]>
Commit | Line | Data |
---|---|---|
1b262839 ST |
1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* | |
3 | * Copyright 2019 Google LLC | |
4 | */ | |
5 | ||
6 | /** | |
7 | * DOC: The Keyslot Manager | |
8 | * | |
9 | * Many devices with inline encryption support have a limited number of "slots" | |
10 | * into which encryption contexts may be programmed, and requests can be tagged | |
11 | * with a slot number to specify the key to use for en/decryption. | |
12 | * | |
13 | * As the number of slots is limited, and programming keys is expensive on | |
14 | * many inline encryption hardware, we don't want to program the same key into | |
15 | * multiple slots - if multiple requests are using the same key, we want to | |
16 | * program just one slot with that key and use that slot for all requests. | |
17 | * | |
18 | * The keyslot manager manages these keyslots appropriately, and also acts as | |
19 | * an abstraction between the inline encryption hardware and the upper layers. | |
20 | * | |
21 | * Lower layer devices will set up a keyslot manager in their request queue | |
22 | * and tell it how to perform device specific operations like programming/ | |
23 | * evicting keys from keyslots. | |
24 | * | |
25 | * Upper layers will call blk_ksm_get_slot_for_key() to program a | |
26 | * key into some slot in the inline encryption hardware. | |
27 | */ | |
d145dc23 ST |
28 | |
29 | #define pr_fmt(fmt) "blk-crypto: " fmt | |
30 | ||
1b262839 | 31 | #include <linux/keyslot-manager.h> |
5851d3b0 | 32 | #include <linux/device.h> |
1b262839 ST |
33 | #include <linux/atomic.h> |
34 | #include <linux/mutex.h> | |
35 | #include <linux/pm_runtime.h> | |
36 | #include <linux/wait.h> | |
37 | #include <linux/blkdev.h> | |
38 | ||
39 | struct blk_ksm_keyslot { | |
40 | atomic_t slot_refs; | |
41 | struct list_head idle_slot_node; | |
42 | struct hlist_node hash_node; | |
43 | const struct blk_crypto_key *key; | |
44 | struct blk_keyslot_manager *ksm; | |
45 | }; | |
46 | ||
47 | static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm) | |
48 | { | |
49 | /* | |
50 | * Calling into the driver requires ksm->lock held and the device | |
51 | * resumed. But we must resume the device first, since that can acquire | |
52 | * and release ksm->lock via blk_ksm_reprogram_all_keys(). | |
53 | */ | |
54 | if (ksm->dev) | |
55 | pm_runtime_get_sync(ksm->dev); | |
56 | down_write(&ksm->lock); | |
57 | } | |
58 | ||
59 | static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm) | |
60 | { | |
61 | up_write(&ksm->lock); | |
62 | if (ksm->dev) | |
63 | pm_runtime_put_sync(ksm->dev); | |
64 | } | |
65 | ||
7bdcc48f ST |
66 | static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm) |
67 | { | |
68 | return ksm->num_slots == 0; | |
69 | } | |
70 | ||
1b262839 ST |
71 | /** |
72 | * blk_ksm_init() - Initialize a keyslot manager | |
73 | * @ksm: The keyslot_manager to initialize. | |
74 | * @num_slots: The number of key slots to manage. | |
75 | * | |
76 | * Allocate memory for keyslots and initialize a keyslot manager. Called by | |
77 | * e.g. storage drivers to set up a keyslot manager in their request_queue. | |
78 | * | |
79 | * Return: 0 on success, or else a negative error code. | |
80 | */ | |
81 | int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots) | |
82 | { | |
83 | unsigned int slot; | |
84 | unsigned int i; | |
85 | unsigned int slot_hashtable_size; | |
86 | ||
87 | memset(ksm, 0, sizeof(*ksm)); | |
88 | ||
89 | if (num_slots == 0) | |
90 | return -EINVAL; | |
91 | ||
92 | ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL); | |
