]> git.proxmox.com Git - mirror_qemu.git/blame - block/io.c
block: return EPERM on writes or discards to read-only devices
[mirror_qemu.git] / block / io.c
CommitLineData
61007b31
SH
1/*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "trace.h"
26#include "sysemu/qtest.h"
27#include "block/blockjob.h"
28#include "block/block_int.h"
29
30#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
31
32static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
33 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
34 BlockCompletionFunc *cb, void *opaque);
35static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
37 BlockCompletionFunc *cb, void *opaque);
38static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
39 int64_t sector_num, int nb_sectors,
40 QEMUIOVector *iov);
41static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
42 int64_t sector_num, int nb_sectors,
43 QEMUIOVector *iov);
44static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
45 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
46 BdrvRequestFlags flags);
47static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
49 BdrvRequestFlags flags);
50static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
51 int64_t sector_num,
52 QEMUIOVector *qiov,
53 int nb_sectors,
54 BdrvRequestFlags flags,
55 BlockCompletionFunc *cb,
56 void *opaque,
57 bool is_write);
58static void coroutine_fn bdrv_co_do_rw(void *opaque);
59static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
60 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
61
62/* throttling disk I/O limits */
63void bdrv_set_io_limits(BlockDriverState *bs,
64 ThrottleConfig *cfg)
65{
66 int i;
67
68 throttle_config(&bs->throttle_state, cfg);
69
70 for (i = 0; i < 2; i++) {
71 qemu_co_enter_next(&bs->throttled_reqs[i]);
72 }
73}
74
75/* this function drain all the throttled IOs */
76static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
77{
78 bool drained = false;
79 bool enabled = bs->io_limits_enabled;
80 int i;
81
82 bs->io_limits_enabled = false;
83
84 for (i = 0; i < 2; i++) {
85 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
86 drained = true;
87 }
88 }
89
90 bs->io_limits_enabled = enabled;
91
92 return drained;
93}
94
95void bdrv_io_limits_disable(BlockDriverState *bs)
96{
97 bs->io_limits_enabled = false;
98
99 bdrv_start_throttled_reqs(bs);
100
101 throttle_destroy(&bs->throttle_state);
102}
103
104static void bdrv_throttle_read_timer_cb(void *opaque)
105{
106 BlockDriverState *bs = opaque;
107 qemu_co_enter_next(&bs->throttled_reqs[0]);
108}
109
110static void bdrv_throttle_write_timer_cb(void *opaque)
111{
112 BlockDriverState *bs = opaque;
113 qemu_co_enter_next(&bs->throttled_reqs[1]);
114}
115
116/* should be called before bdrv_set_io_limits if a limit is set */
117void bdrv_io_limits_enable(BlockDriverState *bs)
118{
119 int clock_type = QEMU_CLOCK_REALTIME;
120
121 if (qtest_enabled()) {
122 /* For testing block IO throttling only */
123 clock_type = QEMU_CLOCK_VIRTUAL;
124 }
125 assert(!bs->io_limits_enabled);
126 throttle_init(&bs->throttle_state,
127 bdrv_get_aio_context(bs),
128 clock_type,
129 bdrv_throttle_read_timer_cb,
130 bdrv_throttle_write_timer_cb,
131 bs);
132 bs->io_limits_enabled = true;
133}
134
135/* This function makes an IO wait if needed
136 *
137 * @nb_sectors: the number of sectors of the IO
138 * @is_write: is the IO a write
139 */
140static void bdrv_io_limits_intercept(BlockDriverState *bs,
141 unsigned int bytes,
142 bool is_write)
143{
144 /* does this io must wait */
145 bool must_wait = throttle_schedule_timer(&bs->throttle_state, is_write);
146
147 /* if must wait or any request of this type throttled queue the IO */
148 if (must_wait ||
149 !qemu_co_queue_empty(&bs->throttled_reqs[is_write])) {
150 qemu_co_queue_wait(&bs->throttled_reqs[is_write]);
151 }
152
153 /* the IO will be executed, do the accounting */
154 throttle_account(&bs->throttle_state, is_write, bytes);
155
156
157 /* if the next request must wait -> do nothing */
158 if (throttle_schedule_timer(&bs->throttle_state, is_write)) {
159 return;
160 }
161
162 /* else queue next request for execution */
163 qemu_co_queue_next(&bs->throttled_reqs[is_write]);
164}
165
166void bdrv_setup_io_funcs(BlockDriver *bdrv)
167{
168 /* Block drivers without coroutine functions need emulation */
169 if (!bdrv->bdrv_co_readv) {
170 bdrv->bdrv_co_readv = bdrv_co_readv_em;
171 bdrv->bdrv_co_writev = bdrv_co_writev_em;
172
173 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
174 * the block driver lacks aio we need to emulate that too.
175 */
176 if (!bdrv->bdrv_aio_readv) {
177 /* add AIO emulation layer */
178 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
179 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
180 }
181 }
182}
183
184void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
185{
186 BlockDriver *drv = bs->drv;
187 Error *local_err = NULL;
188
189 memset(&bs->bl, 0, sizeof(bs->bl));
190
191 if (!drv) {
192 return;
193 }
194
195 /* Take some limits from the children as a default */
196 if (bs->file) {
197 bdrv_refresh_limits(bs->file, &local_err);
198 if (local_err) {
199 error_propagate(errp, local_err);
200 return;
201 }
202 bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
203 bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
204 bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
205 } else {
206 bs->bl.opt_mem_alignment = 512;
207 }
208
209 if (bs->backing_hd) {
210 bdrv_refresh_limits(bs->backing_hd, &local_err);
211 if (local_err) {
212 error_propagate(errp, local_err);
213 return;
214 }
215 bs->bl.opt_transfer_length =
216 MAX(bs->bl.opt_transfer_length,
217 bs->backing_hd->bl.opt_transfer_length);
218 bs->bl.max_transfer_length =
219 MIN_NON_ZERO(bs->bl.max_transfer_length,
220 bs->backing_hd->bl.max_transfer_length);
221 bs->bl.opt_mem_alignment =
222 MAX(bs->bl.opt_mem_alignment,
223 bs->backing_hd->bl.opt_mem_alignment);
224 }
225
226 /* Then let the driver override it */
227 if (drv->bdrv_refresh_limits) {
228 drv->bdrv_refresh_limits(bs, errp);
229 }
230}
231
232/**
233 * The copy-on-read flag is actually a reference count so multiple users may
234 * use the feature without worrying about clobbering its previous state.
235 * Copy-on-read stays enabled until all users have called to disable it.
236 */
237void bdrv_enable_copy_on_read(BlockDriverState *bs)
238{
239 bs->copy_on_read++;
240}
241
242void bdrv_disable_copy_on_read(BlockDriverState *bs)
243{
244 assert(bs->copy_on_read > 0);
245 bs->copy_on_read--;
246}
247
248/* Check if any requests are in-flight (including throttled requests) */
249static bool bdrv_requests_pending(BlockDriverState *bs)
250{
251 if (!QLIST_EMPTY(&bs->tracked_requests)) {
252 return true;
253 }
254 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
255 return true;
256 }
257 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
258 return true;
259 }
260 if (bs->file && bdrv_requests_pending(bs->file)) {
261 return true;
262 }
263 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
264 return true;
265 }
266 return false;
267}
268
269static bool bdrv_drain_one(BlockDriverState *bs)
270{
271 bool bs_busy;
272
273 bdrv_flush_io_queue(bs);
274 bdrv_start_throttled_reqs(bs);
275 bs_busy = bdrv_requests_pending(bs);
276 bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
277 return bs_busy;
278}
279
280/*
281 * Wait for pending requests to complete on a single BlockDriverState subtree
282 *
283 * See the warning in bdrv_drain_all(). This function can only be called if
284 * you are sure nothing can generate I/O because you have op blockers
285 * installed.
286 *
287 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
288 * AioContext.
289 */
290void bdrv_drain(BlockDriverState *bs)
291{
292 while (bdrv_drain_one(bs)) {
293 /* Keep iterating */
294 }
295}
296
297/*
298 * Wait for pending requests to complete across all BlockDriverStates
299 *
300 * This function does not flush data to disk, use bdrv_flush_all() for that
301 * after calling this function.
302 *
303 * Note that completion of an asynchronous I/O operation can trigger any
304 * number of other I/O operations on other devices---for example a coroutine
305 * can be arbitrarily complex and a constant flow of I/O can come until the
306 * coroutine is complete. Because of this, it is not possible to have a
307 * function to drain a single device's I/O queue.
