1ffe737
DS
1905 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1906 service_tree->count);
c1e44756 1907 return false;
a6d44e98
CZ
1908}
1909
6d048f53 1910static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1911{
1792669c 1912 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1913 struct cfq_io_context *cic;
80bdf0c7 1914 unsigned long sl, group_idle = 0;
7b14e3b5 1915
a68bbddb 1916 /*
f7d7b7a7
JA
1917 * SSD device without seek penalty, disable idling. But only do so
1918 * for devices that support queuing, otherwise we still have a problem
1919 * with sync vs async workloads.
a68bbddb 1920 */
f7d7b7a7 1921 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1922 return;
1923
dd67d051 1924 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1925 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1926
1927 /*
1928 * idle is disabled, either manually or by past process history
1929 */
80bdf0c7
VG
1930 if (!cfq_should_idle(cfqd, cfqq)) {
1931 /* no queue idling. Check for group idling */
1932 if (cfqd->cfq_group_idle)
1933 group_idle = cfqd->cfq_group_idle;
1934 else
1935 return;
1936 }
6d048f53 1937
7b679138 1938 /*
8e550632 1939 * still active requests from this queue, don't idle
7b679138 1940 */
8e550632 1941 if (cfqq->dispatched)
7b679138
JA
1942 return;
1943
22e2c507
JA
1944 /*
1945 * task has exited, don't wait
1946 */
206dc69b 1947 cic = cfqd->active_cic;
66dac98e 1948 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1949 return;
1950
355b659c
CZ
1951 /*
1952 * If our average think time is larger than the remaining time
1953 * slice, then don't idle. This avoids overrunning the allotted
1954 * time slice.
1955 */
1956 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1957 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1958 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1959 cic->ttime_mean);
355b659c 1960 return;
b1ffe737 1961 }
355b659c 1962
80bdf0c7
VG
1963 /* There are other queues in the group, don't do group idle */
1964 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1965 return;
1966
3b18152c 1967 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1968
80bdf0c7
VG
1969 if (group_idle)
1970 sl = cfqd->cfq_group_idle;
1971 else
1972 sl = cfqd->cfq_slice_idle;
206dc69b 1973
7b14e3b5 1974 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1975 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
1976 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1977 group_idle ? 1 : 0);
1da177e4
LT
1978}
1979
498d3aa2
JA
1980/*
1981 * Move request from internal lists to the request queue dispatch list.
1982 */
165125e1 1983static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1984{
3ed9a296 1985 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1986 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1987
7b679138
JA
1988 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1989
06d21886 1990 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1991 cfq_remove_request(rq);
6d048f53 1992 cfqq->dispatched++;
80bdf0c7 1993 (RQ_CFQG(rq))->dispatched++;
5380a101 1994 elv_dispatch_sort(q, rq);
3ed9a296 1995
53c583d2 1996 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 1997 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 1998 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1999 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2000}
2001
2002/*
2003 * return expired entry, or NULL to just start from scratch in rbtree
2004 */
febffd61 2005static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2006{
30996f40 2007 struct request *rq = NULL;
1da177e4 2008
3b18152c 2009 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2010 return NULL;
cb887411
JA
2011
2012 cfq_mark_cfqq_fifo_expire(cfqq);
2013
89850f7e
JA
2014 if (list_empty(&cfqq->fifo))
2015 return NULL;
1da177e4 2016
89850f7e 2017 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2018 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2019 rq = NULL;
1da177e4 2020
30996f40 2021 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2022 return rq;
1da177e4
LT
2023}
2024
22e2c507
JA
2025static inline int
2026cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2027{
2028 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2029
22e2c507 2030 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2031
22e2c507 2032 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
2033}
2034
df5fe3e8
JM
2035/*
2036 * Must be called with the queue_lock held.
2037 */
2038static int cfqq_process_refs(struct cfq_queue *cfqq)
2039{
2040 int process_refs, io_refs;
2041
2042 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2043 process_refs = atomic_read(&cfqq->ref) - io_refs;
2044 BUG_ON(process_refs < 0);
2045 return process_refs;
2046}
2047
2048static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2049{
e6c5bc73 2050 int process_refs, new_process_refs;
df5fe3e8
JM
2051 struct cfq_queue *__cfqq;
2052
c10b61f0
JM
2053 /*
2054 * If there are no process references on the new_cfqq, then it is
2055 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2056 * chain may have dropped their last reference (not just their
2057 * last process reference).
2058 */
2059 if (!cfqq_process_refs(new_cfqq))
2060 return;
2061
df5fe3e8
JM
2062 /* Avoid a circular list and skip interim queue merges */
2063 while ((__cfqq = new_cfqq->new_cfqq)) {
2064 if (__cfqq == cfqq)
2065 return;
2066 new_cfqq = __cfqq;
2067 }
2068
2069 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2070 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2071 /*
2072 * If the process for the cfqq has gone away, there is no
2073 * sense in merging the queues.
2074 */
c10b61f0 2075 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2076 return;
2077
e6c5bc73
JM
2078 /*
2079 * Merge in the direction of the lesser amount of work.
2080 */
e6c5bc73
JM
2081 if (new_process_refs >= process_refs) {
2082 cfqq->new_cfqq = new_cfqq;
2083 atomic_add(process_refs, &new_cfqq->ref);
2084 } else {
2085 new_cfqq->new_cfqq = cfqq;
2086 atomic_add(new_process_refs, &cfqq->ref);
2087 }
df5fe3e8
JM
2088}
2089
cdb16e8f 2090static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2091 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2092{
2093 struct cfq_queue *queue;
2094 int i;
2095 bool key_valid = false;
2096 unsigned long lowest_key = 0;
2097 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2098
65b32a57
VG
2099 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2100 /* select the one with lowest rb_key */
2101 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2102 if (queue &&
2103 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2104 lowest_key = queue->rb_key;
2105 cur_best = i;
2106 key_valid = true;
2107 }
2108 }
2109
2110 return cur_best;
2111}
2112
cdb16e8f 2113static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2114{
718eee05
CZ
2115 unsigned slice;
2116 unsigned count;
cdb16e8f 2117 struct cfq_rb_root *st;
58ff82f3 2118 unsigned group_slice;
718eee05 2119
1fa8f6d6
VG
2120 if (!cfqg) {
2121 cfqd->serving_prio = IDLE_WORKLOAD;
2122 cfqd->workload_expires = jiffies + 1;
2123 return;
2124 }
2125
718eee05 2126 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2127 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2128 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2129 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2130 cfqd->serving_prio = BE_WORKLOAD;
2131 else {
2132 cfqd->serving_prio = IDLE_WORKLOAD;
2133 cfqd->workload_expires = jiffies + 1;
2134 return;
2135 }
2136
2137 /*
2138 * For RT and BE, we have to choose also the type
2139 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2140 * expiration time
2141 */
65b32a57 2142 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2143 count = st->count;
718eee05
CZ
2144
2145 /*
65b32a57 2146 * check workload expiration, and that we still have other queues ready
718eee05 2147 */
65b32a57 2148 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2149 return;
2150
2151 /* otherwise select new workload type */
2152 cfqd->serving_type =
65b32a57
VG
2153 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2154 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2155 count = st->count;
718eee05
CZ
2156
2157 /*
2158 * the workload slice is computed as a fraction of target latency
2159 * proportional to the number of queues in that workload, over
2160 * all the queues in the same priority class
2161 */
58ff82f3
VG
2162 group_slice = cfq_group_slice(cfqd, cfqg);
2163
2164 slice = group_slice * count /
2165 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2166 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2167
f26bd1f0
VG
2168 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2169 unsigned int tmp;
2170
2171 /*
2172 * Async queues are currently system wide. Just taking
2173 * proportion of queues with-in same group will lead to higher
2174 * async ratio system wide as generally root group is going
2175 * to have higher weight. A more accurate thing would be to
2176 * calculate system wide asnc/sync ratio.
