]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/ll_rw_blk.c
blk_sync_queue() should cancel request_queue->unplug_work
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
b238b3d4 42static void drive_stat_acct(struct request *rq, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4
LT
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
492dfb48 803
1da177e4
LT
804 }
805
492dfb48
JB
806 return retval;
807}
808
809/**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
165125e1 817static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
818{
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
1da177e4
LT
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828}
829
492dfb48
JB
830
831/**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839void blk_free_tags(struct blk_queue_tag *bqt)
840{
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843}
844EXPORT_SYMBOL(blk_free_tags);
845
1da177e4
LT
846/**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
165125e1 854void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
855{
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857}
858
859EXPORT_SYMBOL(blk_queue_free_tags);
860
861static int
165125e1 862init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 863{
1da177e4
LT
864 struct request **tag_index;
865 unsigned long *tag_map;
fa72b903 866 int nr_ulongs;
1da177e4 867
492dfb48 868 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
f68110fc 874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
875 if (!tag_index)
876 goto fail;
877
f7d37d02 878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
880 if (!tag_map)
881 goto fail;
882
ba025082 883 tags->real_max_depth = depth;
1da177e4 884 tags->max_depth = depth;
1da177e4
LT
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
1da177e4
LT
888 return 0;
889fail:
890 kfree(tag_index);
891 return -ENOMEM;
892}
893
492dfb48
JB
894static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896{
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910fail:
911 kfree(tags);
912 return NULL;
913}
914
915/**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920struct blk_queue_tag *blk_init_tags(int depth)
921{
922 return __blk_queue_init_tags(NULL, depth);
923}
924EXPORT_SYMBOL(blk_init_tags);
925
1da177e4
LT
926/**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
165125e1 932int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
933 struct blk_queue_tag *tags)
934{
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
492dfb48 940 tags = __blk_queue_init_tags(q, depth);
1da177e4 941
492dfb48 942 if (!tags)
1da177e4 943 goto fail;
1da177e4
LT
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958fail:
959 kfree(tags);
960 return -ENOMEM;
961}
962
963EXPORT_SYMBOL(blk_queue_init_tags);
964
965/**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
165125e1 973int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
974{
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
fa72b903 978 int max_depth, nr_ulongs;
1da177e4
LT
979
980 if (!bqt)
981 return -ENXIO;
982
ba025082
TH
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
492dfb48
JB
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1da177e4
LT
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
ba025082 1006 max_depth = bqt->real_max_depth;
1da177e4
LT
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018}
1019
1020EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022/**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
165125e1 1036void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1037{
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
ba025082 1043 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1da177e4
LT
1048 return;
1049
1da177e4 1050 list_del_init(&rq->queuelist);
4aff5e23 1051 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1da177e4
LT
1057
1058 bqt->tag_index[tag] = NULL;
f3da54ba 1059
dd941252
NP
1060 /*
1061 * We use test_and_clear_bit's memory ordering properties here.
1062 * The tag_map bit acts as a lock for tag_index[bit], so we need
1063 * a barrer before clearing the bit (precisely: release semantics).
1064 * Could use clear_bit_unlock when it is merged.
1065 */
f3da54ba
JA
1066 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1067 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1068 __FUNCTION__, tag);
1069 return;
1070 }
1071
1da177e4
LT
1072 bqt->busy--;
1073}
1074
1075EXPORT_SYMBOL(blk_queue_end_tag);
1076
1077/**
1078 * blk_queue_start_tag - find a free tag and assign it
1079 * @q: the request queue for the device
1080 * @rq: the block request that needs tagging
1081 *
1082 * Description:
1083 * This can either be used as a stand-alone helper, or possibly be
1084 * assigned as the queue &prep_rq_fn (in which case &struct request
1085 * automagically gets a tag assigned). Note that this function
1086 * assumes that any type of request can be queued! if this is not
1087 * true for your device, you must check the request type before
1088 * calling this function. The request will also be removed from
1089 * the request queue, so it's the drivers responsibility to readd
1090 * it if it should need to be restarted for some reason.
1091 *
1092 * Notes:
1093 * queue lock must be held.
1094 **/
165125e1 1095int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1096{
1097 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1098 int tag;
1da177e4 1099
4aff5e23 1100 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1101 printk(KERN_ERR
040c928c
TH
1102 "%s: request %p for device [%s] already tagged %d",
1103 __FUNCTION__, rq,
1104 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1105 BUG();
1106 }
1107
059af497
JA
1108 /*
1109 * Protect against shared tag maps, as we may not have exclusive
1110 * access to the tag map.
1111 */
1112 do {
1113 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1114 if (tag >= bqt->max_depth)
1115 return 1;
1da177e4 1116
059af497 1117 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1118 /*
1119 * We rely on test_and_set_bit providing lock memory ordering semantics
1120 * (could use test_and_set_bit_lock when it is merged).
1121 */
1da177e4 1122
4aff5e23 1123 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1124 rq->tag = tag;
1125 bqt->tag_index[tag] = rq;
1126 blkdev_dequeue_request(rq);
1127 list_add(&rq->queuelist, &bqt->busy_list);
1128 bqt->busy++;
1129 return 0;
1130}
1131
1132EXPORT_SYMBOL(blk_queue_start_tag);
1133
1134/**
1135 * blk_queue_invalidate_tags - invalidate all pending tags
1136 * @q: the request queue for the device
1137 *
1138 * Description:
1139 * Hardware conditions may dictate a need to stop all pending requests.
1140 * In this case, we will safely clear the block side of the tag queue and
1141 * readd all requests to the request queue in the right order.
1142 *
1143 * Notes:
1144 * queue lock must be held.
1145 **/
165125e1 1146void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1147{
1148 struct blk_queue_tag *bqt = q->queue_tags;
1149 struct list_head *tmp, *n;
1150 struct request *rq;
1151
1152 list_for_each_safe(tmp, n, &bqt->busy_list) {
1153 rq = list_entry_rq(tmp);
1154
1155 if (rq->tag == -1) {
040c928c
TH
1156 printk(KERN_ERR
1157 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1158 list_del_init(&rq->queuelist);
4aff5e23 1159 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1160 } else
1161 blk_queue_end_tag(q, rq);
1162
4aff5e23 1163 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1164 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1165 }
1166}
1167
1168EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169
1da177e4
LT
1170void blk_dump_rq_flags(struct request *rq, char *msg)
1171{
1172 int bit;
1173
4aff5e23
JA
1174 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1175 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1176 rq->cmd_flags);
1da177e4
LT
1177
1178 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1179 rq->nr_sectors,
1180 rq->current_nr_sectors);
1181 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182
4aff5e23 1183 if (blk_pc_request(rq)) {
1da177e4
LT
1184 printk("cdb: ");
1185 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1186 printk("%02x ", rq->cmd[bit]);
1187 printk("\n");
1188 }
1189}
1190
1191EXPORT_SYMBOL(blk_dump_rq_flags);
1192
165125e1 1193void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1194{
9dfa5283
N
1195 struct request rq;
1196 struct bio *nxt = bio->bi_next;
1197 rq.q = q;
1198 rq.bio = rq.biotail = bio;
1199 bio->bi_next = NULL;
1200 blk_recalc_rq_segments(&rq);
1201 bio->bi_next = nxt;
1202 bio->bi_phys_segments = rq.nr_phys_segments;
1203 bio->bi_hw_segments = rq.nr_hw_segments;
1204 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205}
1206EXPORT_SYMBOL(blk_recount_segments);
1207
1208static void blk_recalc_rq_segments(struct request *rq)
1209{
1210 int nr_phys_segs;
1211 int nr_hw_segs;
1212 unsigned int phys_size;
1213 unsigned int hw_size;
1da177e4 1214 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1215 int seg_size;
1216 int hw_seg_size;
1217 int cluster;
5705f702 1218 struct req_iterator iter;
1da177e4 1219 int high, highprv = 1;
9dfa5283 1220 struct request_queue *q = rq->q;
1da177e4 1221
9dfa5283 1222 if (!rq->bio)
1da177e4
LT
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1226 hw_seg_size = seg_size = 0;
1227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1228 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1229 /*
1230 * the trick here is making sure that a high page is never
1231 * considered part of another segment, since that might
1232 * change with the bounce page.