308 */
309void bdrv_drain_all(void)
310{
311 /* Always run first iteration so any pending completion BHs run */
312 bool busy = true;
313 BlockDriverState *bs = NULL;
314
315 while ((bs = bdrv_next(bs))) {
316 AioContext *aio_context = bdrv_get_aio_context(bs);
317
318 aio_context_acquire(aio_context);
319 if (bs->job) {
320 block_job_pause(bs->job);
321 }
322 aio_context_release(aio_context);
323 }
324
325 while (busy) {
326 busy = false;
327 bs = NULL;
328
329 while ((bs = bdrv_next(bs))) {
330 AioContext *aio_context = bdrv_get_aio_context(bs);
331
332 aio_context_acquire(aio_context);
333 busy |= bdrv_drain_one(bs);
334 aio_context_release(aio_context);
335 }
336 }
337
338 bs = NULL;
339 while ((bs = bdrv_next(bs))) {
340 AioContext *aio_context = bdrv_get_aio_context(bs);
341
342 aio_context_acquire(aio_context);
343 if (bs->job) {
344 block_job_resume(bs->job);
345 }
346 aio_context_release(aio_context);
347 }
348}
349
350/**
351 * Remove an active request from the tracked requests list
352 *
353 * This function should be called when a tracked request is completing.
354 */
355static void tracked_request_end(BdrvTrackedRequest *req)
356{
357 if (req->serialising) {
358 req->bs->serialising_in_flight--;
359 }
360
361 QLIST_REMOVE(req, list);
362 qemu_co_queue_restart_all(&req->wait_queue);
363}
364
365/**
366 * Add an active request to the tracked requests list
367 */
368static void tracked_request_begin(BdrvTrackedRequest *req,
369 BlockDriverState *bs,
370 int64_t offset,
371 unsigned int bytes, bool is_write)
372{
373 *req = (BdrvTrackedRequest){
374 .bs = bs,
375 .offset = offset,
376 .bytes = bytes,
377 .is_write = is_write,
378 .co = qemu_coroutine_self(),
379 .serialising = false,
380 .overlap_offset = offset,
381 .overlap_bytes = bytes,
382 };
383
384 qemu_co_queue_init(&req->wait_queue);
385
386 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
387}
388
389static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
390{
391 int64_t overlap_offset = req->offset & ~(align - 1);
392 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
393 - overlap_offset;
394
395 if (!req->serialising) {
396 req->bs->serialising_in_flight++;
397 req->serialising = true;
398 }
399
400 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
401 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
402}
403
404/**
405 * Round a region to cluster boundaries
406 */
407void bdrv_round_to_clusters(BlockDriverState *bs,
408 int64_t sector_num, int nb_sectors,
409 int64_t *cluster_sector_num,
410 int *cluster_nb_sectors)
411{
412 BlockDriverInfo bdi;
413
414 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
415 *cluster_sector_num = sector_num;
416 *cluster_nb_sectors = nb_sectors;
417 } else {
418 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
419 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
420 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
421 nb_sectors, c);
422 }
423}
424
425static int bdrv_get_cluster_size(BlockDriverState *bs)
426{
427 BlockDriverInfo bdi;
428 int ret;
429
430 ret = bdrv_get_info(bs, &bdi);
431 if (ret < 0 || bdi.cluster_size == 0) {
432 return bs->request_alignment;
433 } else {
434 return bdi.cluster_size;
435 }
436}
437
438static bool tracked_request_overlaps(BdrvTrackedRequest *req,
439 int64_t offset, unsigned int bytes)
440{
441 /* aaaa bbbb */
442 if (offset >= req->overlap_offset + req->overlap_bytes) {
443 return false;
444 }
445 /* bbbb aaaa */
446 if (req->overlap_offset >= offset + bytes) {
447 return false;
448 }
449 return true;
450}
451
452static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
453{
454 BlockDriverState *bs = self->bs;
455 BdrvTrackedRequest *req;
456 bool retry;
457 bool waited = false;
458
459 if (!bs->serialising_in_flight) {
460 return false;
461 }
462
463 do {
464 retry = false;
465 QLIST_FOREACH(req, &bs->tracked_requests, list) {
466 if (req == self || (!req->serialising && !self->serialising)) {
467 continue;
468 }
469 if (tracked_request_overlaps(req, self->overlap_offset,
470 self->overlap_bytes))
471 {
472 /* Hitting this means there was a reentrant request, for
473 * example, a block driver issuing nested requests. This must
474 * never happen since it means deadlock.
475 */
476 assert(qemu_coroutine_self() != req->co);
477
478 /* If the request is already (indirectly) waiting for us, or
479 * will wait for us as soon as it wakes up, then just go on
480 * (instead of producing a deadlock in the former case). */
481 if (!req->waiting_for) {
482 self->waiting_for = req;
483 qemu_co_queue_wait(&req->wait_queue);
484 self->waiting_for = NULL;
485 retry = true;
486 waited = true;
487 break;
488 }
489 }
490 }
491 } while (retry);
492
493 return waited;
494}
495
496static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
497 size_t size)
498{
499 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
500 return -EIO;
501 }
502
503 if (!bdrv_is_inserted(bs)) {
504 return -ENOMEDIUM;
505 }
506
507 if (offset < 0) {
508 return -EIO;
509 }
510
511 return 0;
512}
513
514static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
515 int nb_sectors)
516{
517 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
518 return -EIO;
519 }
520
521 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
522 nb_sectors * BDRV_SECTOR_SIZE);
523}
524
525typedef struct RwCo {
526 BlockDriverState *bs;
527 int64_t offset;
528 QEMUIOVector *qiov;
529 bool is_write;
530 int ret;
531 BdrvRequestFlags flags;
532} RwCo;
533
534static void coroutine_fn bdrv_rw_co_entry(void *opaque)
535{
536 RwCo *rwco = opaque;
537
538 if (!rwco->is_write) {
539 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
540 rwco->qiov->size, rwco->qiov,
541 rwco->flags);
542 } else {
543 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
544 rwco->qiov->size, rwco->qiov,
545 rwco->flags);
546 }
547}
548
549/*
550 * Process a vectored synchronous request using coroutines
551 */
552static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
553 QEMUIOVector *qiov, bool is_write,
554 BdrvRequestFlags flags)
555{
556 Coroutine *co;
557 RwCo rwco = {
558 .bs = bs,
559 .offset = offset,
560 .qiov = qiov,
561 .is_write = is_write,
562 .ret = NOT_DONE,
563 .flags = flags,
564 };
565
566 /**
567 * In sync call context, when the vcpu is blocked, this throttling timer
568 * will not fire; so the I/O throttling function has to be disabled here
569 * if it has been enabled.
570 */
571 if (bs->io_limits_enabled) {
572 fprintf(stderr, "Disabling I/O throttling on '%s' due "
573 "to synchronous I/O.\n", bdrv_get_device_name(bs));
574 bdrv_io_limits_disable(bs);
575 }
576
577 if (qemu_in_coroutine()) {
578 /* Fast-path if already in coroutine context */
579 bdrv_rw_co_entry(&rwco);
580 } else {
581 AioContext *aio_context = bdrv_get_aio_context(bs);
582
583 co = qemu_coroutine_create(bdrv_rw_co_entry);
584 qemu_coroutine_enter(co, &rwco);
585 while (rwco.ret == NOT_DONE) {
586 aio_poll(aio_context, true);
587 }
588 }
589 return rwco.ret;
590}
591
592/*
593 * Process a synchronous request using coroutines
594 */
595static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
596 int nb_sectors, bool is_write, BdrvRequestFlags flags)
597{
598 QEMUIOVector qiov;
599 struct iovec iov = {
600 .iov_base = (void *)buf,
601 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
602 };
603
604 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
605 return -EINVAL;
606 }
607
608 qemu_iovec_init_external(&qiov, &iov, 1);
609 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
610 &qiov, is_write, flags);
611}
612
613/* return < 0 if error. See bdrv_write() for the return codes */
614int bdrv_read(BlockDriverState *bs, int64_t sector_num,
615 uint8_t *buf, int nb_sectors)
616{
617 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
618}
619
620/* Just like bdrv_read(), but with I/O throttling temporarily disabled */
621int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
622 uint8_t *buf, int nb_sectors)
623{
624 bool enabled;
625 int ret;
626
627 enabled = bs->io_limits_enabled;
628 bs->io_limits_enabled = false;
629 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
630 bs->io_limits_enabled = enabled;
631 return ret;
632}
633
634/* Return < 0 if error. Important errors are:
635 -EIO generic I/O error (may happen for all errors)
636 -ENOMEDIUM No media inserted.
