]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/ll_rw_blk.c
Stop exporting blk_rq_bio_prep
[mirror_ubuntu-bionic-kernel.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4
LT
33
34/*
35 * for max sense size
36 */
37#include <scsi/scsi_cmnd.h>
38
65f27f38 39static void blk_unplug_work(struct work_struct *work);
1da177e4 40static void blk_unplug_timeout(unsigned long data);
93d17d3d 41static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675 42static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 43static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 44static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 45static void blk_recalc_rq_segments(struct request *rq);
66846572
N
46static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
47 struct bio *bio);
1da177e4
LT
48
49/*
50 * For the allocated request tables
51 */
e18b890b 52static struct kmem_cache *request_cachep;
1da177e4
LT
53
54/*
55 * For queue allocation
56 */
e18b890b 57static struct kmem_cache *requestq_cachep;
1da177e4
LT
58
59/*
60 * For io context allocations
61 */
e18b890b 62static struct kmem_cache *iocontext_cachep;
1da177e4 63
1da177e4
LT
64/*
65 * Controlling structure to kblockd
66 */
ff856bad 67static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
68
69unsigned long blk_max_low_pfn, blk_max_pfn;
70
71EXPORT_SYMBOL(blk_max_low_pfn);
72EXPORT_SYMBOL(blk_max_pfn);
73
ff856bad
JA
74static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75
1da177e4
LT
76/* Amount of time in which a process may batch requests */
77#define BLK_BATCH_TIME (HZ/50UL)
78
79/* Number of requests a "batching" process may submit */
80#define BLK_BATCH_REQ 32
81
82/*
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
86 */
87static inline int queue_congestion_on_threshold(struct request_queue *q)
88{
89 return q->nr_congestion_on;
90}
91
92/*
93 * The threshold at which a queue is considered to be uncongested
94 */
95static inline int queue_congestion_off_threshold(struct request_queue *q)
96{
97 return q->nr_congestion_off;
98}
99
100static void blk_queue_congestion_threshold(struct request_queue *q)
101{
102 int nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
108
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
113}
114
1da177e4
LT
115/**
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * @bdev: device
118 *
119 * Locates the passed device's request queue and returns the address of its
120 * backing_dev_info
121 *
122 * Will return NULL if the request queue cannot be located.
123 */
124struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
125{
126 struct backing_dev_info *ret = NULL;
165125e1 127 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
128
129 if (q)
130 ret = &q->backing_dev_info;
131 return ret;
132}
1da177e4
LT
133EXPORT_SYMBOL(blk_get_backing_dev_info);
134
1da177e4
LT
135/**
136 * blk_queue_prep_rq - set a prepare_request function for queue
137 * @q: queue
138 * @pfn: prepare_request function
139 *
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
144 *
145 */
165125e1 146void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
147{
148 q->prep_rq_fn = pfn;
149}
150
151EXPORT_SYMBOL(blk_queue_prep_rq);
152
153/**
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
155 * @q: queue
156 * @mbfn: merge_bvec_fn
157 *
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
167 * honored.
168 */
165125e1 169void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
170{
171 q->merge_bvec_fn = mbfn;
172}
173
174EXPORT_SYMBOL(blk_queue_merge_bvec);
175
165125e1 176void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
177{
178 q->softirq_done_fn = fn;
179}
180
181EXPORT_SYMBOL(blk_queue_softirq_done);
182
1da177e4
LT
183/**
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
187 *
188 * Description:
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
198 *
199 * Caveat:
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
204 **/
165125e1 205void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
206{
207 /*
208 * set defaults
209 */
210 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
211 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
212 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
213 q->make_request_fn = mfn;
214 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
215 q->backing_dev_info.state = 0;
216 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 217 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
218 blk_queue_hardsect_size(q, 512);
219 blk_queue_dma_alignment(q, 511);
220 blk_queue_congestion_threshold(q);
221 q->nr_batching = BLK_BATCH_REQ;
222
223 q->unplug_thresh = 4; /* hmm */
224 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
225 if (q->unplug_delay == 0)
226 q->unplug_delay = 1;
227
65f27f38 228 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
229
230 q->unplug_timer.function = blk_unplug_timeout;
231 q->unplug_timer.data = (unsigned long)q;
232
233 /*
234 * by default assume old behaviour and bounce for any highmem page
235 */
236 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
237}
238
239EXPORT_SYMBOL(blk_queue_make_request);
240
165125e1 241static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
242{
243 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 244 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
245
246 rq->errors = 0;
1da177e4 247 rq->bio = rq->biotail = NULL;
2e662b65
JA
248 INIT_HLIST_NODE(&rq->hash);
249 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 250 rq->ioprio = 0;
1da177e4
LT
251 rq->buffer = NULL;
252 rq->ref_count = 1;
253 rq->q = q;
1da177e4
LT
254 rq->special = NULL;
255 rq->data_len = 0;
256 rq->data = NULL;
df46b9a4 257 rq->nr_phys_segments = 0;
1da177e4
LT
258 rq->sense = NULL;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
ff856bad 261 rq->completion_data = NULL;
abae1fde 262 rq->next_rq = NULL;
1da177e4
LT
263}
264
265/**
266 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
270 *
271 * Description:
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
276 *
277 **/
165125e1 278int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
279 prepare_flush_fn *prepare_flush_fn)
280{
281 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
282 prepare_flush_fn == NULL) {
283 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
284 return -EINVAL;
285 }
286
287 if (ordered != QUEUE_ORDERED_NONE &&
288 ordered != QUEUE_ORDERED_DRAIN &&
289 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
290 ordered != QUEUE_ORDERED_DRAIN_FUA &&
291 ordered != QUEUE_ORDERED_TAG &&
292 ordered != QUEUE_ORDERED_TAG_FLUSH &&
293 ordered != QUEUE_ORDERED_TAG_FUA) {
294 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
295 return -EINVAL;
1da177e4 296 }
797e7dbb 297
60481b12 298 q->ordered = ordered;
797e7dbb
TH
299 q->next_ordered = ordered;
300 q->prepare_flush_fn = prepare_flush_fn;
301
302 return 0;
1da177e4
LT
303}
304
305EXPORT_SYMBOL(blk_queue_ordered);
306
307/**
308 * blk_queue_issue_flush_fn - set function for issuing a flush
309 * @q: the request queue
310 * @iff: the function to be called issuing the flush
311 *
312 * Description:
313 * If a driver supports issuing a flush command, the support is notified
314 * to the block layer by defining it through this call.
315 *
316 **/
165125e1 317void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
1da177e4
LT
318{
319 q->issue_flush_fn = iff;
320}
321
322EXPORT_SYMBOL(blk_queue_issue_flush_fn);
323
324/*
325 * Cache flushing for ordered writes handling
326 */
165125e1 327inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 328{
797e7dbb
TH
329 if (!q->ordseq)
330 return 0;
331 return 1 << ffz(q->ordseq);
1da177e4
LT
332}
333
797e7dbb 334unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 335{
165125e1 336 struct request_queue *q = rq->q;
1da177e4 337
797e7dbb 338 BUG_ON(q->ordseq == 0);
8922e16c 339
797e7dbb
TH
340 if (rq == &q->pre_flush_rq)
341 return QUEUE_ORDSEQ_PREFLUSH;
342 if (rq == &q->bar_rq)
343 return QUEUE_ORDSEQ_BAR;
344 if (rq == &q->post_flush_rq)
345 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 346
bc90ba09
TH
347 /*
348 * !fs requests don't need to follow barrier ordering. Always
349 * put them at the front. This fixes the following deadlock.
350 *
351 * http://thread.gmane.org/gmane.linux.kernel/537473
352 */
353 if (!blk_fs_request(rq))
354 return QUEUE_ORDSEQ_DRAIN;
355
4aff5e23
JA
356 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
357 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
358 return QUEUE_ORDSEQ_DRAIN;
359 else
360 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
361}
362
165125e1 363void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 364{
797e7dbb
TH
365 struct request *rq;
366 int uptodate;
1da177e4 367
797e7dbb
TH
368 if (error && !q->orderr)
369 q->orderr = error;
1da177e4 370
797e7dbb
TH
371 BUG_ON(q->ordseq & seq);
372 q->ordseq |= seq;
1da177e4 373
797e7dbb
TH
374 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
375 return;
1da177e4
LT
376
377 /*
797e7dbb 378 * Okay, sequence complete.
1da177e4 379 */
797e7dbb
TH
380 rq = q->orig_bar_rq;
381 uptodate = q->orderr ? q->orderr : 1;
1da177e4 382
797e7dbb 383 q->ordseq = 0;
1da177e4 384
797e7dbb
TH
385 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
386 end_that_request_last(rq, uptodate);
1da177e4
LT
387}
388
797e7dbb 389static void pre_flush_end_io(struct request *rq, int error)
1da177e4 390{
797e7dbb
TH
391 elv_completed_request(rq->q, rq);
392 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
393}
1da177e4 394
797e7dbb
TH
395static void bar_end_io(struct request *rq, int error)
396{
397 elv_completed_request(rq->q, rq);
398 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
399}
1da177e4 400
797e7dbb
TH
401static void post_flush_end_io(struct request *rq, int error)
402{
403 elv_completed_request(rq->q, rq);
404 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
405}
1da177e4 406
165125e1 407static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
408{
409 struct request *rq;
410 rq_end_io_fn *end_io;
1da177e4 411
797e7dbb
TH
412 if (which == QUEUE_ORDERED_PREFLUSH) {
413 rq = &q->pre_flush_rq;
414 end_io = pre_flush_end_io;
415 } else {
416 rq = &q->post_flush_rq;
417 end_io = post_flush_end_io;
1da177e4 418 }
797e7dbb 419
4aff5e23 420 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 421 rq_init(q, rq);
797e7dbb 422 rq->elevator_private = NULL;
c00895ab 423 rq->elevator_private2 = NULL;
797e7dbb 424 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
425 rq->end_io = end_io;
426 q->prepare_flush_fn(q, rq);
427
30e9656c 428 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
429}
430
165125e1 431static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 432 struct request *rq)
1da177e4 433{
797e7dbb
TH
434 q->bi_size = 0;
435 q->orderr = 0;
436 q->ordered = q->next_ordered;
437 q->ordseq |= QUEUE_ORDSEQ_STARTED;
438
439 /*
440 * Prep proxy barrier request.
441 */
442 blkdev_dequeue_request(rq);
443 q->orig_bar_rq = rq;
444 rq = &q->bar_rq;
4aff5e23 445 rq->cmd_flags = 0;
797e7dbb 446 rq_init(q, rq);
4aff5e23
JA
447 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
448 rq->cmd_flags |= REQ_RW;
449 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
797e7dbb 450 rq->elevator_private = NULL;
c00895ab 451 rq->elevator_private2 = NULL;
797e7dbb
TH
452 init_request_from_bio(rq, q->orig_bar_rq->bio);
453 rq->end_io = bar_end_io;
454
455 /*
456 * Queue ordered sequence. As we stack them at the head, we
457 * need to queue in reverse order. Note that we rely on that
458 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
459 * request gets inbetween ordered sequence.
460 */
461 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
462 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
463 else
464 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
465
30e9656c 466 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
467
468 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
469 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
470 rq = &q->pre_flush_rq;
471 } else
472 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 473
797e7dbb
TH
474 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
475 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
476 else
477 rq = NULL;
478
479 return rq;
1da177e4
LT
480}
481
165125e1 482int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 483{
9a7a67af 484 struct request *rq = *rqp;
797e7dbb 485 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 486
797e7dbb
TH
487 if (!q->ordseq) {
488 if (!is_barrier)
489 return 1;
1da177e4 490
797e7dbb
TH
491 if (q->next_ordered != QUEUE_ORDERED_NONE) {
492 *rqp = start_ordered(q, rq);
493 return 1;
494 } else {
495 /*
496 * This can happen when the queue switches to
497 * ORDERED_NONE while this request is on it.
498 */
499 blkdev_dequeue_request(rq);
500 end_that_request_first(rq, -EOPNOTSUPP,
501 rq->hard_nr_sectors);
502 end_that_request_last(rq, -EOPNOTSUPP);
503 *rqp = NULL;
504 return 0;
505 }
506 }
1da177e4 507
9a7a67af
JA
508 /*
509 * Ordered sequence in progress
510 */
511
512 /* Special requests are not subject to ordering rules. */
513 if (!blk_fs_request(rq) &&
514 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
515 return 1;
516
797e7dbb 517 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 518 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
519 if (is_barrier && rq != &q->bar_rq)
520 *rqp = NULL;
9a7a67af
JA
521 } else {
522 /* Ordered by draining. Wait for turn. */
523 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
524 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
525 *rqp = NULL;
1da177e4
LT
526 }
527
528 return 1;
529}
530
797e7dbb 531static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 532{
165125e1 533 struct request_queue *q = bio->bi_private;
797e7dbb
TH
534
535 /*
536 * This is dry run, restore bio_sector and size. We'll finish
537 * this request again with the original bi_end_io after an
538 * error occurs or post flush is complete.
539 */
540 q->bi_size += bytes;
541
542 if (bio->bi_size)
543 return 1;
544
797e7dbb
TH
545 /* Reset bio */
546 set_bit(BIO_UPTODATE, &bio->bi_flags);
547 bio->bi_size = q->bi_size;
548 bio->bi_sector -= (q->bi_size >> 9);
549 q->bi_size = 0;
550
551 return 0;
1da177e4 552}
1da177e4 553
1ea25ecb
JA
554static int ordered_bio_endio(struct request *rq, struct bio *bio,
555 unsigned int nbytes, int error)
1da177e4 556{
165125e1 557 struct request_queue *q = rq->q;
797e7dbb
TH
558 bio_end_io_t *endio;
559 void *private;
560
561 if (&q->bar_rq != rq)
562 return 0;
563
564 /*
565 * Okay, this is the barrier request in progress, dry finish it.
566 */
567 if (error && !q->orderr)
568 q->orderr = error;
569
570 endio = bio->bi_end_io;
571 private = bio->bi_private;
572 bio->bi_end_io = flush_dry_bio_endio;
573 bio->bi_private = q;
574
575 bio_endio(bio, nbytes, error);
576
577 bio->bi_end_io = endio;
578 bio->bi_private = private;
579
580 return 1;
1da177e4 581}
1da177e4
LT
582
583/**
584 * blk_queue_bounce_limit - set bounce buffer limit for queue
585 * @q: the request queue for the device
586 * @dma_addr: bus address limit
587 *
588 * Description:
589 * Different hardware can have different requirements as to what pages
590 * it can do I/O directly to. A low level driver can call
591 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 592 * buffers for doing I/O to pages residing above @page.
1da177e4 593 **/
165125e1 594void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
595{
596 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
597 int dma = 0;
598
599 q->bounce_gfp = GFP_NOIO;
600#if BITS_PER_LONG == 64
601 /* Assume anything <= 4GB can be handled by IOMMU.
602 Actually some IOMMUs can handle everything, but I don't
603 know of a way to test this here. */
8269730b 604 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
605 dma = 1;
606 q->bounce_pfn = max_low_pfn;
607#else
608 if (bounce_pfn < blk_max_low_pfn)
609 dma = 1;
610 q->bounce_pfn = bounce_pfn;
611#endif
612 if (dma) {
1da177e4
LT
613 init_emergency_isa_pool();
614 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
615 q->bounce_pfn = bounce_pfn;
616 }
1da177e4
LT
617}
618
619EXPORT_SYMBOL(blk_queue_bounce_limit);
620
621/**
622 * blk_queue_max_sectors - set max sectors for a request for this queue
623 * @q: the request queue for the device
624 * @max_sectors: max sectors in the usual 512b unit
625 *
626 * Description:
627 * Enables a low level driver to set an upper limit on the size of
628 * received requests.
