]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/ll_rw_blk.c
[PATCH] as-iosched: kill arq
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
ff856bad
JA
28#include <linux/interrupt.h>
29#include <linux/cpu.h>
2056a782 30#include <linux/blktrace_api.h>
1da177e4
LT
31
32/*
33 * for max sense size
34 */
35#include <scsi/scsi_cmnd.h>
36
37static void blk_unplug_work(void *data);
38static void blk_unplug_timeout(unsigned long data);
93d17d3d 39static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675
TH
40static void init_request_from_bio(struct request *req, struct bio *bio);
41static int __make_request(request_queue_t *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
46static kmem_cache_t *request_cachep;
47
48/*
49 * For queue allocation
50 */
51static kmem_cache_t *requestq_cachep;
52
53/*
54 * For io context allocations
55 */
56static kmem_cache_t *iocontext_cachep;
57
58static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 };
62
63/*
64 * Controlling structure to kblockd
65 */
ff856bad 66static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
67
68unsigned long blk_max_low_pfn, blk_max_pfn;
69
70EXPORT_SYMBOL(blk_max_low_pfn);
71EXPORT_SYMBOL(blk_max_pfn);
72
ff856bad
JA
73static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
74
1da177e4
LT
75/* Amount of time in which a process may batch requests */
76#define BLK_BATCH_TIME (HZ/50UL)
77
78/* Number of requests a "batching" process may submit */
79#define BLK_BATCH_REQ 32
80
81/*
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
85 */
86static inline int queue_congestion_on_threshold(struct request_queue *q)
87{
88 return q->nr_congestion_on;
89}
90
91/*
92 * The threshold at which a queue is considered to be uncongested
93 */
94static inline int queue_congestion_off_threshold(struct request_queue *q)
95{
96 return q->nr_congestion_off;
97}
98
99static void blk_queue_congestion_threshold(struct request_queue *q)
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
114/*
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
117 * put back.
118 */
119static void clear_queue_congested(request_queue_t *q, int rw)
120{
121 enum bdi_state bit;
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
123
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
128 wake_up(wqh);
129}
130
131/*
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
134 */
135static void set_queue_congested(request_queue_t *q, int rw)
136{
137 enum bdi_state bit;
138
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
141}
142
143/**
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
145 * @bdev: device
146 *
147 * Locates the passed device's request queue and returns the address of its
148 * backing_dev_info
149 *
150 * Will return NULL if the request queue cannot be located.
151 */
152struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
153{
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
156
157 if (q)
158 ret = &q->backing_dev_info;
159 return ret;
160}
161
162EXPORT_SYMBOL(blk_get_backing_dev_info);
163
164void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
165{
166 q->activity_fn = fn;
167 q->activity_data = data;
168}
169
170EXPORT_SYMBOL(blk_queue_activity_fn);
171
172/**
173 * blk_queue_prep_rq - set a prepare_request function for queue
174 * @q: queue
175 * @pfn: prepare_request function
176 *
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
181 *
182 */
183void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
184{
185 q->prep_rq_fn = pfn;
186}
187
188EXPORT_SYMBOL(blk_queue_prep_rq);
189
190/**
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
192 * @q: queue
193 * @mbfn: merge_bvec_fn
194 *
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
204 * honored.
205 */
206void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
207{
208 q->merge_bvec_fn = mbfn;
209}
210
211EXPORT_SYMBOL(blk_queue_merge_bvec);
212
ff856bad
JA
213void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
214{
215 q->softirq_done_fn = fn;
216}
217
218EXPORT_SYMBOL(blk_queue_softirq_done);
219
1da177e4
LT
220/**
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
224 *
225 * Description:
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
235 *
236 * Caveat:
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
241 **/
242void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
243{
244 /*
245 * set defaults
246 */
247 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
259
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
263 q->unplug_delay = 1;
264
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
266
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
269
270 /*
271 * by default assume old behaviour and bounce for any highmem page
272 */
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
274
275 blk_queue_activity_fn(q, NULL, NULL);
1da177e4
LT
276}
277
278EXPORT_SYMBOL(blk_queue_make_request);
279
280static inline void rq_init(request_queue_t *q, struct request *rq)
281{
282 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 283 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
284
285 rq->errors = 0;
286 rq->rq_status = RQ_ACTIVE;
287 rq->bio = rq->biotail = NULL;
2e662b65
JA
288 INIT_HLIST_NODE(&rq->hash);
289 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 290 rq->ioprio = 0;
1da177e4
LT
291 rq->buffer = NULL;
292 rq->ref_count = 1;
293 rq->q = q;
294 rq->waiting = NULL;
295 rq->special = NULL;
296 rq->data_len = 0;
297 rq->data = NULL;
df46b9a4 298 rq->nr_phys_segments = 0;
1da177e4
LT
299 rq->sense = NULL;
300 rq->end_io = NULL;
301 rq->end_io_data = NULL;
ff856bad 302 rq->completion_data = NULL;
1da177e4
LT
303}
304
305/**
306 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
307 * @q: the request queue
308 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 309 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
310 *
311 * Description:
312 * For journalled file systems, doing ordered writes on a commit
313 * block instead of explicitly doing wait_on_buffer (which is bad
314 * for performance) can be a big win. Block drivers supporting this
315 * feature should call this function and indicate so.
316 *
317 **/
797e7dbb
TH
318int blk_queue_ordered(request_queue_t *q, unsigned ordered,
319 prepare_flush_fn *prepare_flush_fn)
320{
321 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
322 prepare_flush_fn == NULL) {
323 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
324 return -EINVAL;
325 }
326
327 if (ordered != QUEUE_ORDERED_NONE &&
328 ordered != QUEUE_ORDERED_DRAIN &&
329 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
330 ordered != QUEUE_ORDERED_DRAIN_FUA &&
331 ordered != QUEUE_ORDERED_TAG &&
332 ordered != QUEUE_ORDERED_TAG_FLUSH &&
333 ordered != QUEUE_ORDERED_TAG_FUA) {
334 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
335 return -EINVAL;
1da177e4 336 }
797e7dbb 337
60481b12 338 q->ordered = ordered;
797e7dbb
TH
339 q->next_ordered = ordered;
340 q->prepare_flush_fn = prepare_flush_fn;
341
342 return 0;
1da177e4
LT
343}
344
345EXPORT_SYMBOL(blk_queue_ordered);
346
347/**
348 * blk_queue_issue_flush_fn - set function for issuing a flush
349 * @q: the request queue
350 * @iff: the function to be called issuing the flush
351 *
352 * Description:
353 * If a driver supports issuing a flush command, the support is notified
354 * to the block layer by defining it through this call.
355 *
356 **/
357void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
358{
359 q->issue_flush_fn = iff;
360}
361
362EXPORT_SYMBOL(blk_queue_issue_flush_fn);
363
364/*
365 * Cache flushing for ordered writes handling
366 */
797e7dbb 367inline unsigned blk_ordered_cur_seq(request_queue_t *q)
1da177e4 368{
797e7dbb
TH
369 if (!q->ordseq)
370 return 0;
371 return 1 << ffz(q->ordseq);
1da177e4
LT
372}
373
797e7dbb 374unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 375{
1da177e4
LT
376 request_queue_t *q = rq->q;
377
797e7dbb 378 BUG_ON(q->ordseq == 0);
8922e16c 379
797e7dbb
TH
380 if (rq == &q->pre_flush_rq)
381 return QUEUE_ORDSEQ_PREFLUSH;
382 if (rq == &q->bar_rq)
383 return QUEUE_ORDSEQ_BAR;
384 if (rq == &q->post_flush_rq)
385 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 386
4aff5e23
JA
387 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
388 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
389 return QUEUE_ORDSEQ_DRAIN;
390 else
391 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
392}
393
797e7dbb 394void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
1da177e4 395{
797e7dbb
TH
396 struct request *rq;
397 int uptodate;
1da177e4 398
797e7dbb
TH
399 if (error && !q->orderr)
400 q->orderr = error;
1da177e4 401
797e7dbb
TH
402 BUG_ON(q->ordseq & seq);
403 q->ordseq |= seq;
1da177e4 404
797e7dbb
TH
405 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
406 return;
1da177e4
LT
407
408 /*
797e7dbb 409 * Okay, sequence complete.
1da177e4 410 */
797e7dbb
TH
411 rq = q->orig_bar_rq;
412 uptodate = q->orderr ? q->orderr : 1;
1da177e4 413
797e7dbb 414 q->ordseq = 0;
1da177e4 415
797e7dbb
TH
416 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
417 end_that_request_last(rq, uptodate);
1da177e4
LT
418}
419
797e7dbb 420static void pre_flush_end_io(struct request *rq, int error)
1da177e4 421{
797e7dbb
TH
422 elv_completed_request(rq->q, rq);
423 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
424}
1da177e4 425
797e7dbb
TH
426static void bar_end_io(struct request *rq, int error)
427{
428 elv_completed_request(rq->q, rq);
429 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
430}
1da177e4 431
797e7dbb
TH
432static void post_flush_end_io(struct request *rq, int error)
433{
434 elv_completed_request(rq->q, rq);
435 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
436}
1da177e4 437
797e7dbb
TH
438static void queue_flush(request_queue_t *q, unsigned which)
439{
440 struct request *rq;
441 rq_end_io_fn *end_io;
1da177e4 442
797e7dbb
TH
443 if (which == QUEUE_ORDERED_PREFLUSH) {
444 rq = &q->pre_flush_rq;
445 end_io = pre_flush_end_io;
446 } else {
447 rq = &q->post_flush_rq;
448 end_io = post_flush_end_io;
1da177e4 449 }
797e7dbb 450
4aff5e23 451 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 452 rq_init(q, rq);
797e7dbb
TH
453 rq->elevator_private = NULL;
454 rq->rq_disk = q->bar_rq.rq_disk;
455 rq->rl = NULL;
456 rq->end_io = end_io;
457 q->prepare_flush_fn(q, rq);
458
30e9656c 459 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
460}
461
797e7dbb
TH
462static inline struct request *start_ordered(request_queue_t *q,
463 struct request *rq)
1da177e4 464{
797e7dbb
TH
465 q->bi_size = 0;
466 q->orderr = 0;
467 q->ordered = q->next_ordered;
468 q->ordseq |= QUEUE_ORDSEQ_STARTED;
469
470 /*
471 * Prep proxy barrier request.
472 */
473 blkdev_dequeue_request(rq);
474 q->orig_bar_rq = rq;
475 rq = &q->bar_rq;
4aff5e23 476 rq->cmd_flags = 0;
797e7dbb 477 rq_init(q, rq);
4aff5e23
JA
478 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
479 rq->cmd_flags |= REQ_RW;
480 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
797e7dbb
TH
481 rq->elevator_private = NULL;
482 rq->rl = NULL;
483 init_request_from_bio(rq, q->orig_bar_rq->bio);
484 rq->end_io = bar_end_io;
485
486 /*
487 * Queue ordered sequence. As we stack them at the head, we
488 * need to queue in reverse order. Note that we rely on that
489 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
490 * request gets inbetween ordered sequence.
491 */
492 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
493 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
494 else
495 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
496
30e9656c 497 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
498
499 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
500 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
501 rq = &q->pre_flush_rq;
502 } else
503 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 504
797e7dbb
TH
505 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
506 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
507 else
508 rq = NULL;
509
510 return rq;
1da177e4
LT
511}
512
797e7dbb 513int blk_do_ordered(request_queue_t *q, struct request **rqp)
1da177e4 514{
9a7a67af 515 struct request *rq = *rqp;
797e7dbb 516 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 517
797e7dbb
TH
518 if (!q->ordseq) {
519 if (!is_barrier)
520 return 1;
1da177e4 521
797e7dbb
TH
522 if (q->next_ordered != QUEUE_ORDERED_NONE) {
523 *rqp = start_ordered(q, rq);
524 return 1;
525 } else {
526 /*
527 * This can happen when the queue switches to
528 * ORDERED_NONE while this request is on it.
529 */
530 blkdev_dequeue_request(rq);
531 end_that_request_first(rq, -EOPNOTSUPP,
532 rq->hard_nr_sectors);
533 end_that_request_last(rq, -EOPNOTSUPP);
534 *rqp = NULL;
535 return 0;
536 }
537 }
1da177e4 538
9a7a67af
JA
539 /*
540 * Ordered sequence in progress
541 */
542
543 /* Special requests are not subject to ordering rules. */
544 if (!blk_fs_request(rq) &&
545 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
546 return 1;
547
797e7dbb 548 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 549 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
550 if (is_barrier && rq != &q->bar_rq)
551 *rqp = NULL;
9a7a67af
JA
552 } else {
553 /* Ordered by draining. Wait for turn. */
554 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
555 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
556 *rqp = NULL;
1da177e4
LT
557 }
558
559 return 1;
560}
561
797e7dbb 562static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 563{
797e7dbb
TH
564 request_queue_t *q = bio->bi_private;
565 struct bio_vec *bvec;
566 int i;
567
568 /*
569 * This is dry run, restore bio_sector and size. We'll finish
570 * this request again with the original bi_end_io after an
571 * error occurs or post flush is complete.
572 */
573 q->bi_size += bytes;
574
575 if (bio->bi_size)
576 return 1;
577
578 /* Rewind bvec's */
579 bio->bi_idx = 0;
580 bio_for_each_segment(bvec, bio, i) {
581 bvec->bv_len += bvec->bv_offset;
582 bvec->bv_offset = 0;
583 }
584
585 /* Reset bio */
586 set_bit(BIO_UPTODATE, &bio->bi_flags);
587 bio->bi_size = q->bi_size;
588 bio->bi_sector -= (q->bi_size >> 9);
589 q->bi_size = 0;
590
591 return 0;
1da177e4 592}
1da177e4 593
797e7dbb
TH
594static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
595 unsigned int nbytes, int error)
1da177e4 596{
797e7dbb
TH
597 request_queue_t *q = rq->q;
598 bio_end_io_t *endio;
599 void *private;
600
601 if (&q->bar_rq != rq)
602 return 0;
603
604 /*
605 * Okay, this is the barrier request in progress, dry finish it.
606 */
607 if (error && !q->orderr)
608 q->orderr = error;
609
610 endio = bio->bi_end_io;
611 private = bio->bi_private;
612 bio->bi_end_io = flush_dry_bio_endio;
613 bio->bi_private = q;
614
615 bio_endio(bio, nbytes, error);
616
617 bio->bi_end_io = endio;
618 bio->bi_private = private;
619
620 return 1;
1da177e4 621}
1da177e4
LT
622
623/**
624 * blk_queue_bounce_limit - set bounce buffer limit for queue
625 * @q: the request queue for the device
626 * @dma_addr: bus address limit
627 *
628 * Description:
629 * Different hardware can have different requirements as to what pages
630 * it can do I/O directly to. A low level driver can call
631 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 632 * buffers for doing I/O to pages residing above @page.
