]> git.proxmox.com Git - mirror_qemu.git/blame - block/io.c
Revert "block: Fix unaligned zero write"
[mirror_qemu.git] / block / io.c
CommitLineData
61007b31
SH
1/*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "trace.h"
26#include "sysemu/qtest.h"
27#include "block/blockjob.h"
28#include "block/block_int.h"
29
30#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
31
32static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
33 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
34 BlockCompletionFunc *cb, void *opaque);
35static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
37 BlockCompletionFunc *cb, void *opaque);
38static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
39 int64_t sector_num, int nb_sectors,
40 QEMUIOVector *iov);
41static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
42 int64_t sector_num, int nb_sectors,
43 QEMUIOVector *iov);
44static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
45 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
46 BdrvRequestFlags flags);
47static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
49 BdrvRequestFlags flags);
50static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
51 int64_t sector_num,
52 QEMUIOVector *qiov,
53 int nb_sectors,
54 BdrvRequestFlags flags,
55 BlockCompletionFunc *cb,
56 void *opaque,
57 bool is_write);
58static void coroutine_fn bdrv_co_do_rw(void *opaque);
59static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
60 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
61
62/* throttling disk I/O limits */
63void bdrv_set_io_limits(BlockDriverState *bs,
64 ThrottleConfig *cfg)
65{
66 int i;
67
68 throttle_config(&bs->throttle_state, cfg);
69
70 for (i = 0; i < 2; i++) {
71 qemu_co_enter_next(&bs->throttled_reqs[i]);
72 }
73}
74
75/* this function drain all the throttled IOs */
76static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
77{
78 bool drained = false;
79 bool enabled = bs->io_limits_enabled;
80 int i;
81
82 bs->io_limits_enabled = false;
83
84 for (i = 0; i < 2; i++) {
85 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
86 drained = true;
87 }
88 }
89
90 bs->io_limits_enabled = enabled;
91
92 return drained;
93}
94
95void bdrv_io_limits_disable(BlockDriverState *bs)
96{
97 bs->io_limits_enabled = false;
98
99 bdrv_start_throttled_reqs(bs);
100
101 throttle_destroy(&bs->throttle_state);
102}
103
104static void bdrv_throttle_read_timer_cb(void *opaque)
105{
106 BlockDriverState *bs = opaque;
107 qemu_co_enter_next(&bs->throttled_reqs[0]);
108}
109
110static void bdrv_throttle_write_timer_cb(void *opaque)
111{
112 BlockDriverState *bs = opaque;
113 qemu_co_enter_next(&bs->throttled_reqs[1]);
114}
115
116/* should be called before bdrv_set_io_limits if a limit is set */
117void bdrv_io_limits_enable(BlockDriverState *bs)
118{
119 int clock_type = QEMU_CLOCK_REALTIME;
120
121 if (qtest_enabled()) {
122 /* For testing block IO throttling only */
123 clock_type = QEMU_CLOCK_VIRTUAL;
124 }
125 assert(!bs->io_limits_enabled);
126 throttle_init(&bs->throttle_state,
127 bdrv_get_aio_context(bs),
128 clock_type,
129 bdrv_throttle_read_timer_cb,
130 bdrv_throttle_write_timer_cb,
131 bs);
132 bs->io_limits_enabled = true;
133}
134
135/* This function makes an IO wait if needed
136 *
137 * @nb_sectors: the number of sectors of the IO
138 * @is_write: is the IO a write
139 */
140static void bdrv_io_limits_intercept(BlockDriverState *bs,
141 unsigned int bytes,
142 bool is_write)
143{
144 /* does this io must wait */
145 bool must_wait = throttle_schedule_timer(&bs->throttle_state, is_write);
146
147 /* if must wait or any request of this type throttled queue the IO */
148 if (must_wait ||
149 !qemu_co_queue_empty(&bs->throttled_reqs[is_write])) {
150 qemu_co_queue_wait(&bs->throttled_reqs[is_write]);
151 }
152
153 /* the IO will be executed, do the accounting */
154 throttle_account(&bs->throttle_state, is_write, bytes);
155
156
157 /* if the next request must wait -> do nothing */
158 if (throttle_schedule_timer(&bs->throttle_state, is_write)) {
159 return;
160 }
161
162 /* else queue next request for execution */
163 qemu_co_queue_next(&bs->throttled_reqs[is_write]);
164}
165
166void bdrv_setup_io_funcs(BlockDriver *bdrv)
167{
168 /* Block drivers without coroutine functions need emulation */
169 if (!bdrv->bdrv_co_readv) {
170 bdrv->bdrv_co_readv = bdrv_co_readv_em;
171 bdrv->bdrv_co_writev = bdrv_co_writev_em;
172
173 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
174 * the block driver lacks aio we need to emulate that too.
175 */
176 if (!bdrv->bdrv_aio_readv) {
177 /* add AIO emulation layer */
178 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
179 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
180 }
181 }
182}
183
184void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
185{
186 BlockDriver *drv = bs->drv;
187 Error *local_err = NULL;
188
189 memset(&bs->bl, 0, sizeof(bs->bl));
190
191 if (!drv) {
192 return;
193 }
194
195 /* Take some limits from the children as a default */
196 if (bs->file) {
197 bdrv_refresh_limits(bs->file, &local_err);
198 if (local_err) {
199 error_propagate(errp, local_err);
200 return;
201 }
202 bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
203 bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
4196d2f0 204 bs->bl.min_mem_alignment = bs->file->bl.min_mem_alignment;
61007b31
SH
205 bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
206 } else {
4196d2f0 207 bs->bl.min_mem_alignment = 512;
459b4e66 208 bs->bl.opt_mem_alignment = getpagesize();
61007b31
SH
209 }
210
211 if (bs->backing_hd) {
212 bdrv_refresh_limits(bs->backing_hd, &local_err);
213 if (local_err) {
214 error_propagate(errp, local_err);
215 return;
216 }
217 bs->bl.opt_transfer_length =
218 MAX(bs->bl.opt_transfer_length,
219 bs->backing_hd->bl.opt_transfer_length);
220 bs->bl.max_transfer_length =
221 MIN_NON_ZERO(bs->bl.max_transfer_length,
222 bs->backing_hd->bl.max_transfer_length);
223 bs->bl.opt_mem_alignment =
224 MAX(bs->bl.opt_mem_alignment,
225 bs->backing_hd->bl.opt_mem_alignment);
4196d2f0
DL
226 bs->bl.min_mem_alignment =
227 MAX(bs->bl.min_mem_alignment,
228 bs->backing_hd->bl.min_mem_alignment);
61007b31
SH
229 }
230
231 /* Then let the driver override it */
232 if (drv->bdrv_refresh_limits) {
233 drv->bdrv_refresh_limits(bs, errp);
234 }
235}
236
237/**
238 * The copy-on-read flag is actually a reference count so multiple users may
239 * use the feature without worrying about clobbering its previous state.
240 * Copy-on-read stays enabled until all users have called to disable it.
241 */
242void bdrv_enable_copy_on_read(BlockDriverState *bs)
243{
244 bs->copy_on_read++;
245}
246
247void bdrv_disable_copy_on_read(BlockDriverState *bs)
248{
249 assert(bs->copy_on_read > 0);
250 bs->copy_on_read--;
251}
252
253/* Check if any requests are in-flight (including throttled requests) */
254static bool bdrv_requests_pending(BlockDriverState *bs)
255{
256 if (!QLIST_EMPTY(&bs->tracked_requests)) {
257 return true;
258 }
259 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
260 return true;
261 }
262 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
263 return true;
264 }
265 if (bs->file && bdrv_requests_pending(bs->file)) {
266 return true;
267 }
268 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
269 return true;
270 }
271 return false;
272}
273
274static bool bdrv_drain_one(BlockDriverState *bs)
275{
276 bool bs_busy;
277
278 bdrv_flush_io_queue(bs);
279 bdrv_start_throttled_reqs(bs);
280 bs_busy = bdrv_requests_pending(bs);
281 bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
282 return bs_busy;
283}
284
285/*
286 * Wait for pending requests to complete on a single BlockDriverState subtree
287 *
288 * See the warning in bdrv_drain_all(). This function can only be called if
289 * you are sure nothing can generate I/O because you have op blockers
290 * installed.
291 *
292 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
293 * AioContext.