1233 */
f772b3d9 1234 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1235 if (high || highprv)
1236 goto new_hw_segment;
1237 if (cluster) {
1238 if (seg_size + bv->bv_len > q->max_segment_size)
1239 goto new_segment;
1240 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 goto new_segment;
1242 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 goto new_segment;
1244 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1245 goto new_hw_segment;
1246
1247 seg_size += bv->bv_len;
1248 hw_seg_size += bv->bv_len;
1249 bvprv = bv;
1250 continue;
1251 }
1252new_segment:
1253 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1254 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1255 hw_seg_size += bv->bv_len;
9dfa5283 1256 else {
1da177e4 1257new_hw_segment:
9dfa5283
N
1258 if (nr_hw_segs == 1 &&
1259 hw_seg_size > rq->bio->bi_hw_front_size)
1260 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1261 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1262 nr_hw_segs++;
1263 }
1264
1265 nr_phys_segs++;
1266 bvprv = bv;
1267 seg_size = bv->bv_len;
1268 highprv = high;
1269 }
9dfa5283
N
1270
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1274 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1275 rq->biotail->bi_hw_back_size = hw_seg_size;
1276 rq->nr_phys_segments = nr_phys_segs;
1277 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1278}
1da177e4 1279
165125e1 1280static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1281 struct bio *nxt)
1282{
1283 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 return 0;
1285
1286 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1287 return 0;
1288 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 return 0;
1290
1291 /*
1292 * bio and nxt are contigous in memory, check if the queue allows
1293 * these two to be merged into one
1294 */
1295 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1296 return 1;
1297
1298 return 0;
1299}
1300
165125e1 1301static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1302 struct bio *nxt)
1303{
1304 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1305 blk_recount_segments(q, bio);
1306 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1307 blk_recount_segments(q, nxt);
1308 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1309 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1310 return 0;
32eef964 1311 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1312 return 0;
1313
1314 return 1;
1315}
1316
1da177e4
LT
1317/*
1318 * map a request to scatterlist, return number of sg entries setup. Caller
1319 * must make sure sg can hold rq->nr_phys_segments entries
1320 */
165125e1 1321int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1322 struct scatterlist *sglist)
1da177e4
LT
1323{
1324 struct bio_vec *bvec, *bvprv;
5705f702 1325 struct req_iterator iter;
ba951841 1326 struct scatterlist *sg;
5705f702 1327 int nsegs, cluster;
1da177e4
LT
1328
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331
1332 /*
1333 * for each bio in rq
1334 */
1335 bvprv = NULL;
ba951841 1336 sg = NULL;
5705f702 1337 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1338 int nbytes = bvec->bv_len;
1da177e4 1339
6c92e699 1340 if (bvprv && cluster) {
f565913e 1341 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1342 goto new_segment;
1da177e4 1343
6c92e699
JA
1344 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 goto new_segment;
1346 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 goto new_segment;
1da177e4 1348
f565913e 1349 sg->length += nbytes;
6c92e699 1350 } else {
1da177e4 1351new_segment:
ba951841
JA
1352 if (!sg)
1353 sg = sglist;
7aeacf98
JA
1354 else {
1355 /*
1356 * If the driver previously mapped a shorter
1357 * list, we could see a termination bit
1358 * prematurely unless it fully inits the sg
1359 * table on each mapping. We KNOW that there
1360 * must be more entries here or the driver
1361 * would be buggy, so force clear the
1362 * termination bit to avoid doing a full
1363 * sg_init_table() in drivers for each command.
1364 */
1365 sg->page_link &= ~0x02;
ba951841 1366 sg = sg_next(sg);
7aeacf98 1367 }
6c92e699 1368
642f1490 1369 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
6c92e699
JA
1370 nsegs++;
1371 }
1372 bvprv = bvec;
5705f702 1373 } /* segments in rq */
1da177e4 1374
9b61764b
JA
1375 if (sg)
1376 __sg_mark_end(sg);
1377
1da177e4
LT
1378 return nsegs;
1379}
1380
1381EXPORT_SYMBOL(blk_rq_map_sg);
1382
1383/*
1384 * the standard queue merge functions, can be overridden with device
1385 * specific ones if so desired
1386 */
1387
165125e1 1388static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1389 struct request *req,
1390 struct bio *bio)
1391{
1392 int nr_phys_segs = bio_phys_segments(q, bio);
1393
1394 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1395 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1396 if (req == q->last_merge)
1397 q->last_merge = NULL;
1398 return 0;
1399 }
1400
1401 /*
1402 * A hw segment is just getting larger, bump just the phys
1403 * counter.
1404 */
1405 req->nr_phys_segments += nr_phys_segs;
1406 return 1;
1407}
1408
165125e1 1409static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1410 struct request *req,
1411 struct bio *bio)
1412{
1413 int nr_hw_segs = bio_hw_segments(q, bio);
1414 int nr_phys_segs = bio_phys_segments(q, bio);
1415
1416 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1417 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1418 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1419 if (req == q->last_merge)
1420 q->last_merge = NULL;
1421 return 0;
1422 }
1423
1424 /*
1425 * This will form the start of a new hw segment. Bump both
1426 * counters.
1427 */
1428 req->nr_hw_segments += nr_hw_segs;
1429 req->nr_phys_segments += nr_phys_segs;
1430 return 1;
1431}
1432
3001ca77
N
1433static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1434 struct bio *bio)
1da177e4 1435{
defd94b7 1436 unsigned short max_sectors;
1da177e4
LT
1437 int len;
1438
defd94b7
MC
1439 if (unlikely(blk_pc_request(req)))
1440 max_sectors = q->max_hw_sectors;
1441 else
1442 max_sectors = q->max_sectors;
1443
1444 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1445 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1446 if (req == q->last_merge)
1447 q->last_merge = NULL;
1448 return 0;
1449 }
1450 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1451 blk_recount_segments(q, req->biotail);
1452 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1453 blk_recount_segments(q, bio);
1454 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1455 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1456 !BIOVEC_VIRT_OVERSIZE(len)) {
1457 int mergeable = ll_new_mergeable(q, req, bio);
1458
1459 if (mergeable) {
1460 if (req->nr_hw_segments == 1)
1461 req->bio->bi_hw_front_size = len;
1462 if (bio->bi_hw_segments == 1)
1463 bio->bi_hw_back_size = len;
1464 }
1465 return mergeable;
1466 }
1467
1468 return ll_new_hw_segment(q, req, bio);
1469}
1470
165125e1 1471static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1472 struct bio *bio)
1473{
defd94b7 1474 unsigned short max_sectors;
1da177e4
LT
1475 int len;
1476
defd94b7
MC
1477 if (unlikely(blk_pc_request(req)))
1478 max_sectors = q->max_hw_sectors;
1479 else
1480 max_sectors = q->max_sectors;
1481
1482
1483 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1484 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1485 if (req == q->last_merge)
1486 q->last_merge = NULL;
1487 return 0;
1488 }
1489 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1490 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1491 blk_recount_segments(q, bio);
1492 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1493 blk_recount_segments(q, req->bio);
1494 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1495 !BIOVEC_VIRT_OVERSIZE(len)) {
1496 int mergeable = ll_new_mergeable(q, req, bio);
1497
1498 if (mergeable) {
1499 if (bio->bi_hw_segments == 1)
1500 bio->bi_hw_front_size = len;
1501 if (req->nr_hw_segments == 1)
1502 req->biotail->bi_hw_back_size = len;
1503 }
1504 return mergeable;
1505 }
1506
1507 return ll_new_hw_segment(q, req, bio);
1508}
1509
165125e1 1510static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1511 struct request *next)
1512{
dfa1a553
ND
1513 int total_phys_segments;
1514 int total_hw_segments;
1da177e4
LT
1515
1516 /*
1517 * First check if the either of the requests are re-queued
1518 * requests. Can't merge them if they are.
1519 */
1520 if (req->special || next->special)
1521 return 0;
1522
1523 /*
dfa1a553 1524 * Will it become too large?
1da177e4
LT
1525 */
1526 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1527 return 0;
1528
1529 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1530 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1531 total_phys_segments--;
1532
1533 if (total_phys_segments > q->max_phys_segments)
1534 return 0;
1535
1536 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1537 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1538 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1539 /*
1540 * propagate the combined length to the end of the requests
1541 */
1542 if (req->nr_hw_segments == 1)
1543 req->bio->bi_hw_front_size = len;
1544 if (next->nr_hw_segments == 1)
1545 next->biotail->bi_hw_back_size = len;
1546 total_hw_segments--;
1547 }
1548
1549 if (total_hw_segments > q->max_hw_segments)
1550 return 0;
1551
1552 /* Merge is OK... */
1553 req->nr_phys_segments = total_phys_segments;
1554 req->nr_hw_segments = total_hw_segments;
1555 return 1;
1556}
1557
1558/*
1559 * "plug" the device if there are no outstanding requests: this will
1560 * force the transfer to start only after we have put all the requests
1561 * on the list.
1562 *
1563 * This is called with interrupts off and no requests on the queue and
1564 * with the queue lock held.
1565 */
165125e1 1566void blk_plug_device(struct request_queue *q)
1da177e4
LT
1567{
1568 WARN_ON(!irqs_disabled());
1569
1570 /*
1571 * don't plug a stopped queue, it must be paired with blk_start_queue()
1572 * which will restart the queueing
1573 */
7daac490 1574 if (blk_queue_stopped(q))
1da177e4
LT
1575 return;
1576
2056a782 1577 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1578 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1579 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1580 }
1da177e4
LT
1581}
1582
1583EXPORT_SYMBOL(blk_plug_device);
1584
1585/*
1586 * remove the queue from the plugged list, if present. called with
1587 * queue lock held and interrupts disabled.
1588 */
165125e1 1589int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1590{
1591 WARN_ON(!irqs_disabled());
1592
1593 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1594 return 0;
1595
1596 del_timer(&q->unplug_timer);
1597 return 1;
1598}
1599
1600EXPORT_SYMBOL(blk_remove_plug);
1601
1602/*
1603 * remove the plug and let it rip..