1da177e4
LT
633 **/
634void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
635{
636 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
637 int dma = 0;
638
639 q->bounce_gfp = GFP_NOIO;
640#if BITS_PER_LONG == 64
641 /* Assume anything <= 4GB can be handled by IOMMU.
642 Actually some IOMMUs can handle everything, but I don't
643 know of a way to test this here. */
8269730b 644 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
645 dma = 1;
646 q->bounce_pfn = max_low_pfn;
647#else
648 if (bounce_pfn < blk_max_low_pfn)
649 dma = 1;
650 q->bounce_pfn = bounce_pfn;
651#endif
652 if (dma) {
1da177e4
LT
653 init_emergency_isa_pool();
654 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
655 q->bounce_pfn = bounce_pfn;
656 }
1da177e4
LT
657}
658
659EXPORT_SYMBOL(blk_queue_bounce_limit);
660
661/**
662 * blk_queue_max_sectors - set max sectors for a request for this queue
663 * @q: the request queue for the device
664 * @max_sectors: max sectors in the usual 512b unit
665 *
666 * Description:
667 * Enables a low level driver to set an upper limit on the size of
668 * received requests.
669 **/
2cb2e147 670void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
1da177e4
LT
671{
672 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
673 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
674 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
675 }
676
defd94b7
MC
677 if (BLK_DEF_MAX_SECTORS > max_sectors)
678 q->max_hw_sectors = q->max_sectors = max_sectors;
679 else {
680 q->max_sectors = BLK_DEF_MAX_SECTORS;
681 q->max_hw_sectors = max_sectors;
682 }
1da177e4
LT
683}
684
685EXPORT_SYMBOL(blk_queue_max_sectors);
686
687/**
688 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
689 * @q: the request queue for the device
690 * @max_segments: max number of segments
691 *
692 * Description:
693 * Enables a low level driver to set an upper limit on the number of
694 * physical data segments in a request. This would be the largest sized
695 * scatter list the driver could handle.
696 **/
697void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
698{
699 if (!max_segments) {
700 max_segments = 1;
701 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
702 }
703
704 q->max_phys_segments = max_segments;
705}
706
707EXPORT_SYMBOL(blk_queue_max_phys_segments);
708
709/**
710 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
711 * @q: the request queue for the device
712 * @max_segments: max number of segments
713 *
714 * Description:
715 * Enables a low level driver to set an upper limit on the number of
716 * hw data segments in a request. This would be the largest number of
717 * address/length pairs the host adapter can actually give as once
718 * to the device.
719 **/
720void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
721{
722 if (!max_segments) {
723 max_segments = 1;
724 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
725 }
726
727 q->max_hw_segments = max_segments;
728}
729
730EXPORT_SYMBOL(blk_queue_max_hw_segments);
731
732/**
733 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
734 * @q: the request queue for the device
735 * @max_size: max size of segment in bytes
736 *
737 * Description:
738 * Enables a low level driver to set an upper limit on the size of a
739 * coalesced segment
740 **/
741void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
742{
743 if (max_size < PAGE_CACHE_SIZE) {
744 max_size = PAGE_CACHE_SIZE;
745 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
746 }
747
748 q->max_segment_size = max_size;
749}
750
751EXPORT_SYMBOL(blk_queue_max_segment_size);
752
753/**
754 * blk_queue_hardsect_size - set hardware sector size for the queue
755 * @q: the request queue for the device
756 * @size: the hardware sector size, in bytes
757 *
758 * Description:
759 * This should typically be set to the lowest possible sector size
760 * that the hardware can operate on (possible without reverting to
761 * even internal read-modify-write operations). Usually the default
762 * of 512 covers most hardware.
763 **/
764void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
765{
766 q->hardsect_size = size;
767}
768
769EXPORT_SYMBOL(blk_queue_hardsect_size);
770
771/*
772 * Returns the minimum that is _not_ zero, unless both are zero.
773 */
774#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
775
776/**
777 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
778 * @t: the stacking driver (top)
779 * @b: the underlying device (bottom)
780 **/
781void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
782{
783 /* zero is "infinity" */
defd94b7
MC
784 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
785 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
786
787 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
788 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
789 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
790 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
791 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
792 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
793}
794
795EXPORT_SYMBOL(blk_queue_stack_limits);
796
797/**
798 * blk_queue_segment_boundary - set boundary rules for segment merging
799 * @q: the request queue for the device
800 * @mask: the memory boundary mask
801 **/
802void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
803{
804 if (mask < PAGE_CACHE_SIZE - 1) {
805 mask = PAGE_CACHE_SIZE - 1;
806 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
807 }
808
809 q->seg_boundary_mask = mask;
810}
811
812EXPORT_SYMBOL(blk_queue_segment_boundary);
813
814/**
815 * blk_queue_dma_alignment - set dma length and memory alignment
816 * @q: the request queue for the device
817 * @mask: alignment mask
818 *
819 * description:
820 * set required memory and length aligment for direct dma transactions.
821 * this is used when buiding direct io requests for the queue.
822 *
823 **/
824void blk_queue_dma_alignment(request_queue_t *q, int mask)
825{
826 q->dma_alignment = mask;
827}
828
829EXPORT_SYMBOL(blk_queue_dma_alignment);
830
831/**
832 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
833 * @q: The request queue for the device
834 * @tag: The tag of the request
835 *
836 * Notes:
837 * Should be used when a device returns a tag and you want to match
838 * it with a request.
839 *
840 * no locks need be held.
841 **/
842struct request *blk_queue_find_tag(request_queue_t *q, int tag)
843{
844 struct blk_queue_tag *bqt = q->queue_tags;
845
ba025082 846 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1da177e4
LT
847 return NULL;
848
849 return bqt->tag_index[tag];
850}
851
852EXPORT_SYMBOL(blk_queue_find_tag);
853
854/**
492dfb48
JB
855 * __blk_free_tags - release a given set of tag maintenance info
856 * @bqt: the tag map to free
1da177e4 857 *
492dfb48
JB
858 * Tries to free the specified @bqt@. Returns true if it was
859 * actually freed and false if there are still references using it
860 */
861static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 862{
492dfb48 863 int retval;
1da177e4 864
492dfb48
JB
865 retval = atomic_dec_and_test(&bqt->refcnt);
866 if (retval) {
1da177e4
LT
867 BUG_ON(bqt->busy);
868 BUG_ON(!list_empty(&bqt->busy_list));
869
870 kfree(bqt->tag_index);
871 bqt->tag_index = NULL;
872
873 kfree(bqt->tag_map);
874 bqt->tag_map = NULL;
875
876 kfree(bqt);
492dfb48 877
1da177e4
LT
878 }
879
492dfb48
JB
880 return retval;
881}
882
883/**
884 * __blk_queue_free_tags - release tag maintenance info
885 * @q: the request queue for the device
886 *
887 * Notes:
888 * blk_cleanup_queue() will take care of calling this function, if tagging
889 * has been used. So there's no need to call this directly.
890 **/
891static void __blk_queue_free_tags(request_queue_t *q)
892{
893 struct blk_queue_tag *bqt = q->queue_tags;
894
895 if (!bqt)
896 return;
897
898 __blk_free_tags(bqt);
899
1da177e4
LT
900 q->queue_tags = NULL;
901 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
902}
903
492dfb48
JB
904
905/**
906 * blk_free_tags - release a given set of tag maintenance info
907 * @bqt: the tag map to free
908 *
909 * For externally managed @bqt@ frees the map. Callers of this
910 * function must guarantee to have released all the queues that
911 * might have been using this tag map.
912 */
913void blk_free_tags(struct blk_queue_tag *bqt)
914{
915 if (unlikely(!__blk_free_tags(bqt)))
916 BUG();
917}
918EXPORT_SYMBOL(blk_free_tags);
919
1da177e4
LT
920/**
921 * blk_queue_free_tags - release tag maintenance info
922 * @q: the request queue for the device
923 *
924 * Notes:
925 * This is used to disabled tagged queuing to a device, yet leave
926 * queue in function.
927 **/
928void blk_queue_free_tags(request_queue_t *q)
929{
930 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
931}
932
933EXPORT_SYMBOL(blk_queue_free_tags);
934
935static int
936init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
937{
1da177e4
LT
938 struct request **tag_index;
939 unsigned long *tag_map;
fa72b903 940 int nr_ulongs;
1da177e4 941
492dfb48 942 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
943 depth = q->nr_requests * 2;
944 printk(KERN_ERR "%s: adjusted depth to %d\n",
945 __FUNCTION__, depth);
946 }
947
f68110fc 948 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
949 if (!tag_index)
950 goto fail;
951
f7d37d02 952 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 953 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
954 if (!tag_map)
955 goto fail;
956
ba025082 957 tags->real_max_depth = depth;
1da177e4 958 tags->max_depth = depth;
1da177e4
LT
959 tags->tag_index = tag_index;
960 tags->tag_map = tag_map;
961
1da177e4
LT
962 return 0;
963fail:
964 kfree(tag_index);
965 return -ENOMEM;
966}
967
492dfb48
JB
968static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
969 int depth)
970{
971 struct blk_queue_tag *tags;
972
973 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
974 if (!tags)
975 goto fail;
976
977 if (init_tag_map(q, tags, depth))
978 goto fail;
979
980 INIT_LIST_HEAD(&tags->busy_list);
981 tags->busy = 0;
982 atomic_set(&tags->refcnt, 1);
983 return tags;
984fail:
985 kfree(tags);
986 return NULL;
987}
988
989/**
990 * blk_init_tags - initialize the tag info for an external tag map
991 * @depth: the maximum queue depth supported
992 * @tags: the tag to use
993 **/
994struct blk_queue_tag *blk_init_tags(int depth)
995{
996 return __blk_queue_init_tags(NULL, depth);
997}
998EXPORT_SYMBOL(blk_init_tags);
999
1da177e4
LT
1000/**
1001 * blk_queue_init_tags - initialize the queue tag info
1002 * @q: the request queue for the device
1003 * @depth: the maximum queue depth supported
1004 * @tags: the tag to use
1005 **/
1006int blk_queue_init_tags(request_queue_t *q, int depth,
1007 struct blk_queue_tag *tags)
1008{
1009 int rc;
1010
1011 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
1012
1013 if (!tags && !q->queue_tags) {
492dfb48 1014 tags = __blk_queue_init_tags(q, depth);
1da177e4 1015
492dfb48 1016 if (!tags)
1da177e4 1017 goto fail;
1da177e4
LT
1018 } else if (q->queue_tags) {
1019 if ((rc = blk_queue_resize_tags(q, depth)))
1020 return rc;
1021 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1022 return 0;
1023 } else
1024 atomic_inc(&tags->refcnt);
1025
1026 /*
1027 * assign it, all done
1028 */
1029 q->queue_tags = tags;
1030 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1031 return 0;
1032fail:
1033 kfree(tags);
1034 return -ENOMEM;
1035}
1036
1037EXPORT_SYMBOL(blk_queue_init_tags);
1038
1039/**
1040 * blk_queue_resize_tags - change the queueing depth
1041 * @q: the request queue for the device
1042 * @new_depth: the new max command queueing depth
1043 *
1044 * Notes:
1045 * Must be called with the queue lock held.
1046 **/
1047int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1048{
1049 struct blk_queue_tag *bqt = q->queue_tags;
1050 struct request **tag_index;
1051 unsigned long *tag_map;
fa72b903 1052 int max_depth, nr_ulongs;
1da177e4
LT
1053
1054 if (!bqt)
1055 return -ENXIO;
1056
ba025082
TH
1057 /*
1058 * if we already have large enough real_max_depth. just
1059 * adjust max_depth. *NOTE* as requests with tag value
1060 * between new_depth and real_max_depth can be in-flight, tag
1061 * map can not be shrunk blindly here.
1062 */
1063 if (new_depth <= bqt->real_max_depth) {
1064 bqt->max_depth = new_depth;
1065 return 0;
1066 }
1067
492dfb48
JB
1068 /*
1069 * Currently cannot replace a shared tag map with a new
1070 * one, so error out if this is the case
1071 */
1072 if (atomic_read(&bqt->refcnt) != 1)
1073 return -EBUSY;
1074
1da177e4
LT
1075 /*
1076 * save the old state info, so we can copy it back
1077 */
1078 tag_index = bqt->tag_index;
1079 tag_map = bqt->tag_map;
ba025082 1080 max_depth = bqt->real_max_depth;
1da177e4
LT
1081
1082 if (init_tag_map(q, bqt, new_depth))
1083 return -ENOMEM;
1084
1085 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1086 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1087 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1088
1089 kfree(tag_index);
1090 kfree(tag_map);
1091 return 0;
1092}
1093
1094EXPORT_SYMBOL(blk_queue_resize_tags);
1095
1096/**
1097 * blk_queue_end_tag - end tag operations for a request
1098 * @q: the request queue for the device
1099 * @rq: the request that has completed
1100 *
1101 * Description:
1102 * Typically called when end_that_request_first() returns 0, meaning
1103 * all transfers have been done for a request. It's important to call
1104 * this function before end_that_request_last(), as that will put the
1105 * request back on the free list thus corrupting the internal tag list.
1106 *
1107 * Notes:
1108 * queue lock must be held.
1109 **/
1110void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1111{
1112 struct blk_queue_tag *bqt = q->queue_tags;
1113 int tag = rq->tag;
1114
1115 BUG_ON(tag == -1);
1116
ba025082 1117 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1118 /*
1119 * This can happen after tag depth has been reduced.
1120 * FIXME: how about a warning or info message here?
1121 */
1da177e4
LT
1122 return;
1123
1124 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
1125 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1126 __FUNCTION__, tag);
1da177e4
LT
1127 return;
1128 }
1129
1130 list_del_init(&rq->queuelist);
4aff5e23 1131 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1132 rq->tag = -1;
1133
1134 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1135 printk(KERN_ERR "%s: tag %d is missing\n",
1136 __FUNCTION__, tag);
1da177e4
LT
1137
1138 bqt->tag_index[tag] = NULL;
1139 bqt->busy--;
1140}
1141
1142EXPORT_SYMBOL(blk_queue_end_tag);
1143
1144/**
1145 * blk_queue_start_tag - find a free tag and assign it
1146 * @q: the request queue for the device
1147 * @rq: the block request that needs tagging
1148 *
1149 * Description:
1150 * This can either be used as a stand-alone helper, or possibly be
1151 * assigned as the queue &prep_rq_fn (in which case &struct request
1152 * automagically gets a tag assigned). Note that this function
1153 * assumes that any type of request can be queued! if this is not
1154 * true for your device, you must check the request type before
1155 * calling this function. The request will also be removed from
1156 * the request queue, so it's the drivers responsibility to readd
1157 * it if it should need to be restarted for some reason.