637 -EINVAL Invalid sector number or nb_sectors
638 -EACCES Trying to write a read-only device
639*/
640int bdrv_write(BlockDriverState *bs, int64_t sector_num,
641 const uint8_t *buf, int nb_sectors)
642{
643 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
644}
645
646int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
647 int nb_sectors, BdrvRequestFlags flags)
648{
649 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
650 BDRV_REQ_ZERO_WRITE | flags);
651}
652
653/*
654 * Completely zero out a block device with the help of bdrv_write_zeroes.
655 * The operation is sped up by checking the block status and only writing
656 * zeroes to the device if they currently do not return zeroes. Optional
657 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
658 *
659 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
660 */
661int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
662{
663 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
664 int n;
665
666 target_sectors = bdrv_nb_sectors(bs);
667 if (target_sectors < 0) {
668 return target_sectors;
669 }
670
671 for (;;) {
672 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
673 if (nb_sectors <= 0) {
674 return 0;
675 }
676 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
677 if (ret < 0) {
678 error_report("error getting block status at sector %" PRId64 ": %s",
679 sector_num, strerror(-ret));
680 return ret;
681 }
682 if (ret & BDRV_BLOCK_ZERO) {
683 sector_num += n;
684 continue;
685 }
686 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
687 if (ret < 0) {
688 error_report("error writing zeroes at sector %" PRId64 ": %s",
689 sector_num, strerror(-ret));
690 return ret;
691 }
692 sector_num += n;
693 }
694}
695
696int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
697{
698 QEMUIOVector qiov;
699 struct iovec iov = {
700 .iov_base = (void *)buf,
701 .iov_len = bytes,
702 };
703 int ret;
704
705 if (bytes < 0) {
706 return -EINVAL;
707 }
708
709 qemu_iovec_init_external(&qiov, &iov, 1);
710 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
711 if (ret < 0) {
712 return ret;
713 }
714
715 return bytes;
716}
717
718int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
719{
720 int ret;
721
722 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
723 if (ret < 0) {
724 return ret;
725 }
726
727 return qiov->size;
728}
729
730int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
731 const void *buf, int bytes)
732{
733 QEMUIOVector qiov;
734 struct iovec iov = {
735 .iov_base = (void *) buf,
736 .iov_len = bytes,
737 };
738
739 if (bytes < 0) {
740 return -EINVAL;
741 }
742
743 qemu_iovec_init_external(&qiov, &iov, 1);
744 return bdrv_pwritev(bs, offset, &qiov);
745}
746
747/*
748 * Writes to the file and ensures that no writes are reordered across this
749 * request (acts as a barrier)
750 *
751 * Returns 0 on success, -errno in error cases.
752 */
753int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
754 const void *buf, int count)
755{
756 int ret;
757
758 ret = bdrv_pwrite(bs, offset, buf, count);
759 if (ret < 0) {
760 return ret;
761 }
762
763 /* No flush needed for cache modes that already do it */
764 if (bs->enable_write_cache) {
765 bdrv_flush(bs);
766 }
767
768 return 0;
769}
770
771static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
772 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
773{
774 /* Perform I/O through a temporary buffer so that users who scribble over
775 * their read buffer while the operation is in progress do not end up
776 * modifying the image file. This is critical for zero-copy guest I/O
777 * where anything might happen inside guest memory.
778 */
779 void *bounce_buffer;
780
781 BlockDriver *drv = bs->drv;
782 struct iovec iov;
783 QEMUIOVector bounce_qiov;
784 int64_t cluster_sector_num;
785 int cluster_nb_sectors;
786 size_t skip_bytes;
787 int ret;
788
789 /* Cover entire cluster so no additional backing file I/O is required when
790 * allocating cluster in the image file.
791 */
792 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
793 &cluster_sector_num, &cluster_nb_sectors);
794
795 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
796 cluster_sector_num, cluster_nb_sectors);
797
798 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
799 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
800 if (bounce_buffer == NULL) {
801 ret = -ENOMEM;
802 goto err;
803 }
804
805 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
806
807 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
808 &bounce_qiov);
809 if (ret < 0) {
810 goto err;
811 }
812
813 if (drv->bdrv_co_write_zeroes &&
814 buffer_is_zero(bounce_buffer, iov.iov_len)) {
815 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
816 cluster_nb_sectors, 0);
817 } else {
818 /* This does not change the data on the disk, it is not necessary
819 * to flush even in cache=writethrough mode.
820 */
821 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
822 &bounce_qiov);
823 }
824
825 if (ret < 0) {
826 /* It might be okay to ignore write errors for guest requests. If this
827 * is a deliberate copy-on-read then we don't want to ignore the error.
828 * Simply report it in all cases.
829 */
830 goto err;
831 }
832
833 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
834 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
835 nb_sectors * BDRV_SECTOR_SIZE);
836
837err:
838 qemu_vfree(bounce_buffer);
839 return ret;
840}
841
842/*
843 * Forwards an already correctly aligned request to the BlockDriver. This
844 * handles copy on read and zeroing after EOF; any other features must be
845 * implemented by the caller.
846 */
847static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
848 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
849 int64_t align, QEMUIOVector *qiov, int flags)
850{
851 BlockDriver *drv = bs->drv;
852 int ret;
853
854 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
855 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
856
857 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
858 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
859 assert(!qiov || bytes == qiov->size);
860
861 /* Handle Copy on Read and associated serialisation */
862 if (flags & BDRV_REQ_COPY_ON_READ) {
863 /* If we touch the same cluster it counts as an overlap. This
864 * guarantees that allocating writes will be serialized and not race
865 * with each other for the same cluster. For example, in copy-on-read
866 * it ensures that the CoR read and write operations are atomic and
867 * guest writes cannot interleave between them. */
868 mark_request_serialising(req, bdrv_get_cluster_size(bs));
869 }
870
871 wait_serialising_requests(req);
872
873 if (flags & BDRV_REQ_COPY_ON_READ) {
874 int pnum;
875
876 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
877 if (ret < 0) {
878 goto out;
879 }
880
881 if (!ret || pnum != nb_sectors) {
882 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
883 goto out;
884 }
885 }
886
887 /* Forward the request to the BlockDriver */
888 if (!bs->zero_beyond_eof) {
889 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
890 } else {
891 /* Read zeros after EOF */
892 int64_t total_sectors, max_nb_sectors;
893
894 total_sectors = bdrv_nb_sectors(bs);
895 if (total_sectors < 0) {
896 ret = total_sectors;
897 goto out;
898 }
899
900 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
901 align >> BDRV_SECTOR_BITS);
902 if (nb_sectors < max_nb_sectors) {
903 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
904 } else if (max_nb_sectors > 0) {
905 QEMUIOVector local_qiov;
906
907 qemu_iovec_init(&local_qiov, qiov->niov);
908 qemu_iovec_concat(&local_qiov, qiov, 0,
909 max_nb_sectors * BDRV_SECTOR_SIZE);
910
911 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
912 &local_qiov);
913
914 qemu_iovec_destroy(&local_qiov);
915 } else {
916 ret = 0;
917 }
918
919 /* Reading beyond end of file is supposed to produce zeroes */
920 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
921 uint64_t offset = MAX(0, total_sectors - sector_num);
922 uint64_t bytes = (sector_num + nb_sectors - offset) *
923 BDRV_SECTOR_SIZE;
924 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
925 }
926 }
927
928out:
929 return ret;
930}
931
932static inline uint64_t bdrv_get_align(BlockDriverState *bs)
933{
934 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
935 return MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
936}
937
938static inline bool bdrv_req_is_aligned(BlockDriverState *bs,
939 int64_t offset, size_t bytes)
940{
941 int64_t align = bdrv_get_align(bs);
942 return !(offset & (align - 1) || (bytes & (align - 1)));
943}
944
945/*
946 * Handle a read request in coroutine context
947 */
948static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
949 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
950 BdrvRequestFlags flags)
951{
952 BlockDriver *drv = bs->drv;
953 BdrvTrackedRequest req;
954
955 uint64_t align = bdrv_get_align(bs);
956 uint8_t *head_buf = NULL;
957 uint8_t *tail_buf = NULL;
958 QEMUIOVector local_qiov;
959 bool use_local_qiov = false;
960 int ret;
961
962 if (!drv) {
963 return -ENOMEDIUM;
964 }
965
966 ret = bdrv_check_byte_request(bs, offset, bytes);
967 if (ret < 0) {
968 return ret;
969 }
970
971 if (bs->copy_on_read) {
972 flags |= BDRV_REQ_COPY_ON_READ;
973 }
974
975 /* throttling disk I/O */
976 if (bs->io_limits_enabled) {
977 bdrv_io_limits_intercept(bs, bytes, false);
978 }
979
980 /* Align read if necessary by padding qiov */
981 if (offset & (align - 1)) {
982 head_buf = qemu_blockalign(bs, align);
983 qemu_iovec_init(&local_qiov, qiov->niov + 2);
984 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
985 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
986 use_local_qiov = true;
987
988 bytes += offset & (align - 1);
989 offset = offset & ~(align - 1);
990 }
991
992 if ((offset + bytes) & (align - 1)) {
993 if (!use_local_qiov) {
994 qemu_iovec_init(&local_qiov, qiov->niov + 1);
995 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
996 use_local_qiov = true;
997 }
998 tail_buf = qemu_blockalign(bs, align);
999 qemu_iovec_add(&local_qiov, tail_buf,
1000 align - ((offset + bytes) & (align - 1)));
1001
1002 bytes = ROUND_UP(bytes, align);
1003 }
1004
1005 tracked_request_begin(&req, bs, offset, bytes, false);
1006 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1007 use_local_qiov ? &local_qiov : qiov,
1008 flags);
1009 tracked_request_end(&req);
1010
1011 if (use_local_qiov) {
1012 qemu_iovec_destroy(&local_qiov);
1013 qemu_vfree(head_buf);
1014 qemu_vfree(tail_buf);
1015 }
1016
1017 return ret;
1018}
1019
1020static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1021 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1022 BdrvRequestFlags flags)
1023{
1024 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1025 return -EINVAL;
1026 }
1027
1028 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1029 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1030}
1031
1032int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1033 int nb_sectors, QEMUIOVector *qiov)
1034{
1035 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1036
1037 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1038}
1039
1040int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1041 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1042{
1043 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1044
1045 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1046 BDRV_REQ_COPY_ON_READ);
1047}
1048
1049#define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1050
1051static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1052 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1053{
1054 BlockDriver *drv = bs->drv;
1055 QEMUIOVector qiov;
1056 struct iovec iov = {0};
1057 int ret = 0;
1058
1059 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1060 BDRV_REQUEST_MAX_SECTORS);
1061
1062 while (nb_sectors > 0 && !ret) {
1063 int num = nb_sectors;
1064
1065 /* Align request. Block drivers can expect the "bulk" of the request
1066 * to be aligned.