294 */
295void bdrv_drain(BlockDriverState *bs)
296{
297 while (bdrv_drain_one(bs)) {
298 /* Keep iterating */
299 }
300}
301
302/*
303 * Wait for pending requests to complete across all BlockDriverStates
304 *
305 * This function does not flush data to disk, use bdrv_flush_all() for that
306 * after calling this function.
307 *
308 * Note that completion of an asynchronous I/O operation can trigger any
309 * number of other I/O operations on other devices---for example a coroutine
310 * can be arbitrarily complex and a constant flow of I/O can come until the
311 * coroutine is complete. Because of this, it is not possible to have a
312 * function to drain a single device's I/O queue.
313 */
314void bdrv_drain_all(void)
315{
316 /* Always run first iteration so any pending completion BHs run */
317 bool busy = true;
318 BlockDriverState *bs = NULL;
319
320 while ((bs = bdrv_next(bs))) {
321 AioContext *aio_context = bdrv_get_aio_context(bs);
322
323 aio_context_acquire(aio_context);
324 if (bs->job) {
325 block_job_pause(bs->job);
326 }
327 aio_context_release(aio_context);
328 }
329
330 while (busy) {
331 busy = false;
332 bs = NULL;
333
334 while ((bs = bdrv_next(bs))) {
335 AioContext *aio_context = bdrv_get_aio_context(bs);
336
337 aio_context_acquire(aio_context);
338 busy |= bdrv_drain_one(bs);
339 aio_context_release(aio_context);
340 }
341 }
342
343 bs = NULL;
344 while ((bs = bdrv_next(bs))) {
345 AioContext *aio_context = bdrv_get_aio_context(bs);
346
347 aio_context_acquire(aio_context);
348 if (bs->job) {
349 block_job_resume(bs->job);
350 }
351 aio_context_release(aio_context);
352 }
353}
354
355/**
356 * Remove an active request from the tracked requests list
357 *
358 * This function should be called when a tracked request is completing.
359 */
360static void tracked_request_end(BdrvTrackedRequest *req)
361{
362 if (req->serialising) {
363 req->bs->serialising_in_flight--;
364 }
365
366 QLIST_REMOVE(req, list);
367 qemu_co_queue_restart_all(&req->wait_queue);
368}
369
370/**
371 * Add an active request to the tracked requests list
372 */
373static void tracked_request_begin(BdrvTrackedRequest *req,
374 BlockDriverState *bs,
375 int64_t offset,
376 unsigned int bytes, bool is_write)
377{
378 *req = (BdrvTrackedRequest){
379 .bs = bs,
380 .offset = offset,
381 .bytes = bytes,
382 .is_write = is_write,
383 .co = qemu_coroutine_self(),
384 .serialising = false,
385 .overlap_offset = offset,
386 .overlap_bytes = bytes,
387 };
388
389 qemu_co_queue_init(&req->wait_queue);
390
391 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
392}
393
394static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
395{
396 int64_t overlap_offset = req->offset & ~(align - 1);
397 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
398 - overlap_offset;
399
400 if (!req->serialising) {
401 req->bs->serialising_in_flight++;
402 req->serialising = true;
403 }
404
405 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
406 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
407}
408
409/**
410 * Round a region to cluster boundaries
411 */
412void bdrv_round_to_clusters(BlockDriverState *bs,
413 int64_t sector_num, int nb_sectors,
414 int64_t *cluster_sector_num,
415 int *cluster_nb_sectors)
416{
417 BlockDriverInfo bdi;
418
419 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
420 *cluster_sector_num = sector_num;
421 *cluster_nb_sectors = nb_sectors;
422 } else {
423 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
424 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
425 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
426 nb_sectors, c);
427 }
428}
429
430static int bdrv_get_cluster_size(BlockDriverState *bs)
431{
432 BlockDriverInfo bdi;
433 int ret;
434
435 ret = bdrv_get_info(bs, &bdi);
436 if (ret < 0 || bdi.cluster_size == 0) {
437 return bs->request_alignment;
438 } else {
439 return bdi.cluster_size;
440 }
441}
442
443static bool tracked_request_overlaps(BdrvTrackedRequest *req,
444 int64_t offset, unsigned int bytes)
445{
446 /* aaaa bbbb */
447 if (offset >= req->overlap_offset + req->overlap_bytes) {
448 return false;
449 }
450 /* bbbb aaaa */
451 if (req->overlap_offset >= offset + bytes) {
452 return false;
453 }
454 return true;
455}
456
457static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
458{
459 BlockDriverState *bs = self->bs;
460 BdrvTrackedRequest *req;
461 bool retry;
462 bool waited = false;
463
464 if (!bs->serialising_in_flight) {
465 return false;
466 }
467
468 do {
469 retry = false;
470 QLIST_FOREACH(req, &bs->tracked_requests, list) {
471 if (req == self || (!req->serialising && !self->serialising)) {
472 continue;
473 }
474 if (tracked_request_overlaps(req, self->overlap_offset,
475 self->overlap_bytes))
476 {
477 /* Hitting this means there was a reentrant request, for
478 * example, a block driver issuing nested requests. This must
479 * never happen since it means deadlock.
480 */
481 assert(qemu_coroutine_self() != req->co);
482
483 /* If the request is already (indirectly) waiting for us, or
484 * will wait for us as soon as it wakes up, then just go on
485 * (instead of producing a deadlock in the former case). */
486 if (!req->waiting_for) {
487 self->waiting_for = req;
488 qemu_co_queue_wait(&req->wait_queue);
489 self->waiting_for = NULL;
490 retry = true;
491 waited = true;
492 break;
493 }
494 }
495 }
496 } while (retry);
497
498 return waited;
499}
500
501static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
502 size_t size)
503{
504 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
505 return -EIO;
506 }
507
508 if (!bdrv_is_inserted(bs)) {
509 return -ENOMEDIUM;
510 }
511
512 if (offset < 0) {
513 return -EIO;
514 }
515
516 return 0;
517}
518
519static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
520 int nb_sectors)
521{
522 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
523 return -EIO;
524 }
525
526 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
527 nb_sectors * BDRV_SECTOR_SIZE);
528}
529
530typedef struct RwCo {
531 BlockDriverState *bs;
532 int64_t offset;
533 QEMUIOVector *qiov;
534 bool is_write;
535 int ret;
536 BdrvRequestFlags flags;
537} RwCo;
538
539static void coroutine_fn bdrv_rw_co_entry(void *opaque)
540{
541 RwCo *rwco = opaque;
542
543 if (!rwco->is_write) {
544 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
545 rwco->qiov->size, rwco->qiov,
546 rwco->flags);
547 } else {
548 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
549 rwco->qiov->size, rwco->qiov,
550 rwco->flags);
551 }
552}
553
554/*
555 * Process a vectored synchronous request using coroutines
556 */
557static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
558 QEMUIOVector *qiov, bool is_write,
559 BdrvRequestFlags flags)
560{
561 Coroutine *co;
562 RwCo rwco = {
563 .bs = bs,
564 .offset = offset,
565 .qiov = qiov,
566 .is_write = is_write,
567 .ret = NOT_DONE,
568 .flags = flags,
569 };
570
571 /**
572 * In sync call context, when the vcpu is blocked, this throttling timer
573 * will not fire; so the I/O throttling function has to be disabled here
574 * if it has been enabled.
575 */
576 if (bs->io_limits_enabled) {
577 fprintf(stderr, "Disabling I/O throttling on '%s' due "
578 "to synchronous I/O.\n", bdrv_get_device_name(bs));
579 bdrv_io_limits_disable(bs);
580 }
581
582 if (qemu_in_coroutine()) {
583 /* Fast-path if already in coroutine context */
584 bdrv_rw_co_entry(&rwco);
585 } else {
586 AioContext *aio_context = bdrv_get_aio_context(bs);
587
588 co = qemu_coroutine_create(bdrv_rw_co_entry);
589 qemu_coroutine_enter(co, &rwco);
590 while (rwco.ret == NOT_DONE) {
591 aio_poll(aio_context, true);
592 }
593 }
594 return rwco.ret;
595}
596
597/*
598 * Process a synchronous request using coroutines
599 */
600static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
601 int nb_sectors, bool is_write, BdrvRequestFlags flags)
602{
603 QEMUIOVector qiov;
604 struct iovec iov = {
605 .iov_base = (void *)buf,
606 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
607 };
608
609 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
610 return -EINVAL;
611 }
612
613 qemu_iovec_init_external(&qiov, &iov, 1);
614 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
615 &qiov, is_write, flags);
616}
617
618/* return < 0 if error. See bdrv_write() for the return codes */
619int bdrv_read(BlockDriverState *bs, int64_t sector_num,
620 uint8_t *buf, int nb_sectors)
621{
622 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
623}
624
625/* Just like bdrv_read(), but with I/O throttling temporarily disabled */
626int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
627 uint8_t *buf, int nb_sectors)
628{
629 bool enabled;
630 int ret;
631
632 enabled = bs->io_limits_enabled;
633 bs->io_limits_enabled = false;
634 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
635 bs->io_limits_enabled = enabled;
636 return ret;
637}
638
639/* Return < 0 if error. Important errors are:
640 -EIO generic I/O error (may happen for all errors)
641 -ENOMEDIUM No media inserted.