1604 */
165125e1 1605void __generic_unplug_device(struct request_queue *q)
1da177e4 1606{
7daac490 1607 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1608 return;
1609
1610 if (!blk_remove_plug(q))
1611 return;
1612
22e2c507 1613 q->request_fn(q);
1da177e4
LT
1614}
1615EXPORT_SYMBOL(__generic_unplug_device);
1616
1617/**
1618 * generic_unplug_device - fire a request queue
165125e1 1619 * @q: The &struct request_queue in question
1da177e4
LT
1620 *
1621 * Description:
1622 * Linux uses plugging to build bigger requests queues before letting
1623 * the device have at them. If a queue is plugged, the I/O scheduler
1624 * is still adding and merging requests on the queue. Once the queue
1625 * gets unplugged, the request_fn defined for the queue is invoked and
1626 * transfers started.
1627 **/
165125e1 1628void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1629{
1630 spin_lock_irq(q->queue_lock);
1631 __generic_unplug_device(q);
1632 spin_unlock_irq(q->queue_lock);
1633}
1634EXPORT_SYMBOL(generic_unplug_device);
1635
1636static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1637 struct page *page)
1638{
165125e1 1639 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1640
1641 /*
1642 * devices don't necessarily have an ->unplug_fn defined
1643 */
2056a782
JA
1644 if (q->unplug_fn) {
1645 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1646 q->rq.count[READ] + q->rq.count[WRITE]);
1647
1da177e4 1648 q->unplug_fn(q);
2056a782 1649 }
1da177e4
LT
1650}
1651
65f27f38 1652static void blk_unplug_work(struct work_struct *work)
1da177e4 1653{
165125e1
JA
1654 struct request_queue *q =
1655 container_of(work, struct request_queue, unplug_work);
1da177e4 1656
2056a782
JA
1657 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1658 q->rq.count[READ] + q->rq.count[WRITE]);
1659
1da177e4
LT
1660 q->unplug_fn(q);
1661}
1662
1663static void blk_unplug_timeout(unsigned long data)
1664{
165125e1 1665 struct request_queue *q = (struct request_queue *)data;
1da177e4 1666
2056a782
JA
1667 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1668 q->rq.count[READ] + q->rq.count[WRITE]);
1669
1da177e4
LT
1670 kblockd_schedule_work(&q->unplug_work);
1671}
1672
1673/**
1674 * blk_start_queue - restart a previously stopped queue
165125e1 1675 * @q: The &struct request_queue in question
1da177e4
LT
1676 *
1677 * Description:
1678 * blk_start_queue() will clear the stop flag on the queue, and call
1679 * the request_fn for the queue if it was in a stopped state when
1680 * entered. Also see blk_stop_queue(). Queue lock must be held.
1681 **/
165125e1 1682void blk_start_queue(struct request_queue *q)
1da177e4 1683{
a038e253
PBG
1684 WARN_ON(!irqs_disabled());
1685
1da177e4
LT
1686 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1687
1688 /*
1689 * one level of recursion is ok and is much faster than kicking
1690 * the unplug handling
1691 */
1692 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1693 q->request_fn(q);
1694 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1695 } else {
1696 blk_plug_device(q);
1697 kblockd_schedule_work(&q->unplug_work);
1698 }
1699}
1700
1701EXPORT_SYMBOL(blk_start_queue);
1702
1703/**
1704 * blk_stop_queue - stop a queue
165125e1 1705 * @q: The &struct request_queue in question
1da177e4
LT
1706 *
1707 * Description:
1708 * The Linux block layer assumes that a block driver will consume all
1709 * entries on the request queue when the request_fn strategy is called.
1710 * Often this will not happen, because of hardware limitations (queue
1711 * depth settings). If a device driver gets a 'queue full' response,
1712 * or if it simply chooses not to queue more I/O at one point, it can
1713 * call this function to prevent the request_fn from being called until
1714 * the driver has signalled it's ready to go again. This happens by calling
1715 * blk_start_queue() to restart queue operations. Queue lock must be held.
1716 **/
165125e1 1717void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1718{
1719 blk_remove_plug(q);
1720 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1721}
1722EXPORT_SYMBOL(blk_stop_queue);
1723
1724/**
1725 * blk_sync_queue - cancel any pending callbacks on a queue
1726 * @q: the queue
1727 *
1728 * Description:
1729 * The block layer may perform asynchronous callback activity
1730 * on a queue, such as calling the unplug function after a timeout.
1731 * A block device may call blk_sync_queue to ensure that any
1732 * such activity is cancelled, thus allowing it to release resources
59c51591 1733 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1734 * that its ->make_request_fn will not re-add plugging prior to calling
1735 * this function.
1736 *
1737 */
1738void blk_sync_queue(struct request_queue *q)
1739{
1740 del_timer_sync(&q->unplug_timer);
abbeb88d 1741 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
1742}
1743EXPORT_SYMBOL(blk_sync_queue);
1744
1745/**
1746 * blk_run_queue - run a single device queue
1747 * @q: The queue to run
1748 */
1749void blk_run_queue(struct request_queue *q)
1750{
1751 unsigned long flags;
1752
1753 spin_lock_irqsave(q->queue_lock, flags);
1754 blk_remove_plug(q);
dac07ec1
JA
1755
1756 /*
1757 * Only recurse once to avoid overrunning the stack, let the unplug
1758 * handling reinvoke the handler shortly if we already got there.
1759 */
1760 if (!elv_queue_empty(q)) {
1761 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1762 q->request_fn(q);
1763 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1764 } else {
1765 blk_plug_device(q);
1766 kblockd_schedule_work(&q->unplug_work);
1767 }
1768 }
1769
1da177e4
LT
1770 spin_unlock_irqrestore(q->queue_lock, flags);
1771}
1772EXPORT_SYMBOL(blk_run_queue);
1773
1774/**
165125e1 1775 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1776 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1777 *
1778 * Description:
1779 * blk_cleanup_queue is the pair to blk_init_queue() or
1780 * blk_queue_make_request(). It should be called when a request queue is
1781 * being released; typically when a block device is being de-registered.
1782 * Currently, its primary task it to free all the &struct request
1783 * structures that were allocated to the queue and the queue itself.
1784 *
1785 * Caveat:
1786 * Hopefully the low level driver will have finished any
1787 * outstanding requests first...
1788 **/
483f4afc 1789static void blk_release_queue(struct kobject *kobj)
1da177e4 1790{
165125e1
JA
1791 struct request_queue *q =
1792 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1793 struct request_list *rl = &q->rq;
1794
1da177e4
LT
1795 blk_sync_queue(q);
1796
1797 if (rl->rq_pool)
1798 mempool_destroy(rl->rq_pool);
1799
1800 if (q->queue_tags)
1801 __blk_queue_free_tags(q);
1802
6c5c9341 1803 blk_trace_shutdown(q);
2056a782 1804
e0bf68dd 1805 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1806 kmem_cache_free(requestq_cachep, q);
1807}
1808
165125e1 1809void blk_put_queue(struct request_queue *q)
483f4afc
AV
1810{
1811 kobject_put(&q->kobj);
1812}
1813EXPORT_SYMBOL(blk_put_queue);
1814
165125e1 1815void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1816{
1817 mutex_lock(&q->sysfs_lock);
1818 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1819 mutex_unlock(&q->sysfs_lock);
1820
1821 if (q->elevator)
1822 elevator_exit(q->elevator);
1823
1824 blk_put_queue(q);
1825}
1826
1da177e4
LT
1827EXPORT_SYMBOL(blk_cleanup_queue);
1828
165125e1 1829static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1830{
1831 struct request_list *rl = &q->rq;
1832
1833 rl->count[READ] = rl->count[WRITE] = 0;
1834 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1835 rl->elvpriv = 0;
1da177e4
LT
1836 init_waitqueue_head(&rl->wait[READ]);
1837 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1838
1946089a
CL
1839 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1840 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1841
1842 if (!rl->rq_pool)
1843 return -ENOMEM;
1844
1845 return 0;
1846}
1847
165125e1 1848struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1849{
1946089a
CL
1850 return blk_alloc_queue_node(gfp_mask, -1);
1851}
1852EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1853
483f4afc
AV
1854static struct kobj_type queue_ktype;
1855
165125e1 1856struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1857{
165125e1 1858 struct request_queue *q;
e0bf68dd 1859 int err;
1946089a 1860
94f6030c
CL
1861 q = kmem_cache_alloc_node(requestq_cachep,
1862 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1863 if (!q)
1864 return NULL;
1865
e0bf68dd
PZ
1866 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1867 q->backing_dev_info.unplug_io_data = q;
1868 err = bdi_init(&q->backing_dev_info);
1869 if (err) {
1870 kmem_cache_free(requestq_cachep, q);
1871 return NULL;
1872 }
1873
1da177e4 1874 init_timer(&q->unplug_timer);
483f4afc 1875
19c38de8 1876 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1877 q->kobj.ktype = &queue_ktype;
1878 kobject_init(&q->kobj);
1da177e4 1879
483f4afc
AV
1880 mutex_init(&q->sysfs_lock);
1881
1da177e4
LT
1882 return q;
1883}
1946089a 1884EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1885
1886/**
1887 * blk_init_queue - prepare a request queue for use with a block device
1888 * @rfn: The function to be called to process requests that have been
1889 * placed on the queue.
1890 * @lock: Request queue spin lock
1891 *
1892 * Description:
1893 * If a block device wishes to use the standard request handling procedures,
1894 * which sorts requests and coalesces adjacent requests, then it must
1895 * call blk_init_queue(). The function @rfn will be called when there
1896 * are requests on the queue that need to be processed. If the device
1897 * supports plugging, then @rfn may not be called immediately when requests
1898 * are available on the queue, but may be called at some time later instead.