93 | if (!ksm->slots) | |
94 | return -ENOMEM; | |
95 | ||
96 | ksm->num_slots = num_slots; | |
97 | ||
98 | init_rwsem(&ksm->lock); | |
99 | ||
100 | init_waitqueue_head(&ksm->idle_slots_wait_queue); | |
101 | INIT_LIST_HEAD(&ksm->idle_slots); | |
102 | ||
103 | for (slot = 0; slot < num_slots; slot++) { | |
104 | ksm->slots[slot].ksm = ksm; | |
105 | list_add_tail(&ksm->slots[slot].idle_slot_node, | |
106 | &ksm->idle_slots); | |
107 | } | |
108 | ||
109 | spin_lock_init(&ksm->idle_slots_lock); | |
110 | ||
111 | slot_hashtable_size = roundup_pow_of_two(num_slots); | |
47a84653 EB |
112 | /* |
113 | * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2 | |
114 | * buckets. This only makes a difference when there is only 1 keyslot. | |
115 | */ | |
116 | if (slot_hashtable_size < 2) | |
117 | slot_hashtable_size = 2; | |
118 | ||
1b262839 ST |
119 | ksm->log_slot_ht_size = ilog2(slot_hashtable_size); |
120 | ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size, | |
121 | sizeof(ksm->slot_hashtable[0]), | |
122 | GFP_KERNEL); | |
123 | if (!ksm->slot_hashtable) | |
124 | goto err_destroy_ksm; | |
125 | for (i = 0; i < slot_hashtable_size; i++) | |
126 | INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); | |
127 | ||
128 | return 0; | |
129 | ||
130 | err_destroy_ksm: | |
131 | blk_ksm_destroy(ksm); | |
132 | return -ENOMEM; | |
133 | } | |
134 | EXPORT_SYMBOL_GPL(blk_ksm_init); | |
135 | ||
5851d3b0 EB |
136 | static void blk_ksm_destroy_callback(void *ksm) |
137 | { | |
138 | blk_ksm_destroy(ksm); | |
139 | } | |
140 | ||
141 | /** | |
142 | * devm_blk_ksm_init() - Resource-managed blk_ksm_init() | |
143 | * @dev: The device which owns the blk_keyslot_manager. | |
144 | * @ksm: The blk_keyslot_manager to initialize. | |
145 | * @num_slots: The number of key slots to manage. | |
146 | * | |
147 | * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically | |
148 | * on driver detach. | |
149 | * | |
150 | * Return: 0 on success, or else a negative error code. | |
151 | */ | |
152 | int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm, | |
153 | unsigned int num_slots) | |
154 | { | |
155 | int err = blk_ksm_init(ksm, num_slots); | |
156 | ||
157 | if (err) | |
158 | return err; | |
159 | ||
160 | return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm); | |
161 | } | |
162 | EXPORT_SYMBOL_GPL(devm_blk_ksm_init); | |
163 | ||
1b262839 ST |
164 | static inline struct hlist_head * |
165 | blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm, | |
166 | const struct blk_crypto_key *key) | |
167 | { | |
168 | return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)]; | |
169 | } | |
170 | ||
171 | static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot) | |
172 | { | |
173 | struct blk_keyslot_manager *ksm = slot->ksm; | |
174 | unsigned long flags; | |
175 | ||
176 | spin_lock_irqsave(&ksm->idle_slots_lock, flags); | |
177 | list_del(&slot->idle_slot_node); | |
178 | spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); | |
179 | } | |
180 | ||
181 | static struct blk_ksm_keyslot *blk_ksm_find_keyslot( | |
182 | struct blk_keyslot_manager *ksm, | |
183 | const struct blk_crypto_key *key) | |
184 | { | |
185 | const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key); | |
186 | struct blk_ksm_keyslot *slotp; | |
187 | ||
188 | hlist_for_each_entry(slotp, head, hash_node) { | |
189 | if (slotp->key == key) | |
190 | return slotp; | |
191 | } | |
192 | return NULL; | |
193 | } | |
194 | ||
195 | static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot( | |