1067 */
1068 if (bs->bl.write_zeroes_alignment
1069 && num > bs->bl.write_zeroes_alignment) {
1070 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1071 /* Make a small request up to the first aligned sector. */
1072 num = bs->bl.write_zeroes_alignment;
1073 num -= sector_num % bs->bl.write_zeroes_alignment;
1074 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1075 /* Shorten the request to the last aligned sector. num cannot
1076 * underflow because num > bs->bl.write_zeroes_alignment.
1077 */
1078 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1079 }
1080 }
1081
1082 /* limit request size */
1083 if (num > max_write_zeroes) {
1084 num = max_write_zeroes;
1085 }
1086
1087 ret = -ENOTSUP;
1088 /* First try the efficient write zeroes operation */
1089 if (drv->bdrv_co_write_zeroes) {
1090 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1091 }
1092
1093 if (ret == -ENOTSUP) {
1094 /* Fall back to bounce buffer if write zeroes is unsupported */
1095 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1096 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1097 num = MIN(num, max_xfer_len);
1098 iov.iov_len = num * BDRV_SECTOR_SIZE;
1099 if (iov.iov_base == NULL) {
1100 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1101 if (iov.iov_base == NULL) {
1102 ret = -ENOMEM;
1103 goto fail;
1104 }
1105 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1106 }
1107 qemu_iovec_init_external(&qiov, &iov, 1);
1108
1109 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1110
1111 /* Keep bounce buffer around if it is big enough for all
1112 * all future requests.
1113 */
1114 if (num < max_xfer_len) {
1115 qemu_vfree(iov.iov_base);
1116 iov.iov_base = NULL;
1117 }
1118 }
1119
1120 sector_num += num;
1121 nb_sectors -= num;
1122 }
1123
1124fail:
1125 qemu_vfree(iov.iov_base);
1126 return ret;
1127}
1128
1129/*
1130 * Forwards an already correctly aligned write request to the BlockDriver.
1131 */
1132static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1133 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1134 QEMUIOVector *qiov, int flags)
1135{
1136 BlockDriver *drv = bs->drv;
1137 bool waited;
1138 int ret;
1139
1140 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1141 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1142
1143 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1144 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1145 assert(!qiov || bytes == qiov->size);
1146
1147 waited = wait_serialising_requests(req);
1148 assert(!waited || !req->serialising);
1149 assert(req->overlap_offset <= offset);
1150 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1151
1152 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1153
1154 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1155 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1156 qemu_iovec_is_zero(qiov)) {
1157 flags |= BDRV_REQ_ZERO_WRITE;
1158 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1159 flags |= BDRV_REQ_MAY_UNMAP;
1160 }
1161 }
1162
1163 if (ret < 0) {
1164 /* Do nothing, write notifier decided to fail this request */
1165 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1166 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
1167 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1168 } else {
1169 BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
1170 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1171 }
1172 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
1173
1174 if (ret == 0 && !bs->enable_write_cache) {
1175 ret = bdrv_co_flush(bs);
1176 }
1177
1178 bdrv_set_dirty(bs, sector_num, nb_sectors);
1179
1180 block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1181
1182 if (ret >= 0) {
1183 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1184 }
1185
1186 return ret;
1187}
1188
1189/*
1190 * Handle a write request in coroutine context
1191 */
1192static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1193 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1194 BdrvRequestFlags flags)
1195{
1196 BdrvTrackedRequest req;
1197 uint64_t align = bdrv_get_align(bs);
1198 uint8_t *head_buf = NULL;
1199 uint8_t *tail_buf = NULL;
1200 QEMUIOVector local_qiov;
1201 bool use_local_qiov = false;
1202 int ret;
1203
1204 if (!bs->drv) {
1205 return -ENOMEDIUM;
1206 }
1207 if (bs->read_only) {
eaf5fe2d 1208 return -EPERM;
61007b31
SH
1209 }
1210
1211 ret = bdrv_check_byte_request(bs, offset, bytes);
1212 if (ret < 0) {
1213 return ret;
1214 }
1215
1216 /* throttling disk I/O */
1217 if (bs->io_limits_enabled) {
1218 bdrv_io_limits_intercept(bs, bytes, true);
1219 }
1220
1221 /*
1222 * Align write if necessary by performing a read-modify-write cycle.