1899 * Plugged queues are generally unplugged when a buffer belonging to one
1900 * of the requests on the queue is needed, or due to memory pressure.
1901 *
1902 * @rfn is not required, or even expected, to remove all requests off the
1903 * queue, but only as many as it can handle at a time. If it does leave
1904 * requests on the queue, it is responsible for arranging that the requests
1905 * get dealt with eventually.
1906 *
1907 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1908 * request queue; this lock will be taken also from interrupt context, so irq
1909 * disabling is needed for it.
1da177e4
LT
1910 *
1911 * Function returns a pointer to the initialized request queue, or NULL if
1912 * it didn't succeed.
1913 *
1914 * Note:
1915 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1916 * when the block device is deactivated (such as at module unload).
1917 **/
1946089a 1918
165125e1 1919struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1920{
1946089a
CL
1921 return blk_init_queue_node(rfn, lock, -1);
1922}
1923EXPORT_SYMBOL(blk_init_queue);
1924
165125e1 1925struct request_queue *
1946089a
CL
1926blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1927{
165125e1 1928 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1929
1930 if (!q)
1931 return NULL;
1932
1946089a 1933 q->node = node_id;
8669aafd
AV
1934 if (blk_init_free_list(q)) {
1935 kmem_cache_free(requestq_cachep, q);
1936 return NULL;
1937 }
1da177e4 1938
152587de
JA
1939 /*
1940 * if caller didn't supply a lock, they get per-queue locking with
1941 * our embedded lock
1942 */
1943 if (!lock) {
1944 spin_lock_init(&q->__queue_lock);
1945 lock = &q->__queue_lock;
1946 }
1947
1da177e4 1948 q->request_fn = rfn;
1da177e4
LT
1949 q->prep_rq_fn = NULL;
1950 q->unplug_fn = generic_unplug_device;
1951 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1952 q->queue_lock = lock;
1953
1954 blk_queue_segment_boundary(q, 0xffffffff);
1955
1956 blk_queue_make_request(q, __make_request);
1957 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1958
1959 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1960 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1961
44ec9542
AS
1962 q->sg_reserved_size = INT_MAX;
1963
1da177e4
LT
1964 /*
1965 * all done
1966 */
1967 if (!elevator_init(q, NULL)) {
1968 blk_queue_congestion_threshold(q);
1969 return q;
1970 }
1971
8669aafd 1972 blk_put_queue(q);
1da177e4
LT
1973 return NULL;
1974}
1946089a 1975EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1976
165125e1 1977int blk_get_queue(struct request_queue *q)
1da177e4 1978{
fde6ad22 1979 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1980 kobject_get(&q->kobj);
1da177e4
LT
1981 return 0;
1982 }
1983
1984 return 1;
1985}
1986
1987EXPORT_SYMBOL(blk_get_queue);
1988
165125e1 1989static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1990{
4aff5e23 1991 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1992 elv_put_request(q, rq);
1da177e4
LT
1993 mempool_free(rq, q->rq.rq_pool);
1994}
1995
1ea25ecb 1996static struct request *
165125e1 1997blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1998{
1999 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2000
2001 if (!rq)
2002 return NULL;
2003
2004 /*
4aff5e23 2005 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2006 * see bio.h and blkdev.h
2007 */
49171e5c 2008 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 2009
cb98fc8b 2010 if (priv) {
cb78b285 2011 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
2012 mempool_free(rq, q->rq.rq_pool);
2013 return NULL;
2014 }
4aff5e23 2015 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2016 }
1da177e4 2017
cb98fc8b 2018 return rq;
1da177e4
LT
2019}
2020
2021/*
2022 * ioc_batching returns true if the ioc is a valid batching request and
2023 * should be given priority access to a request.
2024 */
165125e1 2025static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2026{
2027 if (!ioc)
2028 return 0;
2029
2030 /*
2031 * Make sure the process is able to allocate at least 1 request
2032 * even if the batch times out, otherwise we could theoretically
2033 * lose wakeups.
2034 */
2035 return ioc->nr_batch_requests == q->nr_batching ||
2036 (ioc->nr_batch_requests > 0
2037 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2038}
2039
2040/*
2041 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2042 * will cause the process to be a "batcher" on all queues in the system. This
2043 * is the behaviour we want though - once it gets a wakeup it should be given
2044 * a nice run.
2045 */
165125e1 2046static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2047{
2048 if (!ioc || ioc_batching(q, ioc))
2049 return;
2050
2051 ioc->nr_batch_requests = q->nr_batching;
2052 ioc->last_waited = jiffies;
2053}
2054
165125e1 2055static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2056{
2057 struct request_list *rl = &q->rq;
2058
2059 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2060 blk_clear_queue_congested(q, rw);
1da177e4
LT
2061
2062 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2063 if (waitqueue_active(&rl->wait[rw]))
2064 wake_up(&rl->wait[rw]);
2065
2066 blk_clear_queue_full(q, rw);
2067 }
2068}
2069
2070/*
2071 * A request has just been released. Account for it, update the full and
2072 * congestion status, wake up any waiters. Called under q->queue_lock.
2073 */
165125e1 2074static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2075{
2076 struct request_list *rl = &q->rq;
2077
2078 rl->count[rw]--;
cb98fc8b
TH
2079 if (priv)
2080 rl->elvpriv--;
1da177e4
LT
2081
2082 __freed_request(q, rw);
2083
2084 if (unlikely(rl->starved[rw ^ 1]))
2085 __freed_request(q, rw ^ 1);
1da177e4
LT
2086}
2087
2088#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2089/*
d6344532
NP
2090 * Get a free request, queue_lock must be held.
2091 * Returns NULL on failure, with queue_lock held.
2092 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2093 */
165125e1 2094static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2095 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2096{
2097 struct request *rq = NULL;
2098 struct request_list *rl = &q->rq;
88ee5ef1 2099 struct io_context *ioc = NULL;
7749a8d4 2100 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2101 int may_queue, priv;
2102
7749a8d4 2103 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2104 if (may_queue == ELV_MQUEUE_NO)
2105 goto rq_starved;
2106
2107 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2108 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2109 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2110 /*
2111 * The queue will fill after this allocation, so set
2112 * it as full, and mark this process as "batching".
2113 * This process will be allowed to complete a batch of
2114 * requests, others will be blocked.
2115 */
2116 if (!blk_queue_full(q, rw)) {
2117 ioc_set_batching(q, ioc);
2118 blk_set_queue_full(q, rw);
2119 } else {
2120 if (may_queue != ELV_MQUEUE_MUST
2121 && !ioc_batching(q, ioc)) {
2122 /*
2123 * The queue is full and the allocating
2124 * process is not a "batcher", and not
2125 * exempted by the IO scheduler
2126 */
2127 goto out;
2128 }
2129 }
1da177e4 2130 }
79e2de4b 2131 blk_set_queue_congested(q, rw);
1da177e4
LT
2132 }
2133
082cf69e
JA
2134 /*
2135 * Only allow batching queuers to allocate up to 50% over the defined
2136 * limit of requests, otherwise we could have thousands of requests
2137 * allocated with any setting of ->nr_requests
2138 */
fd782a4a 2139 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2140 goto out;
fd782a4a 2141
1da177e4
LT
2142 rl->count[rw]++;
2143 rl->starved[rw] = 0;
cb98fc8b 2144
64521d1a 2145 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2146 if (priv)
2147 rl->elvpriv++;
2148
1da177e4
LT
2149 spin_unlock_irq(q->queue_lock);
2150
7749a8d4 2151 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2152 if (unlikely(!rq)) {
1da177e4
LT
2153 /*
2154 * Allocation failed presumably due to memory. Undo anything
2155 * we might have messed up.
2156 *
2157 * Allocating task should really be put onto the front of the
2158 * wait queue, but this is pretty rare.
2159 */
2160 spin_lock_irq(q->queue_lock);
cb98fc8b 2161 freed_request(q, rw, priv);
1da177e4
LT
2162
2163 /*
2164 * in the very unlikely event that allocation failed and no
2165 * requests for this direction was pending, mark us starved
2166 * so that freeing of a request in the other direction will
2167 * notice us. another possible fix would be to split the
2168 * rq mempool into READ and WRITE
2169 */
2170rq_starved:
2171 if (unlikely(rl->count[rw] == 0))
2172 rl->starved[rw] = 1;
2173
1da177e4
LT
2174 goto out;
2175 }
2176
88ee5ef1
JA
2177 /*
2178 * ioc may be NULL here, and ioc_batching will be false. That's
2179 * OK, if the queue is under the request limit then requests need
2180 * not count toward the nr_batch_requests limit. There will always
2181 * be some limit enforced by BLK_BATCH_TIME.