1158 *
1159 * Notes:
1160 * queue lock must be held.
1161 **/
1162int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1163{
1164 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1165 int tag;
1da177e4 1166
4aff5e23 1167 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1168 printk(KERN_ERR
040c928c
TH
1169 "%s: request %p for device [%s] already tagged %d",
1170 __FUNCTION__, rq,
1171 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1172 BUG();
1173 }
1174
2bf0fdad
TH
1175 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1176 if (tag >= bqt->max_depth)
1177 return 1;
1da177e4 1178
1da177e4
LT
1179 __set_bit(tag, bqt->tag_map);
1180
4aff5e23 1181 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1182 rq->tag = tag;
1183 bqt->tag_index[tag] = rq;
1184 blkdev_dequeue_request(rq);
1185 list_add(&rq->queuelist, &bqt->busy_list);
1186 bqt->busy++;
1187 return 0;
1188}
1189
1190EXPORT_SYMBOL(blk_queue_start_tag);
1191
1192/**
1193 * blk_queue_invalidate_tags - invalidate all pending tags
1194 * @q: the request queue for the device
1195 *
1196 * Description:
1197 * Hardware conditions may dictate a need to stop all pending requests.
1198 * In this case, we will safely clear the block side of the tag queue and
1199 * readd all requests to the request queue in the right order.
1200 *
1201 * Notes:
1202 * queue lock must be held.
1203 **/
1204void blk_queue_invalidate_tags(request_queue_t *q)
1205{
1206 struct blk_queue_tag *bqt = q->queue_tags;
1207 struct list_head *tmp, *n;
1208 struct request *rq;
1209
1210 list_for_each_safe(tmp, n, &bqt->busy_list) {
1211 rq = list_entry_rq(tmp);
1212
1213 if (rq->tag == -1) {
040c928c
TH
1214 printk(KERN_ERR
1215 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1216 list_del_init(&rq->queuelist);
4aff5e23 1217 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1218 } else
1219 blk_queue_end_tag(q, rq);
1220
4aff5e23 1221 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1222 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1223 }
1224}
1225
1226EXPORT_SYMBOL(blk_queue_invalidate_tags);
1227
1da177e4
LT
1228void blk_dump_rq_flags(struct request *rq, char *msg)
1229{
1230 int bit;
1231
4aff5e23
JA
1232 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1233 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1234 rq->cmd_flags);
1da177e4
LT
1235
1236 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1237 rq->nr_sectors,
1238 rq->current_nr_sectors);
1239 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1240
4aff5e23 1241 if (blk_pc_request(rq)) {
1da177e4
LT
1242 printk("cdb: ");
1243 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1244 printk("%02x ", rq->cmd[bit]);
1245 printk("\n");
1246 }
1247}
1248
1249EXPORT_SYMBOL(blk_dump_rq_flags);
1250
1251void blk_recount_segments(request_queue_t *q, struct bio *bio)
1252{
1253 struct bio_vec *bv, *bvprv = NULL;
1254 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1255 int high, highprv = 1;
1256
1257 if (unlikely(!bio->bi_io_vec))
1258 return;
1259
1260 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1261 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1262 bio_for_each_segment(bv, bio, i) {
1263 /*
1264 * the trick here is making sure that a high page is never
1265 * considered part of another segment, since that might
1266 * change with the bounce page.
1267 */
1268 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1269 if (high || highprv)
1270 goto new_hw_segment;
1271 if (cluster) {
1272 if (seg_size + bv->bv_len > q->max_segment_size)
1273 goto new_segment;
1274 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1275 goto new_segment;
1276 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1277 goto new_segment;
1278 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1279 goto new_hw_segment;
1280
1281 seg_size += bv->bv_len;
1282 hw_seg_size += bv->bv_len;
1283 bvprv = bv;
1284 continue;
1285 }
1286new_segment:
1287 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1288 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1289 hw_seg_size += bv->bv_len;
1290 } else {
1291new_hw_segment:
1292 if (hw_seg_size > bio->bi_hw_front_size)
1293 bio->bi_hw_front_size = hw_seg_size;
1294 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1295 nr_hw_segs++;
1296 }
1297
1298 nr_phys_segs++;
1299 bvprv = bv;
1300 seg_size = bv->bv_len;
1301 highprv = high;
1302 }
1303 if (hw_seg_size > bio->bi_hw_back_size)
1304 bio->bi_hw_back_size = hw_seg_size;
1305 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1306 bio->bi_hw_front_size = hw_seg_size;
1307 bio->bi_phys_segments = nr_phys_segs;
1308 bio->bi_hw_segments = nr_hw_segs;
1309 bio->bi_flags |= (1 << BIO_SEG_VALID);
1310}
1311
1312
93d17d3d 1313static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1314 struct bio *nxt)
1315{
1316 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1317 return 0;
1318
1319 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1320 return 0;
1321 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1322 return 0;
1323
1324 /*
1325 * bio and nxt are contigous in memory, check if the queue allows
1326 * these two to be merged into one
1327 */
1328 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1329 return 1;
1330
1331 return 0;
1332}
1333
93d17d3d 1334static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1335 struct bio *nxt)
1336{
1337 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1338 blk_recount_segments(q, bio);
1339 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1340 blk_recount_segments(q, nxt);
1341 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1342 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1343 return 0;
1344 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1345 return 0;
1346
1347 return 1;
1348}
1349
1da177e4
LT
1350/*
1351 * map a request to scatterlist, return number of sg entries setup. Caller
1352 * must make sure sg can hold rq->nr_phys_segments entries
1353 */
1354int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1355{
1356 struct bio_vec *bvec, *bvprv;
1357 struct bio *bio;
1358 int nsegs, i, cluster;
1359
1360 nsegs = 0;
1361 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1362
1363 /*
1364 * for each bio in rq
1365 */
1366 bvprv = NULL;
1367 rq_for_each_bio(bio, rq) {
1368 /*
1369 * for each segment in bio
1370 */
1371 bio_for_each_segment(bvec, bio, i) {
1372 int nbytes = bvec->bv_len;
1373
1374 if (bvprv && cluster) {
1375 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1376 goto new_segment;
1377
1378 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1379 goto new_segment;
1380 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1381 goto new_segment;
1382
1383 sg[nsegs - 1].length += nbytes;
1384 } else {
1385new_segment:
1386 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1387 sg[nsegs].page = bvec->bv_page;
1388 sg[nsegs].length = nbytes;
1389 sg[nsegs].offset = bvec->bv_offset;
1390
1391 nsegs++;
1392 }
1393 bvprv = bvec;
1394 } /* segments in bio */
1395 } /* bios in rq */
1396
1397 return nsegs;
1398}
1399
1400EXPORT_SYMBOL(blk_rq_map_sg);
1401
1402/*
1403 * the standard queue merge functions, can be overridden with device
1404 * specific ones if so desired
1405 */
1406
1407static inline int ll_new_mergeable(request_queue_t *q,
1408 struct request *req,
1409 struct bio *bio)
1410{
1411 int nr_phys_segs = bio_phys_segments(q, bio);
1412
1413 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1414 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1415 if (req == q->last_merge)
1416 q->last_merge = NULL;
1417 return 0;
1418 }
1419
1420 /*
1421 * A hw segment is just getting larger, bump just the phys
1422 * counter.
1423 */
1424 req->nr_phys_segments += nr_phys_segs;
1425 return 1;
1426}
1427
1428static inline int ll_new_hw_segment(request_queue_t *q,
1429 struct request *req,
1430 struct bio *bio)
1431{
1432 int nr_hw_segs = bio_hw_segments(q, bio);
1433 int nr_phys_segs = bio_phys_segments(q, bio);
1434
1435 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1436 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1437 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1438 if (req == q->last_merge)
1439 q->last_merge = NULL;
1440 return 0;
1441 }
1442
1443 /*
1444 * This will form the start of a new hw segment. Bump both
1445 * counters.
1446 */
1447 req->nr_hw_segments += nr_hw_segs;
1448 req->nr_phys_segments += nr_phys_segs;
1449 return 1;
1450}
1451
1452static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1453 struct bio *bio)
1454{
defd94b7 1455 unsigned short max_sectors;
1da177e4
LT
1456 int len;
1457
defd94b7
MC
1458 if (unlikely(blk_pc_request(req)))
1459 max_sectors = q->max_hw_sectors;
1460 else
1461 max_sectors = q->max_sectors;
1462
1463 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1464 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1465 if (req == q->last_merge)
1466 q->last_merge = NULL;
1467 return 0;
1468 }
1469 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1470 blk_recount_segments(q, req->biotail);
1471 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1472 blk_recount_segments(q, bio);
1473 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1474 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1475 !BIOVEC_VIRT_OVERSIZE(len)) {
1476 int mergeable = ll_new_mergeable(q, req, bio);
1477
1478 if (mergeable) {
1479 if (req->nr_hw_segments == 1)
1480 req->bio->bi_hw_front_size = len;
1481 if (bio->bi_hw_segments == 1)
1482 bio->bi_hw_back_size = len;
1483 }
1484 return mergeable;
1485 }
1486
1487 return ll_new_hw_segment(q, req, bio);
1488}
1489
1490static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1491 struct bio *bio)
1492{
defd94b7 1493 unsigned short max_sectors;
1da177e4
LT
1494 int len;
1495
defd94b7
MC
1496 if (unlikely(blk_pc_request(req)))
1497 max_sectors = q->max_hw_sectors;
1498 else
1499 max_sectors = q->max_sectors;
1500
1501
1502 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1503 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1504 if (req == q->last_merge)
1505 q->last_merge = NULL;
1506 return 0;
1507 }
1508 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1509 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1510 blk_recount_segments(q, bio);
1511 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1512 blk_recount_segments(q, req->bio);
1513 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1514 !BIOVEC_VIRT_OVERSIZE(len)) {
1515 int mergeable = ll_new_mergeable(q, req, bio);
1516
1517 if (mergeable) {
1518 if (bio->bi_hw_segments == 1)
1519 bio->bi_hw_front_size = len;
1520 if (req->nr_hw_segments == 1)
1521 req->biotail->bi_hw_back_size = len;
1522 }
1523 return mergeable;
1524 }
1525
1526 return ll_new_hw_segment(q, req, bio);
1527}
1528
1529static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1530 struct request *next)
1531{
dfa1a553
ND
1532 int total_phys_segments;
1533 int total_hw_segments;
1da177e4
LT
1534
1535 /*
1536 * First check if the either of the requests are re-queued
1537 * requests. Can't merge them if they are.
1538 */
1539 if (req->special || next->special)
1540 return 0;
1541
1542 /*
dfa1a553 1543 * Will it become too large?
1da177e4
LT
1544 */
1545 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1546 return 0;
1547
1548 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1549 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1550 total_phys_segments--;
1551
1552 if (total_phys_segments > q->max_phys_segments)
1553 return 0;
1554
1555 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1556 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1557 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1558 /*
1559 * propagate the combined length to the end of the requests
1560 */
1561 if (req->nr_hw_segments == 1)
1562 req->bio->bi_hw_front_size = len;
1563 if (next->nr_hw_segments == 1)
1564 next->biotail->bi_hw_back_size = len;
1565 total_hw_segments--;
1566 }
1567
1568 if (total_hw_segments > q->max_hw_segments)
1569 return 0;
1570
1571 /* Merge is OK... */
1572 req->nr_phys_segments = total_phys_segments;
1573 req->nr_hw_segments = total_hw_segments;
1574 return 1;
1575}
1576
1577/*
1578 * "plug" the device if there are no outstanding requests: this will
1579 * force the transfer to start only after we have put all the requests
1580 * on the list.
1581 *
1582 * This is called with interrupts off and no requests on the queue and
1583 * with the queue lock held.
1584 */
1585void blk_plug_device(request_queue_t *q)
1586{
1587 WARN_ON(!irqs_disabled());
1588
1589 /*
1590 * don't plug a stopped queue, it must be paired with blk_start_queue()
1591 * which will restart the queueing
1592 */
7daac490 1593 if (blk_queue_stopped(q))
1da177e4
LT
1594 return;
1595
2056a782 1596 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1597 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1598 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1599 }
1da177e4
LT
1600}
1601
1602EXPORT_SYMBOL(blk_plug_device);
1603
1604/*
1605 * remove the queue from the plugged list, if present. called with
1606 * queue lock held and interrupts disabled.
1607 */
1608int blk_remove_plug(request_queue_t *q)
1609{
1610 WARN_ON(!irqs_disabled());
1611
1612 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1613 return 0;
1614
1615 del_timer(&q->unplug_timer);
1616 return 1;
1617}
1618
1619EXPORT_SYMBOL(blk_remove_plug);
1620
1621/*
1622 * remove the plug and let it rip..
1623 */
1624void __generic_unplug_device(request_queue_t *q)
1625{
7daac490 1626 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1627 return;
1628
1629 if (!blk_remove_plug(q))
1630 return;
1631
22e2c507 1632 q->request_fn(q);
1da177e4
LT
1633}
1634EXPORT_SYMBOL(__generic_unplug_device);
1635
1636/**
1637 * generic_unplug_device - fire a request queue
1638 * @q: The &request_queue_t in question
1639 *
1640 * Description:
1641 * Linux uses plugging to build bigger requests queues before letting
1642 * the device have at them. If a queue is plugged, the I/O scheduler
1643 * is still adding and merging requests on the queue. Once the queue
1644 * gets unplugged, the request_fn defined for the queue is invoked and
1645 * transfers started.
1646 **/
1647void generic_unplug_device(request_queue_t *q)
1648{
1649 spin_lock_irq(q->queue_lock);
1650 __generic_unplug_device(q);
1651 spin_unlock_irq(q->queue_lock);
1652}
1653EXPORT_SYMBOL(generic_unplug_device);
1654
1655static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1656 struct page *page)
1657{
1658 request_queue_t *q = bdi->unplug_io_data;
1659
1660 /*
1661 * devices don't necessarily have an ->unplug_fn defined
1662 */
2056a782
JA
1663 if (q->unplug_fn) {
1664 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1665 q->rq.count[READ] + q->rq.count[WRITE]);
1666
1da177e4 1667 q->unplug_fn(q);
2056a782 1668 }
1da177e4
LT
1669}
1670
1671static void blk_unplug_work(void *data)
1672{
1673 request_queue_t *q = data;
1674
2056a782
JA
1675 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1676 q->rq.count[READ] + q->rq.count[WRITE]);
1677
1da177e4
LT
1678 q->unplug_fn(q);
1679}
1680
1681static void blk_unplug_timeout(unsigned long data)
1682{
1683 request_queue_t *q = (request_queue_t *)data;
1684
2056a782
JA
1685 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1686 q->rq.count[READ] + q->rq.count[WRITE]);
1687
1da177e4
LT
1688 kblockd_schedule_work(&q->unplug_work);
1689}
1690
1691/**
1692 * blk_start_queue - restart a previously stopped queue
1693 * @q: The &request_queue_t in question
1694 *
1695 * Description:
1696 * blk_start_queue() will clear the stop flag on the queue, and call
1697 * the request_fn for the queue if it was in a stopped state when
1698 * entered. Also see blk_stop_queue(). Queue lock must be held.