196 | struct blk_keyslot_manager *ksm, | |
197 | const struct blk_crypto_key *key) | |
198 | { | |
199 | struct blk_ksm_keyslot *slot; | |
200 | ||
201 | slot = blk_ksm_find_keyslot(ksm, key); | |
202 | if (!slot) | |
203 | return NULL; | |
204 | if (atomic_inc_return(&slot->slot_refs) == 1) { | |
205 | /* Took first reference to this slot; remove it from LRU list */ | |
206 | blk_ksm_remove_slot_from_lru_list(slot); | |
207 | } | |
208 | return slot; | |
209 | } | |
210 | ||
211 | unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot) | |
212 | { | |
213 | return slot - slot->ksm->slots; | |
214 | } | |
215 | EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx); | |
216 | ||
217 | /** | |
218 | * blk_ksm_get_slot_for_key() - Program a key into a keyslot. | |
219 | * @ksm: The keyslot manager to program the key into. | |
220 | * @key: Pointer to the key object to program, including the raw key, crypto | |
221 | * mode, and data unit size. | |
222 | * @slot_ptr: A pointer to return the pointer of the allocated keyslot. | |
223 | * | |
224 | * Get a keyslot that's been programmed with the specified key. If one already | |
225 | * exists, return it with incremented refcount. Otherwise, wait for a keyslot | |
226 | * to become idle and program it. | |
227 | * | |
228 | * Context: Process context. Takes and releases ksm->lock. | |
229 | * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the | |
230 | * allocated keyslot), or some other blk_status_t otherwise (and | |
231 | * keyslot is set to NULL). | |
232 | */ | |
233 | blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm, | |
234 | const struct blk_crypto_key *key, | |
235 | struct blk_ksm_keyslot **slot_ptr) | |
236 | { | |
237 | struct blk_ksm_keyslot *slot; | |
238 | int slot_idx; | |
239 | int err; | |
240 | ||
241 | *slot_ptr = NULL; | |
7bdcc48f ST |
242 | |
243 | if (blk_ksm_is_passthrough(ksm)) | |
244 | return BLK_STS_OK; | |
245 | ||
1b262839 ST |
246 | down_read(&ksm->lock); |
247 | slot = blk_ksm_find_and_grab_keyslot(ksm, key); | |
248 | up_read(&ksm->lock); | |
249 | if (slot) | |
250 | goto success; | |
251 | ||
252 | for (;;) { | |
253 | blk_ksm_hw_enter(ksm); | |
254 | slot = blk_ksm_find_and_grab_keyslot(ksm, key); | |
255 | if (slot) { | |
256 | blk_ksm_hw_exit(ksm); | |
257 | goto success; | |
258 | } | |
259 | ||
260 | /* | |
261 | * If we're here, that means there wasn't a slot that was | |
262 | * already programmed with the key. So try to program it. | |
263 | */ | |
264 | if (!list_empty(&ksm->idle_slots)) | |
265 | break; | |
266 | ||
267 | blk_ksm_hw_exit(ksm); | |
268 | wait_event(ksm->idle_slots_wait_queue, | |
269 | !list_empty(&ksm->idle_slots)); | |
270 | } | |
271 | ||
272 | slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot, | |
273 | idle_slot_node); | |
274 | slot_idx = blk_ksm_get_slot_idx(slot); | |
275 | ||
276 | err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx); | |
277 | if (err) { | |
278 | wake_up(&ksm->idle_slots_wait_queue); | |
279 | blk_ksm_hw_exit(ksm); | |
280 | return errno_to_blk_status(err); | |
281 | } | |
282 | ||
283 | /* Move this slot to the hash list for the new key. */ | |
284 | if (slot->key) | |
285 | hlist_del(&slot->hash_node); | |
286 | slot->key = key; | |
287 | hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key)); | |
288 | ||
289 | atomic_set(&slot->slot_refs, 1); | |
290 | ||
291 | blk_ksm_remove_slot_from_lru_list(slot); | |
292 | ||
293 | blk_ksm_hw_exit(ksm); | |
294 | success: | |
295 | *slot_ptr = slot; | |
296 | return BLK_STS_OK; | |
297 | } | |