642 -EINVAL Invalid sector number or nb_sectors
643 -EACCES Trying to write a read-only device
644*/
645int bdrv_write(BlockDriverState *bs, int64_t sector_num,
646 const uint8_t *buf, int nb_sectors)
647{
648 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
649}
650
651int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
652 int nb_sectors, BdrvRequestFlags flags)
653{
654 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
655 BDRV_REQ_ZERO_WRITE | flags);
656}
657
658/*
659 * Completely zero out a block device with the help of bdrv_write_zeroes.
660 * The operation is sped up by checking the block status and only writing
661 * zeroes to the device if they currently do not return zeroes. Optional
662 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
663 *
664 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
665 */
666int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
667{
668 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
669 int n;
670
671 target_sectors = bdrv_nb_sectors(bs);
672 if (target_sectors < 0) {
673 return target_sectors;
674 }
675
676 for (;;) {
677 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
678 if (nb_sectors <= 0) {
679 return 0;
680 }
681 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
682 if (ret < 0) {
683 error_report("error getting block status at sector %" PRId64 ": %s",
684 sector_num, strerror(-ret));
685 return ret;
686 }
687 if (ret & BDRV_BLOCK_ZERO) {
688 sector_num += n;
689 continue;
690 }
691 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
692 if (ret < 0) {
693 error_report("error writing zeroes at sector %" PRId64 ": %s",
694 sector_num, strerror(-ret));
695 return ret;
696 }
697 sector_num += n;
698 }
699}
700
701int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
702{
703 QEMUIOVector qiov;
704 struct iovec iov = {
705 .iov_base = (void *)buf,
706 .iov_len = bytes,
707 };
708 int ret;
709
710 if (bytes < 0) {
711 return -EINVAL;
712 }
713
714 qemu_iovec_init_external(&qiov, &iov, 1);
715 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
716 if (ret < 0) {
717 return ret;
718 }
719
720 return bytes;
721}
722
723int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
724{
725 int ret;
726
727 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
728 if (ret < 0) {
729 return ret;
730 }
731
732 return qiov->size;
733}
734
735int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
736 const void *buf, int bytes)
737{
738 QEMUIOVector qiov;
739 struct iovec iov = {
740 .iov_base = (void *) buf,
741 .iov_len = bytes,
742 };
743
744 if (bytes < 0) {
745 return -EINVAL;
746 }
747
748 qemu_iovec_init_external(&qiov, &iov, 1);
749 return bdrv_pwritev(bs, offset, &qiov);
750}
751
752/*
753 * Writes to the file and ensures that no writes are reordered across this
754 * request (acts as a barrier)
755 *
756 * Returns 0 on success, -errno in error cases.
757 */
758int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
759 const void *buf, int count)
760{
761 int ret;
762
763 ret = bdrv_pwrite(bs, offset, buf, count);
764 if (ret < 0) {
765 return ret;
766 }
767
768 /* No flush needed for cache modes that already do it */
769 if (bs->enable_write_cache) {
770 bdrv_flush(bs);
771 }
772
773 return 0;
774}
775
776static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
777 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
778{
779 /* Perform I/O through a temporary buffer so that users who scribble over
780 * their read buffer while the operation is in progress do not end up
781 * modifying the image file. This is critical for zero-copy guest I/O
782 * where anything might happen inside guest memory.
783 */
784 void *bounce_buffer;
785
786 BlockDriver *drv = bs->drv;
787 struct iovec iov;
788 QEMUIOVector bounce_qiov;
789 int64_t cluster_sector_num;
790 int cluster_nb_sectors;
791 size_t skip_bytes;
792 int ret;
793
794 /* Cover entire cluster so no additional backing file I/O is required when
795 * allocating cluster in the image file.
796 */
797 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
798 &cluster_sector_num, &cluster_nb_sectors);
799
800 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
801 cluster_sector_num, cluster_nb_sectors);
802
803 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
804 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
805 if (bounce_buffer == NULL) {
806 ret = -ENOMEM;
807 goto err;
808 }
809
810 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
811
812 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
813 &bounce_qiov);
814 if (ret < 0) {
815 goto err;
816 }
817
818 if (drv->bdrv_co_write_zeroes &&
819 buffer_is_zero(bounce_buffer, iov.iov_len)) {
820 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
821 cluster_nb_sectors, 0);
822 } else {
823 /* This does not change the data on the disk, it is not necessary
824 * to flush even in cache=writethrough mode.
825 */
826 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
827 &bounce_qiov);
828 }
829
830 if (ret < 0) {
831 /* It might be okay to ignore write errors for guest requests. If this
832 * is a deliberate copy-on-read then we don't want to ignore the error.
833 * Simply report it in all cases.
834 */
835 goto err;
836 }
837
838 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
839 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
840 nb_sectors * BDRV_SECTOR_SIZE);
841
842err:
843 qemu_vfree(bounce_buffer);
844 return ret;
845}
846
847/*
848 * Forwards an already correctly aligned request to the BlockDriver. This
849 * handles copy on read and zeroing after EOF; any other features must be
850 * implemented by the caller.
851 */
852static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
853 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
854 int64_t align, QEMUIOVector *qiov, int flags)
855{
856 BlockDriver *drv = bs->drv;
857 int ret;
858
859 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
860 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
861
862 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
863 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
864 assert(!qiov || bytes == qiov->size);
865
866 /* Handle Copy on Read and associated serialisation */
867 if (flags & BDRV_REQ_COPY_ON_READ) {
868 /* If we touch the same cluster it counts as an overlap. This
869 * guarantees that allocating writes will be serialized and not race
870 * with each other for the same cluster. For example, in copy-on-read
871 * it ensures that the CoR read and write operations are atomic and
872 * guest writes cannot interleave between them. */
873 mark_request_serialising(req, bdrv_get_cluster_size(bs));
874 }
875
876 wait_serialising_requests(req);
877
878 if (flags & BDRV_REQ_COPY_ON_READ) {
879 int pnum;
880
881 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
882 if (ret < 0) {
883 goto out;
884 }
885
886 if (!ret || pnum != nb_sectors) {
887 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
888 goto out;
889 }
890 }
891
892 /* Forward the request to the BlockDriver */
893 if (!bs->zero_beyond_eof) {
894 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
895 } else {
896 /* Read zeros after EOF */
897 int64_t total_sectors, max_nb_sectors;
898
899 total_sectors = bdrv_nb_sectors(bs);
900 if (total_sectors < 0) {
901 ret = total_sectors;
902 goto out;
903 }
904
905 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
906 align >> BDRV_SECTOR_BITS);
907 if (nb_sectors < max_nb_sectors) {
908 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
909 } else if (max_nb_sectors > 0) {
910 QEMUIOVector local_qiov;
911
912 qemu_iovec_init(&local_qiov, qiov->niov);
913 qemu_iovec_concat(&local_qiov, qiov, 0,
914 max_nb_sectors * BDRV_SECTOR_SIZE);
915
916 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
917 &local_qiov);
918
919 qemu_iovec_destroy(&local_qiov);
920 } else {
921 ret = 0;
922 }
923
924 /* Reading beyond end of file is supposed to produce zeroes */
925 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
926 uint64_t offset = MAX(0, total_sectors - sector_num);
927 uint64_t bytes = (sector_num + nb_sectors - offset) *
928 BDRV_SECTOR_SIZE;
929 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
930 }
931 }
932
933out:
934 return ret;
935}
936
61007b31
SH
937/*