1699 **/
1700void blk_start_queue(request_queue_t *q)
1701{
a038e253
PBG
1702 WARN_ON(!irqs_disabled());
1703
1da177e4
LT
1704 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1705
1706 /*
1707 * one level of recursion is ok and is much faster than kicking
1708 * the unplug handling
1709 */
1710 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1711 q->request_fn(q);
1712 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1713 } else {
1714 blk_plug_device(q);
1715 kblockd_schedule_work(&q->unplug_work);
1716 }
1717}
1718
1719EXPORT_SYMBOL(blk_start_queue);
1720
1721/**
1722 * blk_stop_queue - stop a queue
1723 * @q: The &request_queue_t in question
1724 *
1725 * Description:
1726 * The Linux block layer assumes that a block driver will consume all
1727 * entries on the request queue when the request_fn strategy is called.
1728 * Often this will not happen, because of hardware limitations (queue
1729 * depth settings). If a device driver gets a 'queue full' response,
1730 * or if it simply chooses not to queue more I/O at one point, it can
1731 * call this function to prevent the request_fn from being called until
1732 * the driver has signalled it's ready to go again. This happens by calling
1733 * blk_start_queue() to restart queue operations. Queue lock must be held.
1734 **/
1735void blk_stop_queue(request_queue_t *q)
1736{
1737 blk_remove_plug(q);
1738 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1739}
1740EXPORT_SYMBOL(blk_stop_queue);
1741
1742/**
1743 * blk_sync_queue - cancel any pending callbacks on a queue
1744 * @q: the queue
1745 *
1746 * Description:
1747 * The block layer may perform asynchronous callback activity
1748 * on a queue, such as calling the unplug function after a timeout.
1749 * A block device may call blk_sync_queue to ensure that any
1750 * such activity is cancelled, thus allowing it to release resources
1751 * the the callbacks might use. The caller must already have made sure
1752 * that its ->make_request_fn will not re-add plugging prior to calling
1753 * this function.
1754 *
1755 */
1756void blk_sync_queue(struct request_queue *q)
1757{
1758 del_timer_sync(&q->unplug_timer);
1759 kblockd_flush();
1760}
1761EXPORT_SYMBOL(blk_sync_queue);
1762
1763/**
1764 * blk_run_queue - run a single device queue
1765 * @q: The queue to run
1766 */
1767void blk_run_queue(struct request_queue *q)
1768{
1769 unsigned long flags;
1770
1771 spin_lock_irqsave(q->queue_lock, flags);
1772 blk_remove_plug(q);
dac07ec1
JA
1773
1774 /*
1775 * Only recurse once to avoid overrunning the stack, let the unplug
1776 * handling reinvoke the handler shortly if we already got there.
1777 */
1778 if (!elv_queue_empty(q)) {
1779 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1780 q->request_fn(q);
1781 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1782 } else {
1783 blk_plug_device(q);
1784 kblockd_schedule_work(&q->unplug_work);
1785 }
1786 }
1787
1da177e4
LT
1788 spin_unlock_irqrestore(q->queue_lock, flags);
1789}
1790EXPORT_SYMBOL(blk_run_queue);
1791
1792/**
1793 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
a580290c 1794 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1795 *
1796 * Description:
1797 * blk_cleanup_queue is the pair to blk_init_queue() or
1798 * blk_queue_make_request(). It should be called when a request queue is
1799 * being released; typically when a block device is being de-registered.
1800 * Currently, its primary task it to free all the &struct request
1801 * structures that were allocated to the queue and the queue itself.
1802 *
1803 * Caveat:
1804 * Hopefully the low level driver will have finished any
1805 * outstanding requests first...
1806 **/
483f4afc 1807static void blk_release_queue(struct kobject *kobj)
1da177e4 1808{
483f4afc 1809 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1810 struct request_list *rl = &q->rq;
1811
1da177e4
LT
1812 blk_sync_queue(q);
1813
1814 if (rl->rq_pool)
1815 mempool_destroy(rl->rq_pool);
1816
1817 if (q->queue_tags)
1818 __blk_queue_free_tags(q);
1819
6c5c9341 1820 blk_trace_shutdown(q);
2056a782 1821
1da177e4
LT
1822 kmem_cache_free(requestq_cachep, q);
1823}
1824
483f4afc
AV
1825void blk_put_queue(request_queue_t *q)
1826{
1827 kobject_put(&q->kobj);
1828}
1829EXPORT_SYMBOL(blk_put_queue);
1830
1831void blk_cleanup_queue(request_queue_t * q)
1832{
1833 mutex_lock(&q->sysfs_lock);
1834 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1835 mutex_unlock(&q->sysfs_lock);
1836
1837 if (q->elevator)
1838 elevator_exit(q->elevator);
1839
1840 blk_put_queue(q);
1841}
1842
1da177e4
LT
1843EXPORT_SYMBOL(blk_cleanup_queue);
1844
1845static int blk_init_free_list(request_queue_t *q)
1846{
1847 struct request_list *rl = &q->rq;
1848
1849 rl->count[READ] = rl->count[WRITE] = 0;
1850 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1851 rl->elvpriv = 0;
1da177e4
LT
1852 init_waitqueue_head(&rl->wait[READ]);
1853 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1854
1946089a
CL
1855 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1856 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1857
1858 if (!rl->rq_pool)
1859 return -ENOMEM;
1860
1861 return 0;
1862}
1863
8267e268 1864request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1865{
1946089a
CL
1866 return blk_alloc_queue_node(gfp_mask, -1);
1867}
1868EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1869
483f4afc
AV
1870static struct kobj_type queue_ktype;
1871
8267e268 1872request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a
CL
1873{
1874 request_queue_t *q;
1875
1876 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1877 if (!q)
1878 return NULL;
1879
1880 memset(q, 0, sizeof(*q));
1881 init_timer(&q->unplug_timer);
483f4afc
AV
1882
1883 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1884 q->kobj.ktype = &queue_ktype;
1885 kobject_init(&q->kobj);
1da177e4
LT
1886
1887 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1888 q->backing_dev_info.unplug_io_data = q;
1889
483f4afc
AV
1890 mutex_init(&q->sysfs_lock);
1891
1da177e4
LT
1892 return q;
1893}
1946089a 1894EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1895
1896/**
1897 * blk_init_queue - prepare a request queue for use with a block device
1898 * @rfn: The function to be called to process requests that have been
1899 * placed on the queue.
1900 * @lock: Request queue spin lock
1901 *
1902 * Description:
1903 * If a block device wishes to use the standard request handling procedures,
1904 * which sorts requests and coalesces adjacent requests, then it must
1905 * call blk_init_queue(). The function @rfn will be called when there
1906 * are requests on the queue that need to be processed. If the device
1907 * supports plugging, then @rfn may not be called immediately when requests
1908 * are available on the queue, but may be called at some time later instead.
1909 * Plugged queues are generally unplugged when a buffer belonging to one
1910 * of the requests on the queue is needed, or due to memory pressure.
1911 *
1912 * @rfn is not required, or even expected, to remove all requests off the
1913 * queue, but only as many as it can handle at a time. If it does leave
1914 * requests on the queue, it is responsible for arranging that the requests
1915 * get dealt with eventually.
1916 *
1917 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1918 * request queue; this lock will be taken also from interrupt context, so irq
1919 * disabling is needed for it.
1da177e4
LT
1920 *
1921 * Function returns a pointer to the initialized request queue, or NULL if
1922 * it didn't succeed.
1923 *
1924 * Note:
1925 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1926 * when the block device is deactivated (such as at module unload).
1927 **/
1946089a 1928
1da177e4
LT
1929request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1930{
1946089a
CL
1931 return blk_init_queue_node(rfn, lock, -1);
1932}
1933EXPORT_SYMBOL(blk_init_queue);
1934
1935request_queue_t *
1936blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1937{
1938 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1939
1940 if (!q)
1941 return NULL;
1942
1946089a 1943 q->node = node_id;
8669aafd
AV
1944 if (blk_init_free_list(q)) {
1945 kmem_cache_free(requestq_cachep, q);
1946 return NULL;
1947 }
1da177e4 1948
152587de
JA
1949 /*
1950 * if caller didn't supply a lock, they get per-queue locking with
1951 * our embedded lock
1952 */
1953 if (!lock) {
1954 spin_lock_init(&q->__queue_lock);
1955 lock = &q->__queue_lock;
1956 }
1957
1da177e4
LT
1958 q->request_fn = rfn;
1959 q->back_merge_fn = ll_back_merge_fn;
1960 q->front_merge_fn = ll_front_merge_fn;
1961 q->merge_requests_fn = ll_merge_requests_fn;
1962 q->prep_rq_fn = NULL;
1963 q->unplug_fn = generic_unplug_device;
1964 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1965 q->queue_lock = lock;
1966
1967 blk_queue_segment_boundary(q, 0xffffffff);
1968
1969 blk_queue_make_request(q, __make_request);
1970 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1971
1972 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1973 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1974
1975 /*
1976 * all done
1977 */
1978 if (!elevator_init(q, NULL)) {
1979 blk_queue_congestion_threshold(q);
1980 return q;
1981 }
1982
8669aafd 1983 blk_put_queue(q);
1da177e4
LT
1984 return NULL;
1985}
1946089a 1986EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1987
1988int blk_get_queue(request_queue_t *q)
1989{
fde6ad22 1990 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1991 kobject_get(&q->kobj);
1da177e4
LT
1992 return 0;
1993 }
1994
1995 return 1;
1996}
1997
1998EXPORT_SYMBOL(blk_get_queue);
1999
2000static inline void blk_free_request(request_queue_t *q, struct request *rq)
2001{
4aff5e23 2002 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 2003 elv_put_request(q, rq);
1da177e4
LT
2004 mempool_free(rq, q->rq.rq_pool);
2005}
2006
22e2c507 2007static inline struct request *
cb98fc8b 2008blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
5dd96249 2009 int priv, gfp_t gfp_mask)
1da177e4
LT
2010{
2011 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2012
2013 if (!rq)
2014 return NULL;
2015
2016 /*
4aff5e23 2017 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2018 * see bio.h and blkdev.h
2019 */
4aff5e23 2020 rq->cmd_flags = rw;
1da177e4 2021
cb98fc8b
TH
2022 if (priv) {
2023 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
2024 mempool_free(rq, q->rq.rq_pool);
2025 return NULL;
2026 }
4aff5e23 2027 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2028 }
1da177e4 2029
cb98fc8b 2030 return rq;
1da177e4
LT
2031}
2032
2033/*
2034 * ioc_batching returns true if the ioc is a valid batching request and
2035 * should be given priority access to a request.
2036 */
2037static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2038{
2039 if (!ioc)
2040 return 0;
2041
2042 /*
2043 * Make sure the process is able to allocate at least 1 request
2044 * even if the batch times out, otherwise we could theoretically
2045 * lose wakeups.
2046 */
2047 return ioc->nr_batch_requests == q->nr_batching ||
2048 (ioc->nr_batch_requests > 0
2049 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2050}
2051
2052/*
2053 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2054 * will cause the process to be a "batcher" on all queues in the system. This
2055 * is the behaviour we want though - once it gets a wakeup it should be given
2056 * a nice run.
2057 */
93d17d3d 2058static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
2059{
2060 if (!ioc || ioc_batching(q, ioc))
2061 return;
2062
2063 ioc->nr_batch_requests = q->nr_batching;
2064 ioc->last_waited = jiffies;
2065}
2066
2067static void __freed_request(request_queue_t *q, int rw)
2068{
2069 struct request_list *rl = &q->rq;
2070
2071 if (rl->count[rw] < queue_congestion_off_threshold(q))
2072 clear_queue_congested(q, rw);
2073
2074 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2075 if (waitqueue_active(&rl->wait[rw]))
2076 wake_up(&rl->wait[rw]);
2077
2078 blk_clear_queue_full(q, rw);
2079 }
2080}
2081
2082/*
2083 * A request has just been released. Account for it, update the full and
2084 * congestion status, wake up any waiters. Called under q->queue_lock.
2085 */
cb98fc8b 2086static void freed_request(request_queue_t *q, int rw, int priv)
1da177e4
LT
2087{
2088 struct request_list *rl = &q->rq;
2089
2090 rl->count[rw]--;
cb98fc8b
TH
2091 if (priv)
2092 rl->elvpriv--;
1da177e4
LT
2093
2094 __freed_request(q, rw);
2095
2096 if (unlikely(rl->starved[rw ^ 1]))
2097 __freed_request(q, rw ^ 1);
1da177e4
LT
2098}
2099
2100#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2101/*
d6344532
NP
2102 * Get a free request, queue_lock must be held.
2103 * Returns NULL on failure, with queue_lock held.
2104 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2105 */
22e2c507 2106static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
8267e268 2107 gfp_t gfp_mask)
1da177e4
LT
2108{
2109 struct request *rq = NULL;
2110 struct request_list *rl = &q->rq;
88ee5ef1
JA
2111 struct io_context *ioc = NULL;
2112 int may_queue, priv;
2113
2114 may_queue = elv_may_queue(q, rw, bio);
2115 if (may_queue == ELV_MQUEUE_NO)
2116 goto rq_starved;
2117
2118 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2119 if (rl->count[rw]+1 >= q->nr_requests) {
2120 ioc = current_io_context(GFP_ATOMIC);
2121 /*
2122 * The queue will fill after this allocation, so set
2123 * it as full, and mark this process as "batching".
2124 * This process will be allowed to complete a batch of
2125 * requests, others will be blocked.
2126 */
2127 if (!blk_queue_full(q, rw)) {
2128 ioc_set_batching(q, ioc);
2129 blk_set_queue_full(q, rw);
2130 } else {
2131 if (may_queue != ELV_MQUEUE_MUST
2132 && !ioc_batching(q, ioc)) {
2133 /*
2134 * The queue is full and the allocating
2135 * process is not a "batcher", and not
2136 * exempted by the IO scheduler
2137 */
2138 goto out;
2139 }
2140 }
1da177e4 2141 }
88ee5ef1 2142 set_queue_congested(q, rw);
1da177e4
LT
2143 }
2144
082cf69e
JA
2145 /*
2146 * Only allow batching queuers to allocate up to 50% over the defined
2147 * limit of requests, otherwise we could have thousands of requests
2148 * allocated with any setting of ->nr_requests
2149 */
fd782a4a 2150 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2151 goto out;
fd782a4a 2152
1da177e4
LT
2153 rl->count[rw]++;
2154 rl->starved[rw] = 0;
cb98fc8b 2155
64521d1a 2156 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2157 if (priv)
2158 rl->elvpriv++;
2159
1da177e4
LT
2160 spin_unlock_irq(q->queue_lock);
2161
cb98fc8b 2162 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
88ee5ef1 2163 if (unlikely(!rq)) {
1da177e4
LT
2164 /*
2165 * Allocation failed presumably due to memory. Undo anything
2166 * we might have messed up.