2182 */
1da177e4
LT
2183 if (ioc_batching(q, ioc))
2184 ioc->nr_batch_requests--;
2185
2186 rq_init(q, rq);
2056a782
JA
2187
2188 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2189out:
1da177e4
LT
2190 return rq;
2191}
2192
2193/*
2194 * No available requests for this queue, unplug the device and wait for some
2195 * requests to become available.
d6344532
NP
2196 *
2197 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2198 */
165125e1 2199static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2200 struct bio *bio)
1da177e4 2201{
7749a8d4 2202 const int rw = rw_flags & 0x01;
1da177e4
LT
2203 struct request *rq;
2204
7749a8d4 2205 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2206 while (!rq) {
2207 DEFINE_WAIT(wait);
1da177e4
LT
2208 struct request_list *rl = &q->rq;
2209
2210 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2211 TASK_UNINTERRUPTIBLE);
2212
7749a8d4 2213 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2214
2215 if (!rq) {
2216 struct io_context *ioc;
2217
2056a782
JA
2218 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2219
d6344532
NP
2220 __generic_unplug_device(q);
2221 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2222 io_schedule();
2223
2224 /*
2225 * After sleeping, we become a "batching" process and
2226 * will be able to allocate at least one request, and
2227 * up to a big batch of them for a small period time.
2228 * See ioc_batching, ioc_set_batching
2229 */
b5deef90 2230 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2231 ioc_set_batching(q, ioc);
d6344532
NP
2232
2233 spin_lock_irq(q->queue_lock);
1da177e4
LT
2234 }
2235 finish_wait(&rl->wait[rw], &wait);
450991bc 2236 }
1da177e4
LT
2237
2238 return rq;
2239}
2240
165125e1 2241struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2242{
2243 struct request *rq;
2244
2245 BUG_ON(rw != READ && rw != WRITE);
2246
d6344532
NP
2247 spin_lock_irq(q->queue_lock);
2248 if (gfp_mask & __GFP_WAIT) {
22e2c507 2249 rq = get_request_wait(q, rw, NULL);
d6344532 2250 } else {
22e2c507 2251 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2252 if (!rq)
2253 spin_unlock_irq(q->queue_lock);
2254 }
2255 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2256
2257 return rq;
2258}
1da177e4
LT
2259EXPORT_SYMBOL(blk_get_request);
2260
dc72ef4a
JA
2261/**
2262 * blk_start_queueing - initiate dispatch of requests to device
2263 * @q: request queue to kick into gear
2264 *
2265 * This is basically a helper to remove the need to know whether a queue
2266 * is plugged or not if someone just wants to initiate dispatch of requests
2267 * for this queue.
2268 *
2269 * The queue lock must be held with interrupts disabled.
2270 */
165125e1 2271void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2272{
2273 if (!blk_queue_plugged(q))
2274 q->request_fn(q);
2275 else
2276 __generic_unplug_device(q);
2277}
2278EXPORT_SYMBOL(blk_start_queueing);
2279
1da177e4
LT
2280/**
2281 * blk_requeue_request - put a request back on queue
2282 * @q: request queue where request should be inserted
2283 * @rq: request to be inserted
2284 *
2285 * Description:
2286 * Drivers often keep queueing requests until the hardware cannot accept
2287 * more, when that condition happens we need to put the request back
2288 * on the queue. Must be called with queue lock held.
2289 */
165125e1 2290void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2291{
2056a782
JA
2292 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2293
1da177e4
LT
2294 if (blk_rq_tagged(rq))
2295 blk_queue_end_tag(q, rq);
2296
2297 elv_requeue_request(q, rq);
2298}
2299
2300EXPORT_SYMBOL(blk_requeue_request);
2301
2302/**
2303 * blk_insert_request - insert a special request in to a request queue
2304 * @q: request queue where request should be inserted
2305 * @rq: request to be inserted
2306 * @at_head: insert request at head or tail of queue
2307 * @data: private data
1da177e4
LT
2308 *
2309 * Description:
2310 * Many block devices need to execute commands asynchronously, so they don't
2311 * block the whole kernel from preemption during request execution. This is
2312 * accomplished normally by inserting aritficial requests tagged as
2313 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2314 * scheduled for actual execution by the request queue.
2315 *
2316 * We have the option of inserting the head or the tail of the queue.
2317 * Typically we use the tail for new ioctls and so forth. We use the head
2318 * of the queue for things like a QUEUE_FULL message from a device, or a
2319 * host that is unable to accept a particular command.
2320 */
165125e1 2321void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2322 int at_head, void *data)
1da177e4 2323{
867d1191 2324 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2325 unsigned long flags;
2326
2327 /*
2328 * tell I/O scheduler that this isn't a regular read/write (ie it
2329 * must not attempt merges on this) and that it acts as a soft
2330 * barrier
2331 */
4aff5e23
JA
2332 rq->cmd_type = REQ_TYPE_SPECIAL;
2333 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2334
2335 rq->special = data;
2336
2337 spin_lock_irqsave(q->queue_lock, flags);
2338
2339 /*
2340 * If command is tagged, release the tag
2341 */
867d1191
TH
2342 if (blk_rq_tagged(rq))
2343 blk_queue_end_tag(q, rq);
1da177e4 2344
b238b3d4 2345 drive_stat_acct(rq, 1);
867d1191 2346 __elv_add_request(q, rq, where, 0);
dc72ef4a 2347 blk_start_queueing(q);
1da177e4
LT
2348 spin_unlock_irqrestore(q->queue_lock, flags);
2349}
2350
2351EXPORT_SYMBOL(blk_insert_request);
2352
0e75f906
MC
2353static int __blk_rq_unmap_user(struct bio *bio)
2354{
2355 int ret = 0;
2356
2357 if (bio) {
2358 if (bio_flagged(bio, BIO_USER_MAPPED))
2359 bio_unmap_user(bio);
2360 else
2361 ret = bio_uncopy_user(bio);
2362 }
2363
2364 return ret;
2365}
2366
3001ca77
N
2367int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2368 struct bio *bio)
2369{
2370 if (!rq->bio)
2371 blk_rq_bio_prep(q, rq, bio);
2372 else if (!ll_back_merge_fn(q, rq, bio))
2373 return -EINVAL;
2374 else {
2375 rq->biotail->bi_next = bio;
2376 rq->biotail = bio;
2377
2378 rq->data_len += bio->bi_size;
2379 }
2380 return 0;
2381}
2382EXPORT_SYMBOL(blk_rq_append_bio);
2383
165125e1 2384static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2385 void __user *ubuf, unsigned int len)
2386{
2387 unsigned long uaddr;
2388 struct bio *bio, *orig_bio;
2389 int reading, ret;
2390
2391 reading = rq_data_dir(rq) == READ;
2392
2393 /*
2394 * if alignment requirement is satisfied, map in user pages for
2395 * direct dma. else, set up kernel bounce buffers
2396 */
2397 uaddr = (unsigned long) ubuf;
2398 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2399 bio = bio_map_user(q, NULL, uaddr, len, reading);
2400 else
2401 bio = bio_copy_user(q, uaddr, len, reading);
2402
2985259b 2403 if (IS_ERR(bio))
0e75f906 2404 return PTR_ERR(bio);
0e75f906
MC
2405
2406 orig_bio = bio;
2407 blk_queue_bounce(q, &bio);
2985259b 2408
0e75f906
MC
2409 /*
2410 * We link the bounce buffer in and could have to traverse it
2411 * later so we have to get a ref to prevent it from being freed
2412 */
2413 bio_get(bio);
2414
3001ca77
N
2415 ret = blk_rq_append_bio(q, rq, bio);
2416 if (!ret)
2417 return bio->bi_size;
0e75f906 2418
0e75f906 2419 /* if it was boucned we must call the end io function */
6712ecf8 2420 bio_endio(bio, 0);
0e75f906
MC
2421 __blk_rq_unmap_user(orig_bio);
2422 bio_put(bio);
2423 return ret;
2424}
2425
1da177e4
LT
2426/**
2427 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2428 * @q: request queue where request should be inserted
73747aed 2429 * @rq: request structure to fill
1da177e4
LT
2430 * @ubuf: the user buffer
2431 * @len: length of user data
2432 *
2433 * Description:
2434 * Data will be mapped directly for zero copy io, if possible. Otherwise
2435 * a kernel bounce buffer is used.
2436 *
2437 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2438 * still in process context.
2439 *
2440 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2441 * before being submitted to the device, as pages mapped may be out of
2442 * reach. It's the callers responsibility to make sure this happens. The
2443 * original bio must be passed back in to blk_rq_unmap_user() for proper
2444 * unmapping.
2445 */
165125e1
JA
2446int blk_rq_map_user(struct request_queue *q, struct request *rq,
2447 void __user *ubuf, unsigned long len)
1da177e4 2448{
0e75f906 2449 unsigned long bytes_read = 0;
8e5cfc45 2450 struct bio *bio = NULL;
0e75f906 2451 int ret;
1da177e4 2452
defd94b7 2453 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2454 return -EINVAL;
2455 if (!len || !ubuf)
2456 return -EINVAL;
1da177e4 2457
0e75f906
MC
2458 while (bytes_read != len) {
2459 unsigned long map_len, end, start;
1da177e4 2460
0e75f906
MC
2461 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2462 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2463 >> PAGE_SHIFT;
2464 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2465
0e75f906
MC
2466 /*
2467 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2468 * pages. If this happens we just lower the requested
2469 * mapping len by a page so that we can fit
2470 */
2471 if (end - start > BIO_MAX_PAGES)
2472 map_len -= PAGE_SIZE;
1da177e4 2473
0e75f906
MC
2474 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2475 if (ret < 0)
2476 goto unmap_rq;
8e5cfc45
JA
2477 if (!bio)
2478 bio = rq->bio;
0e75f906
MC
2479 bytes_read += ret;
2480 ubuf += ret;
1da177e4
LT
2481 }
2482
0e75f906
MC
2483 rq->buffer = rq->data = NULL;
2484 return 0;
2485unmap_rq:
8e5cfc45 2486 blk_rq_unmap_user(bio);
0e75f906 2487 return ret;
1da177e4
LT
2488}
2489
2490EXPORT_SYMBOL(blk_rq_map_user);
2491
f1970baf
JB
2492/**
2493 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2494 * @q: request queue where request should be inserted
2495 * @rq: request to map data to
2496 * @iov: pointer to the iovec
2497 * @iov_count: number of elements in the iovec
af9997e4 2498 * @len: I/O byte count
f1970baf
JB
2499 *
2500 * Description:
2501 * Data will be mapped directly for zero copy io, if possible. Otherwise
2502 * a kernel bounce buffer is used.
