]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/kyber-iosched.c
loop: fix I/O error on fsync() in detached loop devices
[mirror_ubuntu-jammy-kernel.git] / block / kyber-iosched.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
00e04393
OS
2/*
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 * scalable techniques.
5 *
6 * Copyright (C) 2017 Facebook
00e04393
OS
7 */
8
9#include <linux/kernel.h>
10#include <linux/blkdev.h>
11#include <linux/blk-mq.h>
12#include <linux/elevator.h>
13#include <linux/module.h>
14#include <linux/sbitmap.h>
15
b357e4a6
CK
16#include <trace/events/block.h>
17
00e04393
OS
18#include "blk.h"
19#include "blk-mq.h"
16b738f6 20#include "blk-mq-debugfs.h"
00e04393
OS
21#include "blk-mq-sched.h"
22#include "blk-mq-tag.h"
00e04393 23
6c3b7af1
OS
24#define CREATE_TRACE_POINTS
25#include <trace/events/kyber.h>
26
6e25cb01
OS
27/*
28 * Scheduling domains: the device is divided into multiple domains based on the
29 * request type.
30 */
00e04393
OS
31enum {
32 KYBER_READ,
6e25cb01
OS
33 KYBER_WRITE,
34 KYBER_DISCARD,
35 KYBER_OTHER,
00e04393
OS
36 KYBER_NUM_DOMAINS,
37};
38
6c3b7af1
OS
39static const char *kyber_domain_names[] = {
40 [KYBER_READ] = "READ",
41 [KYBER_WRITE] = "WRITE",
42 [KYBER_DISCARD] = "DISCARD",
43 [KYBER_OTHER] = "OTHER",
44};
45
00e04393 46enum {
00e04393
OS
47 /*
48 * In order to prevent starvation of synchronous requests by a flood of
49 * asynchronous requests, we reserve 25% of requests for synchronous
50 * operations.
51 */
52 KYBER_ASYNC_PERCENT = 75,
53};
54
55/*
6e25cb01 56 * Maximum device-wide depth for each scheduling domain.
00e04393 57 *
6e25cb01
OS
58 * Even for fast devices with lots of tags like NVMe, you can saturate the
59 * device with only a fraction of the maximum possible queue depth. So, we cap
60 * these to a reasonable value.
00e04393
OS
61 */
62static const unsigned int kyber_depth[] = {
63 [KYBER_READ] = 256,
6e25cb01
OS
64 [KYBER_WRITE] = 128,
65 [KYBER_DISCARD] = 64,
66 [KYBER_OTHER] = 16,
00e04393
OS
67};
68
69/*
6e25cb01
OS
70 * Default latency targets for each scheduling domain.
71 */
72static const u64 kyber_latency_targets[] = {
f0a0cddd
OS
73 [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
6e25cb01
OS
76};
77
78/*
79 * Batch size (number of requests we'll dispatch in a row) for each scheduling
80 * domain.
00e04393
OS
81 */
82static const unsigned int kyber_batch_size[] = {
83 [KYBER_READ] = 16,
6e25cb01
OS
84 [KYBER_WRITE] = 8,
85 [KYBER_DISCARD] = 1,
86 [KYBER_OTHER] = 1,
87};
88
89/*
90 * Requests latencies are recorded in a histogram with buckets defined relative
91 * to the target latency:
92 *
93 * <= 1/4 * target latency
94 * <= 1/2 * target latency
95 * <= 3/4 * target latency
96 * <= target latency
97 * <= 1 1/4 * target latency
98 * <= 1 1/2 * target latency
99 * <= 1 3/4 * target latency
100 * > 1 3/4 * target latency
101 */
102enum {
103 /*
104 * The width of the latency histogram buckets is
105 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106 */
107 KYBER_LATENCY_SHIFT = 2,
108 /*
109 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 * thus, "good".
111 */
112 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115};
116
117/*
118 * We measure both the total latency and the I/O latency (i.e., latency after
119 * submitting to the device).
120 */
121enum {
122 KYBER_TOTAL_LATENCY,
123 KYBER_IO_LATENCY,
124};
125
6c3b7af1
OS
126static const char *kyber_latency_type_names[] = {
127 [KYBER_TOTAL_LATENCY] = "total",
128 [KYBER_IO_LATENCY] = "I/O",
129};
130
6e25cb01
OS
131/*
132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133 * domain except for KYBER_OTHER.