2167 *
2168 * Allocating task should really be put onto the front of the
2169 * wait queue, but this is pretty rare.
2170 */
2171 spin_lock_irq(q->queue_lock);
cb98fc8b 2172 freed_request(q, rw, priv);
1da177e4
LT
2173
2174 /*
2175 * in the very unlikely event that allocation failed and no
2176 * requests for this direction was pending, mark us starved
2177 * so that freeing of a request in the other direction will
2178 * notice us. another possible fix would be to split the
2179 * rq mempool into READ and WRITE
2180 */
2181rq_starved:
2182 if (unlikely(rl->count[rw] == 0))
2183 rl->starved[rw] = 1;
2184
1da177e4
LT
2185 goto out;
2186 }
2187
88ee5ef1
JA
2188 /*
2189 * ioc may be NULL here, and ioc_batching will be false. That's
2190 * OK, if the queue is under the request limit then requests need
2191 * not count toward the nr_batch_requests limit. There will always
2192 * be some limit enforced by BLK_BATCH_TIME.
2193 */
1da177e4
LT
2194 if (ioc_batching(q, ioc))
2195 ioc->nr_batch_requests--;
2196
2197 rq_init(q, rq);
2198 rq->rl = rl;
2056a782
JA
2199
2200 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2201out:
1da177e4
LT
2202 return rq;
2203}
2204
2205/*
2206 * No available requests for this queue, unplug the device and wait for some
2207 * requests to become available.
d6344532
NP
2208 *
2209 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2210 */
22e2c507
JA
2211static struct request *get_request_wait(request_queue_t *q, int rw,
2212 struct bio *bio)
1da177e4 2213{
1da177e4
LT
2214 struct request *rq;
2215
450991bc
NP
2216 rq = get_request(q, rw, bio, GFP_NOIO);
2217 while (!rq) {
2218 DEFINE_WAIT(wait);
1da177e4
LT
2219 struct request_list *rl = &q->rq;
2220
2221 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2222 TASK_UNINTERRUPTIBLE);
2223
22e2c507 2224 rq = get_request(q, rw, bio, GFP_NOIO);
1da177e4
LT
2225
2226 if (!rq) {
2227 struct io_context *ioc;
2228
2056a782
JA
2229 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2230
d6344532
NP
2231 __generic_unplug_device(q);
2232 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2233 io_schedule();
2234
2235 /*
2236 * After sleeping, we become a "batching" process and
2237 * will be able to allocate at least one request, and
2238 * up to a big batch of them for a small period time.
2239 * See ioc_batching, ioc_set_batching
2240 */
fb3cc432 2241 ioc = current_io_context(GFP_NOIO);
1da177e4 2242 ioc_set_batching(q, ioc);
d6344532
NP
2243
2244 spin_lock_irq(q->queue_lock);
1da177e4
LT
2245 }
2246 finish_wait(&rl->wait[rw], &wait);
450991bc 2247 }
1da177e4
LT
2248
2249 return rq;
2250}
2251
8267e268 2252struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2253{
2254 struct request *rq;
2255
2256 BUG_ON(rw != READ && rw != WRITE);
2257
d6344532
NP
2258 spin_lock_irq(q->queue_lock);
2259 if (gfp_mask & __GFP_WAIT) {
22e2c507 2260 rq = get_request_wait(q, rw, NULL);
d6344532 2261 } else {
22e2c507 2262 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2263 if (!rq)
2264 spin_unlock_irq(q->queue_lock);
2265 }
2266 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2267
2268 return rq;
2269}
1da177e4
LT
2270EXPORT_SYMBOL(blk_get_request);
2271
2272/**
2273 * blk_requeue_request - put a request back on queue
2274 * @q: request queue where request should be inserted
2275 * @rq: request to be inserted
2276 *
2277 * Description:
2278 * Drivers often keep queueing requests until the hardware cannot accept
2279 * more, when that condition happens we need to put the request back
2280 * on the queue. Must be called with queue lock held.
2281 */
2282void blk_requeue_request(request_queue_t *q, struct request *rq)
2283{
2056a782
JA
2284 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2285
1da177e4
LT
2286 if (blk_rq_tagged(rq))
2287 blk_queue_end_tag(q, rq);
2288
2289 elv_requeue_request(q, rq);
2290}
2291
2292EXPORT_SYMBOL(blk_requeue_request);
2293
2294/**
2295 * blk_insert_request - insert a special request in to a request queue
2296 * @q: request queue where request should be inserted
2297 * @rq: request to be inserted
2298 * @at_head: insert request at head or tail of queue
2299 * @data: private data
1da177e4
LT
2300 *
2301 * Description:
2302 * Many block devices need to execute commands asynchronously, so they don't
2303 * block the whole kernel from preemption during request execution. This is
2304 * accomplished normally by inserting aritficial requests tagged as
2305 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2306 * scheduled for actual execution by the request queue.
2307 *
2308 * We have the option of inserting the head or the tail of the queue.
2309 * Typically we use the tail for new ioctls and so forth. We use the head
2310 * of the queue for things like a QUEUE_FULL message from a device, or a
2311 * host that is unable to accept a particular command.
2312 */
2313void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2314 int at_head, void *data)
1da177e4 2315{
867d1191 2316 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2317 unsigned long flags;
2318
2319 /*
2320 * tell I/O scheduler that this isn't a regular read/write (ie it
2321 * must not attempt merges on this) and that it acts as a soft
2322 * barrier
2323 */
4aff5e23
JA
2324 rq->cmd_type = REQ_TYPE_SPECIAL;
2325 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2326
2327 rq->special = data;
2328
2329 spin_lock_irqsave(q->queue_lock, flags);
2330
2331 /*
2332 * If command is tagged, release the tag
2333 */
867d1191
TH
2334 if (blk_rq_tagged(rq))
2335 blk_queue_end_tag(q, rq);
1da177e4 2336
867d1191
TH
2337 drive_stat_acct(rq, rq->nr_sectors, 1);
2338 __elv_add_request(q, rq, where, 0);
1da177e4 2339
1da177e4
LT
2340 if (blk_queue_plugged(q))
2341 __generic_unplug_device(q);
2342 else
2343 q->request_fn(q);
2344 spin_unlock_irqrestore(q->queue_lock, flags);
2345}
2346
2347EXPORT_SYMBOL(blk_insert_request);
2348
2349/**
2350 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2351 * @q: request queue where request should be inserted
73747aed 2352 * @rq: request structure to fill
1da177e4
LT
2353 * @ubuf: the user buffer
2354 * @len: length of user data
2355 *
2356 * Description:
2357 * Data will be mapped directly for zero copy io, if possible. Otherwise
2358 * a kernel bounce buffer is used.
2359 *
2360 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2361 * still in process context.
2362 *
2363 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2364 * before being submitted to the device, as pages mapped may be out of
2365 * reach. It's the callers responsibility to make sure this happens. The
2366 * original bio must be passed back in to blk_rq_unmap_user() for proper
2367 * unmapping.
2368 */
dd1cab95
JA
2369int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2370 unsigned int len)
1da177e4
LT
2371{
2372 unsigned long uaddr;
1da177e4 2373 struct bio *bio;
dd1cab95 2374 int reading;
1da177e4 2375
defd94b7 2376 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2377 return -EINVAL;
2378 if (!len || !ubuf)
2379 return -EINVAL;
1da177e4 2380
dd1cab95 2381 reading = rq_data_dir(rq) == READ;
1da177e4
LT
2382
2383 /*
2384 * if alignment requirement is satisfied, map in user pages for
2385 * direct dma. else, set up kernel bounce buffers
2386 */
2387 uaddr = (unsigned long) ubuf;
2388 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
dd1cab95 2389 bio = bio_map_user(q, NULL, uaddr, len, reading);
1da177e4 2390 else
dd1cab95 2391 bio = bio_copy_user(q, uaddr, len, reading);
1da177e4
LT
2392
2393 if (!IS_ERR(bio)) {
2394 rq->bio = rq->biotail = bio;
2395 blk_rq_bio_prep(q, rq, bio);
2396
2397 rq->buffer = rq->data = NULL;
2398 rq->data_len = len;
dd1cab95 2399 return 0;
1da177e4
LT
2400 }
2401
2402 /*
2403 * bio is the err-ptr
2404 */
dd1cab95 2405 return PTR_ERR(bio);
1da177e4
LT
2406}
2407
2408EXPORT_SYMBOL(blk_rq_map_user);
2409
f1970baf
JB
2410/**
2411 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2412 * @q: request queue where request should be inserted
2413 * @rq: request to map data to
2414 * @iov: pointer to the iovec
2415 * @iov_count: number of elements in the iovec
2416 *
2417 * Description:
2418 * Data will be mapped directly for zero copy io, if possible. Otherwise
2419 * a kernel bounce buffer is used.
2420 *
2421 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2422 * still in process context.
2423 *
2424 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2425 * before being submitted to the device, as pages mapped may be out of
2426 * reach. It's the callers responsibility to make sure this happens. The
2427 * original bio must be passed back in to blk_rq_unmap_user() for proper
2428 * unmapping.
2429 */
2430int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2431 struct sg_iovec *iov, int iov_count)
2432{
2433 struct bio *bio;
2434
2435 if (!iov || iov_count <= 0)
2436 return -EINVAL;
2437
2438 /* we don't allow misaligned data like bio_map_user() does. If the
2439 * user is using sg, they're expected to know the alignment constraints
2440 * and respect them accordingly */
2441 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2442 if (IS_ERR(bio))
2443 return PTR_ERR(bio);
2444
2445 rq->bio = rq->biotail = bio;
2446 blk_rq_bio_prep(q, rq, bio);
2447 rq->buffer = rq->data = NULL;
2448 rq->data_len = bio->bi_size;
2449 return 0;
2450}
2451
2452EXPORT_SYMBOL(blk_rq_map_user_iov);
2453
1da177e4
LT
2454/**
2455 * blk_rq_unmap_user - unmap a request with user data
73747aed 2456 * @bio: bio to be unmapped
1da177e4
LT
2457 * @ulen: length of user buffer
2458 *
2459 * Description:
73747aed 2460 * Unmap a bio previously mapped by blk_rq_map_user().
1da177e4 2461 */
dd1cab95 2462int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
1da177e4
LT
2463{
2464 int ret = 0;
2465
2466 if (bio) {
2467 if (bio_flagged(bio, BIO_USER_MAPPED))
2468 bio_unmap_user(bio);
2469 else
2470 ret = bio_uncopy_user(bio);
2471 }
2472
dd1cab95 2473 return 0;
1da177e4
LT
2474}
2475
2476EXPORT_SYMBOL(blk_rq_unmap_user);
2477
df46b9a4
MC
2478/**
2479 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2480 * @q: request queue where request should be inserted
73747aed 2481 * @rq: request to fill
df46b9a4
MC
2482 * @kbuf: the kernel buffer
2483 * @len: length of user data
73747aed 2484 * @gfp_mask: memory allocation flags
df46b9a4 2485 */
dd1cab95 2486int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
8267e268 2487 unsigned int len, gfp_t gfp_mask)
df46b9a4 2488{
df46b9a4
MC
2489 struct bio *bio;
2490
defd94b7 2491 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2492 return -EINVAL;
2493 if (!len || !kbuf)
2494 return -EINVAL;
df46b9a4
MC
2495
2496 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2497 if (IS_ERR(bio))
2498 return PTR_ERR(bio);
df46b9a4 2499
dd1cab95
JA
2500 if (rq_data_dir(rq) == WRITE)
2501 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2502
dd1cab95
JA
2503 rq->bio = rq->biotail = bio;
2504 blk_rq_bio_prep(q, rq, bio);
df46b9a4 2505
dd1cab95
JA
2506 rq->buffer = rq->data = NULL;
2507 rq->data_len = len;
2508 return 0;
df46b9a4
MC
2509}
2510
2511EXPORT_SYMBOL(blk_rq_map_kern);
2512
73747aed
CH
2513/**
2514 * blk_execute_rq_nowait - insert a request into queue for execution
2515 * @q: queue to insert the request in
2516 * @bd_disk: matching gendisk
2517 * @rq: request to insert
2518 * @at_head: insert request at head or tail of queue
2519 * @done: I/O completion handler
2520 *
2521 * Description:
2522 * Insert a fully prepared request at the back of the io scheduler queue
2523 * for execution. Don't wait for completion.
2524 */
f1970baf
JB
2525void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2526 struct request *rq, int at_head,
8ffdc655 2527 rq_end_io_fn *done)
f1970baf
JB
2528{
2529 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2530
2531 rq->rq_disk = bd_disk;
4aff5e23 2532 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2533 rq->end_io = done;
4c5d0bbd
AM
2534 WARN_ON(irqs_disabled());
2535 spin_lock_irq(q->queue_lock);
2536 __elv_add_request(q, rq, where, 1);
2537 __generic_unplug_device(q);
2538 spin_unlock_irq(q->queue_lock);
f1970baf 2539}
6e39b69e
MC
2540EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2541
1da177e4
LT
2542/**
2543 * blk_execute_rq - insert a request into queue for execution
2544 * @q: queue to insert the request in
2545 * @bd_disk: matching gendisk
2546 * @rq: request to insert
994ca9a1 2547 * @at_head: insert request at head or tail of queue
1da177e4
LT
2548 *
2549 * Description:
2550 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2551 * for execution and wait for completion.
1da177e4
LT
2552 */
2553int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
994ca9a1 2554 struct request *rq, int at_head)
1da177e4 2555{
60be6b9a 2556 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2557 char sense[SCSI_SENSE_BUFFERSIZE];
2558 int err = 0;
2559
1da177e4
LT
2560 /*
2561 * we need an extra reference to the request, so we can look at
2562 * it after io completion
2563 */
2564 rq->ref_count++;
2565
2566 if (!rq->sense) {
2567 memset(sense, 0, sizeof(sense));
2568 rq->sense = sense;
2569 rq->sense_len = 0;
2570 }
2571
1da177e4 2572 rq->waiting = &wait;
994ca9a1 2573 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4
LT
2574 wait_for_completion(&wait);
2575 rq->waiting = NULL;
2576
2577 if (rq->errors)
2578 err = -EIO;
2579
2580 return err;
2581}
2582
2583EXPORT_SYMBOL(blk_execute_rq);
2584
2585/**
2586 * blkdev_issue_flush - queue a flush
2587 * @bdev: blockdev to issue flush for
2588 * @error_sector: error sector
2589 *
2590 * Description:
2591 * Issue a flush for the block device in question. Caller can supply
2592 * room for storing the error offset in case of a flush error, if they
2593 * wish to. Caller must run wait_for_completion() on its own.