629 **/
165125e1 630void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
631{
632 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
633 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
634 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
635 }
636
defd94b7
MC
637 if (BLK_DEF_MAX_SECTORS > max_sectors)
638 q->max_hw_sectors = q->max_sectors = max_sectors;
639 else {
640 q->max_sectors = BLK_DEF_MAX_SECTORS;
641 q->max_hw_sectors = max_sectors;
642 }
1da177e4
LT
643}
644
645EXPORT_SYMBOL(blk_queue_max_sectors);
646
647/**
648 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
649 * @q: the request queue for the device
650 * @max_segments: max number of segments
651 *
652 * Description:
653 * Enables a low level driver to set an upper limit on the number of
654 * physical data segments in a request. This would be the largest sized
655 * scatter list the driver could handle.
656 **/
165125e1
JA
657void blk_queue_max_phys_segments(struct request_queue *q,
658 unsigned short max_segments)
1da177e4
LT
659{
660 if (!max_segments) {
661 max_segments = 1;
662 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
663 }
664
665 q->max_phys_segments = max_segments;
666}
667
668EXPORT_SYMBOL(blk_queue_max_phys_segments);
669
670/**
671 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
672 * @q: the request queue for the device
673 * @max_segments: max number of segments
674 *
675 * Description:
676 * Enables a low level driver to set an upper limit on the number of
677 * hw data segments in a request. This would be the largest number of
678 * address/length pairs the host adapter can actually give as once
679 * to the device.
680 **/
165125e1
JA
681void blk_queue_max_hw_segments(struct request_queue *q,
682 unsigned short max_segments)
1da177e4
LT
683{
684 if (!max_segments) {
685 max_segments = 1;
686 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
687 }
688
689 q->max_hw_segments = max_segments;
690}
691
692EXPORT_SYMBOL(blk_queue_max_hw_segments);
693
694/**
695 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
696 * @q: the request queue for the device
697 * @max_size: max size of segment in bytes
698 *
699 * Description:
700 * Enables a low level driver to set an upper limit on the size of a
701 * coalesced segment
702 **/
165125e1 703void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
704{
705 if (max_size < PAGE_CACHE_SIZE) {
706 max_size = PAGE_CACHE_SIZE;
707 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
708 }
709
710 q->max_segment_size = max_size;
711}
712
713EXPORT_SYMBOL(blk_queue_max_segment_size);
714
715/**
716 * blk_queue_hardsect_size - set hardware sector size for the queue
717 * @q: the request queue for the device
718 * @size: the hardware sector size, in bytes
719 *
720 * Description:
721 * This should typically be set to the lowest possible sector size
722 * that the hardware can operate on (possible without reverting to
723 * even internal read-modify-write operations). Usually the default
724 * of 512 covers most hardware.
725 **/
165125e1 726void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
727{
728 q->hardsect_size = size;
729}
730
731EXPORT_SYMBOL(blk_queue_hardsect_size);
732
733/*
734 * Returns the minimum that is _not_ zero, unless both are zero.
735 */
736#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
737
738/**
739 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
740 * @t: the stacking driver (top)
741 * @b: the underlying device (bottom)
742 **/
165125e1 743void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
744{
745 /* zero is "infinity" */
defd94b7
MC
746 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
747 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
748
749 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
750 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
751 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
752 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
753 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
754 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
755}
756
757EXPORT_SYMBOL(blk_queue_stack_limits);
758
759/**
760 * blk_queue_segment_boundary - set boundary rules for segment merging
761 * @q: the request queue for the device
762 * @mask: the memory boundary mask
763 **/
165125e1 764void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
765{
766 if (mask < PAGE_CACHE_SIZE - 1) {
767 mask = PAGE_CACHE_SIZE - 1;
768 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
769 }
770
771 q->seg_boundary_mask = mask;
772}
773
774EXPORT_SYMBOL(blk_queue_segment_boundary);
775
776/**
777 * blk_queue_dma_alignment - set dma length and memory alignment
778 * @q: the request queue for the device
779 * @mask: alignment mask
780 *
781 * description:
782 * set required memory and length aligment for direct dma transactions.
783 * this is used when buiding direct io requests for the queue.
784 *
785 **/
165125e1 786void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
787{
788 q->dma_alignment = mask;
789}
790
791EXPORT_SYMBOL(blk_queue_dma_alignment);
792
793/**
794 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
795 * @q: The request queue for the device
796 * @tag: The tag of the request
797 *
798 * Notes:
799 * Should be used when a device returns a tag and you want to match
800 * it with a request.
801 *
802 * no locks need be held.
803 **/
165125e1 804struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 805{
f583f492 806 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
807}
808
809EXPORT_SYMBOL(blk_queue_find_tag);
810
811/**
492dfb48
JB
812 * __blk_free_tags - release a given set of tag maintenance info
813 * @bqt: the tag map to free
1da177e4 814 *
492dfb48
JB
815 * Tries to free the specified @bqt@. Returns true if it was
816 * actually freed and false if there are still references using it
817 */
818static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 819{
492dfb48 820 int retval;
1da177e4 821
492dfb48
JB
822 retval = atomic_dec_and_test(&bqt->refcnt);
823 if (retval) {
1da177e4
LT
824 BUG_ON(bqt->busy);
825 BUG_ON(!list_empty(&bqt->busy_list));
826
827 kfree(bqt->tag_index);
828 bqt->tag_index = NULL;
829
830 kfree(bqt->tag_map);
831 bqt->tag_map = NULL;
832
833 kfree(bqt);
492dfb48 834
1da177e4
LT
835 }
836
492dfb48
JB
837 return retval;
838}
839
840/**
841 * __blk_queue_free_tags - release tag maintenance info
842 * @q: the request queue for the device
843 *
844 * Notes:
845 * blk_cleanup_queue() will take care of calling this function, if tagging
846 * has been used. So there's no need to call this directly.
847 **/
165125e1 848static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
849{
850 struct blk_queue_tag *bqt = q->queue_tags;
851
852 if (!bqt)
853 return;
854
855 __blk_free_tags(bqt);
856
1da177e4
LT
857 q->queue_tags = NULL;
858 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
859}
860
492dfb48
JB
861
862/**
863 * blk_free_tags - release a given set of tag maintenance info
864 * @bqt: the tag map to free
865 *
866 * For externally managed @bqt@ frees the map. Callers of this
867 * function must guarantee to have released all the queues that
868 * might have been using this tag map.
869 */
870void blk_free_tags(struct blk_queue_tag *bqt)
871{
872 if (unlikely(!__blk_free_tags(bqt)))
873 BUG();
874}
875EXPORT_SYMBOL(blk_free_tags);
876
1da177e4
LT
877/**
878 * blk_queue_free_tags - release tag maintenance info
879 * @q: the request queue for the device
880 *
881 * Notes:
882 * This is used to disabled tagged queuing to a device, yet leave
883 * queue in function.
884 **/
165125e1 885void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
886{
887 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
888}
889
890EXPORT_SYMBOL(blk_queue_free_tags);
891
892static int
165125e1 893init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 894{
1da177e4
LT
895 struct request **tag_index;
896 unsigned long *tag_map;
fa72b903 897 int nr_ulongs;
1da177e4 898
492dfb48 899 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
900 depth = q->nr_requests * 2;
901 printk(KERN_ERR "%s: adjusted depth to %d\n",
902 __FUNCTION__, depth);
903 }
904
f68110fc 905 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
906 if (!tag_index)
907 goto fail;
908
f7d37d02 909 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 910 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
911 if (!tag_map)
912 goto fail;
913
ba025082 914 tags->real_max_depth = depth;
1da177e4 915 tags->max_depth = depth;
1da177e4
LT
916 tags->tag_index = tag_index;
917 tags->tag_map = tag_map;
918
1da177e4
LT
919 return 0;
920fail:
921 kfree(tag_index);
922 return -ENOMEM;
923}
924
492dfb48
JB
925static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
926 int depth)
927{
928 struct blk_queue_tag *tags;
929
930 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
931 if (!tags)
932 goto fail;
933
934 if (init_tag_map(q, tags, depth))
935 goto fail;
936
937 INIT_LIST_HEAD(&tags->busy_list);
938 tags->busy = 0;
939 atomic_set(&tags->refcnt, 1);
940 return tags;
941fail:
942 kfree(tags);
943 return NULL;
944}
945
946/**
947 * blk_init_tags - initialize the tag info for an external tag map
948 * @depth: the maximum queue depth supported
949 * @tags: the tag to use
950 **/
951struct blk_queue_tag *blk_init_tags(int depth)
952{
953 return __blk_queue_init_tags(NULL, depth);
954}
955EXPORT_SYMBOL(blk_init_tags);
956
1da177e4
LT
957/**
958 * blk_queue_init_tags - initialize the queue tag info
959 * @q: the request queue for the device
960 * @depth: the maximum queue depth supported
961 * @tags: the tag to use
962 **/
165125e1 963int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
964 struct blk_queue_tag *tags)
965{
966 int rc;
967
968 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
969
970 if (!tags && !q->queue_tags) {
492dfb48 971 tags = __blk_queue_init_tags(q, depth);
1da177e4 972
492dfb48 973 if (!tags)
1da177e4 974 goto fail;
1da177e4
LT
975 } else if (q->queue_tags) {
976 if ((rc = blk_queue_resize_tags(q, depth)))
977 return rc;
978 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
979 return 0;
980 } else
981 atomic_inc(&tags->refcnt);
982
983 /*
984 * assign it, all done
985 */
986 q->queue_tags = tags;
987 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
988 return 0;
989fail:
990 kfree(tags);
991 return -ENOMEM;
992}
993
994EXPORT_SYMBOL(blk_queue_init_tags);
995
996/**
997 * blk_queue_resize_tags - change the queueing depth
998 * @q: the request queue for the device
999 * @new_depth: the new max command queueing depth
1000 *
1001 * Notes:
1002 * Must be called with the queue lock held.
1003 **/
165125e1 1004int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
1005{
1006 struct blk_queue_tag *bqt = q->queue_tags;
1007 struct request **tag_index;
1008 unsigned long *tag_map;
fa72b903 1009 int max_depth, nr_ulongs;
1da177e4
LT
1010
1011 if (!bqt)
1012 return -ENXIO;
1013
ba025082
TH
1014 /*
1015 * if we already have large enough real_max_depth. just
1016 * adjust max_depth. *NOTE* as requests with tag value
1017 * between new_depth and real_max_depth can be in-flight, tag
1018 * map can not be shrunk blindly here.
1019 */
1020 if (new_depth <= bqt->real_max_depth) {
1021 bqt->max_depth = new_depth;
1022 return 0;
1023 }
1024
492dfb48
JB
1025 /*
1026 * Currently cannot replace a shared tag map with a new
1027 * one, so error out if this is the case
1028 */
1029 if (atomic_read(&bqt->refcnt) != 1)
1030 return -EBUSY;
1031
1da177e4
LT
1032 /*
1033 * save the old state info, so we can copy it back
1034 */
1035 tag_index = bqt->tag_index;
1036 tag_map = bqt->tag_map;
ba025082 1037 max_depth = bqt->real_max_depth;
1da177e4
LT
1038
1039 if (init_tag_map(q, bqt, new_depth))
1040 return -ENOMEM;
1041
1042 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1043 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1044 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1045
1046 kfree(tag_index);
1047 kfree(tag_map);
1048 return 0;
1049}
1050
1051EXPORT_SYMBOL(blk_queue_resize_tags);
1052
1053/**
1054 * blk_queue_end_tag - end tag operations for a request
1055 * @q: the request queue for the device
1056 * @rq: the request that has completed
1057 *
1058 * Description:
1059 * Typically called when end_that_request_first() returns 0, meaning
1060 * all transfers have been done for a request. It's important to call
1061 * this function before end_that_request_last(), as that will put the
1062 * request back on the free list thus corrupting the internal tag list.
1063 *
1064 * Notes:
1065 * queue lock must be held.
1066 **/
165125e1 1067void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1068{
1069 struct blk_queue_tag *bqt = q->queue_tags;
1070 int tag = rq->tag;
1071
1072 BUG_ON(tag == -1);
1073
ba025082 1074 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1075 /*
1076 * This can happen after tag depth has been reduced.
1077 * FIXME: how about a warning or info message here?
1078 */
1da177e4
LT
1079 return;
1080
1da177e4 1081 list_del_init(&rq->queuelist);
4aff5e23 1082 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1083 rq->tag = -1;
1084
1085 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1086 printk(KERN_ERR "%s: tag %d is missing\n",
1087 __FUNCTION__, tag);
1da177e4
LT
1088
1089 bqt->tag_index[tag] = NULL;
f3da54ba 1090
dd941252
NP
1091 /*
1092 * We use test_and_clear_bit's memory ordering properties here.
1093 * The tag_map bit acts as a lock for tag_index[bit], so we need
1094 * a barrer before clearing the bit (precisely: release semantics).
1095 * Could use clear_bit_unlock when it is merged.
1096 */
f3da54ba
JA
1097 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1098 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1099 __FUNCTION__, tag);
1100 return;
1101 }
1102
1da177e4
LT
1103 bqt->busy--;
1104}
1105
1106EXPORT_SYMBOL(blk_queue_end_tag);
1107
1108/**
1109 * blk_queue_start_tag - find a free tag and assign it
1110 * @q: the request queue for the device
1111 * @rq: the block request that needs tagging
1112 *
1113 * Description:
1114 * This can either be used as a stand-alone helper, or possibly be
1115 * assigned as the queue &prep_rq_fn (in which case &struct request
1116 * automagically gets a tag assigned). Note that this function
1117 * assumes that any type of request can be queued! if this is not
1118 * true for your device, you must check the request type before
1119 * calling this function. The request will also be removed from
1120 * the request queue, so it's the drivers responsibility to readd
1121 * it if it should need to be restarted for some reason.
1122 *
1123 * Notes:
1124 * queue lock must be held.
1125 **/
165125e1 1126int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1127{
1128 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1129 int tag;
1da177e4 1130
4aff5e23 1131 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1132 printk(KERN_ERR
040c928c
TH
1133 "%s: request %p for device [%s] already tagged %d",
1134 __FUNCTION__, rq,
1135 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1136 BUG();
1137 }
1138
059af497
JA
1139 /*
1140 * Protect against shared tag maps, as we may not have exclusive
1141 * access to the tag map.
1142 */
1143 do {
1144 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1145 if (tag >= bqt->max_depth)
1146 return 1;
1da177e4 1147
059af497 1148 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1149 /*
1150 * We rely on test_and_set_bit providing lock memory ordering semantics
1151 * (could use test_and_set_bit_lock when it is merged).
1152 */
1da177e4 1153
4aff5e23 1154 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1155 rq->tag = tag;
1156 bqt->tag_index[tag] = rq;
1157 blkdev_dequeue_request(rq);
1158 list_add(&rq->queuelist, &bqt->busy_list);
1159 bqt->busy++;
1160 return 0;
1161}
1162
1163EXPORT_SYMBOL(blk_queue_start_tag);
1164
1165/**
1166 * blk_queue_invalidate_tags - invalidate all pending tags
1167 * @q: the request queue for the device
1168 *
1169 * Description:
1170 * Hardware conditions may dictate a need to stop all pending requests.