938 * Handle a read request in coroutine context
939 */
940static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
941 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
942 BdrvRequestFlags flags)
943{
944 BlockDriver *drv = bs->drv;
945 BdrvTrackedRequest req;
946
d01c07f2
FZ
947 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
948 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
61007b31
SH
949 uint8_t *head_buf = NULL;
950 uint8_t *tail_buf = NULL;
951 QEMUIOVector local_qiov;
952 bool use_local_qiov = false;
953 int ret;
954
955 if (!drv) {
956 return -ENOMEDIUM;
957 }
958
959 ret = bdrv_check_byte_request(bs, offset, bytes);
960 if (ret < 0) {
961 return ret;
962 }
963
964 if (bs->copy_on_read) {
965 flags |= BDRV_REQ_COPY_ON_READ;
966 }
967
968 /* throttling disk I/O */
969 if (bs->io_limits_enabled) {
970 bdrv_io_limits_intercept(bs, bytes, false);
971 }
972
973 /* Align read if necessary by padding qiov */
974 if (offset & (align - 1)) {
975 head_buf = qemu_blockalign(bs, align);
976 qemu_iovec_init(&local_qiov, qiov->niov + 2);
977 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
978 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
979 use_local_qiov = true;
980
981 bytes += offset & (align - 1);
982 offset = offset & ~(align - 1);
983 }
984
985 if ((offset + bytes) & (align - 1)) {
986 if (!use_local_qiov) {
987 qemu_iovec_init(&local_qiov, qiov->niov + 1);
988 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
989 use_local_qiov = true;
990 }
991 tail_buf = qemu_blockalign(bs, align);
992 qemu_iovec_add(&local_qiov, tail_buf,
993 align - ((offset + bytes) & (align - 1)));
994
995 bytes = ROUND_UP(bytes, align);
996 }
997
998 tracked_request_begin(&req, bs, offset, bytes, false);
999 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1000 use_local_qiov ? &local_qiov : qiov,
1001 flags);
1002 tracked_request_end(&req);
1003
1004 if (use_local_qiov) {
1005 qemu_iovec_destroy(&local_qiov);
1006 qemu_vfree(head_buf);
1007 qemu_vfree(tail_buf);
1008 }
1009
1010 return ret;
1011}
1012
1013static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1014 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1015 BdrvRequestFlags flags)
1016{
1017 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1018 return -EINVAL;
1019 }
1020
1021 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1022 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1023}
1024
1025int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1026 int nb_sectors, QEMUIOVector *qiov)
1027{
1028 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1029
1030 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1031}
1032
1033int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1034 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1035{
1036 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1037
1038 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1039 BDRV_REQ_COPY_ON_READ);
1040}
1041
1042#define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1043
1044static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1045 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1046{
1047 BlockDriver *drv = bs->drv;
1048 QEMUIOVector qiov;
1049 struct iovec iov = {0};
1050 int ret = 0;
1051
1052 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1053 BDRV_REQUEST_MAX_SECTORS);
1054
1055 while (nb_sectors > 0 && !ret) {
1056 int num = nb_sectors;
1057
1058 /* Align request. Block drivers can expect the "bulk" of the request
1059 * to be aligned.
1060 */
1061 if (bs->bl.write_zeroes_alignment
1062 && num > bs->bl.write_zeroes_alignment) {
1063 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1064 /* Make a small request up to the first aligned sector. */
1065 num = bs->bl.write_zeroes_alignment;
1066 num -= sector_num % bs->bl.write_zeroes_alignment;
1067 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1068 /* Shorten the request to the last aligned sector. num cannot
1069 * underflow because num > bs->bl.write_zeroes_alignment.
1070 */
1071 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1072 }
1073 }
1074
1075 /* limit request size */
1076 if (num > max_write_zeroes) {
1077 num = max_write_zeroes;
1078 }
1079
1080 ret = -ENOTSUP;
1081 /* First try the efficient write zeroes operation */
1082 if (drv->bdrv_co_write_zeroes) {
1083 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1084 }
1085
1086 if (ret == -ENOTSUP) {
1087 /* Fall back to bounce buffer if write zeroes is unsupported */
1088 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1089 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1090 num = MIN(num, max_xfer_len);
1091 iov.iov_len = num * BDRV_SECTOR_SIZE;
1092 if (iov.iov_base == NULL) {
1093 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1094 if (iov.iov_base == NULL) {
1095 ret = -ENOMEM;
1096 goto fail;
1097 }
1098 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1099 }
1100 qemu_iovec_init_external(&qiov, &iov, 1);
1101
1102 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1103
1104 /* Keep bounce buffer around if it is big enough for all
1105 * all future requests.
1106 */
1107 if (num < max_xfer_len) {
1108 qemu_vfree(iov.iov_base);
1109 iov.iov_base = NULL;
1110 }
1111 }
1112
1113 sector_num += num;
1114 nb_sectors -= num;
1115 }
1116
1117fail:
1118 qemu_vfree(iov.iov_base);
1119 return ret;
1120}
1121
1122/*
1123 * Forwards an already correctly aligned write request to the BlockDriver.
1124 */
1125static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1126 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1127 QEMUIOVector *qiov, int flags)
1128{
1129 BlockDriver *drv = bs->drv;
1130 bool waited;
1131 int ret;
1132
1133 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1134 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1135
1136 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1137 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1138 assert(!qiov || bytes == qiov->size);
1139
1140 waited = wait_serialising_requests(req);
1141 assert(!waited || !req->serialising);
1142 assert(req->overlap_offset <= offset);
1143 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1144
1145 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1146
1147 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1148 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1149 qemu_iovec_is_zero(qiov)) {
1150 flags |= BDRV_REQ_ZERO_WRITE;
1151 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1152 flags |= BDRV_REQ_MAY_UNMAP;
1153 }
1154 }
1155
1156 if (ret < 0) {
1157 /* Do nothing, write notifier decided to fail this request */
1158 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1159 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
1160 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1161 } else {
1162 BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
1163 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1164 }
1165 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
1166
1167 if (ret == 0 && !bs->enable_write_cache) {
1168 ret = bdrv_co_flush(bs);
1169 }
1170
1171 bdrv_set_dirty(bs, sector_num, nb_sectors);
1172
1173 block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1174
1175 if (ret >= 0) {
1176 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1177 }
1178
1179 return ret;
1180}
1181
1182/*
1183 * Handle a write request in coroutine context
1184 */
1185static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1186 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1187 BdrvRequestFlags flags)
1188{
1189 BdrvTrackedRequest req;
d01c07f2
FZ
1190 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1191 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
61007b31
SH
1192 uint8_t *head_buf = NULL;
1193 uint8_t *tail_buf = NULL;
1194 QEMUIOVector local_qiov;
1195 bool use_local_qiov = false;
1196 int ret;
1197
1198 if (!bs->drv) {
1199 return -ENOMEDIUM;
1200 }
1201 if (bs->read_only) {
eaf5fe2d 1202 return -EPERM;
61007b31
SH
1203 }
1204
1205 ret = bdrv_check_byte_request(bs, offset, bytes);
1206 if (ret < 0) {
1207 return ret;
1208 }
1209
1210 /* throttling disk I/O */
1211 if (bs->io_limits_enabled) {
1212 bdrv_io_limits_intercept(bs, bytes, true);
1213 }
1214
1215 /*
1216 * Align write if necessary by performing a read-modify-write cycle.