2594 */
2595int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2596{
2597 request_queue_t *q;
2598
2599 if (bdev->bd_disk == NULL)
2600 return -ENXIO;
2601
2602 q = bdev_get_queue(bdev);
2603 if (!q)
2604 return -ENXIO;
2605 if (!q->issue_flush_fn)
2606 return -EOPNOTSUPP;
2607
2608 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2609}
2610
2611EXPORT_SYMBOL(blkdev_issue_flush);
2612
93d17d3d 2613static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2614{
2615 int rw = rq_data_dir(rq);
2616
2617 if (!blk_fs_request(rq) || !rq->rq_disk)
2618 return;
2619
d72d904a 2620 if (!new_io) {
a362357b 2621 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2622 } else {
1da177e4
LT
2623 disk_round_stats(rq->rq_disk);
2624 rq->rq_disk->in_flight++;
2625 }
2626}
2627
2628/*
2629 * add-request adds a request to the linked list.
2630 * queue lock is held and interrupts disabled, as we muck with the
2631 * request queue list.
2632 */
2633static inline void add_request(request_queue_t * q, struct request * req)
2634{
2635 drive_stat_acct(req, req->nr_sectors, 1);
2636
2637 if (q->activity_fn)
2638 q->activity_fn(q->activity_data, rq_data_dir(req));
2639
2640 /*
2641 * elevator indicated where it wants this request to be
2642 * inserted at elevator_merge time
2643 */
2644 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2645}
2646
2647/*
2648 * disk_round_stats() - Round off the performance stats on a struct
2649 * disk_stats.
2650 *
2651 * The average IO queue length and utilisation statistics are maintained
2652 * by observing the current state of the queue length and the amount of
2653 * time it has been in this state for.
2654 *
2655 * Normally, that accounting is done on IO completion, but that can result
2656 * in more than a second's worth of IO being accounted for within any one
2657 * second, leading to >100% utilisation. To deal with that, we call this
2658 * function to do a round-off before returning the results when reading
2659 * /proc/diskstats. This accounts immediately for all queue usage up to
2660 * the current jiffies and restarts the counters again.
2661 */
2662void disk_round_stats(struct gendisk *disk)
2663{
2664 unsigned long now = jiffies;
2665
b2982649
KC
2666 if (now == disk->stamp)
2667 return;
1da177e4 2668
20e5c81f
KC
2669 if (disk->in_flight) {
2670 __disk_stat_add(disk, time_in_queue,
2671 disk->in_flight * (now - disk->stamp));
2672 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2673 }
1da177e4 2674 disk->stamp = now;
1da177e4
LT
2675}
2676
3eaf840e
JNN
2677EXPORT_SYMBOL_GPL(disk_round_stats);
2678
1da177e4
LT
2679/*
2680 * queue lock must be held
2681 */
6e39b69e 2682void __blk_put_request(request_queue_t *q, struct request *req)
1da177e4
LT
2683{
2684 struct request_list *rl = req->rl;
2685
2686 if (unlikely(!q))
2687 return;
2688 if (unlikely(--req->ref_count))
2689 return;
2690
8922e16c
TH
2691 elv_completed_request(q, req);
2692
1da177e4 2693 req->rq_status = RQ_INACTIVE;
1da177e4
LT
2694 req->rl = NULL;
2695
2696 /*
2697 * Request may not have originated from ll_rw_blk. if not,
2698 * it didn't come out of our reserved rq pools
2699 */
2700 if (rl) {
2701 int rw = rq_data_dir(req);
4aff5e23 2702 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2703
1da177e4 2704 BUG_ON(!list_empty(&req->queuelist));
9817064b 2705 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2706
2707 blk_free_request(q, req);
cb98fc8b 2708 freed_request(q, rw, priv);
1da177e4
LT
2709 }
2710}
2711
6e39b69e
MC
2712EXPORT_SYMBOL_GPL(__blk_put_request);
2713
1da177e4
LT
2714void blk_put_request(struct request *req)
2715{
8922e16c
TH
2716 unsigned long flags;
2717 request_queue_t *q = req->q;
2718
1da177e4 2719 /*
8922e16c
TH
2720 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2721 * following if (q) test.
1da177e4 2722 */
8922e16c 2723 if (q) {
1da177e4
LT
2724 spin_lock_irqsave(q->queue_lock, flags);
2725 __blk_put_request(q, req);
2726 spin_unlock_irqrestore(q->queue_lock, flags);
2727 }
2728}
2729
2730EXPORT_SYMBOL(blk_put_request);
2731
2732/**
2733 * blk_end_sync_rq - executes a completion event on a request
2734 * @rq: request to complete
fddfdeaf 2735 * @error: end io status of the request
1da177e4 2736 */
8ffdc655 2737void blk_end_sync_rq(struct request *rq, int error)
1da177e4
LT
2738{
2739 struct completion *waiting = rq->waiting;
2740
2741 rq->waiting = NULL;
2742 __blk_put_request(rq->q, rq);
2743
2744 /*
2745 * complete last, if this is a stack request the process (and thus
2746 * the rq pointer) could be invalid right after this complete()
2747 */
2748 complete(waiting);
2749}
2750EXPORT_SYMBOL(blk_end_sync_rq);
2751
2752/**
2753 * blk_congestion_wait - wait for a queue to become uncongested
2754 * @rw: READ or WRITE
2755 * @timeout: timeout in jiffies
2756 *
2757 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2758 * If no queues are congested then just wait for the next request to be
2759 * returned.
2760 */
2761long blk_congestion_wait(int rw, long timeout)
2762{
2763 long ret;
2764 DEFINE_WAIT(wait);
2765 wait_queue_head_t *wqh = &congestion_wqh[rw];
2766
2767 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2768 ret = io_schedule_timeout(timeout);
2769 finish_wait(wqh, &wait);
2770 return ret;
2771}
2772
2773EXPORT_SYMBOL(blk_congestion_wait);
2774
275a082f
TM
2775/**
2776 * blk_congestion_end - wake up sleepers on a congestion queue
2777 * @rw: READ or WRITE
2778 */
2779void blk_congestion_end(int rw)
2780{
2781 wait_queue_head_t *wqh = &congestion_wqh[rw];
2782
2783 if (waitqueue_active(wqh))
2784 wake_up(wqh);
2785}
2786
1da177e4
LT
2787/*
2788 * Has to be called with the request spinlock acquired
2789 */
2790static int attempt_merge(request_queue_t *q, struct request *req,
2791 struct request *next)
2792{
2793 if (!rq_mergeable(req) || !rq_mergeable(next))
2794 return 0;
2795
2796 /*
d6e05edc 2797 * not contiguous
1da177e4
LT
2798 */
2799 if (req->sector + req->nr_sectors != next->sector)
2800 return 0;
2801
2802 if (rq_data_dir(req) != rq_data_dir(next)
2803 || req->rq_disk != next->rq_disk
2804 || next->waiting || next->special)
2805 return 0;
2806
2807 /*
2808 * If we are allowed to merge, then append bio list
2809 * from next to rq and release next. merge_requests_fn
2810 * will have updated segment counts, update sector
2811 * counts here.
2812 */
2813 if (!q->merge_requests_fn(q, req, next))
2814 return 0;
2815
2816 /*
2817 * At this point we have either done a back merge
2818 * or front merge. We need the smaller start_time of
2819 * the merged requests to be the current request
2820 * for accounting purposes.
2821 */
2822 if (time_after(req->start_time, next->start_time))
2823 req->start_time = next->start_time;
2824
2825 req->biotail->bi_next = next->bio;
2826 req->biotail = next->biotail;
2827
2828 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2829
2830 elv_merge_requests(q, req, next);
2831
2832 if (req->rq_disk) {
2833 disk_round_stats(req->rq_disk);
2834 req->rq_disk->in_flight--;
2835 }
2836
22e2c507
JA
2837 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2838
1da177e4
LT
2839 __blk_put_request(q, next);
2840 return 1;
2841}
2842
2843static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2844{
2845 struct request *next = elv_latter_request(q, rq);
2846
2847 if (next)
2848 return attempt_merge(q, rq, next);
2849
2850 return 0;
2851}
2852
2853static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2854{
2855 struct request *prev = elv_former_request(q, rq);
2856
2857 if (prev)
2858 return attempt_merge(q, prev, rq);
2859
2860 return 0;
2861}
2862
52d9e675
TH
2863static void init_request_from_bio(struct request *req, struct bio *bio)
2864{
4aff5e23 2865 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2866
2867 /*
2868 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2869 */
2870 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2871 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2872
2873 /*
2874 * REQ_BARRIER implies no merging, but lets make it explicit
2875 */
2876 if (unlikely(bio_barrier(bio)))
4aff5e23 2877 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2878
b31dc66a 2879 if (bio_sync(bio))
4aff5e23 2880 req->cmd_flags |= REQ_RW_SYNC;
b31dc66a 2881
52d9e675
TH
2882 req->errors = 0;
2883 req->hard_sector = req->sector = bio->bi_sector;
2884 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2885 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2886 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2887 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2888 req->buffer = bio_data(bio); /* see ->buffer comment above */
2889 req->waiting = NULL;
2890 req->bio = req->biotail = bio;
2891 req->ioprio = bio_prio(bio);
2892 req->rq_disk = bio->bi_bdev->bd_disk;
2893 req->start_time = jiffies;
2894}
2895
1da177e4
LT
2896static int __make_request(request_queue_t *q, struct bio *bio)
2897{
450991bc 2898 struct request *req;
4a534f93 2899 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
22e2c507 2900 unsigned short prio;
1da177e4
LT
2901 sector_t sector;
2902
2903 sector = bio->bi_sector;
2904 nr_sectors = bio_sectors(bio);
2905 cur_nr_sectors = bio_cur_sectors(bio);
22e2c507 2906 prio = bio_prio(bio);
1da177e4
LT
2907
2908 rw = bio_data_dir(bio);
4a534f93 2909 sync = bio_sync(bio);
1da177e4
LT
2910
2911 /*
2912 * low level driver can indicate that it wants pages above a
2913 * certain limit bounced to low memory (ie for highmem, or even
2914 * ISA dma in theory)
2915 */
2916 blk_queue_bounce(q, &bio);
2917
2918 spin_lock_prefetch(q->queue_lock);
2919
2920 barrier = bio_barrier(bio);
797e7dbb 2921 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2922 err = -EOPNOTSUPP;
2923 goto end_io;
2924 }
2925
1da177e4
LT
2926 spin_lock_irq(q->queue_lock);
2927
450991bc 2928 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2929 goto get_rq;
2930
2931 el_ret = elv_merge(q, &req, bio);
2932 switch (el_ret) {
2933 case ELEVATOR_BACK_MERGE:
2934 BUG_ON(!rq_mergeable(req));
2935
2936 if (!q->back_merge_fn(q, req, bio))
2937 break;
2938
2056a782
JA
2939 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2940
1da177e4
LT
2941 req->biotail->bi_next = bio;
2942 req->biotail = bio;
2943 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2944 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2945 drive_stat_acct(req, nr_sectors, 0);
2946 if (!attempt_back_merge(q, req))
2e662b65 2947 elv_merged_request(q, req, el_ret);
1da177e4
LT
2948 goto out;
2949
2950 case ELEVATOR_FRONT_MERGE:
2951 BUG_ON(!rq_mergeable(req));
2952
2953 if (!q->front_merge_fn(q, req, bio))
2954 break;
2955
2056a782
JA
2956 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2957
1da177e4
LT
2958 bio->bi_next = req->bio;
2959 req->bio = bio;
2960
2961 /*
2962 * may not be valid. if the low level driver said
2963 * it didn't need a bounce buffer then it better
2964 * not touch req->buffer either...
2965 */
2966 req->buffer = bio_data(bio);
2967 req->current_nr_sectors = cur_nr_sectors;
2968 req->hard_cur_sectors = cur_nr_sectors;
2969 req->sector = req->hard_sector = sector;
2970 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2971 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2972 drive_stat_acct(req, nr_sectors, 0);
2973 if (!attempt_front_merge(q, req))
2e662b65 2974 elv_merged_request(q, req, el_ret);
1da177e4
LT
2975 goto out;
2976
450991bc 2977 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 2978 default:
450991bc 2979 ;
1da177e4
LT
2980 }
2981
450991bc 2982get_rq:
1da177e4 2983 /*
450991bc 2984 * Grab a free request. This is might sleep but can not fail.
d6344532 2985 * Returns with the queue unlocked.
450991bc 2986 */
450991bc 2987 req = get_request_wait(q, rw, bio);
d6344532 2988
450991bc
NP
2989 /*
2990 * After dropping the lock and possibly sleeping here, our request
2991 * may now be mergeable after it had proven unmergeable (above).
2992 * We don't worry about that case for efficiency. It won't happen
2993 * often, and the elevators are able to handle it.
1da177e4 2994 */
52d9e675 2995 init_request_from_bio(req, bio);
1da177e4 2996
450991bc
NP
2997 spin_lock_irq(q->queue_lock);
2998 if (elv_queue_empty(q))
2999 blk_plug_device(q);
1da177e4
LT
3000 add_request(q, req);
3001out:
4a534f93 3002 if (sync)
1da177e4
LT
3003 __generic_unplug_device(q);
3004
3005 spin_unlock_irq(q->queue_lock);
3006 return 0;
3007
3008end_io:
3009 bio_endio(bio, nr_sectors << 9, err);
3010 return 0;
3011}
3012
3013/*
3014 * If bio->bi_dev is a partition, remap the location
3015 */
3016static inline void blk_partition_remap(struct bio *bio)
3017{
3018 struct block_device *bdev = bio->bi_bdev;
3019
3020 if (bdev != bdev->bd_contains) {
3021 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3022 const int rw = bio_data_dir(bio);
3023
3024 p->sectors[rw] += bio_sectors(bio);
3025 p->ios[rw]++;
1da177e4 3026
1da177e4
LT
3027 bio->bi_sector += p->start_sect;
3028 bio->bi_bdev = bdev->bd_contains;
3029 }
3030}
3031
1da177e4
LT
3032static void handle_bad_sector(struct bio *bio)
3033{
3034 char b[BDEVNAME_SIZE];
3035
3036 printk(KERN_INFO "attempt to access beyond end of device\n");
3037 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3038 bdevname(bio->bi_bdev, b),
3039 bio->bi_rw,
3040 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3041 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3042
3043 set_bit(BIO_EOF, &bio->bi_flags);
3044}
3045
3046/**
3047 * generic_make_request: hand a buffer to its device driver for I/O
3048 * @bio: The bio describing the location in memory and on the device.