134 */
135struct kyber_cpu_latency {
136 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
00e04393
OS
137};
138
a6088845
JW
139/*
140 * There is a same mapping between ctx & hctx and kcq & khd,
141 * we use request->mq_ctx->index_hw to index the kcq in khd.
142 */
143struct kyber_ctx_queue {
144 /*
145 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146 * Also protect the rqs on rq_list when merge.
147 */
148 spinlock_t lock;
149 struct list_head rq_list[KYBER_NUM_DOMAINS];
150} ____cacheline_aligned_in_smp;
151
00e04393 152struct kyber_queue_data {
6c3b7af1
OS
153 struct request_queue *q;
154
00e04393 155 /*
6e25cb01
OS
156 * Each scheduling domain has a limited number of in-flight requests
157 * device-wide, limited by these tokens.
00e04393
OS
158 */
159 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
160
161 /*
162 * Async request percentage, converted to per-word depth for
163 * sbitmap_get_shallow().
164 */
165 unsigned int async_depth;
166
6e25cb01
OS
167 struct kyber_cpu_latency __percpu *cpu_latency;
168
169 /* Timer for stats aggregation and adjusting domain tokens. */
170 struct timer_list timer;
171
172 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
173
174 unsigned long latency_timeout[KYBER_OTHER];
175
176 int domain_p99[KYBER_OTHER];
177
00e04393 178 /* Target latencies in nanoseconds. */
6e25cb01 179 u64 latency_targets[KYBER_OTHER];
00e04393
OS
180};
181
182struct kyber_hctx_data {
183 spinlock_t lock;
184 struct list_head rqs[KYBER_NUM_DOMAINS];
185 unsigned int cur_domain;
186 unsigned int batching;
a6088845
JW
187 struct kyber_ctx_queue *kcqs;
188 struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
00203ba4 189 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
fcf38cdf 190 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
00e04393
OS
191 atomic_t wait_index[KYBER_NUM_DOMAINS];
192};
193
fcf38cdf
OS
194static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
195 void *key);
196
a6088845 197static unsigned int kyber_sched_domain(unsigned int op)
00e04393 198{
6e25cb01
OS
199 switch (op & REQ_OP_MASK) {
200 case REQ_OP_READ:
00e04393 201 return KYBER_READ;
6e25cb01
OS
202 case REQ_OP_WRITE:
203 return KYBER_WRITE;
204 case REQ_OP_DISCARD:
205 return KYBER_DISCARD;
206 default:
00e04393 207 return KYBER_OTHER;
6e25cb01 208 }
00e04393
OS
209}
210
6e25cb01
OS
211static void flush_latency_buckets(struct kyber_queue_data *kqd,
212 struct kyber_cpu_latency *cpu_latency,
213 unsigned int sched_domain, unsigned int type)
00e04393 214{
6e25cb01
OS
215 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
216 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
217 unsigned int bucket;
00e04393 218
6e25cb01
OS
219 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
220 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
00e04393
OS
221}
222
223/*
6e25cb01
OS
224 * Calculate the histogram bucket with the given percentile rank, or -1 if there
225 * aren't enough samples yet.
00e04393 226 */
6e25cb01
OS
227static int calculate_percentile(struct kyber_queue_data *kqd,
228 unsigned int sched_domain, unsigned int type,
229 unsigned int percentile)
00e04393 230{
6e25cb01
OS
231 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
232 unsigned int bucket, samples = 0, percentile_samples;
233
234 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
235 samples += buckets[bucket];
236
237 if (!samples)
238 return -1;
00e04393
OS
239
240 /*
6e25cb01
OS
241 * We do the calculation once we have 500 samples or one second passes
242 * since the first sample was recorded, whichever comes first.