2503 *
2504 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2505 * still in process context.
2506 *
2507 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2508 * before being submitted to the device, as pages mapped may be out of
2509 * reach. It's the callers responsibility to make sure this happens. The
2510 * original bio must be passed back in to blk_rq_unmap_user() for proper
2511 * unmapping.
2512 */
165125e1 2513int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2514 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2515{
2516 struct bio *bio;
2517
2518 if (!iov || iov_count <= 0)
2519 return -EINVAL;
2520
2521 /* we don't allow misaligned data like bio_map_user() does. If the
2522 * user is using sg, they're expected to know the alignment constraints
2523 * and respect them accordingly */
2524 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2525 if (IS_ERR(bio))
2526 return PTR_ERR(bio);
2527
0e75f906 2528 if (bio->bi_size != len) {
6712ecf8 2529 bio_endio(bio, 0);
0e75f906
MC
2530 bio_unmap_user(bio);
2531 return -EINVAL;
2532 }
2533
2534 bio_get(bio);
f1970baf
JB
2535 blk_rq_bio_prep(q, rq, bio);
2536 rq->buffer = rq->data = NULL;
f1970baf
JB
2537 return 0;
2538}
2539
2540EXPORT_SYMBOL(blk_rq_map_user_iov);
2541
1da177e4
LT
2542/**
2543 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2544 * @bio: start of bio list
1da177e4
LT
2545 *
2546 * Description:
8e5cfc45
JA
2547 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2548 * supply the original rq->bio from the blk_rq_map_user() return, since
2549 * the io completion may have changed rq->bio.
1da177e4 2550 */
8e5cfc45 2551int blk_rq_unmap_user(struct bio *bio)
1da177e4 2552{
8e5cfc45 2553 struct bio *mapped_bio;
48785bb9 2554 int ret = 0, ret2;
1da177e4 2555
8e5cfc45
JA
2556 while (bio) {
2557 mapped_bio = bio;
2558 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2559 mapped_bio = bio->bi_private;
1da177e4 2560
48785bb9
JA
2561 ret2 = __blk_rq_unmap_user(mapped_bio);
2562 if (ret2 && !ret)
2563 ret = ret2;
2564
8e5cfc45
JA
2565 mapped_bio = bio;
2566 bio = bio->bi_next;
2567 bio_put(mapped_bio);
0e75f906 2568 }
48785bb9
JA
2569
2570 return ret;
1da177e4
LT
2571}
2572
2573EXPORT_SYMBOL(blk_rq_unmap_user);
2574
df46b9a4
MC
2575/**
2576 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2577 * @q: request queue where request should be inserted
73747aed 2578 * @rq: request to fill
df46b9a4
MC
2579 * @kbuf: the kernel buffer
2580 * @len: length of user data
73747aed 2581 * @gfp_mask: memory allocation flags
df46b9a4 2582 */
165125e1 2583int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2584 unsigned int len, gfp_t gfp_mask)
df46b9a4 2585{
df46b9a4
MC
2586 struct bio *bio;
2587
defd94b7 2588 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2589 return -EINVAL;
2590 if (!len || !kbuf)
2591 return -EINVAL;
df46b9a4
MC
2592
2593 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2594 if (IS_ERR(bio))
2595 return PTR_ERR(bio);
df46b9a4 2596
dd1cab95
JA
2597 if (rq_data_dir(rq) == WRITE)
2598 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2599
dd1cab95 2600 blk_rq_bio_prep(q, rq, bio);
821de3a2 2601 blk_queue_bounce(q, &rq->bio);
dd1cab95 2602 rq->buffer = rq->data = NULL;
dd1cab95 2603 return 0;
df46b9a4
MC
2604}
2605
2606EXPORT_SYMBOL(blk_rq_map_kern);
2607
73747aed
CH
2608/**
2609 * blk_execute_rq_nowait - insert a request into queue for execution
2610 * @q: queue to insert the request in
2611 * @bd_disk: matching gendisk
2612 * @rq: request to insert
2613 * @at_head: insert request at head or tail of queue
2614 * @done: I/O completion handler
2615 *
2616 * Description:
2617 * Insert a fully prepared request at the back of the io scheduler queue
2618 * for execution. Don't wait for completion.
2619 */
165125e1 2620void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2621 struct request *rq, int at_head,
8ffdc655 2622 rq_end_io_fn *done)
f1970baf
JB
2623{
2624 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2625
2626 rq->rq_disk = bd_disk;
4aff5e23 2627 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2628 rq->end_io = done;
4c5d0bbd
AM
2629 WARN_ON(irqs_disabled());
2630 spin_lock_irq(q->queue_lock);
2631 __elv_add_request(q, rq, where, 1);
2632 __generic_unplug_device(q);
2633 spin_unlock_irq(q->queue_lock);
f1970baf 2634}
6e39b69e
MC
2635EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2636
1da177e4
LT
2637/**
2638 * blk_execute_rq - insert a request into queue for execution
2639 * @q: queue to insert the request in
2640 * @bd_disk: matching gendisk
2641 * @rq: request to insert
994ca9a1 2642 * @at_head: insert request at head or tail of queue
1da177e4
LT
2643 *
2644 * Description:
2645 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2646 * for execution and wait for completion.
1da177e4 2647 */
165125e1 2648int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2649 struct request *rq, int at_head)
1da177e4 2650{
60be6b9a 2651 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2652 char sense[SCSI_SENSE_BUFFERSIZE];
2653 int err = 0;
2654
1da177e4
LT
2655 /*
2656 * we need an extra reference to the request, so we can look at
2657 * it after io completion
2658 */
2659 rq->ref_count++;
2660
2661 if (!rq->sense) {
2662 memset(sense, 0, sizeof(sense));
2663 rq->sense = sense;
2664 rq->sense_len = 0;
2665 }
2666
c00895ab 2667 rq->end_io_data = &wait;
994ca9a1 2668 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2669 wait_for_completion(&wait);
1da177e4
LT
2670
2671 if (rq->errors)
2672 err = -EIO;
2673
2674 return err;
2675}
2676
2677EXPORT_SYMBOL(blk_execute_rq);
2678
fd5d8062
JA
2679static void bio_end_empty_barrier(struct bio *bio, int err)
2680{
2681 if (err)
2682 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2683
2684 complete(bio->bi_private);
2685}
2686
1da177e4
LT
2687/**
2688 * blkdev_issue_flush - queue a flush
2689 * @bdev: blockdev to issue flush for
2690 * @error_sector: error sector
2691 *
2692 * Description:
2693 * Issue a flush for the block device in question. Caller can supply
2694 * room for storing the error offset in case of a flush error, if they
2695 * wish to. Caller must run wait_for_completion() on its own.
2696 */
2697int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2698{
fd5d8062 2699 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2700 struct request_queue *q;
fd5d8062
JA
2701 struct bio *bio;
2702 int ret;
1da177e4
LT
2703
2704 if (bdev->bd_disk == NULL)
2705 return -ENXIO;
2706
2707 q = bdev_get_queue(bdev);
2708 if (!q)
2709 return -ENXIO;
1da177e4 2710
fd5d8062
JA
2711 bio = bio_alloc(GFP_KERNEL, 0);
2712 if (!bio)
2713 return -ENOMEM;
2714
2715 bio->bi_end_io = bio_end_empty_barrier;
2716 bio->bi_private = &wait;
2717 bio->bi_bdev = bdev;
2718 submit_bio(1 << BIO_RW_BARRIER, bio);
2719
2720 wait_for_completion(&wait);
2721
2722 /*
2723 * The driver must store the error location in ->bi_sector, if
2724 * it supports it. For non-stacked drivers, this should be copied
2725 * from rq->sector.
2726 */
2727 if (error_sector)
2728 *error_sector = bio->bi_sector;
2729
2730 ret = 0;
2731 if (!bio_flagged(bio, BIO_UPTODATE))
2732 ret = -EIO;
2733
2734 bio_put(bio);
2735 return ret;
1da177e4
LT
2736}
2737
2738EXPORT_SYMBOL(blkdev_issue_flush);
2739
b238b3d4 2740static void drive_stat_acct(struct request *rq, int new_io)
1da177e4
LT
2741{
2742 int rw = rq_data_dir(rq);
2743
2744 if (!blk_fs_request(rq) || !rq->rq_disk)
2745 return;
2746
d72d904a 2747 if (!new_io) {
a362357b 2748 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2749 } else {
1da177e4
LT
2750 disk_round_stats(rq->rq_disk);
2751 rq->rq_disk->in_flight++;
2752 }
2753}
2754
2755/*
2756 * add-request adds a request to the linked list.