1223 * Pad qiov with the read parts and be sure to have a tracked request not
1224 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1225 */
1226 tracked_request_begin(&req, bs, offset, bytes, true);
1227
1228 if (offset & (align - 1)) {
1229 QEMUIOVector head_qiov;
1230 struct iovec head_iov;
1231
1232 mark_request_serialising(&req, align);
1233 wait_serialising_requests(&req);
1234
1235 head_buf = qemu_blockalign(bs, align);
1236 head_iov = (struct iovec) {
1237 .iov_base = head_buf,
1238 .iov_len = align,
1239 };
1240 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1241
1242 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1243 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1244 align, &head_qiov, 0);
1245 if (ret < 0) {
1246 goto fail;
1247 }
1248 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1249
1250 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1251 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1252 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1253 use_local_qiov = true;
1254
1255 bytes += offset & (align - 1);
1256 offset = offset & ~(align - 1);
1257 }
1258
1259 if ((offset + bytes) & (align - 1)) {
1260 QEMUIOVector tail_qiov;
1261 struct iovec tail_iov;
1262 size_t tail_bytes;
1263 bool waited;
1264
1265 mark_request_serialising(&req, align);
1266 waited = wait_serialising_requests(&req);
1267 assert(!waited || !use_local_qiov);
1268
1269 tail_buf = qemu_blockalign(bs, align);
1270 tail_iov = (struct iovec) {
1271 .iov_base = tail_buf,
1272 .iov_len = align,
1273 };
1274 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1275
1276 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1277 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1278 align, &tail_qiov, 0);
1279 if (ret < 0) {
1280 goto fail;
1281 }
1282 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1283
1284 if (!use_local_qiov) {
1285 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1286 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1287 use_local_qiov = true;
1288 }
1289
1290 tail_bytes = (offset + bytes) & (align - 1);
1291 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1292
1293 bytes = ROUND_UP(bytes, align);
1294 }
1295
1296 if (use_local_qiov) {
1297 /* Local buffer may have non-zero data. */
1298 flags &= ~BDRV_REQ_ZERO_WRITE;
1299 }
1300 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1301 use_local_qiov ? &local_qiov : qiov,
1302 flags);
1303
1304fail:
1305 tracked_request_end(&req);
1306
1307 if (use_local_qiov) {
1308 qemu_iovec_destroy(&local_qiov);
1309 }
1310 qemu_vfree(head_buf);
1311 qemu_vfree(tail_buf);
1312
1313 return ret;
1314}
1315
1316static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1317 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1318 BdrvRequestFlags flags)
1319{
1320 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1321 return -EINVAL;
1322 }
1323
1324 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1325 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1326}
1327
1328int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1329 int nb_sectors, QEMUIOVector *qiov)
1330{
1331 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1332
1333 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1334}
1335
1336int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1337 int64_t sector_num, int nb_sectors,
1338 BdrvRequestFlags flags)
1339{
1340 int ret;
1341
1342 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1343
1344 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1345 flags &= ~BDRV_REQ_MAY_UNMAP;
1346 }
1347 if (bdrv_req_is_aligned(bs, sector_num << BDRV_SECTOR_BITS,
1348 nb_sectors << BDRV_SECTOR_BITS)) {
1349 ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1350 BDRV_REQ_ZERO_WRITE | flags);
1351 } else {
1352 uint8_t *buf;
1353 QEMUIOVector local_qiov;
1354 size_t bytes = nb_sectors << BDRV_SECTOR_BITS;
1355
1356 buf = qemu_memalign(bdrv_opt_mem_align(bs), bytes);
1357 memset(buf, 0, bytes);
1358 qemu_iovec_init(&local_qiov, 1);
1359 qemu_iovec_add(&local_qiov, buf, bytes);
1360
1361 ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, &local_qiov,
1362 BDRV_REQ_ZERO_WRITE | flags);
1363 qemu_vfree(buf);
1364 }
1365 return ret;
1366}
1367
1368int bdrv_flush_all(void)
1369{
1370 BlockDriverState *bs = NULL;
1371 int result = 0;
1372
1373 while ((bs = bdrv_next(bs))) {
1374 AioContext *aio_context = bdrv_get_aio_context(bs);
1375 int ret;
1376
1377 aio_context_acquire(aio_context);
1378 ret = bdrv_flush(bs);
1379 if (ret < 0 && !result) {
1380 result = ret;
1381 }
1382 aio_context_release(aio_context);
1383 }
1384
1385 return result;
1386}
1387
1388typedef struct BdrvCoGetBlockStatusData {
1389 BlockDriverState *bs;
1390 BlockDriverState *base;
1391 int64_t sector_num;
1392 int nb_sectors;
1393 int *pnum;
1394 int64_t ret;
1395 bool done;
1396} BdrvCoGetBlockStatusData;
1397
1398/*
1399 * Returns the allocation status of the specified sectors.
1400 * Drivers not implementing the functionality are assumed to not support
1401 * backing files, hence all their sectors are reported as allocated.
1402 *
1403 * If 'sector_num' is beyond the end of the disk image the return value is 0
1404 * and 'pnum' is set to 0.
1405 *
1406 * 'pnum' is set to the number of sectors (including and immediately following
1407 * the specified sector) that are known to be in the same
1408 * allocated/unallocated state.
1409 *
1410 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1411 * beyond the end of the disk image it will be clamped.
1412 */
1413static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1414 int64_t sector_num,
1415 int nb_sectors, int *pnum)
1416{
1417 int64_t total_sectors;
1418 int64_t n;
1419 int64_t ret, ret2;
1420
1421 total_sectors = bdrv_nb_sectors(bs);
1422 if (total_sectors < 0) {
1423 return total_sectors;
1424 }
1425
1426 if (sector_num >= total_sectors) {
1427 *pnum = 0;
1428 return 0;
1429 }
1430
1431 n = total_sectors - sector_num;
1432 if (n < nb_sectors) {
1433 nb_sectors = n;
1434 }
1435
1436 if (!bs->drv->bdrv_co_get_block_status) {
1437 *pnum = nb_sectors;
1438 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1439 if (bs->drv->protocol_name) {
1440 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1441 }
1442 return ret;
1443 }
1444
1445 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1446 if (ret < 0) {
1447 *pnum = 0;
1448 return ret;
1449 }
1450
1451 if (ret & BDRV_BLOCK_RAW) {
1452 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1453 return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1454 *pnum, pnum);
1455 }
1456
1457 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1458 ret |= BDRV_BLOCK_ALLOCATED;
1459 }
1460
1461 if (!(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO)) {
1462 if (bdrv_unallocated_blocks_are_zero(bs)) {
1463 ret |= BDRV_BLOCK_ZERO;
1464 } else if (bs->backing_hd) {
1465 BlockDriverState *bs2 = bs->backing_hd;
1466 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1467 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1468 ret |= BDRV_BLOCK_ZERO;
1469 }
1470 }
1471 }
1472
1473 if (bs->file &&
1474 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1475 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1476 int file_pnum;
1477
1478 ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1479 *pnum, &file_pnum);
1480 if (ret2 >= 0) {
1481 /* Ignore errors. This is just providing extra information, it
1482 * is useful but not necessary.
1483 */
1484 if (!file_pnum) {
1485 /* !file_pnum indicates an offset at or beyond the EOF; it is
1486 * perfectly valid for the format block driver to point to such
1487 * offsets, so catch it and mark everything as zero */
1488 ret |= BDRV_BLOCK_ZERO;
1489 } else {
1490 /* Limit request to the range reported by the protocol driver */
1491 *pnum = file_pnum;
1492 ret |= (ret2 & BDRV_BLOCK_ZERO);
1493 }
1494 }
1495 }
1496
1497 return ret;
1498}
1499
1500/* Coroutine wrapper for bdrv_get_block_status() */
1501static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
1502{
1503 BdrvCoGetBlockStatusData *data = opaque;
1504 BlockDriverState *bs = data->bs;
1505
1506 data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
1507 data->pnum);
1508 data->done = true;
1509}
1510
1511/*
1512 * Synchronous wrapper around bdrv_co_get_block_status().
1513 *
1514 * See bdrv_co_get_block_status() for details.
1515 */
1516int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
1517 int nb_sectors, int *pnum)
1518{
1519 Coroutine *co;
1520 BdrvCoGetBlockStatusData data = {
1521 .bs = bs,
1522 .sector_num = sector_num,
1523 .nb_sectors = nb_sectors,
1524 .pnum = pnum,
1525 .done = false,
1526 };
1527
1528 if (qemu_in_coroutine()) {
1529 /* Fast-path if already in coroutine context */
1530 bdrv_get_block_status_co_entry(&data);
1531 } else {
1532 AioContext *aio_context = bdrv_get_aio_context(bs);
1533
1534 co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
1535 qemu_coroutine_enter(co, &data);
1536 while (!data.done) {
1537 aio_poll(aio_context, true);
1538 }
1539 }
1540 return data.ret;
1541}
1542
1543int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1544 int nb_sectors, int *pnum)
1545{
1546 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1547 if (ret < 0) {
1548 return ret;
1549 }
1550 return !!(ret & BDRV_BLOCK_ALLOCATED);
1551}
1552
1553/*
1554 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1555 *
1556 * Return true if the given sector is allocated in any image between
1557 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1558 * sector is allocated in any image of the chain. Return false otherwise.
1559 *
1560 * 'pnum' is set to the number of sectors (including and immediately following
1561 * the specified sector) that are known to be in the same
1562 * allocated/unallocated state.
1563 *
1564 */
1565int bdrv_is_allocated_above(BlockDriverState *top,
1566 BlockDriverState *base,
1567 int64_t sector_num,
1568 int nb_sectors, int *pnum)
1569{
1570 BlockDriverState *intermediate;
1571 int ret, n = nb_sectors;
1572
1573 intermediate = top;
1574 while (intermediate && intermediate != base) {
1575 int pnum_inter;
1576 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1577 &pnum_inter);
1578 if (ret < 0) {
1579 return ret;
1580 } else if (ret) {
1581 *pnum = pnum_inter;
1582 return 1;
1583 }
1584
1585 /*
1586 * [sector_num, nb_sectors] is unallocated on top but intermediate
1587 * might have
1588 *
1589 * [sector_num+x, nr_sectors] allocated.