1171 * In this case, we will safely clear the block side of the tag queue and
1172 * readd all requests to the request queue in the right order.
1173 *
1174 * Notes:
1175 * queue lock must be held.
1176 **/
165125e1 1177void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1178{
1179 struct blk_queue_tag *bqt = q->queue_tags;
1180 struct list_head *tmp, *n;
1181 struct request *rq;
1182
1183 list_for_each_safe(tmp, n, &bqt->busy_list) {
1184 rq = list_entry_rq(tmp);
1185
1186 if (rq->tag == -1) {
040c928c
TH
1187 printk(KERN_ERR
1188 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1189 list_del_init(&rq->queuelist);
4aff5e23 1190 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1191 } else
1192 blk_queue_end_tag(q, rq);
1193
4aff5e23 1194 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1195 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1196 }
1197}
1198
1199EXPORT_SYMBOL(blk_queue_invalidate_tags);
1200
1da177e4
LT
1201void blk_dump_rq_flags(struct request *rq, char *msg)
1202{
1203 int bit;
1204
4aff5e23
JA
1205 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1206 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1207 rq->cmd_flags);
1da177e4
LT
1208
1209 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1210 rq->nr_sectors,
1211 rq->current_nr_sectors);
1212 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1213
4aff5e23 1214 if (blk_pc_request(rq)) {
1da177e4
LT
1215 printk("cdb: ");
1216 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1217 printk("%02x ", rq->cmd[bit]);
1218 printk("\n");
1219 }
1220}
1221
1222EXPORT_SYMBOL(blk_dump_rq_flags);
1223
165125e1 1224void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1225{
9dfa5283
N
1226 struct request rq;
1227 struct bio *nxt = bio->bi_next;
1228 rq.q = q;
1229 rq.bio = rq.biotail = bio;
1230 bio->bi_next = NULL;
1231 blk_recalc_rq_segments(&rq);
1232 bio->bi_next = nxt;
1233 bio->bi_phys_segments = rq.nr_phys_segments;
1234 bio->bi_hw_segments = rq.nr_hw_segments;
1235 bio->bi_flags |= (1 << BIO_SEG_VALID);
1236}
1237EXPORT_SYMBOL(blk_recount_segments);
1238
1239static void blk_recalc_rq_segments(struct request *rq)
1240{
1241 int nr_phys_segs;
1242 int nr_hw_segs;
1243 unsigned int phys_size;
1244 unsigned int hw_size;
1da177e4 1245 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1246 int seg_size;
1247 int hw_seg_size;
1248 int cluster;
5705f702 1249 struct req_iterator iter;
1da177e4 1250 int high, highprv = 1;
9dfa5283 1251 struct request_queue *q = rq->q;
1da177e4 1252
9dfa5283 1253 if (!rq->bio)
1da177e4
LT
1254 return;
1255
1256 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1257 hw_seg_size = seg_size = 0;
1258 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1259 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1260 /*
1261 * the trick here is making sure that a high page is never
1262 * considered part of another segment, since that might
1263 * change with the bounce page.
1264 */
f772b3d9 1265 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1266 if (high || highprv)
1267 goto new_hw_segment;
1268 if (cluster) {
1269 if (seg_size + bv->bv_len > q->max_segment_size)
1270 goto new_segment;
1271 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1272 goto new_segment;
1273 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1274 goto new_segment;
1275 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1276 goto new_hw_segment;
1277
1278 seg_size += bv->bv_len;
1279 hw_seg_size += bv->bv_len;
1280 bvprv = bv;
1281 continue;
1282 }
1283new_segment:
1284 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1285 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1286 hw_seg_size += bv->bv_len;
9dfa5283 1287 else {
1da177e4 1288new_hw_segment:
9dfa5283
N
1289 if (nr_hw_segs == 1 &&
1290 hw_seg_size > rq->bio->bi_hw_front_size)
1291 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1292 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1293 nr_hw_segs++;
1294 }
1295
1296 nr_phys_segs++;
1297 bvprv = bv;
1298 seg_size = bv->bv_len;
1299 highprv = high;
1300 }
9dfa5283
N
1301
1302 if (nr_hw_segs == 1 &&
1303 hw_seg_size > rq->bio->bi_hw_front_size)
1304 rq->bio->bi_hw_front_size = hw_seg_size;
1305 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1306 rq->biotail->bi_hw_back_size = hw_seg_size;
1307 rq->nr_phys_segments = nr_phys_segs;
1308 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1309}
1da177e4 1310
165125e1 1311static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1312 struct bio *nxt)
1313{
1314 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1315 return 0;
1316
1317 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1318 return 0;
1319 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1320 return 0;
1321
1322 /*
1323 * bio and nxt are contigous in memory, check if the queue allows
1324 * these two to be merged into one
1325 */
1326 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1327 return 1;
1328
1329 return 0;
1330}
1331
165125e1 1332static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1333 struct bio *nxt)
1334{
1335 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1336 blk_recount_segments(q, bio);
1337 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1338 blk_recount_segments(q, nxt);
1339 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1340 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1341 return 0;
32eef964 1342 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1343 return 0;
1344
1345 return 1;
1346}
1347
1da177e4
LT
1348/*
1349 * map a request to scatterlist, return number of sg entries setup. Caller
1350 * must make sure sg can hold rq->nr_phys_segments entries
1351 */
165125e1
JA
1352int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1353 struct scatterlist *sg)
1da177e4
LT
1354{
1355 struct bio_vec *bvec, *bvprv;
5705f702
N
1356 struct req_iterator iter;
1357 int nsegs, cluster;
1da177e4
LT
1358
1359 nsegs = 0;
1360 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1361
1362 /*
1363 * for each bio in rq
1364 */
1365 bvprv = NULL;
5705f702 1366 rq_for_each_segment(bvec, rq, iter) {
1da177e4
LT
1367 int nbytes = bvec->bv_len;
1368
1369 if (bvprv && cluster) {
1370 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1371 goto new_segment;
1372
1373 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1374 goto new_segment;
1375 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1376 goto new_segment;
1377
1378 sg[nsegs - 1].length += nbytes;
1379 } else {
1380new_segment:
1381 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1382 sg[nsegs].page = bvec->bv_page;
1383 sg[nsegs].length = nbytes;
1384 sg[nsegs].offset = bvec->bv_offset;
1385
1386 nsegs++;
1387 }
1388 bvprv = bvec;
5705f702 1389 } /* segments in rq */
1da177e4
LT
1390
1391 return nsegs;
1392}
1393
1394EXPORT_SYMBOL(blk_rq_map_sg);
1395
1396/*
1397 * the standard queue merge functions, can be overridden with device
1398 * specific ones if so desired
1399 */
1400
165125e1 1401static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1402 struct request *req,
1403 struct bio *bio)
1404{
1405 int nr_phys_segs = bio_phys_segments(q, bio);
1406
1407 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1408 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1409 if (req == q->last_merge)
1410 q->last_merge = NULL;
1411 return 0;
1412 }
1413
1414 /*
1415 * A hw segment is just getting larger, bump just the phys
1416 * counter.
1417 */
1418 req->nr_phys_segments += nr_phys_segs;
1419 return 1;
1420}
1421
165125e1 1422static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1423 struct request *req,
1424 struct bio *bio)
1425{
1426 int nr_hw_segs = bio_hw_segments(q, bio);
1427 int nr_phys_segs = bio_phys_segments(q, bio);
1428
1429 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1430 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1431 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1432 if (req == q->last_merge)
1433 q->last_merge = NULL;
1434 return 0;
1435 }
1436
1437 /*
1438 * This will form the start of a new hw segment. Bump both
1439 * counters.
1440 */
1441 req->nr_hw_segments += nr_hw_segs;
1442 req->nr_phys_segments += nr_phys_segs;
1443 return 1;
1444}
1445
3001ca77
N
1446static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1447 struct bio *bio)
1da177e4 1448{
defd94b7 1449 unsigned short max_sectors;
1da177e4
LT
1450 int len;
1451
defd94b7
MC
1452 if (unlikely(blk_pc_request(req)))
1453 max_sectors = q->max_hw_sectors;
1454 else
1455 max_sectors = q->max_sectors;
1456
1457 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1458 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1459 if (req == q->last_merge)
1460 q->last_merge = NULL;
1461 return 0;
1462 }
1463 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1464 blk_recount_segments(q, req->biotail);
1465 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1466 blk_recount_segments(q, bio);
1467 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1468 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1469 !BIOVEC_VIRT_OVERSIZE(len)) {
1470 int mergeable = ll_new_mergeable(q, req, bio);
1471
1472 if (mergeable) {
1473 if (req->nr_hw_segments == 1)
1474 req->bio->bi_hw_front_size = len;
1475 if (bio->bi_hw_segments == 1)
1476 bio->bi_hw_back_size = len;
1477 }
1478 return mergeable;
1479 }
1480
1481 return ll_new_hw_segment(q, req, bio);
1482}
1483
165125e1 1484static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1485 struct bio *bio)
1486{
defd94b7 1487 unsigned short max_sectors;
1da177e4
LT
1488 int len;
1489
defd94b7
MC
1490 if (unlikely(blk_pc_request(req)))
1491 max_sectors = q->max_hw_sectors;
1492 else
1493 max_sectors = q->max_sectors;
1494
1495
1496 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1497 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1498 if (req == q->last_merge)
1499 q->last_merge = NULL;
1500 return 0;
1501 }
1502 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1503 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1504 blk_recount_segments(q, bio);
1505 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1506 blk_recount_segments(q, req->bio);
1507 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1508 !BIOVEC_VIRT_OVERSIZE(len)) {
1509 int mergeable = ll_new_mergeable(q, req, bio);
1510
1511 if (mergeable) {
1512 if (bio->bi_hw_segments == 1)
1513 bio->bi_hw_front_size = len;
1514 if (req->nr_hw_segments == 1)
1515 req->biotail->bi_hw_back_size = len;
1516 }
1517 return mergeable;
1518 }
1519
1520 return ll_new_hw_segment(q, req, bio);
1521}
1522
165125e1 1523static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1524 struct request *next)
1525{
dfa1a553
ND
1526 int total_phys_segments;
1527 int total_hw_segments;
1da177e4
LT
1528
1529 /*
1530 * First check if the either of the requests are re-queued
1531 * requests. Can't merge them if they are.
1532 */
1533 if (req->special || next->special)
1534 return 0;
1535
1536 /*
dfa1a553 1537 * Will it become too large?
1da177e4
LT
1538 */
1539 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1540 return 0;
1541
1542 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1543 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1544 total_phys_segments--;
1545
1546 if (total_phys_segments > q->max_phys_segments)
1547 return 0;
1548
1549 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1550 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1551 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1552 /*
1553 * propagate the combined length to the end of the requests
1554 */
1555 if (req->nr_hw_segments == 1)
1556 req->bio->bi_hw_front_size = len;
1557 if (next->nr_hw_segments == 1)
1558 next->biotail->bi_hw_back_size = len;
1559 total_hw_segments--;
1560 }
1561
1562 if (total_hw_segments > q->max_hw_segments)
1563 return 0;
1564
1565 /* Merge is OK... */
1566 req->nr_phys_segments = total_phys_segments;
1567 req->nr_hw_segments = total_hw_segments;
1568 return 1;
1569}
1570
1571/*
1572 * "plug" the device if there are no outstanding requests: this will
1573 * force the transfer to start only after we have put all the requests
1574 * on the list.
1575 *
1576 * This is called with interrupts off and no requests on the queue and
1577 * with the queue lock held.
1578 */
165125e1 1579void blk_plug_device(struct request_queue *q)
1da177e4
LT
1580{
1581 WARN_ON(!irqs_disabled());
1582
1583 /*
1584 * don't plug a stopped queue, it must be paired with blk_start_queue()
1585 * which will restart the queueing
1586 */
7daac490 1587 if (blk_queue_stopped(q))
1da177e4
LT
1588 return;
1589
2056a782 1590 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1591 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1592 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1593 }
1da177e4
LT
1594}
1595
1596EXPORT_SYMBOL(blk_plug_device);
1597
1598/*
1599 * remove the queue from the plugged list, if present. called with
1600 * queue lock held and interrupts disabled.
1601 */
165125e1 1602int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1603{
1604 WARN_ON(!irqs_disabled());
1605
1606 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1607 return 0;
1608
1609 del_timer(&q->unplug_timer);
1610 return 1;
1611}
1612
1613EXPORT_SYMBOL(blk_remove_plug);
1614
1615/*
1616 * remove the plug and let it rip..
1617 */
165125e1 1618void __generic_unplug_device(struct request_queue *q)
1da177e4 1619{
7daac490 1620 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1621 return;
1622
1623 if (!blk_remove_plug(q))
1624 return;
1625
22e2c507 1626 q->request_fn(q);
1da177e4
LT
1627}
1628EXPORT_SYMBOL(__generic_unplug_device);
1629
1630/**
1631 * generic_unplug_device - fire a request queue
165125e1 1632 * @q: The &struct request_queue in question
1da177e4
LT
1633 *
1634 * Description:
1635 * Linux uses plugging to build bigger requests queues before letting
1636 * the device have at them. If a queue is plugged, the I/O scheduler
1637 * is still adding and merging requests on the queue. Once the queue
1638 * gets unplugged, the request_fn defined for the queue is invoked and
1639 * transfers started.
1640 **/
165125e1 1641void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1642{
1643 spin_lock_irq(q->queue_lock);
1644 __generic_unplug_device(q);
1645 spin_unlock_irq(q->queue_lock);
1646}
1647EXPORT_SYMBOL(generic_unplug_device);
1648
1649static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1650 struct page *page)
1651{
165125e1 1652 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1653
1654 /*
1655 * devices don't necessarily have an ->unplug_fn defined
1656 */
2056a782
JA
1657 if (q->unplug_fn) {
1658 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1659 q->rq.count[READ] + q->rq.count[WRITE]);
1660
1da177e4 1661 q->unplug_fn(q);
2056a782 1662 }
1da177e4
LT
1663}
1664
65f27f38 1665static void blk_unplug_work(struct work_struct *work)
1da177e4 1666{
165125e1
JA
1667 struct request_queue *q =
1668 container_of(work, struct request_queue, unplug_work);
1da177e4 1669
2056a782
JA
1670 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1671 q->rq.count[READ] + q->rq.count[WRITE]);
1672
1da177e4
LT
1673 q->unplug_fn(q);
1674}
1675
1676static void blk_unplug_timeout(unsigned long data)
1677{
165125e1 1678 struct request_queue *q = (struct request_queue *)data;
1da177e4 1679
2056a782
JA
1680 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1681 q->rq.count[READ] + q->rq.count[WRITE]);
1682
1da177e4
LT
1683 kblockd_schedule_work(&q->unplug_work);
1684}
1685
1686/**
1687 * blk_start_queue - restart a previously stopped queue
165125e1 1688 * @q: The &struct request_queue in question
1da177e4
LT
1689 *
1690 * Description:
1691 * blk_start_queue() will clear the stop flag on the queue, and call
1692 * the request_fn for the queue if it was in a stopped state when
1693 * entered. Also see blk_stop_queue(). Queue lock must be held.