00e04393 243 */
6e25cb01
OS
244 if (!kqd->latency_timeout[sched_domain])
245 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
246 if (samples < 500 &&
247 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
248 return -1;
249 }
250 kqd->latency_timeout[sched_domain] = 0;
00e04393 251
6e25cb01
OS
252 percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
253 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
254 if (buckets[bucket] >= percentile_samples)
00e04393 255 break;
6e25cb01 256 percentile_samples -= buckets[bucket];
00e04393 257 }
6e25cb01 258 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
00e04393 259
6c3b7af1
OS
260 trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
261 kyber_latency_type_names[type], percentile,
262 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
263
6e25cb01
OS
264 return bucket;
265}
266
267static void kyber_resize_domain(struct kyber_queue_data *kqd,
268 unsigned int sched_domain, unsigned int depth)
269{
00e04393 270 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
6c3b7af1 271 if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
00e04393 272 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
6c3b7af1
OS
273 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
274 depth);
275 }
00e04393
OS
276}
277
6e25cb01
OS
278static void kyber_timer_fn(struct timer_list *t)
279{
280 struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
281 unsigned int sched_domain;
282 int cpu;
283 bool bad = false;
284
285 /* Sum all of the per-cpu latency histograms. */
286 for_each_online_cpu(cpu) {
287 struct kyber_cpu_latency *cpu_latency;
288
289 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
290 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
291 flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 KYBER_TOTAL_LATENCY);
293 flush_latency_buckets(kqd, cpu_latency, sched_domain,
294 KYBER_IO_LATENCY);
00e04393
OS
295 }
296 }
297
6e25cb01
OS
298 /*
299 * Check if any domains have a high I/O latency, which might indicate
300 * congestion in the device. Note that we use the p90; we don't want to
301 * be too sensitive to outliers here.
302 */
303 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
304 int p90;
00e04393 305
6e25cb01
OS
306 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
307 90);
308 if (p90 >= KYBER_GOOD_BUCKETS)
309 bad = true;
310 }
00e04393
OS
311
312 /*
6e25cb01
OS
313 * Adjust the scheduling domain depths. If we determined that there was
314 * congestion, we throttle all domains with good latencies. Either way,
315 * we ease up on throttling domains with bad latencies.
00e04393 316 */
6e25cb01
OS
317 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
318 unsigned int orig_depth, depth;
319 int p99;
320
321 p99 = calculate_percentile(kqd, sched_domain,
322 KYBER_TOTAL_LATENCY, 99);
323 /*
324 * This is kind of subtle: different domains will not
325 * necessarily have enough samples to calculate the latency
326 * percentiles during the same window, so we have to remember
327 * the p99 for the next time we observe congestion; once we do,
328 * we don't want to throttle again until we get more data, so we
329 * reset it to -1.
330 */
331 if (bad) {
332 if (p99 < 0)
333 p99 = kqd->domain_p99[sched_domain];
334 kqd->domain_p99[sched_domain] = -1;
335 } else if (p99 >= 0) {
336 kqd->domain_p99[sched_domain] = p99;
337 }
338 if (p99 < 0)
339 continue;
340
341 /*
342 * If this domain has bad latency, throttle less. Otherwise,
343 * throttle more iff we determined that there is congestion.
344 *
345 * The new depth is scaled linearly with the p99 latency vs the
346 * latency target. E.g., if the p99 is 3/4 of the target, then
347 * we throttle down to 3/4 of the current depth, and if the p99
348 * is 2x the target, then we double the depth.
349 */
350 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
351 orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
352 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
353 kyber_resize_domain(kqd, sched_domain, depth);
354 }
355 }
00e04393
OS
356}
357
6e25cb01 358static unsigned int kyber_sched_tags_shift(struct request_queue *q)
00e04393
OS
359{
360 /*
361 * All of the hardware queues have the same depth, so we can just grab
362 * the shift of the first one.
363 */
222a5ae0 364 return q->queue_hw_ctx[0]->sched_tags->bitmap_tags->sb.shift;
a6088845
JW
365}
366
00e04393
OS
367static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
368{
369 struct kyber_queue_data *kqd;
00e04393
OS
370 unsigned int shift;
371 int ret = -ENOMEM;
372 int i;
373
6e25cb01 374 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
00e04393
OS
375 if (!kqd)
376 goto err;
00e04393 377
6c3b7af1
OS
378 kqd->q = q;
379
6e25cb01
OS
380 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
381 GFP_KERNEL | __GFP_ZERO);