1590 */
1591 if (n > pnum_inter &&
1592 (intermediate == top ||
1593 sector_num + pnum_inter < intermediate->total_sectors)) {
1594 n = pnum_inter;
1595 }
1596
1597 intermediate = intermediate->backing_hd;
1598 }
1599
1600 *pnum = n;
1601 return 0;
1602}
1603
1604int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1605 const uint8_t *buf, int nb_sectors)
1606{
1607 BlockDriver *drv = bs->drv;
1608 int ret;
1609
1610 if (!drv) {
1611 return -ENOMEDIUM;
1612 }
1613 if (!drv->bdrv_write_compressed) {
1614 return -ENOTSUP;
1615 }
1616 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1617 if (ret < 0) {
1618 return ret;
1619 }
1620
1621 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1622
1623 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1624}
1625
1626int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1627 int64_t pos, int size)
1628{
1629 QEMUIOVector qiov;
1630 struct iovec iov = {
1631 .iov_base = (void *) buf,
1632 .iov_len = size,
1633 };
1634
1635 qemu_iovec_init_external(&qiov, &iov, 1);
1636 return bdrv_writev_vmstate(bs, &qiov, pos);
1637}
1638
1639int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1640{
1641 BlockDriver *drv = bs->drv;
1642
1643 if (!drv) {
1644 return -ENOMEDIUM;
1645 } else if (drv->bdrv_save_vmstate) {
1646 return drv->bdrv_save_vmstate(bs, qiov, pos);
1647 } else if (bs->file) {
1648 return bdrv_writev_vmstate(bs->file, qiov, pos);
1649 }
1650
1651 return -ENOTSUP;
1652}
1653
1654int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1655 int64_t pos, int size)
1656{
1657 BlockDriver *drv = bs->drv;
1658 if (!drv)
1659 return -ENOMEDIUM;
1660 if (drv->bdrv_load_vmstate)
1661 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1662 if (bs->file)
1663 return bdrv_load_vmstate(bs->file, buf, pos, size);
1664 return -ENOTSUP;
1665}
1666
1667/**************************************************************/
1668/* async I/Os */
1669
1670BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1671 QEMUIOVector *qiov, int nb_sectors,
1672 BlockCompletionFunc *cb, void *opaque)
1673{
1674 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1675
1676 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1677 cb, opaque, false);
1678}
1679
1680BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1681 QEMUIOVector *qiov, int nb_sectors,
1682 BlockCompletionFunc *cb, void *opaque)
1683{
1684 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1685
1686 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1687 cb, opaque, true);
1688}
1689
1690BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1691 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1692 BlockCompletionFunc *cb, void *opaque)
1693{
1694 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1695
1696 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1697 BDRV_REQ_ZERO_WRITE | flags,
1698 cb, opaque, true);
1699}
1700
1701
1702typedef struct MultiwriteCB {
1703 int error;
1704 int num_requests;
1705 int num_callbacks;
1706 struct {
1707 BlockCompletionFunc *cb;
1708 void *opaque;
1709 QEMUIOVector *free_qiov;
1710 } callbacks[];
1711} MultiwriteCB;
1712
1713static void multiwrite_user_cb(MultiwriteCB *mcb)
1714{
1715 int i;
1716
1717 for (i = 0; i < mcb->num_callbacks; i++) {
1718 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1719 if (mcb->callbacks[i].free_qiov) {
1720 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1721 }
1722 g_free(mcb->callbacks[i].free_qiov);
1723 }
1724}
1725
1726static void multiwrite_cb(void *opaque, int ret)
1727{
1728 MultiwriteCB *mcb = opaque;
1729
1730 trace_multiwrite_cb(mcb, ret);
1731
1732 if (ret < 0 && !mcb->error) {
1733 mcb->error = ret;
1734 }
1735
1736 mcb->num_requests--;
1737 if (mcb->num_requests == 0) {
1738 multiwrite_user_cb(mcb);
1739 g_free(mcb);
1740 }
1741}
1742
1743static int multiwrite_req_compare(const void *a, const void *b)
1744{
1745 const BlockRequest *req1 = a, *req2 = b;
1746
1747 /*
1748 * Note that we can't simply subtract req2->sector from req1->sector
1749 * here as that could overflow the return value.
1750 */
1751 if (req1->sector > req2->sector) {
1752 return 1;
1753 } else if (req1->sector < req2->sector) {
1754 return -1;
1755 } else {
1756 return 0;
1757 }
1758}
1759
1760/*
1761 * Takes a bunch of requests and tries to merge them. Returns the number of
1762 * requests that remain after merging.
1763 */
1764static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1765 int num_reqs, MultiwriteCB *mcb)
1766{
1767 int i, outidx;
1768
1769 // Sort requests by start sector
1770 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1771
1772 // Check if adjacent requests touch the same clusters. If so, combine them,
1773 // filling up gaps with zero sectors.
1774 outidx = 0;
1775 for (i = 1; i < num_reqs; i++) {
1776 int merge = 0;
1777 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1778
1779 // Handle exactly sequential writes and overlapping writes.
1780 if (reqs[i].sector <= oldreq_last) {
1781 merge = 1;
1782 }
1783
1784 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1785 merge = 0;
1786 }
1787
1788 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1789 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1790 merge = 0;
1791 }
1792
1793 if (merge) {
1794 size_t size;
1795 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1796 qemu_iovec_init(qiov,
1797 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1798
1799 // Add the first request to the merged one. If the requests are
1800 // overlapping, drop the last sectors of the first request.
1801 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1802 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1803
1804 // We should need to add any zeros between the two requests
1805 assert (reqs[i].sector <= oldreq_last);
1806
1807 // Add the second request
1808 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1809
1810 // Add tail of first request, if necessary
1811 if (qiov->size < reqs[outidx].qiov->size) {
1812 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1813 reqs[outidx].qiov->size - qiov->size);
1814 }
1815
1816 reqs[outidx].nb_sectors = qiov->size >> 9;
1817 reqs[outidx].qiov = qiov;
1818
1819 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1820 } else {
1821 outidx++;
1822 reqs[outidx].sector = reqs[i].sector;
1823 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1824 reqs[outidx].qiov = reqs[i].qiov;
1825 }
1826 }
1827
1828 block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1829
1830 return outidx + 1;
1831}
1832
1833/*
1834 * Submit multiple AIO write requests at once.
1835 *
1836 * On success, the function returns 0 and all requests in the reqs array have
1837 * been submitted. In error case this function returns -1, and any of the
1838 * requests may or may not be submitted yet. In particular, this means that the
1839 * callback will be called for some of the requests, for others it won't. The
1840 * caller must check the error field of the BlockRequest to wait for the right
1841 * callbacks (if error != 0, no callback will be called).
1842 *
1843 * The implementation may modify the contents of the reqs array, e.g. to merge
1844 * requests. However, the fields opaque and error are left unmodified as they
1845 * are used to signal failure for a single request to the caller.
1846 */
1847int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1848{
1849 MultiwriteCB *mcb;
1850 int i;
1851
1852 /* don't submit writes if we don't have a medium */
1853 if (bs->drv == NULL) {
1854 for (i = 0; i < num_reqs; i++) {
1855 reqs[i].error = -ENOMEDIUM;
1856 }
1857 return -1;
1858 }
1859
1860 if (num_reqs == 0) {
1861 return 0;
1862 }
1863
1864 // Create MultiwriteCB structure
1865 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1866 mcb->num_requests = 0;
1867 mcb->num_callbacks = num_reqs;
1868
1869 for (i = 0; i < num_reqs; i++) {
1870 mcb->callbacks[i].cb = reqs[i].cb;
1871 mcb->callbacks[i].opaque = reqs[i].opaque;
1872 }
1873
1874 // Check for mergable requests
1875 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1876
1877 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1878
1879 /* Run the aio requests. */
1880 mcb->num_requests = num_reqs;
1881 for (i = 0; i < num_reqs; i++) {
1882 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1883 reqs[i].nb_sectors, reqs[i].flags,
1884 multiwrite_cb, mcb,
1885 true);
1886 }
1887
1888 return 0;
1889}
1890
1891void bdrv_aio_cancel(BlockAIOCB *acb)
1892{
1893 qemu_aio_ref(acb);
1894 bdrv_aio_cancel_async(acb);
1895 while (acb->refcnt > 1) {
1896 if (acb->aiocb_info->get_aio_context) {
1897 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1898 } else if (acb->bs) {
1899 aio_poll(bdrv_get_aio_context(acb->bs), true);
1900 } else {
1901 abort();
1902 }
1903 }
1904 qemu_aio_unref(acb);
1905}
1906
1907/* Async version of aio cancel. The caller is not blocked if the acb implements
1908 * cancel_async, otherwise we do nothing and let the request normally complete.