1694 **/
165125e1 1695void blk_start_queue(struct request_queue *q)
1da177e4 1696{
a038e253
PBG
1697 WARN_ON(!irqs_disabled());
1698
1da177e4
LT
1699 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1700
1701 /*
1702 * one level of recursion is ok and is much faster than kicking
1703 * the unplug handling
1704 */
1705 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1706 q->request_fn(q);
1707 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1708 } else {
1709 blk_plug_device(q);
1710 kblockd_schedule_work(&q->unplug_work);
1711 }
1712}
1713
1714EXPORT_SYMBOL(blk_start_queue);
1715
1716/**
1717 * blk_stop_queue - stop a queue
165125e1 1718 * @q: The &struct request_queue in question
1da177e4
LT
1719 *
1720 * Description:
1721 * The Linux block layer assumes that a block driver will consume all
1722 * entries on the request queue when the request_fn strategy is called.
1723 * Often this will not happen, because of hardware limitations (queue
1724 * depth settings). If a device driver gets a 'queue full' response,
1725 * or if it simply chooses not to queue more I/O at one point, it can
1726 * call this function to prevent the request_fn from being called until
1727 * the driver has signalled it's ready to go again. This happens by calling
1728 * blk_start_queue() to restart queue operations. Queue lock must be held.
1729 **/
165125e1 1730void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1731{
1732 blk_remove_plug(q);
1733 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1734}
1735EXPORT_SYMBOL(blk_stop_queue);
1736
1737/**
1738 * blk_sync_queue - cancel any pending callbacks on a queue
1739 * @q: the queue
1740 *
1741 * Description:
1742 * The block layer may perform asynchronous callback activity
1743 * on a queue, such as calling the unplug function after a timeout.
1744 * A block device may call blk_sync_queue to ensure that any
1745 * such activity is cancelled, thus allowing it to release resources
59c51591 1746 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1747 * that its ->make_request_fn will not re-add plugging prior to calling
1748 * this function.
1749 *
1750 */
1751void blk_sync_queue(struct request_queue *q)
1752{
1753 del_timer_sync(&q->unplug_timer);
1da177e4
LT
1754}
1755EXPORT_SYMBOL(blk_sync_queue);
1756
1757/**
1758 * blk_run_queue - run a single device queue
1759 * @q: The queue to run
1760 */
1761void blk_run_queue(struct request_queue *q)
1762{
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(q->queue_lock, flags);
1766 blk_remove_plug(q);
dac07ec1
JA
1767
1768 /*
1769 * Only recurse once to avoid overrunning the stack, let the unplug
1770 * handling reinvoke the handler shortly if we already got there.
1771 */
1772 if (!elv_queue_empty(q)) {
1773 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1774 q->request_fn(q);
1775 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1776 } else {
1777 blk_plug_device(q);
1778 kblockd_schedule_work(&q->unplug_work);
1779 }
1780 }
1781
1da177e4
LT
1782 spin_unlock_irqrestore(q->queue_lock, flags);
1783}
1784EXPORT_SYMBOL(blk_run_queue);
1785
1786/**
165125e1 1787 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1788 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1789 *
1790 * Description:
1791 * blk_cleanup_queue is the pair to blk_init_queue() or
1792 * blk_queue_make_request(). It should be called when a request queue is
1793 * being released; typically when a block device is being de-registered.
1794 * Currently, its primary task it to free all the &struct request
1795 * structures that were allocated to the queue and the queue itself.
1796 *
1797 * Caveat:
1798 * Hopefully the low level driver will have finished any
1799 * outstanding requests first...
1800 **/
483f4afc 1801static void blk_release_queue(struct kobject *kobj)
1da177e4 1802{
165125e1
JA
1803 struct request_queue *q =
1804 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1805 struct request_list *rl = &q->rq;
1806
1da177e4
LT
1807 blk_sync_queue(q);
1808
1809 if (rl->rq_pool)
1810 mempool_destroy(rl->rq_pool);
1811
1812 if (q->queue_tags)
1813 __blk_queue_free_tags(q);
1814
6c5c9341 1815 blk_trace_shutdown(q);
2056a782 1816
1da177e4
LT
1817 kmem_cache_free(requestq_cachep, q);
1818}
1819
165125e1 1820void blk_put_queue(struct request_queue *q)
483f4afc
AV
1821{
1822 kobject_put(&q->kobj);
1823}
1824EXPORT_SYMBOL(blk_put_queue);
1825
165125e1 1826void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1827{
1828 mutex_lock(&q->sysfs_lock);
1829 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1830 mutex_unlock(&q->sysfs_lock);
1831
1832 if (q->elevator)
1833 elevator_exit(q->elevator);
1834
1835 blk_put_queue(q);
1836}
1837
1da177e4
LT
1838EXPORT_SYMBOL(blk_cleanup_queue);
1839
165125e1 1840static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1841{
1842 struct request_list *rl = &q->rq;
1843
1844 rl->count[READ] = rl->count[WRITE] = 0;
1845 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1846 rl->elvpriv = 0;
1da177e4
LT
1847 init_waitqueue_head(&rl->wait[READ]);
1848 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1849
1946089a
CL
1850 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1851 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1852
1853 if (!rl->rq_pool)
1854 return -ENOMEM;
1855
1856 return 0;
1857}
1858
165125e1 1859struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1860{
1946089a
CL
1861 return blk_alloc_queue_node(gfp_mask, -1);
1862}
1863EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1864
483f4afc
AV
1865static struct kobj_type queue_ktype;
1866
165125e1 1867struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1868{
165125e1 1869 struct request_queue *q;
1946089a 1870
94f6030c
CL
1871 q = kmem_cache_alloc_node(requestq_cachep,
1872 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1873 if (!q)
1874 return NULL;
1875
1da177e4 1876 init_timer(&q->unplug_timer);
483f4afc
AV
1877
1878 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1879 q->kobj.ktype = &queue_ktype;
1880 kobject_init(&q->kobj);
1da177e4
LT
1881
1882 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1883 q->backing_dev_info.unplug_io_data = q;
1884
483f4afc
AV
1885 mutex_init(&q->sysfs_lock);
1886
1da177e4
LT
1887 return q;
1888}
1946089a 1889EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1890
1891/**
1892 * blk_init_queue - prepare a request queue for use with a block device
1893 * @rfn: The function to be called to process requests that have been
1894 * placed on the queue.
1895 * @lock: Request queue spin lock
1896 *
1897 * Description:
1898 * If a block device wishes to use the standard request handling procedures,
1899 * which sorts requests and coalesces adjacent requests, then it must
1900 * call blk_init_queue(). The function @rfn will be called when there
1901 * are requests on the queue that need to be processed. If the device
1902 * supports plugging, then @rfn may not be called immediately when requests
1903 * are available on the queue, but may be called at some time later instead.
1904 * Plugged queues are generally unplugged when a buffer belonging to one
1905 * of the requests on the queue is needed, or due to memory pressure.
1906 *
1907 * @rfn is not required, or even expected, to remove all requests off the
1908 * queue, but only as many as it can handle at a time. If it does leave
1909 * requests on the queue, it is responsible for arranging that the requests
1910 * get dealt with eventually.
1911 *
1912 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1913 * request queue; this lock will be taken also from interrupt context, so irq
1914 * disabling is needed for it.
1da177e4
LT
1915 *
1916 * Function returns a pointer to the initialized request queue, or NULL if
1917 * it didn't succeed.
1918 *
1919 * Note:
1920 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1921 * when the block device is deactivated (such as at module unload).
1922 **/
1946089a 1923
165125e1 1924struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1925{
1946089a
CL
1926 return blk_init_queue_node(rfn, lock, -1);
1927}
1928EXPORT_SYMBOL(blk_init_queue);
1929
165125e1 1930struct request_queue *
1946089a
CL
1931blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1932{
165125e1 1933 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1934
1935 if (!q)
1936 return NULL;
1937
1946089a 1938 q->node = node_id;
8669aafd
AV
1939 if (blk_init_free_list(q)) {
1940 kmem_cache_free(requestq_cachep, q);
1941 return NULL;
1942 }
1da177e4 1943
152587de
JA
1944 /*
1945 * if caller didn't supply a lock, they get per-queue locking with
1946 * our embedded lock
1947 */
1948 if (!lock) {
1949 spin_lock_init(&q->__queue_lock);
1950 lock = &q->__queue_lock;
1951 }
1952
1da177e4 1953 q->request_fn = rfn;
1da177e4
LT
1954 q->prep_rq_fn = NULL;
1955 q->unplug_fn = generic_unplug_device;
1956 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1957 q->queue_lock = lock;
1958
1959 blk_queue_segment_boundary(q, 0xffffffff);
1960
1961 blk_queue_make_request(q, __make_request);
1962 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1963
1964 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1965 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1966
44ec9542
AS
1967 q->sg_reserved_size = INT_MAX;
1968
1da177e4
LT
1969 /*
1970 * all done
1971 */
1972 if (!elevator_init(q, NULL)) {
1973 blk_queue_congestion_threshold(q);
1974 return q;
1975 }
1976
8669aafd 1977 blk_put_queue(q);
1da177e4
LT
1978 return NULL;
1979}
1946089a 1980EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1981
165125e1 1982int blk_get_queue(struct request_queue *q)
1da177e4 1983{
fde6ad22 1984 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1985 kobject_get(&q->kobj);
1da177e4
LT
1986 return 0;
1987 }
1988
1989 return 1;
1990}
1991
1992EXPORT_SYMBOL(blk_get_queue);
1993
165125e1 1994static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1995{
4aff5e23 1996 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1997 elv_put_request(q, rq);
1da177e4
LT
1998 mempool_free(rq, q->rq.rq_pool);
1999}
2000
1ea25ecb 2001static struct request *
165125e1 2002blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
2003{
2004 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2005
2006 if (!rq)
2007 return NULL;
2008
2009 /*
4aff5e23 2010 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2011 * see bio.h and blkdev.h
2012 */
49171e5c 2013 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 2014
cb98fc8b 2015 if (priv) {
cb78b285 2016 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
2017 mempool_free(rq, q->rq.rq_pool);
2018 return NULL;
2019 }
4aff5e23 2020 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2021 }
1da177e4 2022
cb98fc8b 2023 return rq;
1da177e4
LT
2024}
2025
2026/*
2027 * ioc_batching returns true if the ioc is a valid batching request and
2028 * should be given priority access to a request.
2029 */
165125e1 2030static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2031{
2032 if (!ioc)
2033 return 0;
2034
2035 /*
2036 * Make sure the process is able to allocate at least 1 request
2037 * even if the batch times out, otherwise we could theoretically
2038 * lose wakeups.
2039 */
2040 return ioc->nr_batch_requests == q->nr_batching ||
2041 (ioc->nr_batch_requests > 0
2042 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2043}
2044
2045/*
2046 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2047 * will cause the process to be a "batcher" on all queues in the system. This
2048 * is the behaviour we want though - once it gets a wakeup it should be given
2049 * a nice run.
2050 */
165125e1 2051static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2052{
2053 if (!ioc || ioc_batching(q, ioc))
2054 return;
2055
2056 ioc->nr_batch_requests = q->nr_batching;
2057 ioc->last_waited = jiffies;
2058}
2059
165125e1 2060static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2061{
2062 struct request_list *rl = &q->rq;
2063
2064 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2065 blk_clear_queue_congested(q, rw);
1da177e4
LT
2066
2067 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2068 if (waitqueue_active(&rl->wait[rw]))
2069 wake_up(&rl->wait[rw]);
2070
2071 blk_clear_queue_full(q, rw);
2072 }
2073}
2074
2075/*
2076 * A request has just been released. Account for it, update the full and
2077 * congestion status, wake up any waiters. Called under q->queue_lock.
2078 */
165125e1 2079static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2080{
2081 struct request_list *rl = &q->rq;
2082
2083 rl->count[rw]--;
cb98fc8b
TH
2084 if (priv)
2085 rl->elvpriv--;
1da177e4
LT
2086
2087 __freed_request(q, rw);
2088
2089 if (unlikely(rl->starved[rw ^ 1]))
2090 __freed_request(q, rw ^ 1);
1da177e4
LT
2091}
2092
2093#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2094/*
d6344532
NP
2095 * Get a free request, queue_lock must be held.
2096 * Returns NULL on failure, with queue_lock held.
2097 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2098 */
165125e1 2099static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2100 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2101{
2102 struct request *rq = NULL;
2103 struct request_list *rl = &q->rq;
88ee5ef1 2104 struct io_context *ioc = NULL;
7749a8d4 2105 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2106 int may_queue, priv;
2107
7749a8d4 2108 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2109 if (may_queue == ELV_MQUEUE_NO)
2110 goto rq_starved;
2111
2112 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2113 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2114 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2115 /*
2116 * The queue will fill after this allocation, so set
2117 * it as full, and mark this process as "batching".
2118 * This process will be allowed to complete a batch of
2119 * requests, others will be blocked.
2120 */
2121 if (!blk_queue_full(q, rw)) {
2122 ioc_set_batching(q, ioc);
2123 blk_set_queue_full(q, rw);
2124 } else {
2125 if (may_queue != ELV_MQUEUE_MUST
2126 && !ioc_batching(q, ioc)) {
2127 /*
2128 * The queue is full and the allocating
2129 * process is not a "batcher", and not
2130 * exempted by the IO scheduler
2131 */
2132 goto out;
2133 }
2134 }
1da177e4 2135 }
79e2de4b 2136 blk_set_queue_congested(q, rw);
1da177e4
LT
2137 }
2138
082cf69e
JA
2139 /*
2140 * Only allow batching queuers to allocate up to 50% over the defined
2141 * limit of requests, otherwise we could have thousands of requests
2142 * allocated with any setting of ->nr_requests
2143 */
fd782a4a 2144 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2145 goto out;
fd782a4a 2146
1da177e4
LT
2147 rl->count[rw]++;
2148 rl->starved[rw] = 0;
cb98fc8b 2149
64521d1a 2150 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2151 if (priv)
2152 rl->elvpriv++;
2153
1da177e4
LT
2154 spin_unlock_irq(q->queue_lock);
2155
7749a8d4 2156 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2157 if (unlikely(!rq)) {
1da177e4
LT
2158 /*
2159 * Allocation failed presumably due to memory. Undo anything
2160 * we might have messed up.
2161 *
2162 * Allocating task should really be put onto the front of the
2163 * wait queue, but this is pretty rare.
2164 */
2165 spin_lock_irq(q->queue_lock);
cb98fc8b 2166 freed_request(q, rw, priv);
1da177e4
LT
2167
2168 /*
2169 * in the very unlikely event that allocation failed and no
2170 * requests for this direction was pending, mark us starved
2171 * so that freeing of a request in the other direction will
2172 * notice us. another possible fix would be to split the
2173 * rq mempool into READ and WRITE
2174 */
2175rq_starved:
2176 if (unlikely(rl->count[rw] == 0))
2177 rl->starved[rw] = 1;
2178
1da177e4
LT
2179 goto out;
2180 }
2181
88ee5ef1
JA
2182 /*
2183 * ioc may be NULL here, and ioc_batching will be false. That's
2184 * OK, if the queue is under the request limit then requests need
2185 * not count toward the nr_batch_requests limit. There will always
2186 * be some limit enforced by BLK_BATCH_TIME.