1217 * Pad qiov with the read parts and be sure to have a tracked request not
1218 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1219 */
1220 tracked_request_begin(&req, bs, offset, bytes, true);
1221
1222 if (offset & (align - 1)) {
1223 QEMUIOVector head_qiov;
1224 struct iovec head_iov;
1225
1226 mark_request_serialising(&req, align);
1227 wait_serialising_requests(&req);
1228
1229 head_buf = qemu_blockalign(bs, align);
1230 head_iov = (struct iovec) {
1231 .iov_base = head_buf,
1232 .iov_len = align,
1233 };
1234 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1235
1236 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1237 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1238 align, &head_qiov, 0);
1239 if (ret < 0) {
1240 goto fail;
1241 }
1242 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1243
1244 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1245 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1246 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1247 use_local_qiov = true;
1248
1249 bytes += offset & (align - 1);
1250 offset = offset & ~(align - 1);
1251 }
1252
1253 if ((offset + bytes) & (align - 1)) {
1254 QEMUIOVector tail_qiov;
1255 struct iovec tail_iov;
1256 size_t tail_bytes;
1257 bool waited;
1258
1259 mark_request_serialising(&req, align);
1260 waited = wait_serialising_requests(&req);
1261 assert(!waited || !use_local_qiov);
1262
1263 tail_buf = qemu_blockalign(bs, align);
1264 tail_iov = (struct iovec) {
1265 .iov_base = tail_buf,
1266 .iov_len = align,
1267 };
1268 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1269
1270 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1271 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1272 align, &tail_qiov, 0);
1273 if (ret < 0) {
1274 goto fail;
1275 }
1276 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1277
1278 if (!use_local_qiov) {
1279 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1280 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1281 use_local_qiov = true;
1282 }
1283
1284 tail_bytes = (offset + bytes) & (align - 1);
1285 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1286
1287 bytes = ROUND_UP(bytes, align);
1288 }
1289
61007b31
SH
1290 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1291 use_local_qiov ? &local_qiov : qiov,
1292 flags);
1293
1294fail:
1295 tracked_request_end(&req);
1296
1297 if (use_local_qiov) {
1298 qemu_iovec_destroy(&local_qiov);
1299 }
1300 qemu_vfree(head_buf);
1301 qemu_vfree(tail_buf);
1302
1303 return ret;
1304}
1305
1306static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1307 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1308 BdrvRequestFlags flags)
1309{
1310 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1311 return -EINVAL;
1312 }
1313
1314 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1315 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1316}
1317
1318int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1319 int nb_sectors, QEMUIOVector *qiov)
1320{
1321 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1322
1323 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1324}
1325
1326int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1327 int64_t sector_num, int nb_sectors,
1328 BdrvRequestFlags flags)
1329{
61007b31
SH
1330 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1331
1332 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1333 flags &= ~BDRV_REQ_MAY_UNMAP;
1334 }
61007b31 1335
d01c07f2
FZ
1336 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1337 BDRV_REQ_ZERO_WRITE | flags);
61007b31
SH
1338}
1339
1340int bdrv_flush_all(void)
1341{
1342 BlockDriverState *bs = NULL;
1343 int result = 0;
1344
1345 while ((bs = bdrv_next(bs))) {
1346 AioContext *aio_context = bdrv_get_aio_context(bs);
1347 int ret;
1348
1349 aio_context_acquire(aio_context);
1350 ret = bdrv_flush(bs);
1351 if (ret < 0 && !result) {
1352 result = ret;
1353 }
1354 aio_context_release(aio_context);
1355 }
1356
1357 return result;
1358}
1359
1360typedef struct BdrvCoGetBlockStatusData {
1361 BlockDriverState *bs;
1362 BlockDriverState *base;
1363 int64_t sector_num;
1364 int nb_sectors;
1365 int *pnum;
1366 int64_t ret;
1367 bool done;
1368} BdrvCoGetBlockStatusData;
1369
1370/*
1371 * Returns the allocation status of the specified sectors.
1372 * Drivers not implementing the functionality are assumed to not support
1373 * backing files, hence all their sectors are reported as allocated.
1374 *
1375 * If 'sector_num' is beyond the end of the disk image the return value is 0
1376 * and 'pnum' is set to 0.
1377 *
1378 * 'pnum' is set to the number of sectors (including and immediately following
1379 * the specified sector) that are known to be in the same
1380 * allocated/unallocated state.
1381 *
1382 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1383 * beyond the end of the disk image it will be clamped.
1384 */
1385static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1386 int64_t sector_num,
1387 int nb_sectors, int *pnum)
1388{
1389 int64_t total_sectors;
1390 int64_t n;
1391 int64_t ret, ret2;
1392
1393 total_sectors = bdrv_nb_sectors(bs);
1394 if (total_sectors < 0) {
1395 return total_sectors;
1396 }
1397
1398 if (sector_num >= total_sectors) {
1399 *pnum = 0;
1400 return 0;
1401 }
1402
1403 n = total_sectors - sector_num;
1404 if (n < nb_sectors) {
1405 nb_sectors = n;
1406 }
1407
1408 if (!bs->drv->bdrv_co_get_block_status) {
1409 *pnum = nb_sectors;
1410 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1411 if (bs->drv->protocol_name) {
1412 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1413 }
1414 return ret;
1415 }
1416
1417 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1418 if (ret < 0) {
1419 *pnum = 0;
1420 return ret;
1421 }
1422
1423 if (ret & BDRV_BLOCK_RAW) {
1424 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1425 return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1426 *pnum, pnum);
1427 }
1428
1429 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1430 ret |= BDRV_BLOCK_ALLOCATED;
1431 }
1432
1433 if (!(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO)) {
1434 if (bdrv_unallocated_blocks_are_zero(bs)) {
1435 ret |= BDRV_BLOCK_ZERO;
1436 } else if (bs->backing_hd) {
1437 BlockDriverState *bs2 = bs->backing_hd;
1438 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1439 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1440 ret |= BDRV_BLOCK_ZERO;
1441 }
1442 }
1443 }
1444
1445 if (bs->file &&
1446 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1447 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1448 int file_pnum;
1449
1450 ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1451 *pnum, &file_pnum);
1452 if (ret2 >= 0) {
1453 /* Ignore errors. This is just providing extra information, it
1454 * is useful but not necessary.
1455 */
1456 if (!file_pnum) {
1457 /* !file_pnum indicates an offset at or beyond the EOF; it is
1458 * perfectly valid for the format block driver to point to such
1459 * offsets, so catch it and mark everything as zero */
1460 ret |= BDRV_BLOCK_ZERO;
1461 } else {
1462 /* Limit request to the range reported by the protocol driver */
1463 *pnum = file_pnum;
1464 ret |= (ret2 & BDRV_BLOCK_ZERO);
1465 }
1466 }
1467 }
1468
1469 return ret;
1470}
1471
1472/* Coroutine wrapper for bdrv_get_block_status() */
1473static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
1474{
1475 BdrvCoGetBlockStatusData *data = opaque;
1476 BlockDriverState *bs = data->bs;
1477
1478 data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
1479 data->pnum);
1480 data->done = true;
1481}
1482
1483/*
1484 * Synchronous wrapper around bdrv_co_get_block_status().
1485 *
1486 * See bdrv_co_get_block_status() for details.
1487 */
1488int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
1489 int nb_sectors, int *pnum)
1490{
1491 Coroutine *co;
1492 BdrvCoGetBlockStatusData data = {
1493 .bs = bs,
1494 .sector_num = sector_num,
1495 .nb_sectors = nb_sectors,
1496 .pnum = pnum,
1497 .done = false,
1498 };
1499
1500 if (qemu_in_coroutine()) {
1501 /* Fast-path if already in coroutine context */
1502 bdrv_get_block_status_co_entry(&data);
1503 } else {
1504 AioContext *aio_context = bdrv_get_aio_context(bs);
1505
1506 co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
1507 qemu_coroutine_enter(co, &data);
1508 while (!data.done) {
1509 aio_poll(aio_context, true);
1510 }
1511 }
1512 return data.ret;
1513}
1514
1515int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1516 int nb_sectors, int *pnum)
1517{
1518 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1519 if (ret < 0) {
1520 return ret;
1521 }
1522 return !!(ret & BDRV_BLOCK_ALLOCATED);
1523}
1524
1525/*
1526 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1527 *
1528 * Return true if the given sector is allocated in any image between
1529 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1530 * sector is allocated in any image of the chain. Return false otherwise.
1531 *
1532 * 'pnum' is set to the number of sectors (including and immediately following
1533 * the specified sector) that are known to be in the same
1534 * allocated/unallocated state.
1535 *
1536 */
1537int bdrv_is_allocated_above(BlockDriverState *top,
1538 BlockDriverState *base,
1539 int64_t sector_num,
1540 int nb_sectors, int *pnum)
1541{
1542 BlockDriverState *intermediate;
1543 int ret, n = nb_sectors;
1544
1545 intermediate = top;
1546 while (intermediate && intermediate != base) {
1547 int pnum_inter;
1548 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1549 &pnum_inter);
1550 if (ret < 0) {
1551 return ret;
1552 } else if (ret) {
1553 *pnum = pnum_inter;
1554 return 1;
1555 }
1556
1557 /*
1558 * [sector_num, nb_sectors] is unallocated on top but intermediate
1559 * might have
1560 *
1561 * [sector_num+x, nr_sectors] allocated.