298 | ||
299 | /** | |
300 | * blk_ksm_put_slot() - Release a reference to a slot | |
301 | * @slot: The keyslot to release the reference of. | |
302 | * | |
303 | * Context: Any context. | |
304 | */ | |
305 | void blk_ksm_put_slot(struct blk_ksm_keyslot *slot) | |
306 | { | |
307 | struct blk_keyslot_manager *ksm; | |
308 | unsigned long flags; | |
309 | ||
310 | if (!slot) | |
311 | return; | |
312 | ||
313 | ksm = slot->ksm; | |
314 | ||
315 | if (atomic_dec_and_lock_irqsave(&slot->slot_refs, | |
316 | &ksm->idle_slots_lock, flags)) { | |
317 | list_add_tail(&slot->idle_slot_node, &ksm->idle_slots); | |
318 | spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); | |
319 | wake_up(&ksm->idle_slots_wait_queue); | |
320 | } | |
321 | } | |
322 | ||
323 | /** | |
324 | * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is | |
325 | * supported by a ksm. | |
326 | * @ksm: The keyslot manager to check | |
327 | * @cfg: The crypto configuration to check for. | |
328 | * | |
329 | * Checks for crypto_mode/data unit size/dun bytes support. | |
330 | * | |
331 | * Return: Whether or not this ksm supports the specified crypto config. | |
332 | */ | |
333 | bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm, | |
334 | const struct blk_crypto_config *cfg) | |
335 | { | |
336 | if (!ksm) | |
337 | return false; | |
338 | if (!(ksm->crypto_modes_supported[cfg->crypto_mode] & | |
339 | cfg->data_unit_size)) | |
340 | return false; | |
341 | if (ksm->max_dun_bytes_supported < cfg->dun_bytes) | |
342 | return false; | |
343 | return true; | |
344 | } | |
345 | ||
346 | /** | |
347 | * blk_ksm_evict_key() - Evict a key from the lower layer device. | |
348 | * @ksm: The keyslot manager to evict from | |
349 | * @key: The key to evict | |
350 | * | |
351 | * Find the keyslot that the specified key was programmed into, and evict that | |
352 | * slot from the lower layer device. The slot must not be in use by any | |
353 | * in-flight IO when this function is called. | |
354 | * | |
355 | * Context: Process context. Takes and releases ksm->lock. | |
356 | * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY | |
357 | * if the keyslot is still in use, or another -errno value on other | |
358 | * error. | |
359 | */ | |
360 | int blk_ksm_evict_key(struct blk_keyslot_manager *ksm, | |
361 | const struct blk_crypto_key *key) | |
362 | { | |
363 | struct blk_ksm_keyslot *slot; | |
364 | int err = 0; | |
365 | ||
7bdcc48f ST |
366 | if (blk_ksm_is_passthrough(ksm)) { |
367 | if (ksm->ksm_ll_ops.keyslot_evict) { | |
368 | blk_ksm_hw_enter(ksm); | |
369 | err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1); | |
370 | blk_ksm_hw_exit(ksm); | |
371 | return err; | |
372 | } | |
373 | return 0; | |
374 | } | |
375 | ||
1b262839 ST |
376 | blk_ksm_hw_enter(ksm); |
377 | slot = blk_ksm_find_keyslot(ksm, key); | |
378 | if (!slot) | |
379 | goto out_unlock; | |
380 | ||
381 | if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) { | |
382 | err = -EBUSY; | |
383 | goto out_unlock; | |
384 | } | |
385 | err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, | |
386 | blk_ksm_get_slot_idx(slot)); | |
387 | if (err) | |
388 | goto out_unlock; | |
389 | ||
390 | hlist_del(&slot->hash_node); | |
391 | slot->key = NULL; | |
392 | err = 0; | |
393 | out_unlock: | |
394 | blk_ksm_hw_exit(ksm); | |
395 | return err; | |
396 | } | |
397 | ||
398 | /** | |
399 | * blk_ksm_reprogram_all_keys() - Re-program all keyslots. | |
400 | * @ksm: The keyslot manager | |
401 | * | |
402 | * Re-program all keyslots that are supposed to have a key programmed. This is | |