2187 */
1da177e4
LT
2188 if (ioc_batching(q, ioc))
2189 ioc->nr_batch_requests--;
2190
2191 rq_init(q, rq);
2056a782
JA
2192
2193 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2194out:
1da177e4
LT
2195 return rq;
2196}
2197
2198/*
2199 * No available requests for this queue, unplug the device and wait for some
2200 * requests to become available.
d6344532
NP
2201 *
2202 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2203 */
165125e1 2204static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2205 struct bio *bio)
1da177e4 2206{
7749a8d4 2207 const int rw = rw_flags & 0x01;
1da177e4
LT
2208 struct request *rq;
2209
7749a8d4 2210 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2211 while (!rq) {
2212 DEFINE_WAIT(wait);
1da177e4
LT
2213 struct request_list *rl = &q->rq;
2214
2215 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2216 TASK_UNINTERRUPTIBLE);
2217
7749a8d4 2218 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2219
2220 if (!rq) {
2221 struct io_context *ioc;
2222
2056a782
JA
2223 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2224
d6344532
NP
2225 __generic_unplug_device(q);
2226 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2227 io_schedule();
2228
2229 /*
2230 * After sleeping, we become a "batching" process and
2231 * will be able to allocate at least one request, and
2232 * up to a big batch of them for a small period time.
2233 * See ioc_batching, ioc_set_batching
2234 */
b5deef90 2235 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2236 ioc_set_batching(q, ioc);
d6344532
NP
2237
2238 spin_lock_irq(q->queue_lock);
1da177e4
LT
2239 }
2240 finish_wait(&rl->wait[rw], &wait);
450991bc 2241 }
1da177e4
LT
2242
2243 return rq;
2244}
2245
165125e1 2246struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2247{
2248 struct request *rq;
2249
2250 BUG_ON(rw != READ && rw != WRITE);
2251
d6344532
NP
2252 spin_lock_irq(q->queue_lock);
2253 if (gfp_mask & __GFP_WAIT) {
22e2c507 2254 rq = get_request_wait(q, rw, NULL);
d6344532 2255 } else {
22e2c507 2256 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2257 if (!rq)
2258 spin_unlock_irq(q->queue_lock);
2259 }
2260 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2261
2262 return rq;
2263}
1da177e4
LT
2264EXPORT_SYMBOL(blk_get_request);
2265
dc72ef4a
JA
2266/**
2267 * blk_start_queueing - initiate dispatch of requests to device
2268 * @q: request queue to kick into gear
2269 *
2270 * This is basically a helper to remove the need to know whether a queue
2271 * is plugged or not if someone just wants to initiate dispatch of requests
2272 * for this queue.
2273 *
2274 * The queue lock must be held with interrupts disabled.
2275 */
165125e1 2276void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2277{
2278 if (!blk_queue_plugged(q))
2279 q->request_fn(q);
2280 else
2281 __generic_unplug_device(q);
2282}
2283EXPORT_SYMBOL(blk_start_queueing);
2284
1da177e4
LT
2285/**
2286 * blk_requeue_request - put a request back on queue
2287 * @q: request queue where request should be inserted
2288 * @rq: request to be inserted
2289 *
2290 * Description:
2291 * Drivers often keep queueing requests until the hardware cannot accept
2292 * more, when that condition happens we need to put the request back
2293 * on the queue. Must be called with queue lock held.
2294 */
165125e1 2295void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2296{
2056a782
JA
2297 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2298
1da177e4
LT
2299 if (blk_rq_tagged(rq))
2300 blk_queue_end_tag(q, rq);
2301
2302 elv_requeue_request(q, rq);
2303}
2304
2305EXPORT_SYMBOL(blk_requeue_request);
2306
2307/**
2308 * blk_insert_request - insert a special request in to a request queue
2309 * @q: request queue where request should be inserted
2310 * @rq: request to be inserted
2311 * @at_head: insert request at head or tail of queue
2312 * @data: private data
1da177e4
LT
2313 *
2314 * Description:
2315 * Many block devices need to execute commands asynchronously, so they don't
2316 * block the whole kernel from preemption during request execution. This is
2317 * accomplished normally by inserting aritficial requests tagged as
2318 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2319 * scheduled for actual execution by the request queue.
2320 *
2321 * We have the option of inserting the head or the tail of the queue.
2322 * Typically we use the tail for new ioctls and so forth. We use the head
2323 * of the queue for things like a QUEUE_FULL message from a device, or a
2324 * host that is unable to accept a particular command.
2325 */
165125e1 2326void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2327 int at_head, void *data)
1da177e4 2328{
867d1191 2329 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2330 unsigned long flags;
2331
2332 /*
2333 * tell I/O scheduler that this isn't a regular read/write (ie it
2334 * must not attempt merges on this) and that it acts as a soft
2335 * barrier
2336 */
4aff5e23
JA
2337 rq->cmd_type = REQ_TYPE_SPECIAL;
2338 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2339
2340 rq->special = data;
2341
2342 spin_lock_irqsave(q->queue_lock, flags);
2343
2344 /*
2345 * If command is tagged, release the tag
2346 */
867d1191
TH
2347 if (blk_rq_tagged(rq))
2348 blk_queue_end_tag(q, rq);
1da177e4 2349
867d1191
TH
2350 drive_stat_acct(rq, rq->nr_sectors, 1);
2351 __elv_add_request(q, rq, where, 0);
dc72ef4a 2352 blk_start_queueing(q);
1da177e4
LT
2353 spin_unlock_irqrestore(q->queue_lock, flags);
2354}
2355
2356EXPORT_SYMBOL(blk_insert_request);
2357
0e75f906
MC
2358static int __blk_rq_unmap_user(struct bio *bio)
2359{
2360 int ret = 0;
2361
2362 if (bio) {
2363 if (bio_flagged(bio, BIO_USER_MAPPED))
2364 bio_unmap_user(bio);
2365 else
2366 ret = bio_uncopy_user(bio);
2367 }
2368
2369 return ret;
2370}
2371
3001ca77
N
2372int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2373 struct bio *bio)
2374{
2375 if (!rq->bio)
2376 blk_rq_bio_prep(q, rq, bio);
2377 else if (!ll_back_merge_fn(q, rq, bio))
2378 return -EINVAL;
2379 else {
2380 rq->biotail->bi_next = bio;
2381 rq->biotail = bio;
2382
2383 rq->data_len += bio->bi_size;
2384 }
2385 return 0;
2386}
2387EXPORT_SYMBOL(blk_rq_append_bio);
2388
165125e1 2389static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2390 void __user *ubuf, unsigned int len)
2391{
2392 unsigned long uaddr;
2393 struct bio *bio, *orig_bio;
2394 int reading, ret;
2395
2396 reading = rq_data_dir(rq) == READ;
2397
2398 /*
2399 * if alignment requirement is satisfied, map in user pages for
2400 * direct dma. else, set up kernel bounce buffers
2401 */
2402 uaddr = (unsigned long) ubuf;
2403 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2404 bio = bio_map_user(q, NULL, uaddr, len, reading);
2405 else
2406 bio = bio_copy_user(q, uaddr, len, reading);
2407
2985259b 2408 if (IS_ERR(bio))
0e75f906 2409 return PTR_ERR(bio);
0e75f906
MC
2410
2411 orig_bio = bio;
2412 blk_queue_bounce(q, &bio);
2985259b 2413
0e75f906
MC
2414 /*
2415 * We link the bounce buffer in and could have to traverse it
2416 * later so we have to get a ref to prevent it from being freed
2417 */
2418 bio_get(bio);
2419
3001ca77
N
2420 ret = blk_rq_append_bio(q, rq, bio);
2421 if (!ret)
2422 return bio->bi_size;
0e75f906 2423
0e75f906
MC
2424 /* if it was boucned we must call the end io function */
2425 bio_endio(bio, bio->bi_size, 0);
2426 __blk_rq_unmap_user(orig_bio);
2427 bio_put(bio);
2428 return ret;
2429}
2430
1da177e4
LT
2431/**
2432 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2433 * @q: request queue where request should be inserted
73747aed 2434 * @rq: request structure to fill
1da177e4
LT
2435 * @ubuf: the user buffer
2436 * @len: length of user data
2437 *
2438 * Description:
2439 * Data will be mapped directly for zero copy io, if possible. Otherwise
2440 * a kernel bounce buffer is used.
2441 *
2442 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2443 * still in process context.
2444 *
2445 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2446 * before being submitted to the device, as pages mapped may be out of
2447 * reach. It's the callers responsibility to make sure this happens. The
2448 * original bio must be passed back in to blk_rq_unmap_user() for proper
2449 * unmapping.
2450 */
165125e1
JA
2451int blk_rq_map_user(struct request_queue *q, struct request *rq,
2452 void __user *ubuf, unsigned long len)
1da177e4 2453{
0e75f906 2454 unsigned long bytes_read = 0;
8e5cfc45 2455 struct bio *bio = NULL;
0e75f906 2456 int ret;
1da177e4 2457
defd94b7 2458 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2459 return -EINVAL;
2460 if (!len || !ubuf)
2461 return -EINVAL;
1da177e4 2462
0e75f906
MC
2463 while (bytes_read != len) {
2464 unsigned long map_len, end, start;
1da177e4 2465
0e75f906
MC
2466 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2467 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2468 >> PAGE_SHIFT;
2469 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2470
0e75f906
MC
2471 /*
2472 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2473 * pages. If this happens we just lower the requested
2474 * mapping len by a page so that we can fit
2475 */
2476 if (end - start > BIO_MAX_PAGES)
2477 map_len -= PAGE_SIZE;
1da177e4 2478
0e75f906
MC
2479 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2480 if (ret < 0)
2481 goto unmap_rq;
8e5cfc45
JA
2482 if (!bio)
2483 bio = rq->bio;
0e75f906
MC
2484 bytes_read += ret;
2485 ubuf += ret;
1da177e4
LT
2486 }
2487
0e75f906
MC
2488 rq->buffer = rq->data = NULL;
2489 return 0;
2490unmap_rq:
8e5cfc45 2491 blk_rq_unmap_user(bio);
0e75f906 2492 return ret;
1da177e4
LT
2493}
2494
2495EXPORT_SYMBOL(blk_rq_map_user);
2496
f1970baf
JB
2497/**
2498 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2499 * @q: request queue where request should be inserted
2500 * @rq: request to map data to
2501 * @iov: pointer to the iovec
2502 * @iov_count: number of elements in the iovec
af9997e4 2503 * @len: I/O byte count
f1970baf
JB
2504 *
2505 * Description:
2506 * Data will be mapped directly for zero copy io, if possible. Otherwise
2507 * a kernel bounce buffer is used.
2508 *
2509 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2510 * still in process context.
2511 *
2512 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2513 * before being submitted to the device, as pages mapped may be out of
2514 * reach. It's the callers responsibility to make sure this happens. The
2515 * original bio must be passed back in to blk_rq_unmap_user() for proper
2516 * unmapping.
2517 */
165125e1 2518int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2519 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2520{
2521 struct bio *bio;
2522
2523 if (!iov || iov_count <= 0)
2524 return -EINVAL;
2525
2526 /* we don't allow misaligned data like bio_map_user() does. If the
2527 * user is using sg, they're expected to know the alignment constraints
2528 * and respect them accordingly */
2529 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2530 if (IS_ERR(bio))
2531 return PTR_ERR(bio);
2532
0e75f906
MC
2533 if (bio->bi_size != len) {
2534 bio_endio(bio, bio->bi_size, 0);
2535 bio_unmap_user(bio);
2536 return -EINVAL;
2537 }
2538
2539 bio_get(bio);
f1970baf
JB
2540 blk_rq_bio_prep(q, rq, bio);
2541 rq->buffer = rq->data = NULL;
f1970baf
JB
2542 return 0;
2543}
2544
2545EXPORT_SYMBOL(blk_rq_map_user_iov);
2546
1da177e4
LT
2547/**
2548 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2549 * @bio: start of bio list
1da177e4
LT
2550 *
2551 * Description:
8e5cfc45
JA
2552 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2553 * supply the original rq->bio from the blk_rq_map_user() return, since
2554 * the io completion may have changed rq->bio.
1da177e4 2555 */
8e5cfc45 2556int blk_rq_unmap_user(struct bio *bio)
1da177e4 2557{
8e5cfc45 2558 struct bio *mapped_bio;
48785bb9 2559 int ret = 0, ret2;
1da177e4 2560
8e5cfc45
JA
2561 while (bio) {
2562 mapped_bio = bio;
2563 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2564 mapped_bio = bio->bi_private;
1da177e4 2565
48785bb9
JA
2566 ret2 = __blk_rq_unmap_user(mapped_bio);
2567 if (ret2 && !ret)
2568 ret = ret2;
2569
8e5cfc45
JA
2570 mapped_bio = bio;
2571 bio = bio->bi_next;
2572 bio_put(mapped_bio);
0e75f906 2573 }
48785bb9
JA
2574
2575 return ret;
1da177e4
LT
2576}
2577
2578EXPORT_SYMBOL(blk_rq_unmap_user);
2579
df46b9a4
MC
2580/**
2581 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2582 * @q: request queue where request should be inserted
73747aed 2583 * @rq: request to fill
df46b9a4
MC
2584 * @kbuf: the kernel buffer
2585 * @len: length of user data
73747aed 2586 * @gfp_mask: memory allocation flags
df46b9a4 2587 */
165125e1 2588int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2589 unsigned int len, gfp_t gfp_mask)
df46b9a4 2590{
df46b9a4
MC
2591 struct bio *bio;
2592
defd94b7 2593 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2594 return -EINVAL;
2595 if (!len || !kbuf)
2596 return -EINVAL;
df46b9a4
MC
2597
2598 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2599 if (IS_ERR(bio))
2600 return PTR_ERR(bio);
df46b9a4 2601
dd1cab95
JA
2602 if (rq_data_dir(rq) == WRITE)
2603 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2604
dd1cab95 2605 blk_rq_bio_prep(q, rq, bio);
821de3a2 2606 blk_queue_bounce(q, &rq->bio);
dd1cab95 2607 rq->buffer = rq->data = NULL;
dd1cab95 2608 return 0;
df46b9a4
MC
2609}
2610
2611EXPORT_SYMBOL(blk_rq_map_kern);
2612
73747aed
CH
2613/**
2614 * blk_execute_rq_nowait - insert a request into queue for execution
2615 * @q: queue to insert the request in
2616 * @bd_disk: matching gendisk
2617 * @rq: request to insert
2618 * @at_head: insert request at head or tail of queue
2619 * @done: I/O completion handler
2620 *
2621 * Description:
2622 * Insert a fully prepared request at the back of the io scheduler queue
2623 * for execution. Don't wait for completion.
2624 */
165125e1 2625void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2626 struct request *rq, int at_head,
8ffdc655 2627 rq_end_io_fn *done)
f1970baf
JB
2628{
2629 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2630
2631 rq->rq_disk = bd_disk;
4aff5e23 2632 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2633 rq->end_io = done;
4c5d0bbd
AM
2634 WARN_ON(irqs_disabled());
2635 spin_lock_irq(q->queue_lock);
2636 __elv_add_request(q, rq, where, 1);
2637 __generic_unplug_device(q);
2638 spin_unlock_irq(q->queue_lock);
f1970baf 2639}
6e39b69e
MC
2640EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2641
1da177e4
LT
2642/**
2643 * blk_execute_rq - insert a request into queue for execution
2644 * @q: queue to insert the request in
2645 * @bd_disk: matching gendisk
2646 * @rq: request to insert
994ca9a1 2647 * @at_head: insert request at head or tail of queue
1da177e4
LT
2648 *
2649 * Description:
2650 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2651 * for execution and wait for completion.