2177 */
2178 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2179 tmp = tmp/cfqd->busy_queues;
2180 slice = min_t(unsigned, slice, tmp);
2181
718eee05
CZ
2182 /* async workload slice is scaled down according to
2183 * the sync/async slice ratio. */
2184 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2185 } else
718eee05
CZ
2186 /* sync workload slice is at least 2 * cfq_slice_idle */
2187 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2188
2189 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2190 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2191 cfqd->workload_expires = jiffies + slice;
2192}
2193
1fa8f6d6
VG
2194static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2195{
2196 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2197 struct cfq_group *cfqg;
1fa8f6d6
VG
2198
2199 if (RB_EMPTY_ROOT(&st->rb))
2200 return NULL;
25bc6b07
VG
2201 cfqg = cfq_rb_first_group(st);
2202 st->active = &cfqg->rb_node;
2203 update_min_vdisktime(st);
2204 return cfqg;
1fa8f6d6
VG
2205}
2206
cdb16e8f
VG
2207static void cfq_choose_cfqg(struct cfq_data *cfqd)
2208{
1fa8f6d6
VG
2209 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2210
2211 cfqd->serving_group = cfqg;
dae739eb
VG
2212
2213 /* Restore the workload type data */
2214 if (cfqg->saved_workload_slice) {
2215 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2216 cfqd->serving_type = cfqg->saved_workload;
2217 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2218 } else
2219 cfqd->workload_expires = jiffies - 1;
2220
1fa8f6d6 2221 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2222}
2223
22e2c507 2224/*
498d3aa2
JA
2225 * Select a queue for service. If we have a current active queue,
2226 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2227 */
1b5ed5e1 2228static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2229{
a36e71f9 2230 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2231
22e2c507
JA
2232 cfqq = cfqd->active_queue;
2233 if (!cfqq)
2234 goto new_queue;
1da177e4 2235
f04a6424
VG
2236 if (!cfqd->rq_queued)
2237 return NULL;
c244bb50
VG
2238
2239 /*
2240 * We were waiting for group to get backlogged. Expire the queue
2241 */
2242 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2243 goto expire;
2244
22e2c507 2245 /*
6d048f53 2246 * The active queue has run out of time, expire it and select new.
22e2c507 2247 */
7667aa06
VG
2248 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2249 /*
2250 * If slice had not expired at the completion of last request
2251 * we might not have turned on wait_busy flag. Don't expire
2252 * the queue yet. Allow the group to get backlogged.
2253 *
2254 * The very fact that we have used the slice, that means we
2255 * have been idling all along on this queue and it should be
2256 * ok to wait for this request to complete.
2257 */
82bbbf28
VG
2258 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2259 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2260 cfqq = NULL;
7667aa06 2261 goto keep_queue;
82bbbf28 2262 } else
80bdf0c7 2263 goto check_group_idle;
7667aa06 2264 }
1da177e4 2265
22e2c507 2266 /*
6d048f53
JA
2267 * The active queue has requests and isn't expired, allow it to
2268 * dispatch.
22e2c507 2269 */
dd67d051 2270 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2271 goto keep_queue;
6d048f53 2272
a36e71f9
JA
2273 /*
2274 * If another queue has a request waiting within our mean seek
2275 * distance, let it run. The expire code will check for close
2276 * cooperators and put the close queue at the front of the service
df5fe3e8 2277 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2278 */
b3b6d040 2279 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2280 if (new_cfqq) {
2281 if (!cfqq->new_cfqq)
2282 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2283 goto expire;
df5fe3e8 2284 }
a36e71f9 2285
6d048f53
JA
2286 /*
2287 * No requests pending. If the active queue still has requests in
2288 * flight or is idling for a new request, allow either of these
2289 * conditions to happen (or time out) before selecting a new queue.
2290 */
80bdf0c7
VG
2291 if (timer_pending(&cfqd->idle_slice_timer)) {
2292 cfqq = NULL;
2293 goto keep_queue;
2294 }
2295
8e1ac665
SL
2296 /*
2297 * This is a deep seek queue, but the device is much faster than
2298 * the queue can deliver, don't idle
2299 **/
2300 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2301 (cfq_cfqq_slice_new(cfqq) ||
2302 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2303 cfq_clear_cfqq_deep(cfqq);
2304 cfq_clear_cfqq_idle_window(cfqq);
2305 }
2306
80bdf0c7
VG
2307 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2308 cfqq = NULL;
2309 goto keep_queue;
2310 }
2311
2312 /*
2313 * If group idle is enabled and there are requests dispatched from
2314 * this group, wait for requests to complete.
2315 */
2316check_group_idle:
2317 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2318 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2319 cfqq = NULL;
2320 goto keep_queue;
22e2c507
JA
2321 }
2322
3b18152c 2323expire:
e5ff082e 2324 cfq_slice_expired(cfqd, 0);
3b18152c 2325new_queue:
718eee05
CZ
2326 /*
2327 * Current queue expired. Check if we have to switch to a new
2328 * service tree
2329 */
2330 if (!new_cfqq)
cdb16e8f 2331 cfq_choose_cfqg(cfqd);
718eee05 2332
a36e71f9 2333 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2334keep_queue:
3b18152c 2335 return cfqq;
22e2c507
JA
2336}
2337
febffd61 2338static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2339{
2340 int dispatched = 0;
2341
2342 while (cfqq->next_rq) {
2343 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2344 dispatched++;
2345 }
2346
2347 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2348
2349 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2350 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2351 return dispatched;
2352}
2353
498d3aa2
JA
2354/*
2355 * Drain our current requests. Used for barriers and when switching
2356 * io schedulers on-the-fly.
2357 */
d9e7620e 2358static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2359{
0871714e 2360 struct cfq_queue *cfqq;
d9e7620e 2361 int dispatched = 0;
cdb16e8f 2362
3440c49f 2363 /* Expire the timeslice of the current active queue first */
e5ff082e 2364 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2365 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2366 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2367 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2368 }
1b5ed5e1 2369
1b5ed5e1
TH
2370 BUG_ON(cfqd->busy_queues);
2371
6923715a 2372 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2373 return dispatched;
2374}
2375
abc3c744
SL
2376static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2377 struct cfq_queue *cfqq)
2378{
2379 /* the queue hasn't finished any request, can't estimate */
2380 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2381 return true;
abc3c744
SL
2382 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2383 cfqq->slice_end))
c1e44756 2384 return true;
abc3c744 2385
c1e44756 2386 return false;
abc3c744
SL
2387}
2388
0b182d61 2389static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2390{
2f5cb738 2391 unsigned int max_dispatch;
22e2c507 2392
5ad531db
JA
2393 /*
2394 * Drain async requests before we start sync IO
2395 */
53c583d2 2396 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2397 return false;
5ad531db 2398
2f5cb738
JA
2399 /*
2400 * If this is an async queue and we have sync IO in flight, let it wait
2401 */
53c583d2 2402 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2403 return false;
2f5cb738 2404
abc3c744 2405 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2406 if (cfq_class_idle(cfqq))
2407 max_dispatch = 1;
b4878f24 2408
2f5cb738
JA
2409 /*
2410 * Does this cfqq already have too much IO in flight?
2411 */
2412 if (cfqq->dispatched >= max_dispatch) {
2413 /*
2414 * idle queue must always only have a single IO in flight
2415 */
3ed9a296 2416 if (cfq_class_idle(cfqq))
0b182d61 2417 return false;
3ed9a296 2418
2f5cb738
JA
2419 /*
2420 * We have other queues, don't allow more IO from this one
2421 */
abc3c744 2422 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2423 return false;
9ede209e 2424
365722bb 2425 /*
474b18cc 2426 * Sole queue user, no limit
365722bb 2427 */
abc3c744
SL
2428 if (cfqd->busy_queues == 1)
2429 max_dispatch = -1;
2430 else
2431 /*
2432 * Normally we start throttling cfqq when cfq_quantum/2
2433 * requests have been dispatched. But we can drive
2434 * deeper queue depths at the beginning of slice
2435 * subjected to upper limit of cfq_quantum.
2436 * */
2437 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2438 }
2439
2440 /*
2441 * Async queues must wait a bit before being allowed dispatch.
2442 * We also ramp up the dispatch depth gradually for async IO,
2443 * based on the last sync IO we serviced
2444 */
963b72fc 2445 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2446 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2447 unsigned int depth;
365722bb 2448
61f0c1dc 2449 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2450 if (!depth && !cfqq->dispatched)
2451 depth = 1;
8e296755
JA
2452 if (depth < max_dispatch)
2453 max_dispatch = depth;
2f5cb738 2454 }
3ed9a296 2455
0b182d61
JA
2456 /*
2457 * If we're below the current max, allow a dispatch
2458 */
2459 return cfqq->dispatched < max_dispatch;
2460}
2461
2462/*
2463 * Dispatch a request from cfqq, moving them to the request queue
2464 * dispatch list.