1562 */
1563 if (n > pnum_inter &&
1564 (intermediate == top ||
1565 sector_num + pnum_inter < intermediate->total_sectors)) {
1566 n = pnum_inter;
1567 }
1568
1569 intermediate = intermediate->backing_hd;
1570 }
1571
1572 *pnum = n;
1573 return 0;
1574}
1575
1576int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1577 const uint8_t *buf, int nb_sectors)
1578{
1579 BlockDriver *drv = bs->drv;
1580 int ret;
1581
1582 if (!drv) {
1583 return -ENOMEDIUM;
1584 }
1585 if (!drv->bdrv_write_compressed) {
1586 return -ENOTSUP;
1587 }
1588 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1589 if (ret < 0) {
1590 return ret;
1591 }
1592
1593 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1594
1595 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1596}
1597
1598int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1599 int64_t pos, int size)
1600{
1601 QEMUIOVector qiov;
1602 struct iovec iov = {
1603 .iov_base = (void *) buf,
1604 .iov_len = size,
1605 };
1606
1607 qemu_iovec_init_external(&qiov, &iov, 1);
1608 return bdrv_writev_vmstate(bs, &qiov, pos);
1609}
1610
1611int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1612{
1613 BlockDriver *drv = bs->drv;
1614
1615 if (!drv) {
1616 return -ENOMEDIUM;
1617 } else if (drv->bdrv_save_vmstate) {
1618 return drv->bdrv_save_vmstate(bs, qiov, pos);
1619 } else if (bs->file) {
1620 return bdrv_writev_vmstate(bs->file, qiov, pos);
1621 }
1622
1623 return -ENOTSUP;
1624}
1625
1626int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1627 int64_t pos, int size)
1628{
1629 BlockDriver *drv = bs->drv;
1630 if (!drv)
1631 return -ENOMEDIUM;
1632 if (drv->bdrv_load_vmstate)
1633 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1634 if (bs->file)
1635 return bdrv_load_vmstate(bs->file, buf, pos, size);
1636 return -ENOTSUP;
1637}
1638
1639/**************************************************************/
1640/* async I/Os */
1641
1642BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1643 QEMUIOVector *qiov, int nb_sectors,
1644 BlockCompletionFunc *cb, void *opaque)
1645{
1646 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1647
1648 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1649 cb, opaque, false);
1650}
1651
1652BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1653 QEMUIOVector *qiov, int nb_sectors,
1654 BlockCompletionFunc *cb, void *opaque)
1655{
1656 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1657
1658 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1659 cb, opaque, true);
1660}
1661
1662BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1663 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1664 BlockCompletionFunc *cb, void *opaque)
1665{
1666 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1667
1668 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1669 BDRV_REQ_ZERO_WRITE | flags,
1670 cb, opaque, true);
1671}
1672
1673
1674typedef struct MultiwriteCB {
1675 int error;
1676 int num_requests;
1677 int num_callbacks;
1678 struct {
1679 BlockCompletionFunc *cb;
1680 void *opaque;
1681 QEMUIOVector *free_qiov;
1682 } callbacks[];
1683} MultiwriteCB;
1684
1685static void multiwrite_user_cb(MultiwriteCB *mcb)
1686{
1687 int i;
1688
1689 for (i = 0; i < mcb->num_callbacks; i++) {
1690 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1691 if (mcb->callbacks[i].free_qiov) {
1692 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1693 }
1694 g_free(mcb->callbacks[i].free_qiov);
1695 }
1696}
1697
1698static void multiwrite_cb(void *opaque, int ret)
1699{
1700 MultiwriteCB *mcb = opaque;
1701
1702 trace_multiwrite_cb(mcb, ret);
1703
1704 if (ret < 0 && !mcb->error) {
1705 mcb->error = ret;
1706 }
1707
1708 mcb->num_requests--;
1709 if (mcb->num_requests == 0) {
1710 multiwrite_user_cb(mcb);
1711 g_free(mcb);
1712 }
1713}
1714
1715static int multiwrite_req_compare(const void *a, const void *b)
1716{
1717 const BlockRequest *req1 = a, *req2 = b;
1718
1719 /*
1720 * Note that we can't simply subtract req2->sector from req1->sector
1721 * here as that could overflow the return value.
1722 */
1723 if (req1->sector > req2->sector) {
1724 return 1;
1725 } else if (req1->sector < req2->sector) {
1726 return -1;
1727 } else {
1728 return 0;
1729 }
1730}
1731
1732/*
1733 * Takes a bunch of requests and tries to merge them. Returns the number of
1734 * requests that remain after merging.
1735 */
1736static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1737 int num_reqs, MultiwriteCB *mcb)
1738{
1739 int i, outidx;
1740
1741 // Sort requests by start sector
1742 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1743
1744 // Check if adjacent requests touch the same clusters. If so, combine them,
1745 // filling up gaps with zero sectors.
1746 outidx = 0;
1747 for (i = 1; i < num_reqs; i++) {
1748 int merge = 0;
1749 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1750
1751 // Handle exactly sequential writes and overlapping writes.
1752 if (reqs[i].sector <= oldreq_last) {
1753 merge = 1;
1754 }
1755
1756 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1757 merge = 0;
1758 }
1759
1760 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1761 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1762 merge = 0;
1763 }
1764
1765 if (merge) {
1766 size_t size;
1767 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1768 qemu_iovec_init(qiov,
1769 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1770
1771 // Add the first request to the merged one. If the requests are
1772 // overlapping, drop the last sectors of the first request.
1773 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1774 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1775
1776 // We should need to add any zeros between the two requests
1777 assert (reqs[i].sector <= oldreq_last);
1778
1779 // Add the second request
1780 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1781
1782 // Add tail of first request, if necessary
1783 if (qiov->size < reqs[outidx].qiov->size) {
1784 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1785 reqs[outidx].qiov->size - qiov->size);
1786 }
1787
1788 reqs[outidx].nb_sectors = qiov->size >> 9;
1789 reqs[outidx].qiov = qiov;
1790
1791 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1792 } else {
1793 outidx++;
1794 reqs[outidx].sector = reqs[i].sector;
1795 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1796 reqs[outidx].qiov = reqs[i].qiov;
1797 }
1798 }
1799
1800 block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1801
1802 return outidx + 1;
1803}
1804
1805/*
1806 * Submit multiple AIO write requests at once.
1807 *
1808 * On success, the function returns 0 and all requests in the reqs array have
1809 * been submitted. In error case this function returns -1, and any of the
1810 * requests may or may not be submitted yet. In particular, this means that the
1811 * callback will be called for some of the requests, for others it won't. The
1812 * caller must check the error field of the BlockRequest to wait for the right
1813 * callbacks (if error != 0, no callback will be called).
1814 *
1815 * The implementation may modify the contents of the reqs array, e.g. to merge
1816 * requests. However, the fields opaque and error are left unmodified as they
1817 * are used to signal failure for a single request to the caller.
1818 */
1819int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1820{
1821 MultiwriteCB *mcb;
1822 int i;
1823
1824 /* don't submit writes if we don't have a medium */
1825 if (bs->drv == NULL) {
1826 for (i = 0; i < num_reqs; i++) {
1827 reqs[i].error = -ENOMEDIUM;
1828 }
1829 return -1;
1830 }
1831
1832 if (num_reqs == 0) {
1833 return 0;
1834 }
1835
1836 // Create MultiwriteCB structure
1837 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1838 mcb->num_requests = 0;
1839 mcb->num_callbacks = num_reqs;
1840
1841 for (i = 0; i < num_reqs; i++) {
1842 mcb->callbacks[i].cb = reqs[i].cb;
1843 mcb->callbacks[i].opaque = reqs[i].opaque;
1844 }
1845
1846 // Check for mergable requests
1847 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1848
1849 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1850
1851 /* Run the aio requests. */
1852 mcb->num_requests = num_reqs;
1853 for (i = 0; i < num_reqs; i++) {
1854 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1855 reqs[i].nb_sectors, reqs[i].flags,
1856 multiwrite_cb, mcb,
1857 true);
1858 }
1859
1860 return 0;
1861}
1862
1863void bdrv_aio_cancel(BlockAIOCB *acb)
1864{
1865 qemu_aio_ref(acb);
1866 bdrv_aio_cancel_async(acb);
1867 while (acb->refcnt > 1) {
1868 if (acb->aiocb_info->get_aio_context) {
1869 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1870 } else if (acb->bs) {
1871 aio_poll(bdrv_get_aio_context(acb->bs), true);
1872 } else {
1873 abort();
1874 }
1875 }
1876 qemu_aio_unref(acb);
1877}
1878
1879/* Async version of aio cancel. The caller is not blocked if the acb implements
1880 * cancel_async, otherwise we do nothing and let the request normally complete.