1da177e4 2652 */
165125e1 2653int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2654 struct request *rq, int at_head)
1da177e4 2655{
60be6b9a 2656 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2657 char sense[SCSI_SENSE_BUFFERSIZE];
2658 int err = 0;
2659
1da177e4
LT
2660 /*
2661 * we need an extra reference to the request, so we can look at
2662 * it after io completion
2663 */
2664 rq->ref_count++;
2665
2666 if (!rq->sense) {
2667 memset(sense, 0, sizeof(sense));
2668 rq->sense = sense;
2669 rq->sense_len = 0;
2670 }
2671
c00895ab 2672 rq->end_io_data = &wait;
994ca9a1 2673 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2674 wait_for_completion(&wait);
1da177e4
LT
2675
2676 if (rq->errors)
2677 err = -EIO;
2678
2679 return err;
2680}
2681
2682EXPORT_SYMBOL(blk_execute_rq);
2683
2684/**
2685 * blkdev_issue_flush - queue a flush
2686 * @bdev: blockdev to issue flush for
2687 * @error_sector: error sector
2688 *
2689 * Description:
2690 * Issue a flush for the block device in question. Caller can supply
2691 * room for storing the error offset in case of a flush error, if they
2692 * wish to. Caller must run wait_for_completion() on its own.
2693 */
2694int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2695{
165125e1 2696 struct request_queue *q;
1da177e4
LT
2697
2698 if (bdev->bd_disk == NULL)
2699 return -ENXIO;
2700
2701 q = bdev_get_queue(bdev);
2702 if (!q)
2703 return -ENXIO;
2704 if (!q->issue_flush_fn)
2705 return -EOPNOTSUPP;
2706
2707 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2708}
2709
2710EXPORT_SYMBOL(blkdev_issue_flush);
2711
93d17d3d 2712static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2713{
2714 int rw = rq_data_dir(rq);
2715
2716 if (!blk_fs_request(rq) || !rq->rq_disk)
2717 return;
2718
d72d904a 2719 if (!new_io) {
a362357b 2720 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2721 } else {
1da177e4
LT
2722 disk_round_stats(rq->rq_disk);
2723 rq->rq_disk->in_flight++;
2724 }
2725}
2726
2727/*
2728 * add-request adds a request to the linked list.
2729 * queue lock is held and interrupts disabled, as we muck with the
2730 * request queue list.
2731 */
165125e1 2732static inline void add_request(struct request_queue * q, struct request * req)
1da177e4
LT
2733{
2734 drive_stat_acct(req, req->nr_sectors, 1);
2735
1da177e4
LT
2736 /*
2737 * elevator indicated where it wants this request to be
2738 * inserted at elevator_merge time
2739 */
2740 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2741}
2742
2743/*
2744 * disk_round_stats() - Round off the performance stats on a struct
2745 * disk_stats.
2746 *
2747 * The average IO queue length and utilisation statistics are maintained
2748 * by observing the current state of the queue length and the amount of
2749 * time it has been in this state for.
2750 *
2751 * Normally, that accounting is done on IO completion, but that can result
2752 * in more than a second's worth of IO being accounted for within any one
2753 * second, leading to >100% utilisation. To deal with that, we call this
2754 * function to do a round-off before returning the results when reading
2755 * /proc/diskstats. This accounts immediately for all queue usage up to
2756 * the current jiffies and restarts the counters again.
2757 */
2758void disk_round_stats(struct gendisk *disk)
2759{
2760 unsigned long now = jiffies;
2761
b2982649
KC
2762 if (now == disk->stamp)
2763 return;
1da177e4 2764
20e5c81f
KC
2765 if (disk->in_flight) {
2766 __disk_stat_add(disk, time_in_queue,
2767 disk->in_flight * (now - disk->stamp));
2768 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2769 }
1da177e4 2770 disk->stamp = now;
1da177e4
LT
2771}
2772
3eaf840e
JNN
2773EXPORT_SYMBOL_GPL(disk_round_stats);
2774
1da177e4
LT
2775/*
2776 * queue lock must be held
2777 */
165125e1 2778void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2779{
1da177e4
LT
2780 if (unlikely(!q))
2781 return;
2782 if (unlikely(--req->ref_count))
2783 return;
2784
8922e16c
TH
2785 elv_completed_request(q, req);
2786
1da177e4
LT
2787 /*
2788 * Request may not have originated from ll_rw_blk. if not,
2789 * it didn't come out of our reserved rq pools
2790 */
49171e5c 2791 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2792 int rw = rq_data_dir(req);
4aff5e23 2793 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2794
1da177e4 2795 BUG_ON(!list_empty(&req->queuelist));
9817064b 2796 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2797
2798 blk_free_request(q, req);
cb98fc8b 2799 freed_request(q, rw, priv);
1da177e4
LT
2800 }
2801}
2802
6e39b69e
MC
2803EXPORT_SYMBOL_GPL(__blk_put_request);
2804
1da177e4
LT
2805void blk_put_request(struct request *req)
2806{
8922e16c 2807 unsigned long flags;
165125e1 2808 struct request_queue *q = req->q;
8922e16c 2809
1da177e4 2810 /*
8922e16c
TH
2811 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2812 * following if (q) test.
1da177e4 2813 */
8922e16c 2814 if (q) {
1da177e4
LT
2815 spin_lock_irqsave(q->queue_lock, flags);
2816 __blk_put_request(q, req);
2817 spin_unlock_irqrestore(q->queue_lock, flags);
2818 }
2819}
2820
2821EXPORT_SYMBOL(blk_put_request);
2822
2823/**
2824 * blk_end_sync_rq - executes a completion event on a request
2825 * @rq: request to complete
fddfdeaf 2826 * @error: end io status of the request
1da177e4 2827 */
8ffdc655 2828void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2829{
c00895ab 2830 struct completion *waiting = rq->end_io_data;
1da177e4 2831
c00895ab 2832 rq->end_io_data = NULL;
1da177e4
LT
2833 __blk_put_request(rq->q, rq);
2834
2835 /*
2836 * complete last, if this is a stack request the process (and thus
2837 * the rq pointer) could be invalid right after this complete()
2838 */
2839 complete(waiting);
2840}
2841EXPORT_SYMBOL(blk_end_sync_rq);
2842
1da177e4
LT
2843/*
2844 * Has to be called with the request spinlock acquired
2845 */
165125e1 2846static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2847 struct request *next)
2848{
2849 if (!rq_mergeable(req) || !rq_mergeable(next))
2850 return 0;
2851
2852 /*
d6e05edc 2853 * not contiguous
1da177e4
LT
2854 */
2855 if (req->sector + req->nr_sectors != next->sector)
2856 return 0;
2857
2858 if (rq_data_dir(req) != rq_data_dir(next)
2859 || req->rq_disk != next->rq_disk
c00895ab 2860 || next->special)
1da177e4
LT
2861 return 0;
2862
2863 /*
2864 * If we are allowed to merge, then append bio list
2865 * from next to rq and release next. merge_requests_fn
2866 * will have updated segment counts, update sector
2867 * counts here.
2868 */
1aa4f24f 2869 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2870 return 0;
2871
2872 /*
2873 * At this point we have either done a back merge
2874 * or front merge. We need the smaller start_time of
2875 * the merged requests to be the current request
2876 * for accounting purposes.
2877 */
2878 if (time_after(req->start_time, next->start_time))
2879 req->start_time = next->start_time;
2880
2881 req->biotail->bi_next = next->bio;
2882 req->biotail = next->biotail;
2883
2884 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2885
2886 elv_merge_requests(q, req, next);
2887
2888 if (req->rq_disk) {
2889 disk_round_stats(req->rq_disk);
2890 req->rq_disk->in_flight--;
2891 }
2892
22e2c507
JA
2893 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2894
1da177e4
LT
2895 __blk_put_request(q, next);
2896 return 1;
2897}
2898
165125e1
JA
2899static inline int attempt_back_merge(struct request_queue *q,
2900 struct request *rq)
1da177e4
LT
2901{
2902 struct request *next = elv_latter_request(q, rq);
2903
2904 if (next)
2905 return attempt_merge(q, rq, next);
2906
2907 return 0;
2908}
2909
165125e1
JA
2910static inline int attempt_front_merge(struct request_queue *q,
2911 struct request *rq)
1da177e4
LT
2912{
2913 struct request *prev = elv_former_request(q, rq);
2914
2915 if (prev)
2916 return attempt_merge(q, prev, rq);
2917
2918 return 0;
2919}
2920
52d9e675
TH
2921static void init_request_from_bio(struct request *req, struct bio *bio)
2922{
4aff5e23 2923 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2924
2925 /*
2926 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2927 */
2928 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2929 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2930
2931 /*
2932 * REQ_BARRIER implies no merging, but lets make it explicit
2933 */
2934 if (unlikely(bio_barrier(bio)))
4aff5e23 2935 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2936
b31dc66a 2937 if (bio_sync(bio))
4aff5e23 2938 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2939 if (bio_rw_meta(bio))
2940 req->cmd_flags |= REQ_RW_META;
b31dc66a 2941
52d9e675
TH
2942 req->errors = 0;
2943 req->hard_sector = req->sector = bio->bi_sector;
2944 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2945 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2946 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2947 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2948 req->buffer = bio_data(bio); /* see ->buffer comment above */
52d9e675
TH
2949 req->bio = req->biotail = bio;
2950 req->ioprio = bio_prio(bio);
2951 req->rq_disk = bio->bi_bdev->bd_disk;
2952 req->start_time = jiffies;
2953}
2954
165125e1 2955static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2956{
450991bc 2957 struct request *req;
51da90fc
JA
2958 int el_ret, nr_sectors, barrier, err;
2959 const unsigned short prio = bio_prio(bio);
2960 const int sync = bio_sync(bio);
7749a8d4 2961 int rw_flags;
1da177e4 2962
1da177e4 2963 nr_sectors = bio_sectors(bio);
1da177e4
LT
2964
2965 /*
2966 * low level driver can indicate that it wants pages above a
2967 * certain limit bounced to low memory (ie for highmem, or even
2968 * ISA dma in theory)
2969 */
2970 blk_queue_bounce(q, &bio);
2971
1da177e4 2972 barrier = bio_barrier(bio);
797e7dbb 2973 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2974 err = -EOPNOTSUPP;
2975 goto end_io;
2976 }
2977
1da177e4
LT
2978 spin_lock_irq(q->queue_lock);
2979
450991bc 2980 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2981 goto get_rq;
2982
2983 el_ret = elv_merge(q, &req, bio);
2984 switch (el_ret) {
2985 case ELEVATOR_BACK_MERGE:
2986 BUG_ON(!rq_mergeable(req));
2987
1aa4f24f 2988 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
2989 break;
2990
2056a782
JA
2991 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2992
1da177e4
LT
2993 req->biotail->bi_next = bio;
2994 req->biotail = bio;
2995 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2996 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2997 drive_stat_acct(req, nr_sectors, 0);
2998 if (!attempt_back_merge(q, req))
2e662b65 2999 elv_merged_request(q, req, el_ret);
1da177e4
LT
3000 goto out;
3001
3002 case ELEVATOR_FRONT_MERGE:
3003 BUG_ON(!rq_mergeable(req));
3004
1aa4f24f 3005 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3006 break;
3007
2056a782
JA
3008 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3009
1da177e4
LT
3010 bio->bi_next = req->bio;
3011 req->bio = bio;
3012
3013 /*
3014 * may not be valid. if the low level driver said
3015 * it didn't need a bounce buffer then it better
3016 * not touch req->buffer either...
3017 */
3018 req->buffer = bio_data(bio);
51da90fc
JA
3019 req->current_nr_sectors = bio_cur_sectors(bio);
3020 req->hard_cur_sectors = req->current_nr_sectors;
3021 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3022 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3023 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3024 drive_stat_acct(req, nr_sectors, 0);
3025 if (!attempt_front_merge(q, req))
2e662b65 3026 elv_merged_request(q, req, el_ret);
1da177e4
LT
3027 goto out;
3028
450991bc 3029 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3030 default:
450991bc 3031 ;
1da177e4
LT
3032 }
3033
450991bc 3034get_rq:
7749a8d4
JA
3035 /*
3036 * This sync check and mask will be re-done in init_request_from_bio(),
3037 * but we need to set it earlier to expose the sync flag to the
3038 * rq allocator and io schedulers.
3039 */
3040 rw_flags = bio_data_dir(bio);
3041 if (sync)
3042 rw_flags |= REQ_RW_SYNC;
3043
1da177e4 3044 /*
450991bc 3045 * Grab a free request. This is might sleep but can not fail.
d6344532 3046 * Returns with the queue unlocked.
450991bc 3047 */
7749a8d4 3048 req = get_request_wait(q, rw_flags, bio);
d6344532 3049
450991bc
NP
3050 /*
3051 * After dropping the lock and possibly sleeping here, our request
3052 * may now be mergeable after it had proven unmergeable (above).
3053 * We don't worry about that case for efficiency. It won't happen
3054 * often, and the elevators are able to handle it.
1da177e4 3055 */
52d9e675 3056 init_request_from_bio(req, bio);
1da177e4 3057
450991bc
NP
3058 spin_lock_irq(q->queue_lock);
3059 if (elv_queue_empty(q))
3060 blk_plug_device(q);
1da177e4
LT
3061 add_request(q, req);
3062out:
4a534f93 3063 if (sync)
1da177e4
LT
3064 __generic_unplug_device(q);
3065
3066 spin_unlock_irq(q->queue_lock);
3067 return 0;
3068
3069end_io:
3070 bio_endio(bio, nr_sectors << 9, err);
3071 return 0;
3072}
3073
3074/*
3075 * If bio->bi_dev is a partition, remap the location
3076 */
3077static inline void blk_partition_remap(struct bio *bio)
3078{
3079 struct block_device *bdev = bio->bi_bdev;
3080
3081 if (bdev != bdev->bd_contains) {
3082 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3083 const int rw = bio_data_dir(bio);
3084
3085 p->sectors[rw] += bio_sectors(bio);
3086 p->ios[rw]++;
1da177e4 3087
1da177e4
LT
3088 bio->bi_sector += p->start_sect;
3089 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3090
3091 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3092 bdev->bd_dev, bio->bi_sector,
3093 bio->bi_sector - p->start_sect);
1da177e4
LT
3094 }
3095}
3096
1da177e4
LT
3097static void handle_bad_sector(struct bio *bio)
3098{
3099 char b[BDEVNAME_SIZE];
3100
3101 printk(KERN_INFO "attempt to access beyond end of device\n");
3102 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3103 bdevname(bio->bi_bdev, b),
3104 bio->bi_rw,
3105 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3106 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3107
3108 set_bit(BIO_EOF, &bio->bi_flags);
3109}
3110
c17bb495
AM
3111#ifdef CONFIG_FAIL_MAKE_REQUEST
3112
3113static DECLARE_FAULT_ATTR(fail_make_request);
3114
3115static int __init setup_fail_make_request(char *str)
3116{
3117 return setup_fault_attr(&fail_make_request, str);
3118}
3119__setup("fail_make_request=", setup_fail_make_request);
3120
3121static int should_fail_request(struct bio *bio)
3122{
3123 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3124 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3125 return should_fail(&fail_make_request, bio->bi_size);
3126
3127 return 0;
3128}
3129
3130static int __init fail_make_request_debugfs(void)
3131{
3132 return init_fault_attr_dentries(&fail_make_request,
3133 "fail_make_request");
3134}
3135
3136late_initcall(fail_make_request_debugfs);
3137
3138#else /* CONFIG_FAIL_MAKE_REQUEST */
3139
3140static inline int should_fail_request(struct bio *bio)
3141{
3142 return 0;
3143}
3144
3145#endif /* CONFIG_FAIL_MAKE_REQUEST */
3146
1da177e4
LT
3147/**
3148 * generic_make_request: hand a buffer to its device driver for I/O
3149 * @bio: The bio describing the location in memory and on the device.