382 if (!kqd->cpu_latency)
00e04393
OS
383 goto err_kqd;
384
6e25cb01
OS
385 timer_setup(&kqd->timer, kyber_timer_fn, 0);
386
00e04393
OS
387 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
388 WARN_ON(!kyber_depth[i]);
389 WARN_ON(!kyber_batch_size[i]);
390 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
fa2a1f60
OS
391 kyber_depth[i], -1, false,
392 GFP_KERNEL, q->node);
00e04393
OS
393 if (ret) {
394 while (--i >= 0)
395 sbitmap_queue_free(&kqd->domain_tokens[i]);
6e25cb01 396 goto err_buckets;
00e04393 397 }
00e04393
OS
398 }
399
6e25cb01
OS
400 for (i = 0; i < KYBER_OTHER; i++) {
401 kqd->domain_p99[i] = -1;
402 kqd->latency_targets[i] = kyber_latency_targets[i];
403 }
00e04393 404
6e25cb01
OS
405 shift = kyber_sched_tags_shift(q);
406 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
00e04393
OS
407
408 return kqd;
409
6e25cb01
OS
410err_buckets:
411 free_percpu(kqd->cpu_latency);
00e04393
OS
412err_kqd:
413 kfree(kqd);
414err:
415 return ERR_PTR(ret);
416}
417
418static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
419{
420 struct kyber_queue_data *kqd;
421 struct elevator_queue *eq;
422
423 eq = elevator_alloc(q, e);
424 if (!eq)
425 return -ENOMEM;
426
427 kqd = kyber_queue_data_alloc(q);
428 if (IS_ERR(kqd)) {
429 kobject_put(&eq->kobj);
430 return PTR_ERR(kqd);
431 }
432
6e25cb01
OS
433 blk_stat_enable_accounting(q);
434
00e04393
OS
435 eq->elevator_data = kqd;
436 q->elevator = eq;
437
00e04393
OS
438 return 0;
439}
440
441static void kyber_exit_sched(struct elevator_queue *e)
442{
443 struct kyber_queue_data *kqd = e->elevator_data;
00e04393
OS
444 int i;
445
6e25cb01 446 del_timer_sync(&kqd->timer);
00e04393
OS
447
448 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
449 sbitmap_queue_free(&kqd->domain_tokens[i]);
6e25cb01 450 free_percpu(kqd->cpu_latency);
00e04393
OS
451 kfree(kqd);
452}
453
a6088845
JW
454static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
455{
456 unsigned int i;
457
458 spin_lock_init(&kcq->lock);
459 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
460 INIT_LIST_HEAD(&kcq->rq_list[i]);
461}
462
00e04393
OS
463static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
464{
28820640 465 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
00e04393
OS
466 struct kyber_hctx_data *khd;
467 int i;
468
469 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
470 if (!khd)
471 return -ENOMEM;
472
a6088845
JW
473 khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
474 sizeof(struct kyber_ctx_queue),
475 GFP_KERNEL, hctx->numa_node);
476 if (!khd->kcqs)
477 goto err_khd;
478
479 for (i = 0; i < hctx->nr_ctx; i++)
480 kyber_ctx_queue_init(&khd->kcqs[i]);
481
482 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
483 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
484 ilog2(8), GFP_KERNEL, hctx->numa_node)) {
485 while (--i >= 0)
486 sbitmap_free(&khd->kcq_map[i]);
487 goto err_kcqs;
488 }
489 }
490
00e04393
OS
491 spin_lock_init(&khd->lock);
492
493 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
494 INIT_LIST_HEAD(&khd->rqs[i]);
00203ba4
JA
495 khd->domain_wait[i].sbq = NULL;
496 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
fcf38cdf 497 kyber_domain_wake);
00203ba4
JA
498 khd->domain_wait[i].wait.private = hctx;
499 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
00e04393
OS
500 atomic_set(&khd->wait_index[i], 0);
501 }
502
503 khd->cur_domain = 0;
504 khd->batching = 0;
505
506 hctx->sched_data = khd;
222a5ae0 507 sbitmap_queue_min_shallow_depth(hctx->sched_tags->bitmap_tags,
28820640 508 kqd->async_depth);
00e04393
OS
509
510 return 0;
a6088845
JW
511
512err_kcqs:
513 kfree(khd->kcqs);
514err_khd:
515 kfree(khd);
516 return -ENOMEM;
00e04393
OS
517}
518
519static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
520{
a6088845
JW
521 struct kyber_hctx_data *khd = hctx->sched_data;
522 int i;
523
524 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
525 sbitmap_free(&khd->kcq_map[i]);
526 kfree(khd->kcqs);
00e04393
OS
527 kfree(hctx->sched_data);
528}
529
530static int rq_get_domain_token(struct request *rq)
531{
532 return (long)rq->elv.priv[0];
533}
534
535static void rq_set_domain_token(struct request *rq, int token)
536{
537 rq->elv.priv[0] = (void *)(long)token;
538}
539
540static void rq_clear_domain_token(struct kyber_queue_data *kqd,
541 struct request *rq)
542{
543 unsigned int sched_domain;
544 int nr;
545
546 nr = rq_get_domain_token(rq);
547 if (nr != -1) {
a6088845 548 sched_domain = kyber_sched_domain(rq->cmd_flags);
00e04393
OS
549 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
550 rq->mq_ctx->cpu);
551 }
552}
553
5bbf4e5a 554static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
00e04393 555{
00e04393
OS
556 /*
557 * We use the scheduler tags as per-hardware queue queueing tokens.