1881 * In either case the completion callback must be called. */
1882void bdrv_aio_cancel_async(BlockAIOCB *acb)
1883{
1884 if (acb->aiocb_info->cancel_async) {
1885 acb->aiocb_info->cancel_async(acb);
1886 }
1887}
1888
1889/**************************************************************/
1890/* async block device emulation */
1891
1892typedef struct BlockAIOCBSync {
1893 BlockAIOCB common;
1894 QEMUBH *bh;
1895 int ret;
1896 /* vector translation state */
1897 QEMUIOVector *qiov;
1898 uint8_t *bounce;
1899 int is_write;
1900} BlockAIOCBSync;
1901
1902static const AIOCBInfo bdrv_em_aiocb_info = {
1903 .aiocb_size = sizeof(BlockAIOCBSync),
1904};
1905
1906static void bdrv_aio_bh_cb(void *opaque)
1907{
1908 BlockAIOCBSync *acb = opaque;
1909
1910 if (!acb->is_write && acb->ret >= 0) {
1911 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
1912 }
1913 qemu_vfree(acb->bounce);
1914 acb->common.cb(acb->common.opaque, acb->ret);
1915 qemu_bh_delete(acb->bh);
1916 acb->bh = NULL;
1917 qemu_aio_unref(acb);
1918}
1919
1920static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
1921 int64_t sector_num,
1922 QEMUIOVector *qiov,
1923 int nb_sectors,
1924 BlockCompletionFunc *cb,
1925 void *opaque,
1926 int is_write)
1927
1928{
1929 BlockAIOCBSync *acb;
1930
1931 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
1932 acb->is_write = is_write;
1933 acb->qiov = qiov;
1934 acb->bounce = qemu_try_blockalign(bs, qiov->size);
1935 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
1936
1937 if (acb->bounce == NULL) {
1938 acb->ret = -ENOMEM;
1939 } else if (is_write) {
1940 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
1941 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
1942 } else {
1943 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
1944 }
1945
1946 qemu_bh_schedule(acb->bh);
1947
1948 return &acb->common;
1949}
1950
1951static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
1952 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1953 BlockCompletionFunc *cb, void *opaque)
1954{
1955 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1956}
1957
1958static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
1959 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1960 BlockCompletionFunc *cb, void *opaque)
1961{
1962 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
1963}
1964
1965
1966typedef struct BlockAIOCBCoroutine {
1967 BlockAIOCB common;
1968 BlockRequest req;
1969 bool is_write;
1970 bool need_bh;
1971 bool *done;
1972 QEMUBH* bh;
1973} BlockAIOCBCoroutine;
1974
1975static const AIOCBInfo bdrv_em_co_aiocb_info = {
1976 .aiocb_size = sizeof(BlockAIOCBCoroutine),
1977};
1978
1979static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
1980{
1981 if (!acb->need_bh) {
1982 acb->common.cb(acb->common.opaque, acb->req.error);
1983 qemu_aio_unref(acb);
1984 }
1985}
1986
1987static void bdrv_co_em_bh(void *opaque)
1988{
1989 BlockAIOCBCoroutine *acb = opaque;
1990
1991 assert(!acb->need_bh);
1992 qemu_bh_delete(acb->bh);
1993 bdrv_co_complete(acb);
1994}
1995
1996static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
1997{
1998 acb->need_bh = false;
1999 if (acb->req.error != -EINPROGRESS) {
2000 BlockDriverState *bs = acb->common.bs;
2001
2002 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2003 qemu_bh_schedule(acb->bh);
2004 }
2005}
2006
2007/* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2008static void coroutine_fn bdrv_co_do_rw(void *opaque)
2009{
2010 BlockAIOCBCoroutine *acb = opaque;
2011 BlockDriverState *bs = acb->common.bs;
2012
2013 if (!acb->is_write) {
2014 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2015 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2016 } else {
2017 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2018 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2019 }
2020
2021 bdrv_co_complete(acb);
2022}
2023
2024static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2025 int64_t sector_num,
2026 QEMUIOVector *qiov,
2027 int nb_sectors,
2028 BdrvRequestFlags flags,
2029 BlockCompletionFunc *cb,
2030 void *opaque,
2031 bool is_write)
2032{
2033 Coroutine *co;
2034 BlockAIOCBCoroutine *acb;
2035
2036 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2037 acb->need_bh = true;
2038 acb->req.error = -EINPROGRESS;
2039 acb->req.sector = sector_num;
2040 acb->req.nb_sectors = nb_sectors;
2041 acb->req.qiov = qiov;
2042 acb->req.flags = flags;
2043 acb->is_write = is_write;
2044
2045 co = qemu_coroutine_create(bdrv_co_do_rw);
2046 qemu_coroutine_enter(co, acb);
2047
2048 bdrv_co_maybe_schedule_bh(acb);
2049 return &acb->common;
2050}
2051
2052static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2053{
2054 BlockAIOCBCoroutine *acb = opaque;
2055 BlockDriverState *bs = acb->common.bs;
2056
2057 acb->req.error = bdrv_co_flush(bs);
2058 bdrv_co_complete(acb);
2059}
2060
2061BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2062 BlockCompletionFunc *cb, void *opaque)
2063{
2064 trace_bdrv_aio_flush(bs, opaque);
2065
2066 Coroutine *co;
2067 BlockAIOCBCoroutine *acb;
2068
2069 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2070 acb->need_bh = true;
2071 acb->req.error = -EINPROGRESS;
2072
2073 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2074 qemu_coroutine_enter(co, acb);
2075
2076 bdrv_co_maybe_schedule_bh(acb);
2077 return &acb->common;
2078}
2079
2080static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2081{
2082 BlockAIOCBCoroutine *acb = opaque;
2083 BlockDriverState *bs = acb->common.bs;
2084
2085 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2086 bdrv_co_complete(acb);
2087}
2088
2089BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2090 int64_t sector_num, int nb_sectors,
2091 BlockCompletionFunc *cb, void *opaque)
2092{
2093 Coroutine *co;
2094 BlockAIOCBCoroutine *acb;
2095
2096 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2097
2098 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2099 acb->need_bh = true;
2100 acb->req.error = -EINPROGRESS;
2101 acb->req.sector = sector_num;
2102 acb->req.nb_sectors = nb_sectors;
2103 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2104 qemu_coroutine_enter(co, acb);
2105
2106 bdrv_co_maybe_schedule_bh(acb);
2107 return &acb->common;
2108}
2109
2110void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2111 BlockCompletionFunc *cb, void *opaque)
2112{
2113 BlockAIOCB *acb;
2114
2115 acb = g_slice_alloc(aiocb_info->aiocb_size);
2116 acb->aiocb_info = aiocb_info;
2117 acb->bs = bs;
2118 acb->cb = cb;
2119 acb->opaque = opaque;
2120 acb->refcnt = 1;
2121 return acb;
2122}
2123
2124void qemu_aio_ref(void *p)
2125{
2126 BlockAIOCB *acb = p;
2127 acb->refcnt++;
2128}
2129
2130void qemu_aio_unref(void *p)
2131{
2132 BlockAIOCB *acb = p;
2133 assert(acb->refcnt > 0);
2134 if (--acb->refcnt == 0) {
2135 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
2136 }
2137}
2138
2139/**************************************************************/
2140/* Coroutine block device emulation */
2141
2142typedef struct CoroutineIOCompletion {
2143 Coroutine *coroutine;
2144 int ret;
2145} CoroutineIOCompletion;
2146
2147static void bdrv_co_io_em_complete(void *opaque, int ret)
2148{
2149 CoroutineIOCompletion *co = opaque;
2150
2151 co->ret = ret;
2152 qemu_coroutine_enter(co->coroutine, NULL);
2153}
2154
2155static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2156 int nb_sectors, QEMUIOVector *iov,
2157 bool is_write)
2158{
2159 CoroutineIOCompletion co = {
2160 .coroutine = qemu_coroutine_self(),
2161 };
2162 BlockAIOCB *acb;
2163
2164 if (is_write) {
2165 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2166 bdrv_co_io_em_complete, &co);
2167 } else {
2168 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2169 bdrv_co_io_em_complete, &co);
2170 }
2171
2172 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2173 if (!acb) {
2174 return -EIO;
2175 }
2176 qemu_coroutine_yield();
2177
2178 return co.ret;
2179}
2180
2181static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2182 int64_t sector_num, int nb_sectors,
2183 QEMUIOVector *iov)
2184{
2185 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2186}
2187
2188static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2189 int64_t sector_num, int nb_sectors,
2190 QEMUIOVector *iov)
2191{
2192 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2193}
2194
2195static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2196{
2197 RwCo *rwco = opaque;
2198
2199 rwco->ret = bdrv_co_flush(rwco->bs);
2200}
2201
2202int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2203{
2204 int ret;
2205
2206 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2207 return 0;
2208 }
2209
2210 /* Write back cached data to the OS even with cache=unsafe */
2211 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2212 if (bs->drv->bdrv_co_flush_to_os) {
2213 ret = bs->drv->bdrv_co_flush_to_os(bs);
2214 if (ret < 0) {
2215 return ret;
2216 }
2217 }
2218
2219 /* But don't actually force it to the disk with cache=unsafe */
2220 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2221 goto flush_parent;
2222 }
2223
2224 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2225 if (bs->drv->bdrv_co_flush_to_disk) {
2226 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2227 } else if (bs->drv->bdrv_aio_flush) {
2228 BlockAIOCB *acb;
2229 CoroutineIOCompletion co = {
2230 .coroutine = qemu_coroutine_self(),
2231 };
2232
2233 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2234 if (acb == NULL) {
2235 ret = -EIO;
2236 } else {
2237 qemu_coroutine_yield();
2238 ret = co.ret;
2239 }
2240 } else {
2241 /*
2242 * Some block drivers always operate in either writethrough or unsafe
2243 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2244 * know how the server works (because the behaviour is hardcoded or
2245 * depends on server-side configuration), so we can't ensure that
2246 * everything is safe on disk. Returning an error doesn't work because
2247 * that would break guests even if the server operates in writethrough
2248 * mode.