3049 *
3050 * generic_make_request() is used to make I/O requests of block
3051 * devices. It is passed a &struct bio, which describes the I/O that needs
3052 * to be done.
3053 *
3054 * generic_make_request() does not return any status. The
3055 * success/failure status of the request, along with notification of
3056 * completion, is delivered asynchronously through the bio->bi_end_io
3057 * function described (one day) else where.
3058 *
3059 * The caller of generic_make_request must make sure that bi_io_vec
3060 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3061 * set to describe the device address, and the
3062 * bi_end_io and optionally bi_private are set to describe how
3063 * completion notification should be signaled.
3064 *
3065 * generic_make_request and the drivers it calls may use bi_next if this
3066 * bio happens to be merged with someone else, and may change bi_dev and
3067 * bi_sector for remaps as it sees fit. So the values of these fields
3068 * should NOT be depended on after the call to generic_make_request.
3069 */
3070void generic_make_request(struct bio *bio)
3071{
3072 request_queue_t *q;
3073 sector_t maxsector;
3074 int ret, nr_sectors = bio_sectors(bio);
2056a782 3075 dev_t old_dev;
1da177e4
LT
3076
3077 might_sleep();
3078 /* Test device or partition size, when known. */
3079 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3080 if (maxsector) {
3081 sector_t sector = bio->bi_sector;
3082
3083 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3084 /*
3085 * This may well happen - the kernel calls bread()
3086 * without checking the size of the device, e.g., when
3087 * mounting a device.
3088 */
3089 handle_bad_sector(bio);
3090 goto end_io;
3091 }
3092 }
3093
3094 /*
3095 * Resolve the mapping until finished. (drivers are
3096 * still free to implement/resolve their own stacking
3097 * by explicitly returning 0)
3098 *
3099 * NOTE: we don't repeat the blk_size check for each new device.
3100 * Stacking drivers are expected to know what they are doing.
3101 */
2056a782
JA
3102 maxsector = -1;
3103 old_dev = 0;
1da177e4
LT
3104 do {
3105 char b[BDEVNAME_SIZE];
3106
3107 q = bdev_get_queue(bio->bi_bdev);
3108 if (!q) {
3109 printk(KERN_ERR
3110 "generic_make_request: Trying to access "
3111 "nonexistent block-device %s (%Lu)\n",
3112 bdevname(bio->bi_bdev, b),
3113 (long long) bio->bi_sector);
3114end_io:
3115 bio_endio(bio, bio->bi_size, -EIO);
3116 break;
3117 }
3118
3119 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3120 printk("bio too big device %s (%u > %u)\n",
3121 bdevname(bio->bi_bdev, b),
3122 bio_sectors(bio),
3123 q->max_hw_sectors);
3124 goto end_io;
3125 }
3126
fde6ad22 3127 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3128 goto end_io;
3129
1da177e4
LT
3130 /*
3131 * If this device has partitions, remap block n
3132 * of partition p to block n+start(p) of the disk.
3133 */
3134 blk_partition_remap(bio);
3135
2056a782
JA
3136 if (maxsector != -1)
3137 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3138 maxsector);
3139
3140 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3141
3142 maxsector = bio->bi_sector;
3143 old_dev = bio->bi_bdev->bd_dev;
3144
1da177e4
LT
3145 ret = q->make_request_fn(q, bio);
3146 } while (ret);
3147}
3148
3149EXPORT_SYMBOL(generic_make_request);
3150
3151/**
3152 * submit_bio: submit a bio to the block device layer for I/O
3153 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3154 * @bio: The &struct bio which describes the I/O
3155 *
3156 * submit_bio() is very similar in purpose to generic_make_request(), and
3157 * uses that function to do most of the work. Both are fairly rough
3158 * interfaces, @bio must be presetup and ready for I/O.
3159 *
3160 */
3161void submit_bio(int rw, struct bio *bio)
3162{
3163 int count = bio_sectors(bio);
3164
3165 BIO_BUG_ON(!bio->bi_size);
3166 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3167 bio->bi_rw |= rw;
1da177e4 3168 if (rw & WRITE)
f8891e5e 3169 count_vm_events(PGPGOUT, count);
1da177e4 3170 else
f8891e5e 3171 count_vm_events(PGPGIN, count);
1da177e4
LT
3172
3173 if (unlikely(block_dump)) {
3174 char b[BDEVNAME_SIZE];
3175 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3176 current->comm, current->pid,
3177 (rw & WRITE) ? "WRITE" : "READ",
3178 (unsigned long long)bio->bi_sector,
3179 bdevname(bio->bi_bdev,b));
3180 }
3181
3182 generic_make_request(bio);
3183}
3184
3185EXPORT_SYMBOL(submit_bio);
3186
93d17d3d 3187static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
3188{
3189 struct bio *bio, *prevbio = NULL;
3190 int nr_phys_segs, nr_hw_segs;
3191 unsigned int phys_size, hw_size;
3192 request_queue_t *q = rq->q;
3193
3194 if (!rq->bio)
3195 return;
3196
3197 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3198 rq_for_each_bio(bio, rq) {
3199 /* Force bio hw/phys segs to be recalculated. */
3200 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3201
3202 nr_phys_segs += bio_phys_segments(q, bio);
3203 nr_hw_segs += bio_hw_segments(q, bio);
3204 if (prevbio) {
3205 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3206 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3207
3208 if (blk_phys_contig_segment(q, prevbio, bio) &&
3209 pseg <= q->max_segment_size) {
3210 nr_phys_segs--;
3211 phys_size += prevbio->bi_size + bio->bi_size;
3212 } else
3213 phys_size = 0;
3214
3215 if (blk_hw_contig_segment(q, prevbio, bio) &&
3216 hseg <= q->max_segment_size) {
3217 nr_hw_segs--;
3218 hw_size += prevbio->bi_size + bio->bi_size;
3219 } else
3220 hw_size = 0;
3221 }
3222 prevbio = bio;
3223 }
3224
3225 rq->nr_phys_segments = nr_phys_segs;
3226 rq->nr_hw_segments = nr_hw_segs;
3227}
3228
93d17d3d 3229static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3230{
3231 if (blk_fs_request(rq)) {
3232 rq->hard_sector += nsect;
3233 rq->hard_nr_sectors -= nsect;
3234
3235 /*
3236 * Move the I/O submission pointers ahead if required.
3237 */
3238 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3239 (rq->sector <= rq->hard_sector)) {
3240 rq->sector = rq->hard_sector;
3241 rq->nr_sectors = rq->hard_nr_sectors;
3242 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3243 rq->current_nr_sectors = rq->hard_cur_sectors;
3244 rq->buffer = bio_data(rq->bio);
3245 }
3246
3247 /*
3248 * if total number of sectors is less than the first segment
3249 * size, something has gone terribly wrong
3250 */
3251 if (rq->nr_sectors < rq->current_nr_sectors) {
3252 printk("blk: request botched\n");
3253 rq->nr_sectors = rq->current_nr_sectors;
3254 }
3255 }
3256}
3257
3258static int __end_that_request_first(struct request *req, int uptodate,
3259 int nr_bytes)
3260{
3261 int total_bytes, bio_nbytes, error, next_idx = 0;
3262 struct bio *bio;
3263
2056a782
JA
3264 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3265
1da177e4
LT
3266 /*
3267 * extend uptodate bool to allow < 0 value to be direct io error
3268 */
3269 error = 0;
3270 if (end_io_error(uptodate))
3271 error = !uptodate ? -EIO : uptodate;
3272
3273 /*
3274 * for a REQ_BLOCK_PC request, we want to carry any eventual
3275 * sense key with us all the way through
3276 */
3277 if (!blk_pc_request(req))
3278 req->errors = 0;
3279
3280 if (!uptodate) {
4aff5e23 3281 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3282 printk("end_request: I/O error, dev %s, sector %llu\n",
3283 req->rq_disk ? req->rq_disk->disk_name : "?",
3284 (unsigned long long)req->sector);
3285 }
3286
d72d904a 3287 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3288 const int rw = rq_data_dir(req);
3289
53e86061 3290 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3291 }
3292
1da177e4
LT
3293 total_bytes = bio_nbytes = 0;
3294 while ((bio = req->bio) != NULL) {
3295 int nbytes;
3296
3297 if (nr_bytes >= bio->bi_size) {
3298 req->bio = bio->bi_next;
3299 nbytes = bio->bi_size;
797e7dbb
TH
3300 if (!ordered_bio_endio(req, bio, nbytes, error))
3301 bio_endio(bio, nbytes, error);
1da177e4
LT
3302 next_idx = 0;
3303 bio_nbytes = 0;
3304 } else {
3305 int idx = bio->bi_idx + next_idx;
3306
3307 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3308 blk_dump_rq_flags(req, "__end_that");
3309 printk("%s: bio idx %d >= vcnt %d\n",
3310 __FUNCTION__,
3311 bio->bi_idx, bio->bi_vcnt);
3312 break;
3313 }
3314
3315 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3316 BIO_BUG_ON(nbytes > bio->bi_size);
3317
3318 /*
3319 * not a complete bvec done
3320 */
3321 if (unlikely(nbytes > nr_bytes)) {
3322 bio_nbytes += nr_bytes;
3323 total_bytes += nr_bytes;
3324 break;
3325 }
3326
3327 /*
3328 * advance to the next vector
3329 */
3330 next_idx++;
3331 bio_nbytes += nbytes;
3332 }
3333
3334 total_bytes += nbytes;
3335 nr_bytes -= nbytes;
3336
3337 if ((bio = req->bio)) {
3338 /*
3339 * end more in this run, or just return 'not-done'
3340 */
3341 if (unlikely(nr_bytes <= 0))
3342 break;
3343 }
3344 }
3345
3346 /*
3347 * completely done
3348 */
3349 if (!req->bio)
3350 return 0;
3351
3352 /*
3353 * if the request wasn't completed, update state
3354 */
3355 if (bio_nbytes) {
797e7dbb
TH
3356 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3357 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3358 bio->bi_idx += next_idx;
3359 bio_iovec(bio)->bv_offset += nr_bytes;
3360 bio_iovec(bio)->bv_len -= nr_bytes;
3361 }
3362
3363 blk_recalc_rq_sectors(req, total_bytes >> 9);
3364 blk_recalc_rq_segments(req);
3365 return 1;
3366}
3367
3368/**
3369 * end_that_request_first - end I/O on a request
3370 * @req: the request being processed
3371 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3372 * @nr_sectors: number of sectors to end I/O on
3373 *
3374 * Description:
3375 * Ends I/O on a number of sectors attached to @req, and sets it up
3376 * for the next range of segments (if any) in the cluster.
3377 *
3378 * Return:
3379 * 0 - we are done with this request, call end_that_request_last()
3380 * 1 - still buffers pending for this request
3381 **/
3382int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3383{
3384 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3385}
3386
3387EXPORT_SYMBOL(end_that_request_first);
3388
3389/**
3390 * end_that_request_chunk - end I/O on a request
3391 * @req: the request being processed
3392 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3393 * @nr_bytes: number of bytes to complete
3394 *
3395 * Description:
3396 * Ends I/O on a number of bytes attached to @req, and sets it up
3397 * for the next range of segments (if any). Like end_that_request_first(),
3398 * but deals with bytes instead of sectors.
3399 *
3400 * Return:
3401 * 0 - we are done with this request, call end_that_request_last()
3402 * 1 - still buffers pending for this request
3403 **/
3404int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3405{
3406 return __end_that_request_first(req, uptodate, nr_bytes);
3407}
3408
3409EXPORT_SYMBOL(end_that_request_chunk);
3410
ff856bad
JA
3411/*
3412 * splice the completion data to a local structure and hand off to
3413 * process_completion_queue() to complete the requests
3414 */
3415static void blk_done_softirq(struct softirq_action *h)
3416{
626ab0e6 3417 struct list_head *cpu_list, local_list;
ff856bad
JA
3418
3419 local_irq_disable();
3420 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3421 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3422 local_irq_enable();
3423
3424 while (!list_empty(&local_list)) {
3425 struct request *rq = list_entry(local_list.next, struct request, donelist);
3426
3427 list_del_init(&rq->donelist);
3428 rq->q->softirq_done_fn(rq);
3429 }
3430}
3431
3432#ifdef CONFIG_HOTPLUG_CPU
3433
3434static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3435 void *hcpu)
3436{
3437 /*
3438 * If a CPU goes away, splice its entries to the current CPU
3439 * and trigger a run of the softirq
3440 */
3441 if (action == CPU_DEAD) {
3442 int cpu = (unsigned long) hcpu;
3443
3444 local_irq_disable();
3445 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3446 &__get_cpu_var(blk_cpu_done));
3447 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3448 local_irq_enable();
3449 }
3450
3451 return NOTIFY_OK;
3452}
3453
3454
054cc8a2 3455static struct notifier_block __devinitdata blk_cpu_notifier = {
ff856bad
JA
3456 .notifier_call = blk_cpu_notify,
3457};
3458
3459#endif /* CONFIG_HOTPLUG_CPU */
3460
3461/**
3462 * blk_complete_request - end I/O on a request
3463 * @req: the request being processed
3464 *
3465 * Description:
3466 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3467 * unless the driver actually implements this in its completion callback
ff856bad
JA
3468 * through requeueing. Theh actual completion happens out-of-order,
3469 * through a softirq handler. The user must have registered a completion
3470 * callback through blk_queue_softirq_done().
3471 **/
3472
3473void blk_complete_request(struct request *req)
3474{
3475 struct list_head *cpu_list;
3476 unsigned long flags;
3477
3478 BUG_ON(!req->q->softirq_done_fn);
3479
3480 local_irq_save(flags);
3481
3482 cpu_list = &__get_cpu_var(blk_cpu_done);
3483 list_add_tail(&req->donelist, cpu_list);
3484 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3485
3486 local_irq_restore(flags);
3487}
3488
3489EXPORT_SYMBOL(blk_complete_request);
3490
1da177e4
LT
3491/*
3492 * queue lock must be held
3493 */
8ffdc655 3494void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3495{
3496 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3497 int error;
3498
3499 /*
3500 * extend uptodate bool to allow < 0 value to be direct io error
3501 */
3502 error = 0;
3503 if (end_io_error(uptodate))
3504 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3505
3506 if (unlikely(laptop_mode) && blk_fs_request(req))
3507 laptop_io_completion();
3508
fd0ff8aa
JA
3509 /*
3510 * Account IO completion. bar_rq isn't accounted as a normal
3511 * IO on queueing nor completion. Accounting the containing
3512 * request is enough.