1909 * In either case the completion callback must be called. */
1910void bdrv_aio_cancel_async(BlockAIOCB *acb)
1911{
1912 if (acb->aiocb_info->cancel_async) {
1913 acb->aiocb_info->cancel_async(acb);
1914 }
1915}
1916
1917/**************************************************************/
1918/* async block device emulation */
1919
1920typedef struct BlockAIOCBSync {
1921 BlockAIOCB common;
1922 QEMUBH *bh;
1923 int ret;
1924 /* vector translation state */
1925 QEMUIOVector *qiov;
1926 uint8_t *bounce;
1927 int is_write;
1928} BlockAIOCBSync;
1929
1930static const AIOCBInfo bdrv_em_aiocb_info = {
1931 .aiocb_size = sizeof(BlockAIOCBSync),
1932};
1933
1934static void bdrv_aio_bh_cb(void *opaque)
1935{
1936 BlockAIOCBSync *acb = opaque;
1937
1938 if (!acb->is_write && acb->ret >= 0) {
1939 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
1940 }
1941 qemu_vfree(acb->bounce);
1942 acb->common.cb(acb->common.opaque, acb->ret);
1943 qemu_bh_delete(acb->bh);
1944 acb->bh = NULL;
1945 qemu_aio_unref(acb);
1946}
1947
1948static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
1949 int64_t sector_num,
1950 QEMUIOVector *qiov,
1951 int nb_sectors,
1952 BlockCompletionFunc *cb,
1953 void *opaque,
1954 int is_write)
1955
1956{
1957 BlockAIOCBSync *acb;
1958
1959 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
1960 acb->is_write = is_write;
1961 acb->qiov = qiov;
1962 acb->bounce = qemu_try_blockalign(bs, qiov->size);
1963 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
1964
1965 if (acb->bounce == NULL) {
1966 acb->ret = -ENOMEM;
1967 } else if (is_write) {
1968 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
1969 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
1970 } else {
1971 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
1972 }
1973
1974 qemu_bh_schedule(acb->bh);
1975
1976 return &acb->common;
1977}
1978
1979static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
1980 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1981 BlockCompletionFunc *cb, void *opaque)
1982{
1983 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1984}
1985
1986static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
1987 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1988 BlockCompletionFunc *cb, void *opaque)
1989{
1990 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
1991}
1992
1993
1994typedef struct BlockAIOCBCoroutine {
1995 BlockAIOCB common;
1996 BlockRequest req;
1997 bool is_write;
1998 bool need_bh;
1999 bool *done;
2000 QEMUBH* bh;
2001} BlockAIOCBCoroutine;
2002
2003static const AIOCBInfo bdrv_em_co_aiocb_info = {
2004 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2005};
2006
2007static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2008{
2009 if (!acb->need_bh) {
2010 acb->common.cb(acb->common.opaque, acb->req.error);
2011 qemu_aio_unref(acb);
2012 }
2013}
2014
2015static void bdrv_co_em_bh(void *opaque)
2016{
2017 BlockAIOCBCoroutine *acb = opaque;
2018
2019 assert(!acb->need_bh);
2020 qemu_bh_delete(acb->bh);
2021 bdrv_co_complete(acb);
2022}
2023
2024static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2025{
2026 acb->need_bh = false;
2027 if (acb->req.error != -EINPROGRESS) {
2028 BlockDriverState *bs = acb->common.bs;
2029
2030 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2031 qemu_bh_schedule(acb->bh);
2032 }
2033}
2034
2035/* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2036static void coroutine_fn bdrv_co_do_rw(void *opaque)
2037{
2038 BlockAIOCBCoroutine *acb = opaque;
2039 BlockDriverState *bs = acb->common.bs;
2040
2041 if (!acb->is_write) {
2042 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2043 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2044 } else {
2045 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2046 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2047 }
2048
2049 bdrv_co_complete(acb);
2050}
2051
2052static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2053 int64_t sector_num,
2054 QEMUIOVector *qiov,
2055 int nb_sectors,
2056 BdrvRequestFlags flags,
2057 BlockCompletionFunc *cb,
2058 void *opaque,
2059 bool is_write)
2060{
2061 Coroutine *co;
2062 BlockAIOCBCoroutine *acb;
2063
2064 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2065 acb->need_bh = true;
2066 acb->req.error = -EINPROGRESS;
2067 acb->req.sector = sector_num;
2068 acb->req.nb_sectors = nb_sectors;
2069 acb->req.qiov = qiov;
2070 acb->req.flags = flags;
2071 acb->is_write = is_write;
2072
2073 co = qemu_coroutine_create(bdrv_co_do_rw);
2074 qemu_coroutine_enter(co, acb);
2075
2076 bdrv_co_maybe_schedule_bh(acb);
2077 return &acb->common;
2078}
2079
2080static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2081{
2082 BlockAIOCBCoroutine *acb = opaque;
2083 BlockDriverState *bs = acb->common.bs;
2084
2085 acb->req.error = bdrv_co_flush(bs);
2086 bdrv_co_complete(acb);
2087}
2088
2089BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2090 BlockCompletionFunc *cb, void *opaque)
2091{
2092 trace_bdrv_aio_flush(bs, opaque);
2093
2094 Coroutine *co;
2095 BlockAIOCBCoroutine *acb;
2096
2097 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2098 acb->need_bh = true;
2099 acb->req.error = -EINPROGRESS;
2100
2101 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2102 qemu_coroutine_enter(co, acb);
2103
2104 bdrv_co_maybe_schedule_bh(acb);
2105 return &acb->common;
2106}
2107
2108static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2109{
2110 BlockAIOCBCoroutine *acb = opaque;
2111 BlockDriverState *bs = acb->common.bs;
2112
2113 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2114 bdrv_co_complete(acb);
2115}
2116
2117BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2118 int64_t sector_num, int nb_sectors,
2119 BlockCompletionFunc *cb, void *opaque)
2120{
2121 Coroutine *co;
2122 BlockAIOCBCoroutine *acb;
2123
2124 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2125
2126 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2127 acb->need_bh = true;
2128 acb->req.error = -EINPROGRESS;
2129 acb->req.sector = sector_num;
2130 acb->req.nb_sectors = nb_sectors;
2131 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2132 qemu_coroutine_enter(co, acb);
2133
2134 bdrv_co_maybe_schedule_bh(acb);
2135 return &acb->common;
2136}
2137
2138void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2139 BlockCompletionFunc *cb, void *opaque)
2140{
2141 BlockAIOCB *acb;
2142
2143 acb = g_slice_alloc(aiocb_info->aiocb_size);
2144 acb->aiocb_info = aiocb_info;
2145 acb->bs = bs;
2146 acb->cb = cb;
2147 acb->opaque = opaque;
2148 acb->refcnt = 1;
2149 return acb;
2150}
2151
2152void qemu_aio_ref(void *p)
2153{
2154 BlockAIOCB *acb = p;
2155 acb->refcnt++;
2156}
2157
2158void qemu_aio_unref(void *p)
2159{
2160 BlockAIOCB *acb = p;
2161 assert(acb->refcnt > 0);
2162 if (--acb->refcnt == 0) {
2163 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
2164 }
2165}
2166
2167/**************************************************************/
2168/* Coroutine block device emulation */
2169
2170typedef struct CoroutineIOCompletion {
2171 Coroutine *coroutine;
2172 int ret;
2173} CoroutineIOCompletion;
2174
2175static void bdrv_co_io_em_complete(void *opaque, int ret)
2176{
2177 CoroutineIOCompletion *co = opaque;
2178
2179 co->ret = ret;
2180 qemu_coroutine_enter(co->coroutine, NULL);
2181}
2182
2183static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2184 int nb_sectors, QEMUIOVector *iov,
2185 bool is_write)
2186{
2187 CoroutineIOCompletion co = {
2188 .coroutine = qemu_coroutine_self(),
2189 };
2190 BlockAIOCB *acb;
2191
2192 if (is_write) {
2193 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2194 bdrv_co_io_em_complete, &co);
2195 } else {
2196 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2197 bdrv_co_io_em_complete, &co);
2198 }
2199
2200 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2201 if (!acb) {
2202 return -EIO;
2203 }
2204 qemu_coroutine_yield();
2205
2206 return co.ret;
2207}
2208
2209static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2210 int64_t sector_num, int nb_sectors,
2211 QEMUIOVector *iov)
2212{
2213 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2214}
2215
2216static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2217 int64_t sector_num, int nb_sectors,
2218 QEMUIOVector *iov)
2219{
2220 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2221}
2222
2223static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2224{
2225 RwCo *rwco = opaque;
2226
2227 rwco->ret = bdrv_co_flush(rwco->bs);
2228}
2229
2230int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2231{
2232 int ret;
2233
2234 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2235 return 0;
2236 }
2237
2238 /* Write back cached data to the OS even with cache=unsafe */
2239 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2240 if (bs->drv->bdrv_co_flush_to_os) {
2241 ret = bs->drv->bdrv_co_flush_to_os(bs);
2242 if (ret < 0) {
2243 return ret;
2244 }
2245 }
2246
2247 /* But don't actually force it to the disk with cache=unsafe */
2248 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2249 goto flush_parent;
2250 }
2251
2252 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2253 if (bs->drv->bdrv_co_flush_to_disk) {
2254 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2255 } else if (bs->drv->bdrv_aio_flush) {
2256 BlockAIOCB *acb;
2257 CoroutineIOCompletion co = {
2258 .coroutine = qemu_coroutine_self(),
2259 };
2260
2261 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2262 if (acb == NULL) {
2263 ret = -EIO;
2264 } else {
2265 qemu_coroutine_yield();
2266 ret = co.ret;
2267 }
2268 } else {
2269 /*
2270 * Some block drivers always operate in either writethrough or unsafe
2271 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2272 * know how the server works (because the behaviour is hardcoded or
2273 * depends on server-side configuration), so we can't ensure that
2274 * everything is safe on disk. Returning an error doesn't work because
2275 * that would break guests even if the server operates in writethrough
2276 * mode.