2757 * queue lock is held and interrupts disabled, as we muck with the
2758 * request queue list.
2759 */
165125e1 2760static inline void add_request(struct request_queue * q, struct request * req)
1da177e4 2761{
b238b3d4 2762 drive_stat_acct(req, 1);
1da177e4 2763
1da177e4
LT
2764 /*
2765 * elevator indicated where it wants this request to be
2766 * inserted at elevator_merge time
2767 */
2768 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2769}
2770
2771/*
2772 * disk_round_stats() - Round off the performance stats on a struct
2773 * disk_stats.
2774 *
2775 * The average IO queue length and utilisation statistics are maintained
2776 * by observing the current state of the queue length and the amount of
2777 * time it has been in this state for.
2778 *
2779 * Normally, that accounting is done on IO completion, but that can result
2780 * in more than a second's worth of IO being accounted for within any one
2781 * second, leading to >100% utilisation. To deal with that, we call this
2782 * function to do a round-off before returning the results when reading
2783 * /proc/diskstats. This accounts immediately for all queue usage up to
2784 * the current jiffies and restarts the counters again.
2785 */
2786void disk_round_stats(struct gendisk *disk)
2787{
2788 unsigned long now = jiffies;
2789
b2982649
KC
2790 if (now == disk->stamp)
2791 return;
1da177e4 2792
20e5c81f
KC
2793 if (disk->in_flight) {
2794 __disk_stat_add(disk, time_in_queue,
2795 disk->in_flight * (now - disk->stamp));
2796 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2797 }
1da177e4 2798 disk->stamp = now;
1da177e4
LT
2799}
2800
3eaf840e
JNN
2801EXPORT_SYMBOL_GPL(disk_round_stats);
2802
1da177e4
LT
2803/*
2804 * queue lock must be held
2805 */
165125e1 2806void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2807{
1da177e4
LT
2808 if (unlikely(!q))
2809 return;
2810 if (unlikely(--req->ref_count))
2811 return;
2812
8922e16c
TH
2813 elv_completed_request(q, req);
2814
1da177e4
LT
2815 /*
2816 * Request may not have originated from ll_rw_blk. if not,
2817 * it didn't come out of our reserved rq pools
2818 */
49171e5c 2819 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2820 int rw = rq_data_dir(req);
4aff5e23 2821 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2822
1da177e4 2823 BUG_ON(!list_empty(&req->queuelist));
9817064b 2824 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2825
2826 blk_free_request(q, req);
cb98fc8b 2827 freed_request(q, rw, priv);
1da177e4
LT
2828 }
2829}
2830
6e39b69e
MC
2831EXPORT_SYMBOL_GPL(__blk_put_request);
2832
1da177e4
LT
2833void blk_put_request(struct request *req)
2834{
8922e16c 2835 unsigned long flags;
165125e1 2836 struct request_queue *q = req->q;
8922e16c 2837
1da177e4 2838 /*
8922e16c
TH
2839 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2840 * following if (q) test.
1da177e4 2841 */
8922e16c 2842 if (q) {
1da177e4
LT
2843 spin_lock_irqsave(q->queue_lock, flags);
2844 __blk_put_request(q, req);
2845 spin_unlock_irqrestore(q->queue_lock, flags);
2846 }
2847}
2848
2849EXPORT_SYMBOL(blk_put_request);
2850
2851/**
2852 * blk_end_sync_rq - executes a completion event on a request
2853 * @rq: request to complete
fddfdeaf 2854 * @error: end io status of the request
1da177e4 2855 */
8ffdc655 2856void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2857{
c00895ab 2858 struct completion *waiting = rq->end_io_data;
1da177e4 2859
c00895ab 2860 rq->end_io_data = NULL;
1da177e4
LT
2861 __blk_put_request(rq->q, rq);
2862
2863 /*
2864 * complete last, if this is a stack request the process (and thus
2865 * the rq pointer) could be invalid right after this complete()
2866 */
2867 complete(waiting);
2868}
2869EXPORT_SYMBOL(blk_end_sync_rq);
2870
1da177e4
LT
2871/*
2872 * Has to be called with the request spinlock acquired
2873 */
165125e1 2874static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2875 struct request *next)
2876{
2877 if (!rq_mergeable(req) || !rq_mergeable(next))
2878 return 0;
2879
2880 /*
d6e05edc 2881 * not contiguous
1da177e4
LT
2882 */
2883 if (req->sector + req->nr_sectors != next->sector)
2884 return 0;
2885
2886 if (rq_data_dir(req) != rq_data_dir(next)
2887 || req->rq_disk != next->rq_disk
c00895ab 2888 || next->special)
1da177e4
LT
2889 return 0;
2890
2891 /*
2892 * If we are allowed to merge, then append bio list
2893 * from next to rq and release next. merge_requests_fn
2894 * will have updated segment counts, update sector
2895 * counts here.
2896 */
1aa4f24f 2897 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2898 return 0;
2899
2900 /*
2901 * At this point we have either done a back merge
2902 * or front merge. We need the smaller start_time of
2903 * the merged requests to be the current request
2904 * for accounting purposes.
2905 */
2906 if (time_after(req->start_time, next->start_time))
2907 req->start_time = next->start_time;
2908
2909 req->biotail->bi_next = next->bio;
2910 req->biotail = next->biotail;
2911
2912 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2913
2914 elv_merge_requests(q, req, next);
2915
2916 if (req->rq_disk) {
2917 disk_round_stats(req->rq_disk);
2918 req->rq_disk->in_flight--;
2919 }
2920
22e2c507
JA
2921 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2922
1da177e4
LT
2923 __blk_put_request(q, next);
2924 return 1;
2925}
2926
165125e1
JA
2927static inline int attempt_back_merge(struct request_queue *q,
2928 struct request *rq)
1da177e4
LT
2929{
2930 struct request *next = elv_latter_request(q, rq);
2931
2932 if (next)
2933 return attempt_merge(q, rq, next);
2934
2935 return 0;
2936}
2937
165125e1
JA
2938static inline int attempt_front_merge(struct request_queue *q,
2939 struct request *rq)
1da177e4
LT
2940{
2941 struct request *prev = elv_former_request(q, rq);
2942
2943 if (prev)
2944 return attempt_merge(q, prev, rq);
2945
2946 return 0;
2947}
2948
52d9e675
TH
2949static void init_request_from_bio(struct request *req, struct bio *bio)
2950{
4aff5e23 2951 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2952
2953 /*
2954 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2955 */
2956 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2957 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2958
2959 /*
2960 * REQ_BARRIER implies no merging, but lets make it explicit
2961 */
2962 if (unlikely(bio_barrier(bio)))
4aff5e23 2963 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2964
b31dc66a 2965 if (bio_sync(bio))
4aff5e23 2966 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2967 if (bio_rw_meta(bio))
2968 req->cmd_flags |= REQ_RW_META;
b31dc66a 2969
52d9e675
TH
2970 req->errors = 0;
2971 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2972 req->ioprio = bio_prio(bio);
52d9e675 2973 req->start_time = jiffies;
bc1c56fd 2974 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2975}
2976
165125e1 2977static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2978{
450991bc 2979 struct request *req;
51da90fc
JA
2980 int el_ret, nr_sectors, barrier, err;
2981 const unsigned short prio = bio_prio(bio);
2982 const int sync = bio_sync(bio);
7749a8d4 2983 int rw_flags;
1da177e4 2984
1da177e4 2985 nr_sectors = bio_sectors(bio);
1da177e4
LT
2986
2987 /*
2988 * low level driver can indicate that it wants pages above a
2989 * certain limit bounced to low memory (ie for highmem, or even
2990 * ISA dma in theory)
2991 */
2992 blk_queue_bounce(q, &bio);
2993
1da177e4 2994 barrier = bio_barrier(bio);
797e7dbb 2995 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2996 err = -EOPNOTSUPP;
2997 goto end_io;
2998 }
2999
1da177e4
LT
3000 spin_lock_irq(q->queue_lock);
3001
450991bc 3002 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
3003 goto get_rq;
3004
3005 el_ret = elv_merge(q, &req, bio);
3006 switch (el_ret) {
3007 case ELEVATOR_BACK_MERGE:
3008 BUG_ON(!rq_mergeable(req));
3009
1aa4f24f 3010 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
3011 break;
3012
2056a782
JA
3013 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3014
1da177e4
LT
3015 req->biotail->bi_next = bio;
3016 req->biotail = bio;
3017 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3018 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3019 drive_stat_acct(req, 0);
1da177e4 3020 if (!attempt_back_merge(q, req))
2e662b65 3021 elv_merged_request(q, req, el_ret);
1da177e4
LT
3022 goto out;
3023
3024 case ELEVATOR_FRONT_MERGE:
3025 BUG_ON(!rq_mergeable(req));
3026
1aa4f24f 3027 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3028 break;
3029
2056a782
JA
3030 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3031
1da177e4
LT
3032 bio->bi_next = req->bio;
3033 req->bio = bio;
3034
3035 /*
3036 * may not be valid. if the low level driver said
3037 * it didn't need a bounce buffer then it better
3038 * not touch req->buffer either...