2249 *
2250 * Let's hope the user knows what he's doing.
2251 */
2252 ret = 0;
2253 }
2254 if (ret < 0) {
2255 return ret;
2256 }
2257
2258 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2259 * in the case of cache=unsafe, so there are no useless flushes.
2260 */
2261flush_parent:
2262 return bdrv_co_flush(bs->file);
2263}
2264
2265int bdrv_flush(BlockDriverState *bs)
2266{
2267 Coroutine *co;
2268 RwCo rwco = {
2269 .bs = bs,
2270 .ret = NOT_DONE,
2271 };
2272
2273 if (qemu_in_coroutine()) {
2274 /* Fast-path if already in coroutine context */
2275 bdrv_flush_co_entry(&rwco);
2276 } else {
2277 AioContext *aio_context = bdrv_get_aio_context(bs);
2278
2279 co = qemu_coroutine_create(bdrv_flush_co_entry);
2280 qemu_coroutine_enter(co, &rwco);
2281 while (rwco.ret == NOT_DONE) {
2282 aio_poll(aio_context, true);
2283 }
2284 }
2285
2286 return rwco.ret;
2287}
2288
2289typedef struct DiscardCo {
2290 BlockDriverState *bs;
2291 int64_t sector_num;
2292 int nb_sectors;
2293 int ret;
2294} DiscardCo;
2295static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2296{
2297 DiscardCo *rwco = opaque;
2298
2299 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2300}
2301
2302int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2303 int nb_sectors)
2304{
2305 int max_discard, ret;
2306
2307 if (!bs->drv) {
2308 return -ENOMEDIUM;
2309 }
2310
2311 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2312 if (ret < 0) {
2313 return ret;
2314 } else if (bs->read_only) {
eaf5fe2d 2315 return -EPERM;
61007b31
SH
2316 }
2317
2318 bdrv_reset_dirty(bs, sector_num, nb_sectors);
2319
2320 /* Do nothing if disabled. */
2321 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2322 return 0;
2323 }
2324
2325 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2326 return 0;
2327 }
2328
2329 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2330 while (nb_sectors > 0) {
2331 int ret;
2332 int num = nb_sectors;
2333
2334 /* align request */
2335 if (bs->bl.discard_alignment &&
2336 num >= bs->bl.discard_alignment &&
2337 sector_num % bs->bl.discard_alignment) {
2338 if (num > bs->bl.discard_alignment) {
2339 num = bs->bl.discard_alignment;
2340 }
2341 num -= sector_num % bs->bl.discard_alignment;
2342 }
2343
2344 /* limit request size */
2345 if (num > max_discard) {
2346 num = max_discard;
2347 }
2348
2349 if (bs->drv->bdrv_co_discard) {
2350 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2351 } else {
2352 BlockAIOCB *acb;
2353 CoroutineIOCompletion co = {
2354 .coroutine = qemu_coroutine_self(),
2355 };
2356
2357 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2358 bdrv_co_io_em_complete, &co);
2359 if (acb == NULL) {
2360 return -EIO;
2361 } else {
2362 qemu_coroutine_yield();
2363 ret = co.ret;
2364 }
2365 }
2366 if (ret && ret != -ENOTSUP) {
2367 return ret;
2368 }
2369
2370 sector_num += num;
2371 nb_sectors -= num;
2372 }
2373 return 0;
2374}
2375
2376int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2377{
2378 Coroutine *co;
2379 DiscardCo rwco = {
2380 .bs = bs,
2381 .sector_num = sector_num,
2382 .nb_sectors = nb_sectors,
2383 .ret = NOT_DONE,
2384 };
2385
2386 if (qemu_in_coroutine()) {
2387 /* Fast-path if already in coroutine context */
2388 bdrv_discard_co_entry(&rwco);
2389 } else {
2390 AioContext *aio_context = bdrv_get_aio_context(bs);
2391
2392 co = qemu_coroutine_create(bdrv_discard_co_entry);
2393 qemu_coroutine_enter(co, &rwco);
2394 while (rwco.ret == NOT_DONE) {
2395 aio_poll(aio_context, true);
2396 }
2397 }
2398
2399 return rwco.ret;
2400}
2401
2402/* needed for generic scsi interface */
2403
2404int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2405{
2406 BlockDriver *drv = bs->drv;
2407
2408 if (drv && drv->bdrv_ioctl)
2409 return drv->bdrv_ioctl(bs, req, buf);
2410 return -ENOTSUP;
2411}
2412
2413BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2414 unsigned long int req, void *buf,
2415 BlockCompletionFunc *cb, void *opaque)
2416{
2417 BlockDriver *drv = bs->drv;
2418
2419 if (drv && drv->bdrv_aio_ioctl)
2420 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2421 return NULL;
2422}
2423
2424void *qemu_blockalign(BlockDriverState *bs, size_t size)
2425{
2426 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2427}
2428
2429void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2430{
2431 return memset(qemu_blockalign(bs, size), 0, size);
2432}
2433
2434void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2435{
2436 size_t align = bdrv_opt_mem_align(bs);
2437
2438 /* Ensure that NULL is never returned on success */
2439 assert(align > 0);
2440 if (size == 0) {
2441 size = align;
2442 }
2443
2444 return qemu_try_memalign(align, size);
2445}
2446
2447void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2448{
2449 void *mem = qemu_try_blockalign(bs, size);
2450
2451 if (mem) {
2452 memset(mem, 0, size);
2453 }
2454
2455 return mem;
2456}
2457
2458/*
2459 * Check if all memory in this vector is sector aligned.
2460 */
2461bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2462{
2463 int i;
4196d2f0 2464 size_t alignment = bdrv_min_mem_align(bs);
61007b31
SH
2465
2466 for (i = 0; i < qiov->niov; i++) {
2467 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2468 return false;
2469 }
2470 if (qiov->iov[i].iov_len % alignment) {
2471 return false;
2472 }
2473 }
2474
2475 return true;
2476}
2477
2478void bdrv_add_before_write_notifier(BlockDriverState *bs,
2479 NotifierWithReturn *notifier)
2480{
2481 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2482}
2483
2484void bdrv_io_plug(BlockDriverState *bs)
2485{
2486 BlockDriver *drv = bs->drv;
2487 if (drv && drv->bdrv_io_plug) {
2488 drv->bdrv_io_plug(bs);
2489 } else if (bs->file) {
2490 bdrv_io_plug(bs->file);
2491 }
2492}
2493
2494void bdrv_io_unplug(BlockDriverState *bs)
2495{
2496 BlockDriver *drv = bs->drv;
2497 if (drv && drv->bdrv_io_unplug) {
2498 drv->bdrv_io_unplug(bs);
2499 } else if (bs->file) {
2500 bdrv_io_unplug(bs->file);
2501 }
2502}
2503
2504void bdrv_flush_io_queue(BlockDriverState *bs)
2505{
2506 BlockDriver *drv = bs->drv;
2507 if (drv && drv->bdrv_flush_io_queue) {
2508 drv->bdrv_flush_io_queue(bs);
2509 } else if (bs->file) {
2510 bdrv_flush_io_queue(bs->file);
2511 }
2512}