2465 */
2466static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2467{
2468 struct request *rq;
2469
2470 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2471
2472 if (!cfq_may_dispatch(cfqd, cfqq))
2473 return false;
2474
2475 /*
2476 * follow expired path, else get first next available
2477 */
2478 rq = cfq_check_fifo(cfqq);
2479 if (!rq)
2480 rq = cfqq->next_rq;
2481
2482 /*
2483 * insert request into driver dispatch list
2484 */
2485 cfq_dispatch_insert(cfqd->queue, rq);
2486
2487 if (!cfqd->active_cic) {
2488 struct cfq_io_context *cic = RQ_CIC(rq);
2489
2490 atomic_long_inc(&cic->ioc->refcount);
2491 cfqd->active_cic = cic;
2492 }
2493
2494 return true;
2495}
2496
2497/*
2498 * Find the cfqq that we need to service and move a request from that to the
2499 * dispatch list
2500 */
2501static int cfq_dispatch_requests(struct request_queue *q, int force)
2502{
2503 struct cfq_data *cfqd = q->elevator->elevator_data;
2504 struct cfq_queue *cfqq;
2505
2506 if (!cfqd->busy_queues)
2507 return 0;
2508
2509 if (unlikely(force))
2510 return cfq_forced_dispatch(cfqd);
2511
2512 cfqq = cfq_select_queue(cfqd);
2513 if (!cfqq)
8e296755
JA
2514 return 0;
2515
2f5cb738 2516 /*
0b182d61 2517 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2518 */
0b182d61
JA
2519 if (!cfq_dispatch_request(cfqd, cfqq))
2520 return 0;
2521
2f5cb738 2522 cfqq->slice_dispatch++;
b029195d 2523 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2524
2f5cb738
JA
2525 /*
2526 * expire an async queue immediately if it has used up its slice. idle
2527 * queue always expire after 1 dispatch round.
2528 */
2529 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2530 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2531 cfq_class_idle(cfqq))) {
2532 cfqq->slice_end = jiffies + 1;
e5ff082e 2533 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2534 }
2535
b217a903 2536 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2537 return 1;
1da177e4
LT
2538}
2539
1da177e4 2540/*
5e705374
JA
2541 * task holds one reference to the queue, dropped when task exits. each rq
2542 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2543 *
b1c35769 2544 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2545 * queue lock must be held here.
2546 */
2547static void cfq_put_queue(struct cfq_queue *cfqq)
2548{
22e2c507 2549 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2550 struct cfq_group *cfqg, *orig_cfqg;
22e2c507
JA
2551
2552 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2553
2554 if (!atomic_dec_and_test(&cfqq->ref))
2555 return;
2556
7b679138 2557 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2558 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2559 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2560 cfqg = cfqq->cfqg;
878eaddd 2561 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2562
28f95cbc 2563 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2564 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2565 cfq_schedule_dispatch(cfqd);
28f95cbc 2566 }
22e2c507 2567
f04a6424 2568 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2569 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2570 cfq_put_cfqg(cfqg);
878eaddd
VG
2571 if (orig_cfqg)
2572 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2573}
2574
d6de8be7
JA
2575/*
2576 * Must always be called with the rcu_read_lock() held
2577 */
07416d29
JA
2578static void
2579__call_for_each_cic(struct io_context *ioc,
2580 void (*func)(struct io_context *, struct cfq_io_context *))
2581{
2582 struct cfq_io_context *cic;
2583 struct hlist_node *n;
2584
2585 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2586 func(ioc, cic);
2587}
2588
4ac845a2 2589/*
34e6bbf2 2590 * Call func for each cic attached to this ioc.
4ac845a2 2591 */
34e6bbf2 2592static void
4ac845a2
JA
2593call_for_each_cic(struct io_context *ioc,
2594 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2595{
4ac845a2 2596 rcu_read_lock();
07416d29 2597 __call_for_each_cic(ioc, func);
4ac845a2 2598 rcu_read_unlock();
34e6bbf2
FC
2599}
2600
2601static void cfq_cic_free_rcu(struct rcu_head *head)
2602{
2603 struct cfq_io_context *cic;
2604
2605 cic = container_of(head, struct cfq_io_context, rcu_head);
2606
2607 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2608 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2609
9a11b4ed
JA
2610 if (ioc_gone) {
2611 /*
2612 * CFQ scheduler is exiting, grab exit lock and check
2613 * the pending io context count. If it hits zero,
2614 * complete ioc_gone and set it back to NULL
2615 */
2616 spin_lock(&ioc_gone_lock);
245b2e70 2617 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2618 complete(ioc_gone);
2619 ioc_gone = NULL;
2620 }
2621 spin_unlock(&ioc_gone_lock);
2622 }
34e6bbf2 2623}
4ac845a2 2624
34e6bbf2
FC
2625static void cfq_cic_free(struct cfq_io_context *cic)
2626{
2627 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2628}
2629
2630static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2631{
2632 unsigned long flags;
bca4b914 2633 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2634
bca4b914 2635 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2636
2637 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2638 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2639 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2640 spin_unlock_irqrestore(&ioc->lock, flags);
2641
34e6bbf2 2642 cfq_cic_free(cic);
4ac845a2
JA
2643}
2644
d6de8be7
JA
2645/*
2646 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2647 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2648 * and ->trim() which is called with the task lock held
2649 */
4ac845a2
JA
2650static void cfq_free_io_context(struct io_context *ioc)
2651{
4ac845a2 2652 /*
34e6bbf2
FC
2653 * ioc->refcount is zero here, or we are called from elv_unregister(),
2654 * so no more cic's are allowed to be linked into this ioc. So it
2655 * should be ok to iterate over the known list, we will see all cic's
2656 * since no new ones are added.
4ac845a2 2657 */
07416d29 2658 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2659}
2660
d02a2c07 2661static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2662{
df5fe3e8
JM
2663 struct cfq_queue *__cfqq, *next;
2664
df5fe3e8
JM
2665 /*
2666 * If this queue was scheduled to merge with another queue, be
2667 * sure to drop the reference taken on that queue (and others in
2668 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2669 */
2670 __cfqq = cfqq->new_cfqq;
2671 while (__cfqq) {
2672 if (__cfqq == cfqq) {
2673 WARN(1, "cfqq->new_cfqq loop detected\n");
2674 break;
2675 }
2676 next = __cfqq->new_cfqq;
2677 cfq_put_queue(__cfqq);
2678 __cfqq = next;
2679 }
d02a2c07
SL
2680}
2681
2682static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2683{
2684 if (unlikely(cfqq == cfqd->active_queue)) {
2685 __cfq_slice_expired(cfqd, cfqq, 0);
2686 cfq_schedule_dispatch(cfqd);
2687 }
2688
2689 cfq_put_cooperator(cfqq);
df5fe3e8 2690
89850f7e
JA
2691 cfq_put_queue(cfqq);
2692}
22e2c507 2693
89850f7e
JA
2694static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2695 struct cfq_io_context *cic)
2696{
4faa3c81
FC
2697 struct io_context *ioc = cic->ioc;
2698
fc46379d 2699 list_del_init(&cic->queue_list);
4ac845a2
JA
2700
2701 /*
bca4b914 2702 * Make sure dead mark is seen for dead queues
4ac845a2 2703 */
fc46379d 2704 smp_wmb();
bca4b914 2705 cic->key = cfqd_dead_key(cfqd);
fc46379d 2706
4faa3c81
FC
2707 if (ioc->ioc_data == cic)
2708 rcu_assign_pointer(ioc->ioc_data, NULL);
2709
ff6657c6
JA
2710 if (cic->cfqq[BLK_RW_ASYNC]) {
2711 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2712 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2713 }
2714
ff6657c6
JA
2715 if (cic->cfqq[BLK_RW_SYNC]) {
2716 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2717 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2718 }
89850f7e
JA
2719}
2720
4ac845a2
JA
2721static void cfq_exit_single_io_context(struct io_context *ioc,
2722 struct cfq_io_context *cic)
89850f7e 2723{
bca4b914 2724 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2725
89850f7e 2726 if (cfqd) {
165125e1 2727 struct request_queue *q = cfqd->queue;
4ac845a2 2728 unsigned long flags;
89850f7e 2729
4ac845a2 2730 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2731
2732 /*
2733 * Ensure we get a fresh copy of the ->key to prevent
2734 * race between exiting task and queue
2735 */
2736 smp_read_barrier_depends();
bca4b914 2737 if (cic->key == cfqd)
62c1fe9d
JA
2738 __cfq_exit_single_io_context(cfqd, cic);
2739
4ac845a2 2740 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2741 }
1da177e4
LT
2742}
2743
498d3aa2
JA
2744/*
2745 * The process that ioc belongs to has exited, we need to clean up
2746 * and put the internal structures we have that belongs to that process.