558 * Async requests can be limited at this stage.
559 */
5bbf4e5a
CH
560 if (!op_is_sync(op)) {
561 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
562
00e04393 563 data->shallow_depth = kqd->async_depth;
5bbf4e5a
CH
564 }
565}
00e04393 566
14ccb66b
CH
567static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
568 unsigned int nr_segs)
a6088845
JW
569{
570 struct kyber_hctx_data *khd = hctx->sched_data;
571 struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
f31967f0 572 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
a6088845
JW
573 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
574 struct list_head *rq_list = &kcq->rq_list[sched_domain];
575 bool merged;
576
577 spin_lock(&kcq->lock);
bdc6a287 578 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
a6088845 579 spin_unlock(&kcq->lock);
a6088845
JW
580
581 return merged;
582}
583
5d9c305b 584static void kyber_prepare_request(struct request *rq)
5bbf4e5a
CH
585{
586 rq_set_domain_token(rq, -1);
00e04393
OS
587}
588
a6088845
JW
589static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
590 struct list_head *rq_list, bool at_head)
591{
592 struct kyber_hctx_data *khd = hctx->sched_data;
593 struct request *rq, *next;
594
595 list_for_each_entry_safe(rq, next, rq_list, queuelist) {
596 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
f31967f0 597 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
a6088845
JW
598 struct list_head *head = &kcq->rq_list[sched_domain];
599
600 spin_lock(&kcq->lock);
601 if (at_head)
602 list_move(&rq->queuelist, head);
603 else
604 list_move_tail(&rq->queuelist, head);
605 sbitmap_set_bit(&khd->kcq_map[sched_domain],
f31967f0 606 rq->mq_ctx->index_hw[hctx->type]);
b357e4a6 607 trace_block_rq_insert(rq);
a6088845
JW
608 spin_unlock(&kcq->lock);
609 }
610}
611
7b9e9361 612static void kyber_finish_request(struct request *rq)
00e04393 613{
7b9e9361 614 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
00e04393
OS
615
616 rq_clear_domain_token(kqd, rq);
00e04393
OS
617}
618
6e25cb01
OS
619static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
620 unsigned int sched_domain, unsigned int type,
621 u64 target, u64 latency)
00e04393 622{
6e25cb01
OS
623 unsigned int bucket;
624 u64 divisor;
00e04393 625
6e25cb01
OS
626 if (latency > 0) {
627 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
628 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
629 KYBER_LATENCY_BUCKETS - 1);
630 } else {
631 bucket = 0;
00e04393
OS
632 }
633
6e25cb01
OS
634 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
635}
00e04393 636
6e25cb01
OS
637static void kyber_completed_request(struct request *rq, u64 now)
638{
639 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
640 struct kyber_cpu_latency *cpu_latency;
641 unsigned int sched_domain;
642 u64 target;
643
644 sched_domain = kyber_sched_domain(rq->cmd_flags);
645 if (sched_domain == KYBER_OTHER)
00e04393
OS
646 return;
647
6e25cb01
OS
648 cpu_latency = get_cpu_ptr(kqd->cpu_latency);
649 target = kqd->latency_targets[sched_domain];
650 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
651 target, now - rq->start_time_ns);
652 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
653 now - rq->io_start_time_ns);
654 put_cpu_ptr(kqd->cpu_latency);
00e04393 655
6e25cb01 656 timer_reduce(&kqd->timer, jiffies + HZ / 10);
00e04393
OS
657}
658
a6088845
JW
659struct flush_kcq_data {
660 struct kyber_hctx_data *khd;
661 unsigned int sched_domain;
662 struct list_head *list;
663};
664
665static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
00e04393 666{
a6088845
JW
667 struct flush_kcq_data *flush_data = data;
668 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
00e04393 669
a6088845
JW
670 spin_lock(&kcq->lock);
671 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
672 flush_data->list);
673 sbitmap_clear_bit(sb, bitnr);
674 spin_unlock(&kcq->lock);
00e04393 675
a6088845
JW
676 return true;
677}
678
679static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
680 unsigned int sched_domain,
681 struct list_head *list)
682{
683 struct flush_kcq_data data = {
684 .khd = khd,
685 .sched_domain = sched_domain,
686 .list = list,
687 };
688
689 sbitmap_for_each_set(&khd->kcq_map[sched_domain],
690 flush_busy_kcq, &data);