3150 *
3151 * generic_make_request() is used to make I/O requests of block
3152 * devices. It is passed a &struct bio, which describes the I/O that needs
3153 * to be done.
3154 *
3155 * generic_make_request() does not return any status. The
3156 * success/failure status of the request, along with notification of
3157 * completion, is delivered asynchronously through the bio->bi_end_io
3158 * function described (one day) else where.
3159 *
3160 * The caller of generic_make_request must make sure that bi_io_vec
3161 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3162 * set to describe the device address, and the
3163 * bi_end_io and optionally bi_private are set to describe how
3164 * completion notification should be signaled.
3165 *
3166 * generic_make_request and the drivers it calls may use bi_next if this
3167 * bio happens to be merged with someone else, and may change bi_dev and
3168 * bi_sector for remaps as it sees fit. So the values of these fields
3169 * should NOT be depended on after the call to generic_make_request.
3170 */
d89d8796 3171static inline void __generic_make_request(struct bio *bio)
1da177e4 3172{
165125e1 3173 struct request_queue *q;
1da177e4 3174 sector_t maxsector;
5ddfe969 3175 sector_t old_sector;
1da177e4 3176 int ret, nr_sectors = bio_sectors(bio);
2056a782 3177 dev_t old_dev;
1da177e4
LT
3178
3179 might_sleep();
3180 /* Test device or partition size, when known. */
3181 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3182 if (maxsector) {
3183 sector_t sector = bio->bi_sector;
3184
3185 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3186 /*
3187 * This may well happen - the kernel calls bread()
3188 * without checking the size of the device, e.g., when
3189 * mounting a device.
3190 */
3191 handle_bad_sector(bio);
3192 goto end_io;
3193 }
3194 }
3195
3196 /*
3197 * Resolve the mapping until finished. (drivers are
3198 * still free to implement/resolve their own stacking
3199 * by explicitly returning 0)
3200 *
3201 * NOTE: we don't repeat the blk_size check for each new device.
3202 * Stacking drivers are expected to know what they are doing.
3203 */
5ddfe969 3204 old_sector = -1;
2056a782 3205 old_dev = 0;
1da177e4
LT
3206 do {
3207 char b[BDEVNAME_SIZE];
3208
3209 q = bdev_get_queue(bio->bi_bdev);
3210 if (!q) {
3211 printk(KERN_ERR
3212 "generic_make_request: Trying to access "
3213 "nonexistent block-device %s (%Lu)\n",
3214 bdevname(bio->bi_bdev, b),
3215 (long long) bio->bi_sector);
3216end_io:
3217 bio_endio(bio, bio->bi_size, -EIO);
3218 break;
3219 }
3220
3221 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3222 printk("bio too big device %s (%u > %u)\n",
3223 bdevname(bio->bi_bdev, b),
3224 bio_sectors(bio),
3225 q->max_hw_sectors);
3226 goto end_io;
3227 }
3228
fde6ad22 3229 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3230 goto end_io;
3231
c17bb495
AM
3232 if (should_fail_request(bio))
3233 goto end_io;
3234
1da177e4
LT
3235 /*
3236 * If this device has partitions, remap block n
3237 * of partition p to block n+start(p) of the disk.
3238 */
3239 blk_partition_remap(bio);
3240
5ddfe969 3241 if (old_sector != -1)
2056a782 3242 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3243 old_sector);
2056a782
JA
3244
3245 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3246
5ddfe969 3247 old_sector = bio->bi_sector;
2056a782
JA
3248 old_dev = bio->bi_bdev->bd_dev;
3249
5ddfe969
N
3250 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3251 if (maxsector) {
3252 sector_t sector = bio->bi_sector;
3253
df66b855
AM
3254 if (maxsector < nr_sectors ||
3255 maxsector - nr_sectors < sector) {
5ddfe969 3256 /*
df66b855
AM
3257 * This may well happen - partitions are not
3258 * checked to make sure they are within the size
3259 * of the whole device.
5ddfe969
N
3260 */
3261 handle_bad_sector(bio);
3262 goto end_io;
3263 }
3264 }
3265
1da177e4
LT
3266 ret = q->make_request_fn(q, bio);
3267 } while (ret);
3268}
3269
d89d8796
NB
3270/*
3271 * We only want one ->make_request_fn to be active at a time,
3272 * else stack usage with stacked devices could be a problem.
3273 * So use current->bio_{list,tail} to keep a list of requests
3274 * submited by a make_request_fn function.
3275 * current->bio_tail is also used as a flag to say if
3276 * generic_make_request is currently active in this task or not.
3277 * If it is NULL, then no make_request is active. If it is non-NULL,
3278 * then a make_request is active, and new requests should be added
3279 * at the tail
3280 */
3281void generic_make_request(struct bio *bio)
3282{
3283 if (current->bio_tail) {
3284 /* make_request is active */
3285 *(current->bio_tail) = bio;
3286 bio->bi_next = NULL;
3287 current->bio_tail = &bio->bi_next;
3288 return;
3289 }
3290 /* following loop may be a bit non-obvious, and so deserves some
3291 * explanation.
3292 * Before entering the loop, bio->bi_next is NULL (as all callers
3293 * ensure that) so we have a list with a single bio.
3294 * We pretend that we have just taken it off a longer list, so
3295 * we assign bio_list to the next (which is NULL) and bio_tail
3296 * to &bio_list, thus initialising the bio_list of new bios to be
3297 * added. __generic_make_request may indeed add some more bios
3298 * through a recursive call to generic_make_request. If it
3299 * did, we find a non-NULL value in bio_list and re-enter the loop
3300 * from the top. In this case we really did just take the bio
3301 * of the top of the list (no pretending) and so fixup bio_list and
3302 * bio_tail or bi_next, and call into __generic_make_request again.
3303 *
3304 * The loop was structured like this to make only one call to
3305 * __generic_make_request (which is important as it is large and
3306 * inlined) and to keep the structure simple.
3307 */
3308 BUG_ON(bio->bi_next);
3309 do {
3310 current->bio_list = bio->bi_next;
3311 if (bio->bi_next == NULL)
3312 current->bio_tail = &current->bio_list;
3313 else
3314 bio->bi_next = NULL;
3315 __generic_make_request(bio);
3316 bio = current->bio_list;
3317 } while (bio);
3318 current->bio_tail = NULL; /* deactivate */
3319}
3320
1da177e4
LT
3321EXPORT_SYMBOL(generic_make_request);
3322
3323/**
3324 * submit_bio: submit a bio to the block device layer for I/O
3325 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3326 * @bio: The &struct bio which describes the I/O
3327 *
3328 * submit_bio() is very similar in purpose to generic_make_request(), and
3329 * uses that function to do most of the work. Both are fairly rough
3330 * interfaces, @bio must be presetup and ready for I/O.
3331 *
3332 */
3333void submit_bio(int rw, struct bio *bio)
3334{
3335 int count = bio_sectors(bio);
3336
3337 BIO_BUG_ON(!bio->bi_size);
3338 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3339 bio->bi_rw |= rw;
faccbd4b 3340 if (rw & WRITE) {
f8891e5e 3341 count_vm_events(PGPGOUT, count);
faccbd4b
AM
3342 } else {
3343 task_io_account_read(bio->bi_size);
f8891e5e 3344 count_vm_events(PGPGIN, count);
faccbd4b 3345 }
1da177e4
LT
3346
3347 if (unlikely(block_dump)) {
3348 char b[BDEVNAME_SIZE];
3349 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3350 current->comm, current->pid,
3351 (rw & WRITE) ? "WRITE" : "READ",
3352 (unsigned long long)bio->bi_sector,
3353 bdevname(bio->bi_bdev,b));
3354 }
3355
3356 generic_make_request(bio);
3357}
3358
3359EXPORT_SYMBOL(submit_bio);
3360
93d17d3d 3361static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3362{
3363 if (blk_fs_request(rq)) {
3364 rq->hard_sector += nsect;
3365 rq->hard_nr_sectors -= nsect;
3366
3367 /*
3368 * Move the I/O submission pointers ahead if required.
3369 */
3370 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3371 (rq->sector <= rq->hard_sector)) {
3372 rq->sector = rq->hard_sector;
3373 rq->nr_sectors = rq->hard_nr_sectors;
3374 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3375 rq->current_nr_sectors = rq->hard_cur_sectors;
3376 rq->buffer = bio_data(rq->bio);
3377 }
3378
3379 /*
3380 * if total number of sectors is less than the first segment
3381 * size, something has gone terribly wrong
3382 */
3383 if (rq->nr_sectors < rq->current_nr_sectors) {
3384 printk("blk: request botched\n");
3385 rq->nr_sectors = rq->current_nr_sectors;
3386 }
3387 }
3388}
3389
3390static int __end_that_request_first(struct request *req, int uptodate,
3391 int nr_bytes)
3392{
3393 int total_bytes, bio_nbytes, error, next_idx = 0;
3394 struct bio *bio;
3395
2056a782
JA
3396 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3397
1da177e4
LT
3398 /*
3399 * extend uptodate bool to allow < 0 value to be direct io error
3400 */
3401 error = 0;
3402 if (end_io_error(uptodate))
3403 error = !uptodate ? -EIO : uptodate;
3404
3405 /*
3406 * for a REQ_BLOCK_PC request, we want to carry any eventual
3407 * sense key with us all the way through
3408 */
3409 if (!blk_pc_request(req))
3410 req->errors = 0;
3411
3412 if (!uptodate) {
4aff5e23 3413 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3414 printk("end_request: I/O error, dev %s, sector %llu\n",
3415 req->rq_disk ? req->rq_disk->disk_name : "?",
3416 (unsigned long long)req->sector);
3417 }
3418
d72d904a 3419 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3420 const int rw = rq_data_dir(req);
3421
53e86061 3422 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3423 }
3424
1da177e4
LT
3425 total_bytes = bio_nbytes = 0;
3426 while ((bio = req->bio) != NULL) {
3427 int nbytes;
3428
3429 if (nr_bytes >= bio->bi_size) {
3430 req->bio = bio->bi_next;
3431 nbytes = bio->bi_size;
797e7dbb
TH
3432 if (!ordered_bio_endio(req, bio, nbytes, error))
3433 bio_endio(bio, nbytes, error);
1da177e4
LT
3434 next_idx = 0;
3435 bio_nbytes = 0;
3436 } else {
3437 int idx = bio->bi_idx + next_idx;
3438
3439 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3440 blk_dump_rq_flags(req, "__end_that");
3441 printk("%s: bio idx %d >= vcnt %d\n",
3442 __FUNCTION__,
3443 bio->bi_idx, bio->bi_vcnt);
3444 break;
3445 }
3446
3447 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3448 BIO_BUG_ON(nbytes > bio->bi_size);
3449
3450 /*
3451 * not a complete bvec done
3452 */
3453 if (unlikely(nbytes > nr_bytes)) {
3454 bio_nbytes += nr_bytes;
3455 total_bytes += nr_bytes;
3456 break;
3457 }
3458
3459 /*
3460 * advance to the next vector
3461 */
3462 next_idx++;
3463 bio_nbytes += nbytes;
3464 }
3465
3466 total_bytes += nbytes;
3467 nr_bytes -= nbytes;
3468
3469 if ((bio = req->bio)) {
3470 /*
3471 * end more in this run, or just return 'not-done'
3472 */
3473 if (unlikely(nr_bytes <= 0))
3474 break;
3475 }
3476 }
3477
3478 /*
3479 * completely done
3480 */
3481 if (!req->bio)
3482 return 0;
3483
3484 /*
3485 * if the request wasn't completed, update state
3486 */
3487 if (bio_nbytes) {
797e7dbb
TH
3488 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3489 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3490 bio->bi_idx += next_idx;
3491 bio_iovec(bio)->bv_offset += nr_bytes;
3492 bio_iovec(bio)->bv_len -= nr_bytes;
3493 }
3494
3495 blk_recalc_rq_sectors(req, total_bytes >> 9);
3496 blk_recalc_rq_segments(req);
3497 return 1;
3498}
3499
3500/**
3501 * end_that_request_first - end I/O on a request
3502 * @req: the request being processed
3503 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3504 * @nr_sectors: number of sectors to end I/O on
3505 *
3506 * Description:
3507 * Ends I/O on a number of sectors attached to @req, and sets it up
3508 * for the next range of segments (if any) in the cluster.
3509 *
3510 * Return:
3511 * 0 - we are done with this request, call end_that_request_last()
3512 * 1 - still buffers pending for this request
3513 **/
3514int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3515{
3516 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3517}
3518
3519EXPORT_SYMBOL(end_that_request_first);
3520
3521/**
3522 * end_that_request_chunk - end I/O on a request
3523 * @req: the request being processed
3524 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3525 * @nr_bytes: number of bytes to complete
3526 *
3527 * Description:
3528 * Ends I/O on a number of bytes attached to @req, and sets it up
3529 * for the next range of segments (if any). Like end_that_request_first(),
3530 * but deals with bytes instead of sectors.
3531 *
3532 * Return:
3533 * 0 - we are done with this request, call end_that_request_last()
3534 * 1 - still buffers pending for this request
3535 **/
3536int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3537{
3538 return __end_that_request_first(req, uptodate, nr_bytes);
3539}
3540
3541EXPORT_SYMBOL(end_that_request_chunk);
3542
ff856bad
JA
3543/*
3544 * splice the completion data to a local structure and hand off to
3545 * process_completion_queue() to complete the requests
3546 */
3547static void blk_done_softirq(struct softirq_action *h)
3548{
626ab0e6 3549 struct list_head *cpu_list, local_list;
ff856bad
JA
3550
3551 local_irq_disable();
3552 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3553 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3554 local_irq_enable();
3555
3556 while (!list_empty(&local_list)) {
3557 struct request *rq = list_entry(local_list.next, struct request, donelist);
3558
3559 list_del_init(&rq->donelist);
3560 rq->q->softirq_done_fn(rq);
3561 }
3562}
3563
ff856bad
JA
3564static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3565 void *hcpu)
3566{
3567 /*
3568 * If a CPU goes away, splice its entries to the current CPU
3569 * and trigger a run of the softirq
3570 */
8bb78442 3571 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3572 int cpu = (unsigned long) hcpu;
3573
3574 local_irq_disable();
3575 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3576 &__get_cpu_var(blk_cpu_done));
3577 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3578 local_irq_enable();
3579 }
3580
3581 return NOTIFY_OK;
3582}
3583
3584
054cc8a2 3585static struct notifier_block __devinitdata blk_cpu_notifier = {
ff856bad
JA
3586 .notifier_call = blk_cpu_notify,
3587};
3588
ff856bad
JA
3589/**
3590 * blk_complete_request - end I/O on a request
3591 * @req: the request being processed
3592 *
3593 * Description:
3594 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3595 * unless the driver actually implements this in its completion callback
ff856bad
JA
3596 * through requeueing. Theh actual completion happens out-of-order,
3597 * through a softirq handler. The user must have registered a completion
3598 * callback through blk_queue_softirq_done().