2747 */
e2d74ac0 2748static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2749{
4ac845a2 2750 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2751}
2752
22e2c507 2753static struct cfq_io_context *
8267e268 2754cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2755{
b5deef90 2756 struct cfq_io_context *cic;
1da177e4 2757
94f6030c
CL
2758 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2759 cfqd->queue->node);
1da177e4 2760 if (cic) {
22e2c507 2761 cic->last_end_request = jiffies;
553698f9 2762 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2763 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2764 cic->dtor = cfq_free_io_context;
2765 cic->exit = cfq_exit_io_context;
245b2e70 2766 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2767 }
2768
2769 return cic;
2770}
2771
fd0928df 2772static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2773{
2774 struct task_struct *tsk = current;
2775 int ioprio_class;
2776
3b18152c 2777 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2778 return;
2779
fd0928df 2780 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2781 switch (ioprio_class) {
fe094d98
JA
2782 default:
2783 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2784 case IOPRIO_CLASS_NONE:
2785 /*
6d63c275 2786 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2787 */
2788 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2789 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2790 break;
2791 case IOPRIO_CLASS_RT:
2792 cfqq->ioprio = task_ioprio(ioc);
2793 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2794 break;
2795 case IOPRIO_CLASS_BE:
2796 cfqq->ioprio = task_ioprio(ioc);
2797 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2798 break;
2799 case IOPRIO_CLASS_IDLE:
2800 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2801 cfqq->ioprio = 7;
2802 cfq_clear_cfqq_idle_window(cfqq);
2803 break;
22e2c507
JA
2804 }
2805
2806 /*
2807 * keep track of original prio settings in case we have to temporarily
2808 * elevate the priority of this queue
2809 */
2810 cfqq->org_ioprio = cfqq->ioprio;
2811 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2812 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2813}
2814
febffd61 2815static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2816{
bca4b914 2817 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2818 struct cfq_queue *cfqq;
c1b707d2 2819 unsigned long flags;
35e6077c 2820
caaa5f9f
JA
2821 if (unlikely(!cfqd))
2822 return;
2823
c1b707d2 2824 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2825
ff6657c6 2826 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2827 if (cfqq) {
2828 struct cfq_queue *new_cfqq;
ff6657c6
JA
2829 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2830 GFP_ATOMIC);
caaa5f9f 2831 if (new_cfqq) {
ff6657c6 2832 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2833 cfq_put_queue(cfqq);
2834 }
22e2c507 2835 }
caaa5f9f 2836
ff6657c6 2837 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2838 if (cfqq)
2839 cfq_mark_cfqq_prio_changed(cfqq);
2840
c1b707d2 2841 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2842}
2843
fc46379d 2844static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2845{
4ac845a2 2846 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2847 ioc->ioprio_changed = 0;
22e2c507
JA
2848}
2849
d5036d77 2850static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2851 pid_t pid, bool is_sync)
d5036d77
JA
2852{
2853 RB_CLEAR_NODE(&cfqq->rb_node);
2854 RB_CLEAR_NODE(&cfqq->p_node);
2855 INIT_LIST_HEAD(&cfqq->fifo);
2856
2857 atomic_set(&cfqq->ref, 0);
2858 cfqq->cfqd = cfqd;
2859
2860 cfq_mark_cfqq_prio_changed(cfqq);
2861
2862 if (is_sync) {
2863 if (!cfq_class_idle(cfqq))
2864 cfq_mark_cfqq_idle_window(cfqq);
2865 cfq_mark_cfqq_sync(cfqq);
2866 }
2867 cfqq->pid = pid;
2868}
2869
24610333
VG
2870#ifdef CONFIG_CFQ_GROUP_IOSCHED
2871static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2872{
2873 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2874 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2875 unsigned long flags;
2876 struct request_queue *q;
2877
2878 if (unlikely(!cfqd))
2879 return;
2880
2881 q = cfqd->queue;
2882
2883 spin_lock_irqsave(q->queue_lock, flags);
2884
2885 if (sync_cfqq) {
2886 /*
2887 * Drop reference to sync queue. A new sync queue will be
2888 * assigned in new group upon arrival of a fresh request.
2889 */
2890 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2891 cic_set_cfqq(cic, NULL, 1);
2892 cfq_put_queue(sync_cfqq);
2893 }
2894
2895 spin_unlock_irqrestore(q->queue_lock, flags);
2896}
2897
2898static void cfq_ioc_set_cgroup(struct io_context *ioc)
2899{
2900 call_for_each_cic(ioc, changed_cgroup);
2901 ioc->cgroup_changed = 0;
2902}
2903#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2904
22e2c507 2905static struct cfq_queue *
a6151c3a 2906cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2907 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2908{
22e2c507 2909 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2910 struct cfq_io_context *cic;
cdb16e8f 2911 struct cfq_group *cfqg;
22e2c507
JA
2912
2913retry:
cdb16e8f 2914 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2915 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2916 /* cic always exists here */
2917 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2918
6118b70b
JA
2919 /*
2920 * Always try a new alloc if we fell back to the OOM cfqq
2921 * originally, since it should just be a temporary situation.
2922 */
2923 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2924 cfqq = NULL;
22e2c507
JA
2925 if (new_cfqq) {
2926 cfqq = new_cfqq;
2927 new_cfqq = NULL;
2928 } else if (gfp_mask & __GFP_WAIT) {
2929 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2930 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2931 gfp_mask | __GFP_ZERO,
94f6030c 2932 cfqd->queue->node);
22e2c507 2933 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2934 if (new_cfqq)
2935 goto retry;
22e2c507 2936 } else {
94f6030c
CL
2937 cfqq = kmem_cache_alloc_node(cfq_pool,
2938 gfp_mask | __GFP_ZERO,
2939 cfqd->queue->node);
22e2c507
JA
2940 }
2941
6118b70b
JA
2942 if (cfqq) {
2943 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2944 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2945 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2946 cfq_log_cfqq(cfqd, cfqq, "alloced");
2947 } else
2948 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2949 }
2950
2951 if (new_cfqq)
2952 kmem_cache_free(cfq_pool, new_cfqq);
2953
22e2c507
JA
2954 return cfqq;
2955}
2956
c2dea2d1
VT
2957static struct cfq_queue **
2958cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2959{
fe094d98 2960 switch (ioprio_class) {
c2dea2d1
VT
2961 case IOPRIO_CLASS_RT:
2962 return &cfqd->async_cfqq[0][ioprio];
2963 case IOPRIO_CLASS_BE:
2964 return &cfqd->async_cfqq[1][ioprio];
2965 case IOPRIO_CLASS_IDLE:
2966 return &cfqd->async_idle_cfqq;
2967 default:
2968 BUG();
2969 }
2970}
2971
15c31be4 2972static struct cfq_queue *
a6151c3a 2973cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2974 gfp_t gfp_mask)
2975{
fd0928df
JA
2976 const int ioprio = task_ioprio(ioc);
2977 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2978 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2979 struct cfq_queue *cfqq = NULL;
2980
c2dea2d1
VT
2981 if (!is_sync) {
2982 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2983 cfqq = *async_cfqq;
2984 }
2985
6118b70b 2986 if (!cfqq)
fd0928df 2987 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2988
2989 /*
2990 * pin the queue now that it's allocated, scheduler exit will prune it
2991 */
c2dea2d1 2992 if (!is_sync && !(*async_cfqq)) {
15c31be4 2993 atomic_inc(&cfqq->ref);
c2dea2d1 2994 *async_cfqq = cfqq;
15c31be4
JA
2995 }
2996
2997 atomic_inc(&cfqq->ref);
2998 return cfqq;
2999}
3000
498d3aa2
JA
3001/*
3002 * We drop cfq io contexts lazily, so we may find a dead one.
3003 */
dbecf3ab 3004static void
4ac845a2
JA
3005cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3006 struct cfq_io_context *cic)
dbecf3ab 3007{
4ac845a2
JA
3008 unsigned long flags;
3009
fc46379d 3010 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3011 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3012
4ac845a2
JA
3013 spin_lock_irqsave(&ioc->lock, flags);
3014
4faa3c81 3015 BUG_ON(ioc->ioc_data == cic);
597bc485 3016
80b15c73 3017 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3018 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3019 spin_unlock_irqrestore(&ioc->lock, flags);
3020
3021 cfq_cic_free(cic);
dbecf3ab
OH
3022}
3023
e2d74ac0 3024static struct cfq_io_context *
4ac845a2 3025cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3026{
e2d74ac0 3027 struct cfq_io_context *cic;
d6de8be7 3028 unsigned long flags;
e2d74ac0 3029
91fac317
VT
3030 if (unlikely(!ioc))
3031 return NULL;
3032
d6de8be7
JA
3033 rcu_read_lock();
3034
597bc485
JA
3035 /*
3036 * we maintain a last-hit cache, to avoid browsing over the tree
3037 */
4ac845a2 3038 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3039 if (cic && cic->key == cfqd) {
3040 rcu_read_unlock();
597bc485 3041 return cic;
d6de8be7 3042 }
597bc485 3043
4ac845a2 3044 do {
80b15c73 3045 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3046 rcu_read_unlock();
3047 if (!cic)
3048 break;
bca4b914 3049 if (unlikely(cic->key != cfqd)) {
4ac845a2 3050 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3051 rcu_read_lock();
4ac845a2 3052 continue;
dbecf3ab 3053 }
e2d74ac0 3054
d6de8be7 3055 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3056 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3057 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3058 break;
3059 } while (1);
e2d74ac0 3060
4ac845a2 3061 return cic;
e2d74ac0
JA
3062}
3063
4ac845a2
JA
3064/*
3065 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3066 * the process specific cfq io context when entered from the block layer.