00e04393
OS
691}
692
00203ba4 693static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
00e04393
OS
694 void *key)
695{
00203ba4
JA
696 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
697 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
00e04393 698
00203ba4 699 sbitmap_del_wait_queue(wait);
00e04393
OS
700 blk_mq_run_hw_queue(hctx, true);
701 return 1;
702}
703
704static int kyber_get_domain_token(struct kyber_queue_data *kqd,
705 struct kyber_hctx_data *khd,
706 struct blk_mq_hw_ctx *hctx)
707{
708 unsigned int sched_domain = khd->cur_domain;
709 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
00203ba4 710 struct sbq_wait *wait = &khd->domain_wait[sched_domain];
00e04393
OS
711 struct sbq_wait_state *ws;
712 int nr;
713
714 nr = __sbitmap_queue_get(domain_tokens);
00e04393
OS
715
716 /*
717 * If we failed to get a domain token, make sure the hardware queue is
718 * run when one becomes available. Note that this is serialized on
719 * khd->lock, but we still need to be careful about the waker.
720 */
00203ba4 721 if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
00e04393
OS
722 ws = sbq_wait_ptr(domain_tokens,
723 &khd->wait_index[sched_domain]);
fcf38cdf 724 khd->domain_ws[sched_domain] = ws;
00203ba4 725 sbitmap_add_wait_queue(domain_tokens, ws, wait);
00e04393
OS
726
727 /*
728 * Try again in case a token was freed before we got on the wait
fcf38cdf 729 * queue.
00e04393
OS
730 */
731 nr = __sbitmap_queue_get(domain_tokens);
fcf38cdf 732 }
8cf46660 733
fcf38cdf
OS
734 /*
735 * If we got a token while we were on the wait queue, remove ourselves
736 * from the wait queue to ensure that all wake ups make forward
737 * progress. It's possible that the waker already deleted the entry
738 * between the !list_empty_careful() check and us grabbing the lock, but
739 * list_del_init() is okay with that.
740 */
00203ba4 741 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
fcf38cdf
OS
742 ws = khd->domain_ws[sched_domain];
743 spin_lock_irq(&ws->wait.lock);
00203ba4 744 sbitmap_del_wait_queue(wait);
fcf38cdf 745 spin_unlock_irq(&ws->wait.lock);
00e04393 746 }
fcf38cdf 747
00e04393
OS
748 return nr;
749}
750
751static struct request *
752kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
753 struct kyber_hctx_data *khd,
a6088845 754 struct blk_mq_hw_ctx *hctx)
00e04393
OS
755{
756 struct list_head *rqs;
757 struct request *rq;
758 int nr;
759
760 rqs = &khd->rqs[khd->cur_domain];
00e04393
OS
761
762 /*
a6088845
JW
763 * If we already have a flushed request, then we just need to get a
764 * token for it. Otherwise, if there are pending requests in the kcqs,
765 * flush the kcqs, but only if we can get a token. If not, we should
766 * leave the requests in the kcqs so that they can be merged. Note that
767 * khd->lock serializes the flushes, so if we observed any bit set in
768 * the kcq_map, we will always get a request.
00e04393 769 */
a6088845 770 rq = list_first_entry_or_null(rqs, struct request, queuelist);
00e04393
OS
771 if (rq) {
772 nr = kyber_get_domain_token(kqd, khd, hctx);
773 if (nr >= 0) {
774 khd->batching++;
775 rq_set_domain_token(rq, nr);
776 list_del_init(&rq->queuelist);
777 return rq;
6c3b7af1
OS
778 } else {
779 trace_kyber_throttled(kqd->q,
780 kyber_domain_names[khd->cur_domain]);
00e04393 781 }
a6088845
JW
782 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
783 nr = kyber_get_domain_token(kqd, khd, hctx);
784 if (nr >= 0) {
785 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
786 rq = list_first_entry(rqs, struct request, queuelist);
787 khd->batching++;
788 rq_set_domain_token(rq, nr);
789 list_del_init(&rq->queuelist);
790 return rq;
6c3b7af1
OS
791 } else {
792 trace_kyber_throttled(kqd->q,
793 kyber_domain_names[khd->cur_domain]);
a6088845 794 }
00e04393
OS
795 }
796
797 /* There were either no pending requests or no tokens. */
798 return NULL;
799}
800
801static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
802{
803 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
804 struct kyber_hctx_data *khd = hctx->sched_data;
00e04393
OS
805 struct request *rq;
806 int i;
807
808 spin_lock(&khd->lock);
809
810 /*
811 * First, if we are still entitled to batch, try to dispatch a request
812 * from the batch.