3599 **/
3600
3601void blk_complete_request(struct request *req)
3602{
3603 struct list_head *cpu_list;
3604 unsigned long flags;
3605
3606 BUG_ON(!req->q->softirq_done_fn);
3607
3608 local_irq_save(flags);
3609
3610 cpu_list = &__get_cpu_var(blk_cpu_done);
3611 list_add_tail(&req->donelist, cpu_list);
3612 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3613
3614 local_irq_restore(flags);
3615}
3616
3617EXPORT_SYMBOL(blk_complete_request);
3618
1da177e4
LT
3619/*
3620 * queue lock must be held
3621 */
8ffdc655 3622void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3623{
3624 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3625 int error;
3626
3627 /*
3628 * extend uptodate bool to allow < 0 value to be direct io error
3629 */
3630 error = 0;
3631 if (end_io_error(uptodate))
3632 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3633
3634 if (unlikely(laptop_mode) && blk_fs_request(req))
3635 laptop_io_completion();
3636
fd0ff8aa
JA
3637 /*
3638 * Account IO completion. bar_rq isn't accounted as a normal
3639 * IO on queueing nor completion. Accounting the containing
3640 * request is enough.
3641 */
3642 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3643 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3644 const int rw = rq_data_dir(req);
3645
3646 __disk_stat_inc(disk, ios[rw]);
3647 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3648 disk_round_stats(disk);
3649 disk->in_flight--;
3650 }
3651 if (req->end_io)
8ffdc655 3652 req->end_io(req, error);
1da177e4
LT
3653 else
3654 __blk_put_request(req->q, req);
3655}
3656
3657EXPORT_SYMBOL(end_that_request_last);
3658
3659void end_request(struct request *req, int uptodate)
3660{
3661 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3662 add_disk_randomness(req->rq_disk);
3663 blkdev_dequeue_request(req);
8ffdc655 3664 end_that_request_last(req, uptodate);
1da177e4
LT
3665 }
3666}
3667
3668EXPORT_SYMBOL(end_request);
3669
66846572
N
3670static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3671 struct bio *bio)
1da177e4 3672{
4aff5e23
JA
3673 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3674 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3675
3676 rq->nr_phys_segments = bio_phys_segments(q, bio);
3677 rq->nr_hw_segments = bio_hw_segments(q, bio);
3678 rq->current_nr_sectors = bio_cur_sectors(bio);
3679 rq->hard_cur_sectors = rq->current_nr_sectors;
3680 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3681 rq->buffer = bio_data(bio);
0e75f906 3682 rq->data_len = bio->bi_size;
1da177e4
LT
3683
3684 rq->bio = rq->biotail = bio;
1da177e4 3685
66846572
N
3686 if (bio->bi_bdev)
3687 rq->rq_disk = bio->bi_bdev->bd_disk;
3688}
1da177e4
LT
3689
3690int kblockd_schedule_work(struct work_struct *work)
3691{
3692 return queue_work(kblockd_workqueue, work);
3693}
3694
3695EXPORT_SYMBOL(kblockd_schedule_work);
3696
19a75d83 3697void kblockd_flush_work(struct work_struct *work)
1da177e4 3698{
28e53bdd 3699 cancel_work_sync(work);
1da177e4 3700}
19a75d83 3701EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3702
3703int __init blk_dev_init(void)
3704{
ff856bad
JA
3705 int i;
3706
1da177e4
LT
3707 kblockd_workqueue = create_workqueue("kblockd");
3708 if (!kblockd_workqueue)
3709 panic("Failed to create kblockd\n");
3710
3711 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3712 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3713
3714 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3715 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3716
3717 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3718 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3719
0a945022 3720 for_each_possible_cpu(i)
ff856bad
JA
3721 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3722
3723 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3724 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3725
f772b3d9
VT
3726 blk_max_low_pfn = max_low_pfn - 1;
3727 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3728
3729 return 0;
3730}
3731
3732/*
3733 * IO Context helper functions
3734 */
3735void put_io_context(struct io_context *ioc)
3736{
3737 if (ioc == NULL)
3738 return;
3739
3740 BUG_ON(atomic_read(&ioc->refcount) == 0);
3741
3742 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3743 struct cfq_io_context *cic;
3744
334e94de 3745 rcu_read_lock();
1da177e4
LT
3746 if (ioc->aic && ioc->aic->dtor)
3747 ioc->aic->dtor(ioc->aic);
e2d74ac0 3748 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3749 struct rb_node *n = rb_first(&ioc->cic_root);
3750
3751 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3752 cic->dtor(ioc);
3753 }
334e94de 3754 rcu_read_unlock();
1da177e4
LT
3755
3756 kmem_cache_free(iocontext_cachep, ioc);
3757 }
3758}
3759EXPORT_SYMBOL(put_io_context);
3760
3761/* Called by the exitting task */
3762void exit_io_context(void)
3763{
1da177e4 3764 struct io_context *ioc;
e2d74ac0 3765 struct cfq_io_context *cic;
1da177e4 3766
22e2c507 3767 task_lock(current);
1da177e4
LT
3768 ioc = current->io_context;
3769 current->io_context = NULL;
22e2c507 3770 task_unlock(current);
1da177e4 3771
25034d7a 3772 ioc->task = NULL;
1da177e4
LT
3773 if (ioc->aic && ioc->aic->exit)
3774 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3775 if (ioc->cic_root.rb_node != NULL) {
3776 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3777 cic->exit(ioc);
3778 }
25034d7a 3779
1da177e4
LT
3780 put_io_context(ioc);
3781}
3782
3783/*
3784 * If the current task has no IO context then create one and initialise it.
fb3cc432 3785 * Otherwise, return its existing IO context.
1da177e4 3786 *
fb3cc432
NP
3787 * This returned IO context doesn't have a specifically elevated refcount,
3788 * but since the current task itself holds a reference, the context can be
3789 * used in general code, so long as it stays within `current` context.
1da177e4 3790 */
b5deef90 3791static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3792{
3793 struct task_struct *tsk = current;
1da177e4
LT
3794 struct io_context *ret;
3795
1da177e4 3796 ret = tsk->io_context;
fb3cc432
NP
3797 if (likely(ret))
3798 return ret;
1da177e4 3799
b5deef90 3800 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3801 if (ret) {
3802 atomic_set(&ret->refcount, 1);
22e2c507 3803 ret->task = current;
fc46379d 3804 ret->ioprio_changed = 0;
1da177e4
LT
3805 ret->last_waited = jiffies; /* doesn't matter... */
3806 ret->nr_batch_requests = 0; /* because this is 0 */
3807 ret->aic = NULL;
e2d74ac0 3808 ret->cic_root.rb_node = NULL;
4e521c27 3809 ret->ioc_data = NULL;
9f83e45e
ON
3810 /* make sure set_task_ioprio() sees the settings above */
3811 smp_wmb();
fb3cc432
NP
3812 tsk->io_context = ret;
3813 }
1da177e4 3814
fb3cc432
NP
3815 return ret;
3816}
1da177e4 3817
fb3cc432
NP
3818/*
3819 * If the current task has no IO context then create one and initialise it.
3820 * If it does have a context, take a ref on it.
3821 *
3822 * This is always called in the context of the task which submitted the I/O.
3823 */
b5deef90 3824struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3825{
3826 struct io_context *ret;
b5deef90 3827 ret = current_io_context(gfp_flags, node);
fb3cc432 3828 if (likely(ret))
1da177e4 3829 atomic_inc(&ret->refcount);
1da177e4
LT
3830 return ret;
3831}
3832EXPORT_SYMBOL(get_io_context);
3833
3834void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3835{
3836 struct io_context *src = *psrc;
3837 struct io_context *dst = *pdst;
3838
3839 if (src) {
3840 BUG_ON(atomic_read(&src->refcount) == 0);
3841 atomic_inc(&src->refcount);
3842 put_io_context(dst);
3843 *pdst = src;
3844 }
3845}
3846EXPORT_SYMBOL(copy_io_context);
3847
3848void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3849{
3850 struct io_context *temp;
3851 temp = *ioc1;
3852 *ioc1 = *ioc2;
3853 *ioc2 = temp;
3854}
3855EXPORT_SYMBOL(swap_io_context);
3856
3857/*
3858 * sysfs parts below
3859 */
3860struct queue_sysfs_entry {
3861 struct attribute attr;
3862 ssize_t (*show)(struct request_queue *, char *);
3863 ssize_t (*store)(struct request_queue *, const char *, size_t);
3864};
3865
3866static ssize_t
3867queue_var_show(unsigned int var, char *page)
3868{
3869 return sprintf(page, "%d\n", var);
3870}
3871
3872static ssize_t
3873queue_var_store(unsigned long *var, const char *page, size_t count)
3874{
3875 char *p = (char *) page;
3876
3877 *var = simple_strtoul(p, &p, 10);
3878 return count;
3879}
3880
3881static ssize_t queue_requests_show(struct request_queue *q, char *page)
3882{
3883 return queue_var_show(q->nr_requests, (page));
3884}
3885
3886static ssize_t
3887queue_requests_store(struct request_queue *q, const char *page, size_t count)
3888{
3889 struct request_list *rl = &q->rq;
c981ff9f
AV
3890 unsigned long nr;
3891 int ret = queue_var_store(&nr, page, count);
3892 if (nr < BLKDEV_MIN_RQ)
3893 nr = BLKDEV_MIN_RQ;
1da177e4 3894
c981ff9f
AV
3895 spin_lock_irq(q->queue_lock);
3896 q->nr_requests = nr;
1da177e4
LT
3897 blk_queue_congestion_threshold(q);
3898
3899 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3900 blk_set_queue_congested(q, READ);
1da177e4 3901 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3902 blk_clear_queue_congested(q, READ);
1da177e4
LT
3903
3904 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 3905 blk_set_queue_congested(q, WRITE);
1da177e4 3906 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 3907 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
3908
3909 if (rl->count[READ] >= q->nr_requests) {
3910 blk_set_queue_full(q, READ);
3911 } else if (rl->count[READ]+1 <= q->nr_requests) {
3912 blk_clear_queue_full(q, READ);
3913 wake_up(&rl->wait[READ]);
3914 }
3915
3916 if (rl->count[WRITE] >= q->nr_requests) {
3917 blk_set_queue_full(q, WRITE);
3918 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3919 blk_clear_queue_full(q, WRITE);
3920 wake_up(&rl->wait[WRITE]);
3921 }
c981ff9f 3922 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3923 return ret;
3924}
3925
3926static ssize_t queue_ra_show(struct request_queue *q, char *page)
3927{
3928 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3929
3930 return queue_var_show(ra_kb, (page));
3931}
3932
3933static ssize_t
3934queue_ra_store(struct request_queue *q, const char *page, size_t count)
3935{
3936 unsigned long ra_kb;
3937 ssize_t ret = queue_var_store(&ra_kb, page, count);
3938
3939 spin_lock_irq(q->queue_lock);
1da177e4
LT
3940 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3941 spin_unlock_irq(q->queue_lock);
3942
3943 return ret;
3944}
3945
3946static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3947{
3948 int max_sectors_kb = q->max_sectors >> 1;
3949
3950 return queue_var_show(max_sectors_kb, (page));
3951}
3952
3953static ssize_t
3954queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3955{
3956 unsigned long max_sectors_kb,
3957 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3958 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3959 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3960 int ra_kb;
3961
3962 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3963 return -EINVAL;
3964 /*
3965 * Take the queue lock to update the readahead and max_sectors
3966 * values synchronously:
3967 */
3968 spin_lock_irq(q->queue_lock);
3969 /*
3970 * Trim readahead window as well, if necessary:
3971 */
3972 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3973 if (ra_kb > max_sectors_kb)
3974 q->backing_dev_info.ra_pages =
3975 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3976
3977 q->max_sectors = max_sectors_kb << 1;
3978 spin_unlock_irq(q->queue_lock);
3979
3980 return ret;
3981}
3982
3983static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3984{
3985 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3986
3987 return queue_var_show(max_hw_sectors_kb, (page));
3988}
3989
3990
3991static struct queue_sysfs_entry queue_requests_entry = {
3992 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3993 .show = queue_requests_show,
3994 .store = queue_requests_store,
3995};
3996
3997static struct queue_sysfs_entry queue_ra_entry = {
3998 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3999 .show = queue_ra_show,
4000 .store = queue_ra_store,
4001};
4002
4003static struct queue_sysfs_entry queue_max_sectors_entry = {
4004 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4005 .show = queue_max_sectors_show,
4006 .store = queue_max_sectors_store,
4007};
4008
4009static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4010 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4011 .show = queue_max_hw_sectors_show,
4012};
4013
4014static struct queue_sysfs_entry queue_iosched_entry = {
4015 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4016 .show = elv_iosched_show,
4017 .store = elv_iosched_store,
4018};
4019
4020static struct attribute *default_attrs[] = {
4021 &queue_requests_entry.attr,
4022 &queue_ra_entry.attr,
4023 &queue_max_hw_sectors_entry.attr,
4024 &queue_max_sectors_entry.attr,
4025 &queue_iosched_entry.attr,
4026 NULL,
4027};
4028
4029#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4030
4031static ssize_t
4032queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4033{
4034 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4035 struct request_queue *q =
4036 container_of(kobj, struct request_queue, kobj);
483f4afc 4037 ssize_t res;
1da177e4 4038
1da177e4 4039 if (!entry->show)
6c1852a0 4040 return -EIO;
483f4afc
AV
4041 mutex_lock(&q->sysfs_lock);
4042 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4043 mutex_unlock(&q->sysfs_lock);
4044 return -ENOENT;
4045 }
4046 res = entry->show(q, page);
4047 mutex_unlock(&q->sysfs_lock);
4048 return res;
1da177e4
LT
4049}
4050
4051static ssize_t
4052queue_attr_store(struct kobject *kobj, struct attribute *attr,
4053 const char *page, size_t length)
4054{
4055 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4056 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4057
4058 ssize_t res;
1da177e4 4059
1da177e4 4060 if (!entry->store)
6c1852a0 4061 return -EIO;
483f4afc
AV
4062 mutex_lock(&q->sysfs_lock);
4063 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4064 mutex_unlock(&q->sysfs_lock);
4065 return -ENOENT;
4066 }
4067 res = entry->store(q, page, length);
4068 mutex_unlock(&q->sysfs_lock);
4069 return res;
1da177e4
LT
4070}
4071
4072static struct sysfs_ops queue_sysfs_ops = {
4073 .show = queue_attr_show,
4074 .store = queue_attr_store,
4075};
4076
93d17d3d 4077static struct kobj_type queue_ktype = {
1da177e4
LT
4078 .sysfs_ops = &queue_sysfs_ops,
4079 .default_attrs = default_attrs,
483f4afc 4080 .release = blk_release_queue,
1da177e4
LT
4081};
4082
4083int blk_register_queue(struct gendisk *disk)
4084{
4085 int ret;
4086
165125e1 4087 struct request_queue *q = disk->queue;
1da177e4
LT
4088
4089 if (!q || !q->request_fn)
4090 return -ENXIO;
4091
4092 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4093
483f4afc 4094 ret = kobject_add(&q->kobj);
1da177e4
LT
4095 if (ret < 0)
4096 return ret;
4097
483f4afc
AV
4098 kobject_uevent(&q->kobj, KOBJ_ADD);
4099
1da177e4
LT
4100 ret = elv_register_queue(q);
4101 if (ret) {
483f4afc
AV
4102 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4103 kobject_del(&q->kobj);
1da177e4
LT
4104 return ret;
4105 }
4106
4107 return 0;
4108}
4109
4110void blk_unregister_queue(struct gendisk *disk)
4111{
165125e1 4112 struct request_queue *q = disk->queue;
1da177e4
LT
4113
4114 if (q && q->request_fn) {
4115 elv_unregister_queue(q);
4116
483f4afc
AV
4117 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4118 kobject_del(&q->kobj);
1da177e4
LT
4119 kobject_put(&disk->kobj);
4120 }
4121}