3067 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3068 */
febffd61
JA
3069static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3070 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3071{
0261d688 3072 unsigned long flags;
4ac845a2 3073 int ret;
e2d74ac0 3074
4ac845a2
JA
3075 ret = radix_tree_preload(gfp_mask);
3076 if (!ret) {
3077 cic->ioc = ioc;
3078 cic->key = cfqd;
e2d74ac0 3079
4ac845a2
JA
3080 spin_lock_irqsave(&ioc->lock, flags);
3081 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3082 cfqd->cic_index, cic);
ffc4e759
JA
3083 if (!ret)
3084 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3085 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3086
4ac845a2
JA
3087 radix_tree_preload_end();
3088
3089 if (!ret) {
3090 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3091 list_add(&cic->queue_list, &cfqd->cic_list);
3092 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3093 }
e2d74ac0
JA
3094 }
3095
4ac845a2
JA
3096 if (ret)
3097 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3098
4ac845a2 3099 return ret;
e2d74ac0
JA
3100}
3101
1da177e4
LT
3102/*
3103 * Setup general io context and cfq io context. There can be several cfq
3104 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3105 * than one device managed by cfq.
1da177e4
LT
3106 */
3107static struct cfq_io_context *
e2d74ac0 3108cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3109{
22e2c507 3110 struct io_context *ioc = NULL;
1da177e4 3111 struct cfq_io_context *cic;
1da177e4 3112
22e2c507 3113 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3114
b5deef90 3115 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3116 if (!ioc)
3117 return NULL;
3118
4ac845a2 3119 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3120 if (cic)
3121 goto out;
1da177e4 3122
e2d74ac0
JA
3123 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3124 if (cic == NULL)
3125 goto err;
1da177e4 3126
4ac845a2
JA
3127 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3128 goto err_free;
3129
1da177e4 3130out:
fc46379d
JA
3131 smp_read_barrier_depends();
3132 if (unlikely(ioc->ioprio_changed))
3133 cfq_ioc_set_ioprio(ioc);
3134
24610333
VG
3135#ifdef CONFIG_CFQ_GROUP_IOSCHED
3136 if (unlikely(ioc->cgroup_changed))
3137 cfq_ioc_set_cgroup(ioc);
3138#endif
1da177e4 3139 return cic;
4ac845a2
JA
3140err_free:
3141 cfq_cic_free(cic);
1da177e4
LT
3142err:
3143 put_io_context(ioc);
3144 return NULL;
3145}
3146
22e2c507
JA
3147static void
3148cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3149{
aaf1228d
JA
3150 unsigned long elapsed = jiffies - cic->last_end_request;
3151 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3152
22e2c507
JA
3153 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3154 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3155 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3156}
1da177e4 3157
206dc69b 3158static void
b2c18e1e 3159cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3160 struct request *rq)
206dc69b 3161{
3dde36dd 3162 sector_t sdist = 0;
41647e7a 3163 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3164 if (cfqq->last_request_pos) {
3165 if (cfqq->last_request_pos < blk_rq_pos(rq))
3166 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3167 else
3168 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3169 }
206dc69b 3170
3dde36dd 3171 cfqq->seek_history <<= 1;
41647e7a
CZ
3172 if (blk_queue_nonrot(cfqd->queue))
3173 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3174 else
3175 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3176}
1da177e4 3177
22e2c507
JA
3178/*
3179 * Disable idle window if the process thinks too long or seeks so much that
3180 * it doesn't matter
3181 */
3182static void
3183cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3184 struct cfq_io_context *cic)
3185{
7b679138 3186 int old_idle, enable_idle;
1be92f2f 3187
0871714e
JA
3188 /*
3189 * Don't idle for async or idle io prio class
3190 */
3191 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3192 return;
3193
c265a7f4 3194 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3195
76280aff
CZ
3196 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3197 cfq_mark_cfqq_deep(cfqq);
3198
749ef9f8
CZ
3199 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3200 enable_idle = 0;
3201 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3202 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3203 enable_idle = 0;
3204 else if (sample_valid(cic->ttime_samples)) {
718eee05 3205 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3206 enable_idle = 0;
3207 else
3208 enable_idle = 1;
1da177e4
LT
3209 }
3210
7b679138
JA
3211 if (old_idle != enable_idle) {
3212 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3213 if (enable_idle)
3214 cfq_mark_cfqq_idle_window(cfqq);
3215 else
3216 cfq_clear_cfqq_idle_window(cfqq);
3217 }
22e2c507 3218}
1da177e4 3219
22e2c507
JA
3220/*
3221 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3222 * no or if we aren't sure, a 1 will cause a preempt.
3223 */
a6151c3a 3224static bool
22e2c507 3225cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3226 struct request *rq)
22e2c507 3227{
6d048f53 3228 struct cfq_queue *cfqq;
22e2c507 3229
6d048f53
JA
3230 cfqq = cfqd->active_queue;
3231 if (!cfqq)
a6151c3a 3232 return false;
22e2c507 3233
6d048f53 3234 if (cfq_class_idle(new_cfqq))
a6151c3a 3235 return false;
22e2c507
JA
3236
3237 if (cfq_class_idle(cfqq))
a6151c3a 3238 return true;
1e3335de 3239
875feb63
DS
3240 /*
3241 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3242 */
3243 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3244 return false;
3245
374f84ac
JA
3246 /*
3247 * if the new request is sync, but the currently running queue is
3248 * not, let the sync request have priority.
3249 */
5e705374 3250 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3251 return true;
1e3335de 3252
8682e1f1
VG
3253 if (new_cfqq->cfqg != cfqq->cfqg)
3254 return false;
3255
3256 if (cfq_slice_used(cfqq))
3257 return true;
3258
3259 /* Allow preemption only if we are idling on sync-noidle tree */
3260 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3261 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3262 new_cfqq->service_tree->count == 2 &&
3263 RB_EMPTY_ROOT(&cfqq->sort_list))
3264 return true;
3265
374f84ac
JA
3266 /*
3267 * So both queues are sync. Let the new request get disk time if
3268 * it's a metadata request and the current queue is doing regular IO.
3269 */
7b6d91da 3270 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3271 return true;
22e2c507 3272
3a9a3f6c
DS
3273 /*
3274 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3275 */
3276 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3277 return true;
3a9a3f6c 3278
d2d59e18
SL
3279 /* An idle queue should not be idle now for some reason */
3280 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3281 return true;
3282
1e3335de 3283 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3284 return false;
1e3335de
JA
3285
3286 /*
3287 * if this request is as-good as one we would expect from the
3288 * current cfqq, let it preempt
3289 */
e9ce335d 3290 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3291 return true;
1e3335de 3292
a6151c3a 3293 return false;
22e2c507
JA
3294}
3295
3296/*
3297 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3298 * let it have half of its nominal slice.
3299 */
3300static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3301{
7b679138 3302 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3303 cfq_slice_expired(cfqd, 1);
22e2c507 3304
bf572256
JA
3305 /*
3306 * Put the new queue at the front of the of the current list,
3307 * so we know that it will be selected next.
3308 */
3309 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3310
3311 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3312
44f7c160
JA
3313 cfqq->slice_end = 0;
3314 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3315}
3316
22e2c507 3317/*
5e705374 3318 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3319 * something we should do about it
3320 */
3321static void
5e705374
JA
3322cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3323 struct request *rq)
22e2c507 3324{
5e705374 3325 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3326
45333d5a 3327 cfqd->rq_queued++;
7b6d91da 3328 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3329 cfqq->meta_pending++;
3330
9c2c38a1 3331 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3332 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3333 cfq_update_idle_window(cfqd, cfqq, cic);
3334
b2c18e1e 3335 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3336
3337 if (cfqq == cfqd->active_queue) {
3338 /*
b029195d
JA
3339 * Remember that we saw a request from this process, but
3340 * don't start queuing just yet. Otherwise we risk seeing lots
3341 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3342 * and merging. If the request is already larger than a single
3343 * page, let it rip immediately. For that case we assume that
2d870722
JA
3344 * merging is already done. Ditto for a busy system that
3345 * has other work pending, don't risk delaying until the
3346 * idle timer unplug to continue working.