813 */
814 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
a6088845 815 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
00e04393
OS
816 if (rq)
817 goto out;
818 }
819
820 /*
821 * Either,
822 * 1. We were no longer entitled to a batch.
823 * 2. The domain we were batching didn't have any requests.
824 * 3. The domain we were batching was out of tokens.
825 *
826 * Start another batch. Note that this wraps back around to the original
827 * domain if no other domains have requests or tokens.
828 */
829 khd->batching = 0;
830 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
831 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
832 khd->cur_domain = 0;
833 else
834 khd->cur_domain++;
835
a6088845 836 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
00e04393
OS
837 if (rq)
838 goto out;
839 }
840
841 rq = NULL;
842out:
843 spin_unlock(&khd->lock);
844 return rq;
845}
846
847static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
848{
849 struct kyber_hctx_data *khd = hctx->sched_data;
850 int i;
851
852 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
a6088845
JW
853 if (!list_empty_careful(&khd->rqs[i]) ||
854 sbitmap_any_bit_set(&khd->kcq_map[i]))
00e04393
OS
855 return true;
856 }
a6088845
JW
857
858 return false;
00e04393
OS
859}
860
6e25cb01
OS
861#define KYBER_LAT_SHOW_STORE(domain, name) \
862static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
863 char *page) \
00e04393
OS
864{ \
865 struct kyber_queue_data *kqd = e->elevator_data; \
866 \
6e25cb01 867 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
00e04393
OS
868} \
869 \
6e25cb01
OS
870static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
871 const char *page, size_t count) \
00e04393
OS
872{ \
873 struct kyber_queue_data *kqd = e->elevator_data; \
874 unsigned long long nsec; \
875 int ret; \
876 \
877 ret = kstrtoull(page, 10, &nsec); \
878 if (ret) \
879 return ret; \
880 \
6e25cb01 881 kqd->latency_targets[domain] = nsec; \
00e04393
OS
882 \
883 return count; \
884}
6e25cb01
OS
885KYBER_LAT_SHOW_STORE(KYBER_READ, read);
886KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
00e04393
OS
887#undef KYBER_LAT_SHOW_STORE
888
889#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
890static struct elv_fs_entry kyber_sched_attrs[] = {
891 KYBER_LAT_ATTR(read),
892 KYBER_LAT_ATTR(write),
893 __ATTR_NULL
894};
895#undef KYBER_LAT_ATTR
896
16b738f6
OS
897#ifdef CONFIG_BLK_DEBUG_FS
898#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
899static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
900{ \
901 struct request_queue *q = data; \
902 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
903 \
904 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
905 return 0; \
906} \
907 \
908static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
909 __acquires(&khd->lock) \
910{ \
911 struct blk_mq_hw_ctx *hctx = m->private; \
912 struct kyber_hctx_data *khd = hctx->sched_data; \
913 \
914 spin_lock(&khd->lock); \
915 return seq_list_start(&khd->rqs[domain], *pos); \
916} \
917 \
918static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
919 loff_t *pos) \
920{ \
921 struct blk_mq_hw_ctx *hctx = m->private; \
922 struct kyber_hctx_data *khd = hctx->sched_data; \
923 \
924 return seq_list_next(v, &khd->rqs[domain], pos); \
925} \
926 \
927static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
928 __releases(&khd->lock) \
929{ \
930 struct blk_mq_hw_ctx *hctx = m->private; \
931 struct kyber_hctx_data *khd = hctx->sched_data; \
932 \
933 spin_unlock(&khd->lock); \
934} \
935 \
936static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
937 .start = kyber_##name##_rqs_start, \
938 .next = kyber_##name##_rqs_next, \
939 .stop = kyber_##name##_rqs_stop, \
940 .show = blk_mq_debugfs_rq_show, \
941}; \
942 \