2277 *
2278 * Let's hope the user knows what he's doing.
2279 */
2280 ret = 0;
2281 }
2282 if (ret < 0) {
2283 return ret;
2284 }
2285
2286 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2287 * in the case of cache=unsafe, so there are no useless flushes.
2288 */
2289flush_parent:
2290 return bdrv_co_flush(bs->file);
2291}
2292
2293int bdrv_flush(BlockDriverState *bs)
2294{
2295 Coroutine *co;
2296 RwCo rwco = {
2297 .bs = bs,
2298 .ret = NOT_DONE,
2299 };
2300
2301 if (qemu_in_coroutine()) {
2302 /* Fast-path if already in coroutine context */
2303 bdrv_flush_co_entry(&rwco);
2304 } else {
2305 AioContext *aio_context = bdrv_get_aio_context(bs);
2306
2307 co = qemu_coroutine_create(bdrv_flush_co_entry);
2308 qemu_coroutine_enter(co, &rwco);
2309 while (rwco.ret == NOT_DONE) {
2310 aio_poll(aio_context, true);
2311 }
2312 }
2313
2314 return rwco.ret;
2315}
2316
2317typedef struct DiscardCo {
2318 BlockDriverState *bs;
2319 int64_t sector_num;
2320 int nb_sectors;
2321 int ret;
2322} DiscardCo;
2323static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2324{
2325 DiscardCo *rwco = opaque;
2326
2327 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2328}
2329
2330int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2331 int nb_sectors)
2332{
2333 int max_discard, ret;
2334
2335 if (!bs->drv) {
2336 return -ENOMEDIUM;
2337 }
2338
2339 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2340 if (ret < 0) {
2341 return ret;
2342 } else if (bs->read_only) {
eaf5fe2d 2343 return -EPERM;
61007b31
SH
2344 }
2345
2346 bdrv_reset_dirty(bs, sector_num, nb_sectors);
2347
2348 /* Do nothing if disabled. */
2349 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2350 return 0;
2351 }
2352
2353 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2354 return 0;
2355 }
2356
2357 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2358 while (nb_sectors > 0) {
2359 int ret;
2360 int num = nb_sectors;
2361
2362 /* align request */
2363 if (bs->bl.discard_alignment &&
2364 num >= bs->bl.discard_alignment &&
2365 sector_num % bs->bl.discard_alignment) {
2366 if (num > bs->bl.discard_alignment) {
2367 num = bs->bl.discard_alignment;
2368 }
2369 num -= sector_num % bs->bl.discard_alignment;
2370 }
2371
2372 /* limit request size */
2373 if (num > max_discard) {
2374 num = max_discard;
2375 }
2376
2377 if (bs->drv->bdrv_co_discard) {
2378 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2379 } else {
2380 BlockAIOCB *acb;
2381 CoroutineIOCompletion co = {
2382 .coroutine = qemu_coroutine_self(),
2383 };
2384
2385 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2386 bdrv_co_io_em_complete, &co);
2387 if (acb == NULL) {
2388 return -EIO;
2389 } else {
2390 qemu_coroutine_yield();
2391 ret = co.ret;
2392 }
2393 }
2394 if (ret && ret != -ENOTSUP) {
2395 return ret;
2396 }
2397
2398 sector_num += num;
2399 nb_sectors -= num;
2400 }
2401 return 0;
2402}
2403
2404int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2405{
2406 Coroutine *co;
2407 DiscardCo rwco = {
2408 .bs = bs,
2409 .sector_num = sector_num,
2410 .nb_sectors = nb_sectors,
2411 .ret = NOT_DONE,
2412 };
2413
2414 if (qemu_in_coroutine()) {
2415 /* Fast-path if already in coroutine context */
2416 bdrv_discard_co_entry(&rwco);
2417 } else {
2418 AioContext *aio_context = bdrv_get_aio_context(bs);
2419
2420 co = qemu_coroutine_create(bdrv_discard_co_entry);
2421 qemu_coroutine_enter(co, &rwco);
2422 while (rwco.ret == NOT_DONE) {
2423 aio_poll(aio_context, true);
2424 }
2425 }
2426
2427 return rwco.ret;
2428}
2429
2430/* needed for generic scsi interface */
2431
2432int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2433{
2434 BlockDriver *drv = bs->drv;
2435
2436 if (drv && drv->bdrv_ioctl)
2437 return drv->bdrv_ioctl(bs, req, buf);
2438 return -ENOTSUP;
2439}
2440
2441BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2442 unsigned long int req, void *buf,
2443 BlockCompletionFunc *cb, void *opaque)
2444{
2445 BlockDriver *drv = bs->drv;
2446
2447 if (drv && drv->bdrv_aio_ioctl)
2448 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2449 return NULL;
2450}
2451
2452void *qemu_blockalign(BlockDriverState *bs, size_t size)
2453{
2454 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2455}
2456
2457void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2458{
2459 return memset(qemu_blockalign(bs, size), 0, size);
2460}
2461
2462void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2463{
2464 size_t align = bdrv_opt_mem_align(bs);
2465
2466 /* Ensure that NULL is never returned on success */
2467 assert(align > 0);
2468 if (size == 0) {
2469 size = align;
2470 }
2471
2472 return qemu_try_memalign(align, size);
2473}
2474
2475void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2476{
2477 void *mem = qemu_try_blockalign(bs, size);
2478
2479 if (mem) {
2480 memset(mem, 0, size);
2481 }
2482
2483 return mem;
2484}
2485
2486/*
2487 * Check if all memory in this vector is sector aligned.
2488 */
2489bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2490{
2491 int i;
2492 size_t alignment = bdrv_opt_mem_align(bs);
2493
2494 for (i = 0; i < qiov->niov; i++) {
2495 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2496 return false;
2497 }
2498 if (qiov->iov[i].iov_len % alignment) {
2499 return false;
2500 }
2501 }
2502
2503 return true;
2504}
2505
2506void bdrv_add_before_write_notifier(BlockDriverState *bs,
2507 NotifierWithReturn *notifier)
2508{
2509 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2510}
2511
2512void bdrv_io_plug(BlockDriverState *bs)
2513{
2514 BlockDriver *drv = bs->drv;
2515 if (drv && drv->bdrv_io_plug) {
2516 drv->bdrv_io_plug(bs);
2517 } else if (bs->file) {
2518 bdrv_io_plug(bs->file);
2519 }
2520}
2521
2522void bdrv_io_unplug(BlockDriverState *bs)
2523{
2524 BlockDriver *drv = bs->drv;
2525 if (drv && drv->bdrv_io_unplug) {
2526 drv->bdrv_io_unplug(bs);
2527 } else if (bs->file) {
2528 bdrv_io_unplug(bs->file);
2529 }
2530}
2531
2532void bdrv_flush_io_queue(BlockDriverState *bs)
2533{
2534 BlockDriver *drv = bs->drv;
2535 if (drv && drv->bdrv_flush_io_queue) {
2536 drv->bdrv_flush_io_queue(bs);
2537 } else if (bs->file) {
2538 bdrv_flush_io_queue(bs->file);
2539 }
2540}