22e2c507 3347 */
d6ceb25e 3348 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3349 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3350 cfqd->busy_queues > 1) {
812df48d 3351 cfq_del_timer(cfqd, cfqq);
554554f6 3352 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3353 __blk_run_queue(cfqd->queue);
a11cdaa7 3354 } else {
e98ef89b 3355 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3356 &cfqq->cfqg->blkg);
bf791937 3357 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3358 }
d6ceb25e 3359 }
5e705374 3360 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3361 /*
3362 * not the active queue - expire current slice if it is
3363 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3364 * has some old slice time left and is of higher priority or
3365 * this new queue is RT and the current one is BE
22e2c507
JA
3366 */
3367 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3368 __blk_run_queue(cfqd->queue);
22e2c507 3369 }
1da177e4
LT
3370}
3371
165125e1 3372static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3373{
b4878f24 3374 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3375 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3376
7b679138 3377 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3378 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3379
30996f40 3380 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3381 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3382 cfq_add_rq_rb(rq);
e98ef89b 3383 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3384 &cfqd->serving_group->blkg, rq_data_dir(rq),
3385 rq_is_sync(rq));
5e705374 3386 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3387}
3388
45333d5a
AC
3389/*
3390 * Update hw_tag based on peak queue depth over 50 samples under
3391 * sufficient load.
3392 */
3393static void cfq_update_hw_tag(struct cfq_data *cfqd)
3394{
1a1238a7
SL
3395 struct cfq_queue *cfqq = cfqd->active_queue;
3396
53c583d2
CZ
3397 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3398 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3399
3400 if (cfqd->hw_tag == 1)
3401 return;
45333d5a
AC
3402
3403 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3404 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3405 return;
3406
1a1238a7
SL
3407 /*
3408 * If active queue hasn't enough requests and can idle, cfq might not
3409 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3410 * case
3411 */
3412 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3413 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3414 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3415 return;
3416
45333d5a
AC
3417 if (cfqd->hw_tag_samples++ < 50)
3418 return;
3419
e459dd08 3420 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3421 cfqd->hw_tag = 1;
3422 else
3423 cfqd->hw_tag = 0;
45333d5a
AC
3424}
3425
7667aa06
VG
3426static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3427{
3428 struct cfq_io_context *cic = cfqd->active_cic;
3429
3430 /* If there are other queues in the group, don't wait */
3431 if (cfqq->cfqg->nr_cfqq > 1)
3432 return false;
3433
3434 if (cfq_slice_used(cfqq))
3435 return true;
3436
3437 /* if slice left is less than think time, wait busy */
3438 if (cic && sample_valid(cic->ttime_samples)
3439 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3440 return true;
3441
3442 /*
3443 * If think times is less than a jiffy than ttime_mean=0 and above
3444 * will not be true. It might happen that slice has not expired yet
3445 * but will expire soon (4-5 ns) during select_queue(). To cover the
3446 * case where think time is less than a jiffy, mark the queue wait
3447 * busy if only 1 jiffy is left in the slice.
3448 */
3449 if (cfqq->slice_end - jiffies == 1)
3450 return true;
3451
3452 return false;
3453}
3454
165125e1 3455static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3456{
5e705374 3457 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3458 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3459 const int sync = rq_is_sync(rq);
b4878f24 3460 unsigned long now;
1da177e4 3461
b4878f24 3462 now = jiffies;
33659ebb
CH
3463 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3464 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3465
45333d5a
AC
3466 cfq_update_hw_tag(cfqd);
3467
53c583d2 3468 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3469 WARN_ON(!cfqq->dispatched);
53c583d2 3470 cfqd->rq_in_driver--;
6d048f53 3471 cfqq->dispatched--;
80bdf0c7 3472 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3473 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3474 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3475 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3476
53c583d2 3477 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3478
365722bb 3479 if (sync) {
5e705374 3480 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3481 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3482 cfqd->last_delayed_sync = now;
365722bb 3483 }
caaa5f9f
JA
3484
3485 /*
3486 * If this is the active queue, check if it needs to be expired,
3487 * or if we want to idle in case it has no pending requests.
3488 */
3489 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3490 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3491
44f7c160
JA
3492 if (cfq_cfqq_slice_new(cfqq)) {
3493 cfq_set_prio_slice(cfqd, cfqq);
3494 cfq_clear_cfqq_slice_new(cfqq);
3495 }
f75edf2d
VG
3496
3497 /*
7667aa06
VG
3498 * Should we wait for next request to come in before we expire
3499 * the queue.
f75edf2d 3500 */
7667aa06 3501 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3502 unsigned long extend_sl = cfqd->cfq_slice_idle;
3503 if (!cfqd->cfq_slice_idle)
3504 extend_sl = cfqd->cfq_group_idle;
3505 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3506 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3507 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3508 }
3509
a36e71f9 3510 /*
8e550632
CZ
3511 * Idling is not enabled on:
3512 * - expired queues
3513 * - idle-priority queues
3514 * - async queues
3515 * - queues with still some requests queued
3516 * - when there is a close cooperator
a36e71f9 3517 */
0871714e 3518 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3519 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3520 else if (sync && cfqq_empty &&
3521 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3522 cfq_arm_slice_timer(cfqd);
8e550632 3523 }
caaa5f9f 3524 }
6d048f53 3525
2b9408a4 3526 if (!cfqd->rq_in_driver)
d2d59e18 3527 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3528}
3529
22e2c507
JA
3530/*
3531 * we temporarily boost lower priority queues if they are holding fs exclusive
3532 * resources. they are boosted to normal prio (CLASS_BE/4)
3533 */
3534static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3535{
22e2c507
JA
3536 if (has_fs_excl()) {
3537 /*
3538 * boost idle prio on transactions that would lock out other
3539 * users of the filesystem
3540 */
3541 if (cfq_class_idle(cfqq))
3542 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3543 if (cfqq->ioprio > IOPRIO_NORM)
3544 cfqq->ioprio = IOPRIO_NORM;
3545 } else {
3546 /*
dddb7451 3547 * unboost the queue (if needed)
22e2c507 3548 */
dddb7451
CZ
3549 cfqq->ioprio_class = cfqq->org_ioprio_class;
3550 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3551 }
22e2c507 3552}
1da177e4 3553
89850f7e 3554static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3555{
1b379d8d 3556 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3557 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3558 return ELV_MQUEUE_MUST;
3b18152c 3559 }
1da177e4 3560
22e2c507 3561 return ELV_MQUEUE_MAY;
22e2c507
JA
3562}
3563
165125e1 3564static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3565{
3566 struct cfq_data *cfqd = q->elevator->elevator_data;
3567 struct task_struct *tsk = current;
91fac317 3568 struct cfq_io_context *cic;
22e2c507
JA
3569 struct cfq_queue *cfqq;
3570
3571 /*
3572 * don't force setup of a queue from here, as a call to may_queue
3573 * does not necessarily imply that a request actually will be queued.
3574 * so just lookup a possibly existing queue, or return 'may queue'
3575 * if that fails
3576 */
4ac845a2 3577 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3578 if (!cic)
3579 return ELV_MQUEUE_MAY;
3580
b0b78f81 3581 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3582 if (cfqq) {
fd0928df 3583 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3584 cfq_prio_boost(cfqq);
3585
89850f7e 3586 return __cfq_may_queue(cfqq);
22e2c507
JA
3587 }
3588
3589 return ELV_MQUEUE_MAY;
1da177e4
LT
3590}
3591
1da177e4
LT
3592/*
3593 * queue lock held here
3594 */
bb37b94c 3595static void cfq_put_request(struct request *rq)
1da177e4 3596{
5e705374 3597 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3598
5e705374 3599 if (cfqq) {
22e2c507 3600 const int rw = rq_data_dir(rq);
1da177e4 3601
22e2c507
JA
3602 BUG_ON(!cfqq->allocated[rw]);
3603 cfqq->allocated[rw]--;
1da177e4 3604
5e705374 3605 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3606
1da177e4 3607 rq->elevator_private = NULL;
5e705374 3608 rq->elevator_private2 = NULL;
1da177e4 3609
7f1dc8a2
VG
3610 /* Put down rq reference on cfqg */
3611 cfq_put_cfqg(RQ_CFQG(rq));
3612 rq->elevator_private3 = NULL;
3613
1da177e4
LT
3614 cfq_put_queue(cfqq);
3615 }
3616}
3617
df5fe3e8
JM
3618static struct cfq_queue *
3619cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3620 struct cfq_queue *cfqq)
3621{
3622 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3623 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3624 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3625 cfq_put_queue(cfqq);
3626 return cic_to_cfqq(cic, 1);
3627}
3628
e6c5bc73
JM
3629/*
3630 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3631 * was the last process referring to said cfqq.