943static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
944{ \
945 struct blk_mq_hw_ctx *hctx = data; \
946 struct kyber_hctx_data *khd = hctx->sched_data; \
00203ba4 947 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
16b738f6 948 \
2055da97 949 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
16b738f6
OS
950 return 0; \
951}
952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
6e25cb01
OS
953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
954KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
16b738f6
OS
955KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
956#undef KYBER_DEBUGFS_DOMAIN_ATTRS
957
958static int kyber_async_depth_show(void *data, struct seq_file *m)
959{
960 struct request_queue *q = data;
961 struct kyber_queue_data *kqd = q->elevator->elevator_data;
962
963 seq_printf(m, "%u\n", kqd->async_depth);
964 return 0;
965}
966
967static int kyber_cur_domain_show(void *data, struct seq_file *m)
968{
969 struct blk_mq_hw_ctx *hctx = data;
970 struct kyber_hctx_data *khd = hctx->sched_data;
971
6c3b7af1 972 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
16b738f6
OS
973 return 0;
974}
975
976static int kyber_batching_show(void *data, struct seq_file *m)
977{
978 struct blk_mq_hw_ctx *hctx = data;
979 struct kyber_hctx_data *khd = hctx->sched_data;
980
981 seq_printf(m, "%u\n", khd->batching);
982 return 0;
983}
984
985#define KYBER_QUEUE_DOMAIN_ATTRS(name) \
986 {#name "_tokens", 0400, kyber_##name##_tokens_show}
987static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
988 KYBER_QUEUE_DOMAIN_ATTRS(read),
6e25cb01
OS
989 KYBER_QUEUE_DOMAIN_ATTRS(write),
990 KYBER_QUEUE_DOMAIN_ATTRS(discard),
16b738f6
OS
991 KYBER_QUEUE_DOMAIN_ATTRS(other),
992 {"async_depth", 0400, kyber_async_depth_show},
993 {},
994};
995#undef KYBER_QUEUE_DOMAIN_ATTRS
996
997#define KYBER_HCTX_DOMAIN_ATTRS(name) \
998 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
999 {#name "_waiting", 0400, kyber_##name##_waiting_show}
1000static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1001 KYBER_HCTX_DOMAIN_ATTRS(read),
6e25cb01
OS
1002 KYBER_HCTX_DOMAIN_ATTRS(write),
1003 KYBER_HCTX_DOMAIN_ATTRS(discard),
16b738f6
OS
1004 KYBER_HCTX_DOMAIN_ATTRS(other),
1005 {"cur_domain", 0400, kyber_cur_domain_show},
1006 {"batching", 0400, kyber_batching_show},
1007 {},
1008};
1009#undef KYBER_HCTX_DOMAIN_ATTRS
1010#endif
1011
00e04393 1012static struct elevator_type kyber_sched = {
f9cd4bfe 1013 .ops = {
00e04393
OS
1014 .init_sched = kyber_init_sched,
1015 .exit_sched = kyber_exit_sched,
1016 .init_hctx = kyber_init_hctx,
1017 .exit_hctx = kyber_exit_hctx,
5bbf4e5a 1018 .limit_depth = kyber_limit_depth,
a6088845 1019 .bio_merge = kyber_bio_merge,
5bbf4e5a 1020 .prepare_request = kyber_prepare_request,
a6088845 1021 .insert_requests = kyber_insert_requests,
7b9e9361 1022 .finish_request = kyber_finish_request,
ba989a01 1023 .requeue_request = kyber_finish_request,
00e04393
OS
1024 .completed_request = kyber_completed_request,
1025 .dispatch_request = kyber_dispatch_request,
1026 .has_work = kyber_has_work,
1027 },
16b738f6
OS
1028#ifdef CONFIG_BLK_DEBUG_FS
1029 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1030 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1031#endif
00e04393
OS
1032 .elevator_attrs = kyber_sched_attrs,
1033 .elevator_name = "kyber",
b6e68ee8 1034 .elevator_features = ELEVATOR_F_MQ_AWARE,
00e04393
OS
1035 .elevator_owner = THIS_MODULE,
1036};
1037
1038static int __init kyber_init(void)
1039{
1040 return elv_register(&kyber_sched);
1041}
1042
1043static void __exit kyber_exit(void)
1044{
1045 elv_unregister(&kyber_sched);
1046}
1047
1048module_init(kyber_init);
1049module_exit(kyber_exit);
1050
1051MODULE_AUTHOR("Omar Sandoval");
1052MODULE_LICENSE("GPL");
1053MODULE_DESCRIPTION("Kyber I/O scheduler");