403 | * intended only for use by drivers for hardware that loses its keys on reset. | |
404 | * | |
405 | * Context: Process context. Takes and releases ksm->lock. | |
406 | */ | |
407 | void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm) | |
408 | { | |
409 | unsigned int slot; | |
410 | ||
7bdcc48f ST |
411 | if (blk_ksm_is_passthrough(ksm)) |
412 | return; | |
413 | ||
1b262839 ST |
414 | /* This is for device initialization, so don't resume the device */ |
415 | down_write(&ksm->lock); | |
416 | for (slot = 0; slot < ksm->num_slots; slot++) { | |
417 | const struct blk_crypto_key *key = ksm->slots[slot].key; | |
418 | int err; | |
419 | ||
420 | if (!key) | |
421 | continue; | |
422 | ||
423 | err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); | |
424 | WARN_ON(err); | |
425 | } | |
426 | up_write(&ksm->lock); | |
427 | } | |
428 | EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys); | |
429 | ||
430 | void blk_ksm_destroy(struct blk_keyslot_manager *ksm) | |
431 | { | |
432 | if (!ksm) | |
433 | return; | |
434 | kvfree(ksm->slot_hashtable); | |
3e20aa96 | 435 | kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots); |
1b262839 ST |
436 | memzero_explicit(ksm, sizeof(*ksm)); |
437 | } | |
438 | EXPORT_SYMBOL_GPL(blk_ksm_destroy); | |
d145dc23 ST |
439 | |
440 | bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) | |
441 | { | |
442 | if (blk_integrity_queue_supports_integrity(q)) { | |
443 | pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n"); | |
444 | return false; | |
445 | } | |
446 | q->ksm = ksm; | |
447 | return true; | |
448 | } | |
449 | EXPORT_SYMBOL_GPL(blk_ksm_register); | |
450 | ||
451 | void blk_ksm_unregister(struct request_queue *q) | |
452 | { | |
453 | q->ksm = NULL; | |
454 | } | |
7bdcc48f | 455 | |
d3b17a24 ST |
456 | /** |
457 | * blk_ksm_intersect_modes() - restrict supported modes by child device | |
458 | * @parent: The keyslot manager for parent device | |
459 | * @child: The keyslot manager for child device, or NULL | |
460 | * | |
461 | * Clear any crypto mode support bits in @parent that aren't set in @child. | |
462 | * If @child is NULL, then all parent bits are cleared. | |
463 | * | |
464 | * Only use this when setting up the keyslot manager for a layered device, | |
465 | * before it's been exposed yet. | |
466 | */ | |
467 | void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent, | |
468 | const struct blk_keyslot_manager *child) | |
469 | { | |
470 | if (child) { | |
471 | unsigned int i; | |
472 | ||
473 | parent->max_dun_bytes_supported = | |
474 | min(parent->max_dun_bytes_supported, | |
475 | child->max_dun_bytes_supported); | |
476 | for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported); | |
477 | i++) { | |
478 | parent->crypto_modes_supported[i] &= | |
479 | child->crypto_modes_supported[i]; | |
480 | } | |
481 | } else { | |
482 | parent->max_dun_bytes_supported = 0; | |
483 | memset(parent->crypto_modes_supported, 0, | |
484 | sizeof(parent->crypto_modes_supported)); | |
485 | } | |
486 | } | |
487 | EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes); | |
488 | ||
489 | /** | |
490 | * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes | |
491 | * and DUN bytes that another KSM supports. Here, | |
492 | * "superset" refers to the mathematical meaning of the | |
493 | * word - i.e. if two KSMs have the *same* capabilities, | |
494 | * they *are* considered supersets of each other. | |
495 | * @ksm_superset: The KSM that we want to verify is a superset | |