3632 */
3633static struct cfq_queue *
3634split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3635{
3636 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3637 cfqq->pid = current->pid;
3638 cfq_clear_cfqq_coop(cfqq);
ae54abed 3639 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3640 return cfqq;
3641 }
3642
3643 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3644
3645 cfq_put_cooperator(cfqq);
3646
e6c5bc73
JM
3647 cfq_put_queue(cfqq);
3648 return NULL;
3649}
1da177e4 3650/*
22e2c507 3651 * Allocate cfq data structures associated with this request.
1da177e4 3652 */
22e2c507 3653static int
165125e1 3654cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3655{
3656 struct cfq_data *cfqd = q->elevator->elevator_data;
3657 struct cfq_io_context *cic;
3658 const int rw = rq_data_dir(rq);
a6151c3a 3659 const bool is_sync = rq_is_sync(rq);
22e2c507 3660 struct cfq_queue *cfqq;
1da177e4
LT
3661 unsigned long flags;
3662
3663 might_sleep_if(gfp_mask & __GFP_WAIT);
3664
e2d74ac0 3665 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3666
1da177e4
LT
3667 spin_lock_irqsave(q->queue_lock, flags);
3668
22e2c507
JA
3669 if (!cic)
3670 goto queue_fail;
3671
e6c5bc73 3672new_queue:
91fac317 3673 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3674 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3675 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3676 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3677 } else {
e6c5bc73
JM
3678 /*
3679 * If the queue was seeky for too long, break it apart.
3680 */
ae54abed 3681 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3682 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3683 cfqq = split_cfqq(cic, cfqq);
3684 if (!cfqq)
3685 goto new_queue;
3686 }
3687
df5fe3e8
JM
3688 /*
3689 * Check to see if this queue is scheduled to merge with
3690 * another, closely cooperating queue. The merging of
3691 * queues happens here as it must be done in process context.
3692 * The reference on new_cfqq was taken in merge_cfqqs.
3693 */
3694 if (cfqq->new_cfqq)
3695 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3696 }
1da177e4
LT
3697
3698 cfqq->allocated[rw]++;
22e2c507 3699 atomic_inc(&cfqq->ref);
1da177e4 3700
5e705374 3701 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3702
5e705374
JA
3703 rq->elevator_private = cic;
3704 rq->elevator_private2 = cfqq;
7f1dc8a2 3705 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3706 return 0;
1da177e4 3707
22e2c507
JA
3708queue_fail:
3709 if (cic)
3710 put_io_context(cic->ioc);
89850f7e 3711
23e018a1 3712 cfq_schedule_dispatch(cfqd);
1da177e4 3713 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3714 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3715 return 1;
3716}
3717
65f27f38 3718static void cfq_kick_queue(struct work_struct *work)
22e2c507 3719{
65f27f38 3720 struct cfq_data *cfqd =
23e018a1 3721 container_of(work, struct cfq_data, unplug_work);
165125e1 3722 struct request_queue *q = cfqd->queue;
22e2c507 3723
40bb54d1 3724 spin_lock_irq(q->queue_lock);
a7f55792 3725 __blk_run_queue(cfqd->queue);
40bb54d1 3726 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3727}
3728
3729/*
3730 * Timer running if the active_queue is currently idling inside its time slice
3731 */
3732static void cfq_idle_slice_timer(unsigned long data)
3733{
3734 struct cfq_data *cfqd = (struct cfq_data *) data;
3735 struct cfq_queue *cfqq;
3736 unsigned long flags;
3c6bd2f8 3737 int timed_out = 1;
22e2c507 3738
7b679138
JA
3739 cfq_log(cfqd, "idle timer fired");
3740
22e2c507
JA
3741 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3742
fe094d98
JA
3743 cfqq = cfqd->active_queue;
3744 if (cfqq) {
3c6bd2f8
JA
3745 timed_out = 0;
3746
b029195d
JA
3747 /*
3748 * We saw a request before the queue expired, let it through
3749 */
3750 if (cfq_cfqq_must_dispatch(cfqq))
3751 goto out_kick;
3752
22e2c507
JA
3753 /*
3754 * expired
3755 */
44f7c160 3756 if (cfq_slice_used(cfqq))
22e2c507
JA
3757 goto expire;
3758
3759 /*
3760 * only expire and reinvoke request handler, if there are
3761 * other queues with pending requests
3762 */
caaa5f9f 3763 if (!cfqd->busy_queues)
22e2c507 3764 goto out_cont;
22e2c507
JA
3765
3766 /*
3767 * not expired and it has a request pending, let it dispatch
3768 */
75e50984 3769 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3770 goto out_kick;
76280aff
CZ
3771
3772 /*
3773 * Queue depth flag is reset only when the idle didn't succeed
3774 */
3775 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3776 }
3777expire:
e5ff082e 3778 cfq_slice_expired(cfqd, timed_out);
22e2c507 3779out_kick:
23e018a1 3780 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3781out_cont:
3782 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3783}
3784
3b18152c
JA
3785static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3786{
3787 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3788 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3789}
22e2c507 3790
c2dea2d1
VT
3791static void cfq_put_async_queues(struct cfq_data *cfqd)
3792{
3793 int i;
3794
3795 for (i = 0; i < IOPRIO_BE_NR; i++) {
3796 if (cfqd->async_cfqq[0][i])
3797 cfq_put_queue(cfqd->async_cfqq[0][i]);
3798 if (cfqd->async_cfqq[1][i])
3799 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3800 }
2389d1ef
ON
3801
3802 if (cfqd->async_idle_cfqq)
3803 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3804}
3805
bb729bc9
JA
3806static void cfq_cfqd_free(struct rcu_head *head)
3807{
3808 kfree(container_of(head, struct cfq_data, rcu));
3809}
3810
b374d18a 3811static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3812{
22e2c507 3813 struct cfq_data *cfqd = e->elevator_data;
165125e1 3814 struct request_queue *q = cfqd->queue;
22e2c507 3815
3b18152c 3816 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3817
d9ff4187 3818 spin_lock_irq(q->queue_lock);
e2d74ac0 3819
d9ff4187 3820 if (cfqd->active_queue)
e5ff082e 3821 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3822
3823 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3824 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3825 struct cfq_io_context,
3826 queue_list);
89850f7e
JA
3827
3828 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3829 }
e2d74ac0 3830
c2dea2d1 3831 cfq_put_async_queues(cfqd);
b1c35769 3832 cfq_release_cfq_groups(cfqd);
e98ef89b 3833 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3834
d9ff4187 3835 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3836
3837 cfq_shutdown_timer_wq(cfqd);
3838
80b15c73
KK
3839 spin_lock(&cic_index_lock);
3840 ida_remove(&cic_index_ida, cfqd->cic_index);
3841 spin_unlock(&cic_index_lock);
3842
b1c35769 3843 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3844 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3845}
3846
80b15c73
KK
3847static int cfq_alloc_cic_index(void)
3848{
3849 int index, error;
3850
3851 do {
3852 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3853 return -ENOMEM;
3854
3855 spin_lock(&cic_index_lock);
3856 error = ida_get_new(&cic_index_ida, &index);
3857 spin_unlock(&cic_index_lock);
3858 if (error && error != -EAGAIN)
3859 return error;
3860 } while (error);
3861
3862 return index;
3863}
3864
165125e1 3865static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3866{
3867 struct cfq_data *cfqd;
718eee05 3868 int i, j;
cdb16e8f 3869 struct cfq_group *cfqg;
615f0259 3870 struct cfq_rb_root *st;
1da177e4 3871
80b15c73
KK
3872 i = cfq_alloc_cic_index();
3873 if (i < 0)
3874 return NULL;
3875
94f6030c 3876 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3877 if (!cfqd)
bc1c1169 3878 return NULL;
1da177e4 3879
80b15c73
KK
3880 cfqd->cic_index = i;
3881
1fa8f6d6
VG
3882 /* Init root service tree */
3883 cfqd->grp_service_tree = CFQ_RB_ROOT;
3884
cdb16e8f
VG
3885 /* Init root group */
3886 cfqg = &cfqd->root_group;
615f0259
VG
3887 for_each_cfqg_st(cfqg, i, j, st)
3888 *st = CFQ_RB_ROOT;
1fa8f6d6 3889 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3890
25bc6b07
VG
3891 /* Give preference to root group over other groups */
3892 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3893
25fb5169 3894#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3895 /*
3896 * Take a reference to root group which we never drop. This is just
3897 * to make sure that cfq_put_cfqg() does not try to kfree root group
3898 */
3899 atomic_set(&cfqg->ref, 1);
dcf097b2 3900 rcu_read_lock();
e98ef89b
VG
3901 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3902 (void *)cfqd, 0);
dcf097b2 3903 rcu_read_unlock();
25fb5169 3904#endif
26a2ac00
JA
3905 /*
3906 * Not strictly needed (since RB_ROOT just clears the node and we
3907 * zeroed cfqd on alloc), but better be safe in case someone decides
3908 * to add magic to the rb code
3909 */
3910 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3911 cfqd->prio_trees[i] = RB_ROOT;
3912
6118b70b
JA
3913 /*
3914 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3915 * Grab a permanent reference to it, so that the normal code flow
3916 * will not attempt to free it.