3513 */
3514 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3515 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3516 const int rw = rq_data_dir(req);
3517
3518 __disk_stat_inc(disk, ios[rw]);
3519 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3520 disk_round_stats(disk);
3521 disk->in_flight--;
3522 }
3523 if (req->end_io)
8ffdc655 3524 req->end_io(req, error);
1da177e4
LT
3525 else
3526 __blk_put_request(req->q, req);
3527}
3528
3529EXPORT_SYMBOL(end_that_request_last);
3530
3531void end_request(struct request *req, int uptodate)
3532{
3533 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3534 add_disk_randomness(req->rq_disk);
3535 blkdev_dequeue_request(req);
8ffdc655 3536 end_that_request_last(req, uptodate);
1da177e4
LT
3537 }
3538}
3539
3540EXPORT_SYMBOL(end_request);
3541
3542void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3543{
4aff5e23
JA
3544 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3545 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3546
3547 rq->nr_phys_segments = bio_phys_segments(q, bio);
3548 rq->nr_hw_segments = bio_hw_segments(q, bio);
3549 rq->current_nr_sectors = bio_cur_sectors(bio);
3550 rq->hard_cur_sectors = rq->current_nr_sectors;
3551 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3552 rq->buffer = bio_data(bio);
3553
3554 rq->bio = rq->biotail = bio;
3555}
3556
3557EXPORT_SYMBOL(blk_rq_bio_prep);
3558
3559int kblockd_schedule_work(struct work_struct *work)
3560{
3561 return queue_work(kblockd_workqueue, work);
3562}
3563
3564EXPORT_SYMBOL(kblockd_schedule_work);
3565
3566void kblockd_flush(void)
3567{
3568 flush_workqueue(kblockd_workqueue);
3569}
3570EXPORT_SYMBOL(kblockd_flush);
3571
3572int __init blk_dev_init(void)
3573{
ff856bad
JA
3574 int i;
3575
1da177e4
LT
3576 kblockd_workqueue = create_workqueue("kblockd");
3577 if (!kblockd_workqueue)
3578 panic("Failed to create kblockd\n");
3579
3580 request_cachep = kmem_cache_create("blkdev_requests",
3581 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3582
3583 requestq_cachep = kmem_cache_create("blkdev_queue",
3584 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3585
3586 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3587 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3588
0a945022 3589 for_each_possible_cpu(i)
ff856bad
JA
3590 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3591
3592 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3593 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3594
1da177e4
LT
3595 blk_max_low_pfn = max_low_pfn;
3596 blk_max_pfn = max_pfn;
3597
3598 return 0;
3599}
3600
3601/*
3602 * IO Context helper functions
3603 */
3604void put_io_context(struct io_context *ioc)
3605{
3606 if (ioc == NULL)
3607 return;
3608
3609 BUG_ON(atomic_read(&ioc->refcount) == 0);
3610
3611 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3612 struct cfq_io_context *cic;
3613
334e94de 3614 rcu_read_lock();
1da177e4
LT
3615 if (ioc->aic && ioc->aic->dtor)
3616 ioc->aic->dtor(ioc->aic);
e2d74ac0 3617 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3618 struct rb_node *n = rb_first(&ioc->cic_root);
3619
3620 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3621 cic->dtor(ioc);
3622 }
334e94de 3623 rcu_read_unlock();
1da177e4
LT
3624
3625 kmem_cache_free(iocontext_cachep, ioc);
3626 }
3627}
3628EXPORT_SYMBOL(put_io_context);
3629
3630/* Called by the exitting task */
3631void exit_io_context(void)
3632{
3633 unsigned long flags;
3634 struct io_context *ioc;
e2d74ac0 3635 struct cfq_io_context *cic;
1da177e4
LT
3636
3637 local_irq_save(flags);
22e2c507 3638 task_lock(current);
1da177e4
LT
3639 ioc = current->io_context;
3640 current->io_context = NULL;
22e2c507
JA
3641 ioc->task = NULL;
3642 task_unlock(current);
1da177e4
LT
3643 local_irq_restore(flags);
3644
3645 if (ioc->aic && ioc->aic->exit)
3646 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3647 if (ioc->cic_root.rb_node != NULL) {
3648 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3649 cic->exit(ioc);
3650 }
3651
1da177e4
LT
3652 put_io_context(ioc);
3653}
3654
3655/*
3656 * If the current task has no IO context then create one and initialise it.
fb3cc432 3657 * Otherwise, return its existing IO context.
1da177e4 3658 *
fb3cc432
NP
3659 * This returned IO context doesn't have a specifically elevated refcount,
3660 * but since the current task itself holds a reference, the context can be
3661 * used in general code, so long as it stays within `current` context.
1da177e4 3662 */
8267e268 3663struct io_context *current_io_context(gfp_t gfp_flags)
1da177e4
LT
3664{
3665 struct task_struct *tsk = current;
1da177e4
LT
3666 struct io_context *ret;
3667
1da177e4 3668 ret = tsk->io_context;
fb3cc432
NP
3669 if (likely(ret))
3670 return ret;
1da177e4
LT
3671
3672 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3673 if (ret) {
3674 atomic_set(&ret->refcount, 1);
22e2c507
JA
3675 ret->task = current;
3676 ret->set_ioprio = NULL;
1da177e4
LT
3677 ret->last_waited = jiffies; /* doesn't matter... */
3678 ret->nr_batch_requests = 0; /* because this is 0 */
3679 ret->aic = NULL;
e2d74ac0 3680 ret->cic_root.rb_node = NULL;
9f83e45e
ON
3681 /* make sure set_task_ioprio() sees the settings above */
3682 smp_wmb();
fb3cc432
NP
3683 tsk->io_context = ret;
3684 }
1da177e4 3685
fb3cc432
NP
3686 return ret;
3687}
3688EXPORT_SYMBOL(current_io_context);
1da177e4 3689
fb3cc432
NP
3690/*
3691 * If the current task has no IO context then create one and initialise it.
3692 * If it does have a context, take a ref on it.
3693 *
3694 * This is always called in the context of the task which submitted the I/O.
3695 */
8267e268 3696struct io_context *get_io_context(gfp_t gfp_flags)
fb3cc432
NP
3697{
3698 struct io_context *ret;
3699 ret = current_io_context(gfp_flags);
3700 if (likely(ret))
1da177e4 3701 atomic_inc(&ret->refcount);
1da177e4
LT
3702 return ret;
3703}
3704EXPORT_SYMBOL(get_io_context);
3705
3706void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3707{
3708 struct io_context *src = *psrc;
3709 struct io_context *dst = *pdst;
3710
3711 if (src) {
3712 BUG_ON(atomic_read(&src->refcount) == 0);
3713 atomic_inc(&src->refcount);
3714 put_io_context(dst);
3715 *pdst = src;
3716 }
3717}
3718EXPORT_SYMBOL(copy_io_context);
3719
3720void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3721{
3722 struct io_context *temp;
3723 temp = *ioc1;
3724 *ioc1 = *ioc2;
3725 *ioc2 = temp;
3726}
3727EXPORT_SYMBOL(swap_io_context);
3728
3729/*
3730 * sysfs parts below
3731 */
3732struct queue_sysfs_entry {
3733 struct attribute attr;
3734 ssize_t (*show)(struct request_queue *, char *);
3735 ssize_t (*store)(struct request_queue *, const char *, size_t);
3736};
3737
3738static ssize_t
3739queue_var_show(unsigned int var, char *page)
3740{
3741 return sprintf(page, "%d\n", var);
3742}
3743
3744static ssize_t
3745queue_var_store(unsigned long *var, const char *page, size_t count)
3746{
3747 char *p = (char *) page;
3748
3749 *var = simple_strtoul(p, &p, 10);
3750 return count;
3751}
3752
3753static ssize_t queue_requests_show(struct request_queue *q, char *page)
3754{
3755 return queue_var_show(q->nr_requests, (page));
3756}
3757
3758static ssize_t
3759queue_requests_store(struct request_queue *q, const char *page, size_t count)
3760{
3761 struct request_list *rl = &q->rq;
c981ff9f
AV
3762 unsigned long nr;
3763 int ret = queue_var_store(&nr, page, count);
3764 if (nr < BLKDEV_MIN_RQ)
3765 nr = BLKDEV_MIN_RQ;
1da177e4 3766
c981ff9f
AV
3767 spin_lock_irq(q->queue_lock);
3768 q->nr_requests = nr;
1da177e4
LT
3769 blk_queue_congestion_threshold(q);
3770
3771 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3772 set_queue_congested(q, READ);
3773 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3774 clear_queue_congested(q, READ);
3775
3776 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3777 set_queue_congested(q, WRITE);
3778 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3779 clear_queue_congested(q, WRITE);
3780
3781 if (rl->count[READ] >= q->nr_requests) {
3782 blk_set_queue_full(q, READ);
3783 } else if (rl->count[READ]+1 <= q->nr_requests) {
3784 blk_clear_queue_full(q, READ);
3785 wake_up(&rl->wait[READ]);
3786 }
3787
3788 if (rl->count[WRITE] >= q->nr_requests) {
3789 blk_set_queue_full(q, WRITE);
3790 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3791 blk_clear_queue_full(q, WRITE);
3792 wake_up(&rl->wait[WRITE]);
3793 }
c981ff9f 3794 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3795 return ret;
3796}
3797
3798static ssize_t queue_ra_show(struct request_queue *q, char *page)
3799{
3800 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3801
3802 return queue_var_show(ra_kb, (page));
3803}
3804
3805static ssize_t
3806queue_ra_store(struct request_queue *q, const char *page, size_t count)
3807{
3808 unsigned long ra_kb;
3809 ssize_t ret = queue_var_store(&ra_kb, page, count);
3810
3811 spin_lock_irq(q->queue_lock);
3812 if (ra_kb > (q->max_sectors >> 1))
3813 ra_kb = (q->max_sectors >> 1);
3814
3815 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3816 spin_unlock_irq(q->queue_lock);
3817
3818 return ret;
3819}
3820
3821static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3822{
3823 int max_sectors_kb = q->max_sectors >> 1;
3824
3825 return queue_var_show(max_sectors_kb, (page));
3826}
3827
3828static ssize_t
3829queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3830{
3831 unsigned long max_sectors_kb,
3832 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3833 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3834 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3835 int ra_kb;
3836
3837 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3838 return -EINVAL;
3839 /*
3840 * Take the queue lock to update the readahead and max_sectors
3841 * values synchronously:
3842 */
3843 spin_lock_irq(q->queue_lock);
3844 /*
3845 * Trim readahead window as well, if necessary:
3846 */
3847 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3848 if (ra_kb > max_sectors_kb)
3849 q->backing_dev_info.ra_pages =
3850 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3851
3852 q->max_sectors = max_sectors_kb << 1;
3853 spin_unlock_irq(q->queue_lock);
3854
3855 return ret;
3856}
3857
3858static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3859{
3860 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3861
3862 return queue_var_show(max_hw_sectors_kb, (page));
3863}
3864
3865
3866static struct queue_sysfs_entry queue_requests_entry = {
3867 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3868 .show = queue_requests_show,
3869 .store = queue_requests_store,
3870};
3871
3872static struct queue_sysfs_entry queue_ra_entry = {
3873 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3874 .show = queue_ra_show,
3875 .store = queue_ra_store,
3876};
3877
3878static struct queue_sysfs_entry queue_max_sectors_entry = {
3879 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3880 .show = queue_max_sectors_show,
3881 .store = queue_max_sectors_store,
3882};
3883
3884static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3885 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3886 .show = queue_max_hw_sectors_show,
3887};
3888
3889static struct queue_sysfs_entry queue_iosched_entry = {
3890 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3891 .show = elv_iosched_show,
3892 .store = elv_iosched_store,
3893};
3894
3895static struct attribute *default_attrs[] = {
3896 &queue_requests_entry.attr,
3897 &queue_ra_entry.attr,
3898 &queue_max_hw_sectors_entry.attr,
3899 &queue_max_sectors_entry.attr,
3900 &queue_iosched_entry.attr,
3901 NULL,
3902};
3903
3904#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3905
3906static ssize_t
3907queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3908{
3909 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3910 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3911 ssize_t res;
1da177e4 3912
1da177e4 3913 if (!entry->show)
6c1852a0 3914 return -EIO;
483f4afc
AV
3915 mutex_lock(&q->sysfs_lock);
3916 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3917 mutex_unlock(&q->sysfs_lock);
3918 return -ENOENT;
3919 }
3920 res = entry->show(q, page);
3921 mutex_unlock(&q->sysfs_lock);
3922 return res;
1da177e4
LT
3923}
3924
3925static ssize_t
3926queue_attr_store(struct kobject *kobj, struct attribute *attr,
3927 const char *page, size_t length)
3928{
3929 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3930 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3931
3932 ssize_t res;
1da177e4 3933
1da177e4 3934 if (!entry->store)
6c1852a0 3935 return -EIO;
483f4afc
AV
3936 mutex_lock(&q->sysfs_lock);
3937 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3938 mutex_unlock(&q->sysfs_lock);
3939 return -ENOENT;
3940 }
3941 res = entry->store(q, page, length);
3942 mutex_unlock(&q->sysfs_lock);
3943 return res;
1da177e4
LT
3944}
3945
3946static struct sysfs_ops queue_sysfs_ops = {
3947 .show = queue_attr_show,
3948 .store = queue_attr_store,
3949};
3950
93d17d3d 3951static struct kobj_type queue_ktype = {
1da177e4
LT
3952 .sysfs_ops = &queue_sysfs_ops,
3953 .default_attrs = default_attrs,
483f4afc 3954 .release = blk_release_queue,
1da177e4
LT
3955};
3956
3957int blk_register_queue(struct gendisk *disk)
3958{
3959 int ret;
3960
3961 request_queue_t *q = disk->queue;
3962
3963 if (!q || !q->request_fn)
3964 return -ENXIO;
3965
3966 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 3967
483f4afc 3968 ret = kobject_add(&q->kobj);
1da177e4
LT
3969 if (ret < 0)
3970 return ret;
3971
483f4afc
AV
3972 kobject_uevent(&q->kobj, KOBJ_ADD);
3973
1da177e4
LT
3974 ret = elv_register_queue(q);
3975 if (ret) {
483f4afc
AV
3976 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3977 kobject_del(&q->kobj);
1da177e4
LT
3978 return ret;
3979 }
3980
3981 return 0;
3982}
3983
3984void blk_unregister_queue(struct gendisk *disk)
3985{
3986 request_queue_t *q = disk->queue;
3987
3988 if (q && q->request_fn) {
3989 elv_unregister_queue(q);
3990
483f4afc
AV
3991 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3992 kobject_del(&q->kobj);
1da177e4
LT
3993 kobject_put(&disk->kobj);
3994 }
3995}