496 | * @ksm_subset: The KSM that we want to verify is a subset | |
497 | * | |
498 | * Return: True if @ksm_superset supports a superset of the crypto modes and DUN | |
499 | * bytes that @ksm_subset supports. | |
500 | */ | |
501 | bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset, | |
502 | struct blk_keyslot_manager *ksm_subset) | |
503 | { | |
504 | int i; | |
505 | ||
506 | if (!ksm_subset) | |
507 | return true; | |
508 | ||
509 | if (!ksm_superset) | |
510 | return false; | |
511 | ||
512 | for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) { | |
513 | if (ksm_subset->crypto_modes_supported[i] & | |
514 | (~ksm_superset->crypto_modes_supported[i])) { | |
515 | return false; | |
516 | } | |
517 | } | |
518 | ||
519 | if (ksm_subset->max_dun_bytes_supported > | |
520 | ksm_superset->max_dun_bytes_supported) { | |
521 | return false; | |
522 | } | |
523 | ||
524 | return true; | |
525 | } | |
526 | EXPORT_SYMBOL_GPL(blk_ksm_is_superset); | |
527 | ||
528 | /** | |
529 | * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of | |
530 | * another KSM | |
531 | * @target_ksm: The KSM whose restrictions to update. | |
532 | * @reference_ksm: The KSM to whose restrictions this function will update | |
533 | * @target_ksm's restrictions to. | |
534 | * | |
535 | * Blk-crypto requires that crypto capabilities that were | |
536 | * advertised when a bio was created continue to be supported by the | |
537 | * device until that bio is ended. This is turn means that a device cannot | |
538 | * shrink its advertised crypto capabilities without any explicit | |
539 | * synchronization with upper layers. So if there's no such explicit | |
540 | * synchronization, @reference_ksm must support all the crypto capabilities that | |
541 | * @target_ksm does | |
542 | * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true). | |
543 | * | |
544 | * Note also that as long as the crypto capabilities are being expanded, the | |
545 | * order of updates becoming visible is not important because it's alright | |
546 | * for blk-crypto to see stale values - they only cause blk-crypto to | |
547 | * believe that a crypto capability isn't supported when it actually is (which | |
548 | * might result in blk-crypto-fallback being used if available, or the bio being | |
549 | * failed). | |
550 | */ | |
551 | void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm, | |
552 | struct blk_keyslot_manager *reference_ksm) | |
553 | { | |
554 | memcpy(target_ksm->crypto_modes_supported, | |
555 | reference_ksm->crypto_modes_supported, | |
556 | sizeof(target_ksm->crypto_modes_supported)); | |
557 | ||
558 | target_ksm->max_dun_bytes_supported = | |
559 | reference_ksm->max_dun_bytes_supported; | |
560 | } | |
561 | EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities); | |
562 | ||
7bdcc48f ST |
563 | /** |
564 | * blk_ksm_init_passthrough() - Init a passthrough keyslot manager | |
565 | * @ksm: The keyslot manager to init | |
566 | * | |
567 | * Initialize a passthrough keyslot manager. | |
568 | * Called by e.g. storage drivers to set up a keyslot manager in their | |
569 | * request_queue, when the storage driver wants to manage its keys by itself. | |
570 | * This is useful for inline encryption hardware that doesn't have the concept | |
571 | * of keyslots, and for layered devices. | |
572 | */ | |
573 | void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm) | |
574 | { | |
575 | memset(ksm, 0, sizeof(*ksm)); | |
576 | init_rwsem(&ksm->lock); | |
577 | } | |
578 | EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough); |