3917 */
3918 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3919 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3920 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3921
d9ff4187 3922 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3923
1da177e4 3924 cfqd->queue = q;
1da177e4 3925
22e2c507
JA
3926 init_timer(&cfqd->idle_slice_timer);
3927 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3928 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3929
23e018a1 3930 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3931
1da177e4 3932 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3933 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3934 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3935 cfqd->cfq_back_max = cfq_back_max;
3936 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3937 cfqd->cfq_slice[0] = cfq_slice_async;
3938 cfqd->cfq_slice[1] = cfq_slice_sync;
3939 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3940 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3941 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3942 cfqd->cfq_latency = 1;
ae30c286 3943 cfqd->cfq_group_isolation = 0;
e459dd08 3944 cfqd->hw_tag = -1;
edc71131
CZ
3945 /*
3946 * we optimistically start assuming sync ops weren't delayed in last
3947 * second, in order to have larger depth for async operations.
3948 */
573412b2 3949 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3950 return cfqd;
1da177e4
LT
3951}
3952
3953static void cfq_slab_kill(void)
3954{
d6de8be7
JA
3955 /*
3956 * Caller already ensured that pending RCU callbacks are completed,
3957 * so we should have no busy allocations at this point.
3958 */
1da177e4
LT
3959 if (cfq_pool)
3960 kmem_cache_destroy(cfq_pool);
3961 if (cfq_ioc_pool)
3962 kmem_cache_destroy(cfq_ioc_pool);
3963}
3964
3965static int __init cfq_slab_setup(void)
3966{
0a31bd5f 3967 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3968 if (!cfq_pool)
3969 goto fail;
3970
34e6bbf2 3971 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3972 if (!cfq_ioc_pool)
3973 goto fail;
3974
3975 return 0;
3976fail:
3977 cfq_slab_kill();
3978 return -ENOMEM;
3979}
3980
1da177e4
LT
3981/*
3982 * sysfs parts below -->
3983 */
1da177e4
LT
3984static ssize_t
3985cfq_var_show(unsigned int var, char *page)
3986{
3987 return sprintf(page, "%d\n", var);
3988}
3989
3990static ssize_t
3991cfq_var_store(unsigned int *var, const char *page, size_t count)
3992{
3993 char *p = (char *) page;
3994
3995 *var = simple_strtoul(p, &p, 10);
3996 return count;
3997}
3998
1da177e4 3999#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4000static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4001{ \
3d1ab40f 4002 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4003 unsigned int __data = __VAR; \
4004 if (__CONV) \
4005 __data = jiffies_to_msecs(__data); \
4006 return cfq_var_show(__data, (page)); \
4007}
4008SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4009SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4010SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4011SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4012SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4013SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4014SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4015SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4016SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4017SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4018SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 4019SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
4020#undef SHOW_FUNCTION
4021
4022#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4023static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4024{ \
3d1ab40f 4025 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4026 unsigned int __data; \
4027 int ret = cfq_var_store(&__data, (page), count); \
4028 if (__data < (MIN)) \
4029 __data = (MIN); \
4030 else if (__data > (MAX)) \
4031 __data = (MAX); \
4032 if (__CONV) \
4033 *(__PTR) = msecs_to_jiffies(__data); \
4034 else \
4035 *(__PTR) = __data; \
4036 return ret; \
4037}
4038STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4039STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4040 UINT_MAX, 1);
4041STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4042 UINT_MAX, 1);
e572ec7e 4043STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4044STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4045 UINT_MAX, 0);
22e2c507 4046STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4047STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4048STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4049STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4050STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4051 UINT_MAX, 0);
963b72fc 4052STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 4053STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
4054#undef STORE_FUNCTION
4055
e572ec7e
AV
4056#define CFQ_ATTR(name) \
4057 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4058
4059static struct elv_fs_entry cfq_attrs[] = {
4060 CFQ_ATTR(quantum),
e572ec7e
AV
4061 CFQ_ATTR(fifo_expire_sync),
4062 CFQ_ATTR(fifo_expire_async),
4063 CFQ_ATTR(back_seek_max),
4064 CFQ_ATTR(back_seek_penalty),
4065 CFQ_ATTR(slice_sync),
4066 CFQ_ATTR(slice_async),
4067 CFQ_ATTR(slice_async_rq),
4068 CFQ_ATTR(slice_idle),
80bdf0c7 4069 CFQ_ATTR(group_idle),
963b72fc 4070 CFQ_ATTR(low_latency),
ae30c286 4071 CFQ_ATTR(group_isolation),
e572ec7e 4072 __ATTR_NULL
1da177e4
LT
4073};
4074
1da177e4
LT
4075static struct elevator_type iosched_cfq = {
4076 .ops = {
4077 .elevator_merge_fn = cfq_merge,
4078 .elevator_merged_fn = cfq_merged_request,
4079 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4080 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4081 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4082 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4083 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4084 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
4085 .elevator_deactivate_req_fn = cfq_deactivate_request,
4086 .elevator_queue_empty_fn = cfq_queue_empty,
4087 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4088 .elevator_former_req_fn = elv_rb_former_request,
4089 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4090 .elevator_set_req_fn = cfq_set_request,
4091 .elevator_put_req_fn = cfq_put_request,
4092 .elevator_may_queue_fn = cfq_may_queue,
4093 .elevator_init_fn = cfq_init_queue,
4094 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4095 .trim = cfq_free_io_context,
1da177e4 4096 },
3d1ab40f 4097 .elevator_attrs = cfq_attrs,
1da177e4
LT
4098 .elevator_name = "cfq",
4099 .elevator_owner = THIS_MODULE,
4100};
4101
3e252066
VG
4102#ifdef CONFIG_CFQ_GROUP_IOSCHED
4103static struct blkio_policy_type blkio_policy_cfq = {
4104 .ops = {
4105 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4106 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4107 },
062a644d 4108 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4109};
4110#else
4111static struct blkio_policy_type blkio_policy_cfq;
4112#endif
4113
1da177e4
LT
4114static int __init cfq_init(void)
4115{
22e2c507
JA
4116 /*
4117 * could be 0 on HZ < 1000 setups
4118 */
4119 if (!cfq_slice_async)
4120 cfq_slice_async = 1;
4121 if (!cfq_slice_idle)
4122 cfq_slice_idle = 1;
4123
80bdf0c7
VG
4124#ifdef CONFIG_CFQ_GROUP_IOSCHED
4125 if (!cfq_group_idle)
4126 cfq_group_idle = 1;
4127#else
4128 cfq_group_idle = 0;
4129#endif
1da177e4
LT
4130 if (cfq_slab_setup())
4131 return -ENOMEM;
4132
2fdd82bd 4133 elv_register(&iosched_cfq);
3e252066 4134 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4135
2fdd82bd 4136 return 0;
1da177e4
LT
4137}
4138
4139static void __exit cfq_exit(void)
4140{
6e9a4738 4141 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4142 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4143 elv_unregister(&iosched_cfq);
334e94de 4144 ioc_gone = &all_gone;
fba82272
OH
4145 /* ioc_gone's update must be visible before reading ioc_count */
4146 smp_wmb();
d6de8be7
JA
4147
4148 /*
4149 * this also protects us from entering cfq_slab_kill() with
4150 * pending RCU callbacks
4151 */
245b2e70 4152 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4153 wait_for_completion(&all_gone);
80b15c73 4154 ida_destroy(&cic_index_ida);
83521d3e 4155 cfq_slab_kill();
1da177e4
LT
4156}
4157
4158module_init(cfq_init);
4159module_exit(cfq_exit);
4160
4161MODULE_AUTHOR("Jens Axboe");
4162MODULE_LICENSE("GPL");
4163MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");