3039 */
3040 req->buffer = bio_data(bio);
51da90fc
JA
3041 req->current_nr_sectors = bio_cur_sectors(bio);
3042 req->hard_cur_sectors = req->current_nr_sectors;
3043 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3044 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3045 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3046 drive_stat_acct(req, 0);
1da177e4 3047 if (!attempt_front_merge(q, req))
2e662b65 3048 elv_merged_request(q, req, el_ret);
1da177e4
LT
3049 goto out;
3050
450991bc 3051 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3052 default:
450991bc 3053 ;
1da177e4
LT
3054 }
3055
450991bc 3056get_rq:
7749a8d4
JA
3057 /*
3058 * This sync check and mask will be re-done in init_request_from_bio(),
3059 * but we need to set it earlier to expose the sync flag to the
3060 * rq allocator and io schedulers.
3061 */
3062 rw_flags = bio_data_dir(bio);
3063 if (sync)
3064 rw_flags |= REQ_RW_SYNC;
3065
1da177e4 3066 /*
450991bc 3067 * Grab a free request. This is might sleep but can not fail.
d6344532 3068 * Returns with the queue unlocked.
450991bc 3069 */
7749a8d4 3070 req = get_request_wait(q, rw_flags, bio);
d6344532 3071
450991bc
NP
3072 /*
3073 * After dropping the lock and possibly sleeping here, our request
3074 * may now be mergeable after it had proven unmergeable (above).
3075 * We don't worry about that case for efficiency. It won't happen
3076 * often, and the elevators are able to handle it.
1da177e4 3077 */
52d9e675 3078 init_request_from_bio(req, bio);
1da177e4 3079
450991bc
NP
3080 spin_lock_irq(q->queue_lock);
3081 if (elv_queue_empty(q))
3082 blk_plug_device(q);
1da177e4
LT
3083 add_request(q, req);
3084out:
4a534f93 3085 if (sync)
1da177e4
LT
3086 __generic_unplug_device(q);
3087
3088 spin_unlock_irq(q->queue_lock);
3089 return 0;
3090
3091end_io:
6712ecf8 3092 bio_endio(bio, err);
1da177e4
LT
3093 return 0;
3094}
3095
3096/*
3097 * If bio->bi_dev is a partition, remap the location
3098 */
3099static inline void blk_partition_remap(struct bio *bio)
3100{
3101 struct block_device *bdev = bio->bi_bdev;
3102
bf2de6f5 3103 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3104 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3105 const int rw = bio_data_dir(bio);
3106
3107 p->sectors[rw] += bio_sectors(bio);
3108 p->ios[rw]++;
1da177e4 3109
1da177e4
LT
3110 bio->bi_sector += p->start_sect;
3111 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3112
3113 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3114 bdev->bd_dev, bio->bi_sector,
3115 bio->bi_sector - p->start_sect);
1da177e4
LT
3116 }
3117}
3118
1da177e4
LT
3119static void handle_bad_sector(struct bio *bio)
3120{
3121 char b[BDEVNAME_SIZE];
3122
3123 printk(KERN_INFO "attempt to access beyond end of device\n");
3124 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3125 bdevname(bio->bi_bdev, b),
3126 bio->bi_rw,
3127 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3128 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3129
3130 set_bit(BIO_EOF, &bio->bi_flags);
3131}
3132
c17bb495
AM
3133#ifdef CONFIG_FAIL_MAKE_REQUEST
3134
3135static DECLARE_FAULT_ATTR(fail_make_request);
3136
3137static int __init setup_fail_make_request(char *str)
3138{
3139 return setup_fault_attr(&fail_make_request, str);
3140}
3141__setup("fail_make_request=", setup_fail_make_request);
3142
3143static int should_fail_request(struct bio *bio)
3144{
3145 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3146 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3147 return should_fail(&fail_make_request, bio->bi_size);
3148
3149 return 0;
3150}
3151
3152static int __init fail_make_request_debugfs(void)
3153{
3154 return init_fault_attr_dentries(&fail_make_request,
3155 "fail_make_request");
3156}
3157
3158late_initcall(fail_make_request_debugfs);
3159
3160#else /* CONFIG_FAIL_MAKE_REQUEST */
3161
3162static inline int should_fail_request(struct bio *bio)
3163{
3164 return 0;
3165}
3166
3167#endif /* CONFIG_FAIL_MAKE_REQUEST */
3168
c07e2b41
JA
3169/*
3170 * Check whether this bio extends beyond the end of the device.
3171 */
3172static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3173{
3174 sector_t maxsector;
3175
3176 if (!nr_sectors)
3177 return 0;
3178
3179 /* Test device or partition size, when known. */
3180 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3181 if (maxsector) {
3182 sector_t sector = bio->bi_sector;
3183
3184 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3185 /*
3186 * This may well happen - the kernel calls bread()
3187 * without checking the size of the device, e.g., when
3188 * mounting a device.
3189 */
3190 handle_bad_sector(bio);
3191 return 1;
3192 }
3193 }
3194
3195 return 0;
3196}
3197
1da177e4
LT
3198/**
3199 * generic_make_request: hand a buffer to its device driver for I/O
3200 * @bio: The bio describing the location in memory and on the device.
3201 *
3202 * generic_make_request() is used to make I/O requests of block
3203 * devices. It is passed a &struct bio, which describes the I/O that needs
3204 * to be done.
3205 *
3206 * generic_make_request() does not return any status. The
3207 * success/failure status of the request, along with notification of
3208 * completion, is delivered asynchronously through the bio->bi_end_io
3209 * function described (one day) else where.
3210 *
3211 * The caller of generic_make_request must make sure that bi_io_vec
3212 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3213 * set to describe the device address, and the
3214 * bi_end_io and optionally bi_private are set to describe how
3215 * completion notification should be signaled.
3216 *
3217 * generic_make_request and the drivers it calls may use bi_next if this
3218 * bio happens to be merged with someone else, and may change bi_dev and
3219 * bi_sector for remaps as it sees fit. So the values of these fields
3220 * should NOT be depended on after the call to generic_make_request.
3221 */
d89d8796 3222static inline void __generic_make_request(struct bio *bio)
1da177e4 3223{
165125e1 3224 struct request_queue *q;
5ddfe969 3225 sector_t old_sector;
1da177e4 3226 int ret, nr_sectors = bio_sectors(bio);
2056a782 3227 dev_t old_dev;
1da177e4
LT
3228
3229 might_sleep();
1da177e4 3230
c07e2b41
JA
3231 if (bio_check_eod(bio, nr_sectors))
3232 goto end_io;
1da177e4
LT
3233
3234 /*
3235 * Resolve the mapping until finished. (drivers are
3236 * still free to implement/resolve their own stacking
3237 * by explicitly returning 0)
3238 *
3239 * NOTE: we don't repeat the blk_size check for each new device.
3240 * Stacking drivers are expected to know what they are doing.
3241 */
5ddfe969 3242 old_sector = -1;
2056a782 3243 old_dev = 0;
1da177e4
LT
3244 do {
3245 char b[BDEVNAME_SIZE];
3246
3247 q = bdev_get_queue(bio->bi_bdev);
3248 if (!q) {
3249 printk(KERN_ERR
3250 "generic_make_request: Trying to access "
3251 "nonexistent block-device %s (%Lu)\n",
3252 bdevname(bio->bi_bdev, b),
3253 (long long) bio->bi_sector);
3254end_io:
6712ecf8 3255 bio_endio(bio, -EIO);
1da177e4
LT
3256 break;
3257 }
3258
4fa253f3 3259 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3260 printk("bio too big device %s (%u > %u)\n",
3261 bdevname(bio->bi_bdev, b),
3262 bio_sectors(bio),
3263 q->max_hw_sectors);
3264 goto end_io;
3265 }
3266
fde6ad22 3267 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3268 goto end_io;
3269
c17bb495
AM
3270 if (should_fail_request(bio))
3271 goto end_io;
3272
1da177e4
LT
3273 /*
3274 * If this device has partitions, remap block n
3275 * of partition p to block n+start(p) of the disk.
3276 */
3277 blk_partition_remap(bio);
3278
5ddfe969 3279 if (old_sector != -1)
4fa253f3 3280 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3281 old_sector);
2056a782
JA
3282
3283 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3284
5ddfe969 3285 old_sector = bio->bi_sector;
2056a782
JA
3286 old_dev = bio->bi_bdev->bd_dev;
3287
c07e2b41
JA
3288 if (bio_check_eod(bio, nr_sectors))
3289 goto end_io;
5ddfe969 3290
1da177e4
LT
3291 ret = q->make_request_fn(q, bio);
3292 } while (ret);
3293}
3294
d89d8796
NB
3295/*
3296 * We only want one ->make_request_fn to be active at a time,
3297 * else stack usage with stacked devices could be a problem.
3298 * So use current->bio_{list,tail} to keep a list of requests
3299 * submited by a make_request_fn function.
3300 * current->bio_tail is also used as a flag to say if
3301 * generic_make_request is currently active in this task or not.
3302 * If it is NULL, then no make_request is active. If it is non-NULL,
3303 * then a make_request is active, and new requests should be added
3304 * at the tail
3305 */
3306void generic_make_request(struct bio *bio)
3307{
3308 if (current->bio_tail) {
3309 /* make_request is active */
3310 *(current->bio_tail) = bio;
3311 bio->bi_next = NULL;
3312 current->bio_tail = &bio->bi_next;
3313 return;
3314 }
3315 /* following loop may be a bit non-obvious, and so deserves some
3316 * explanation.
3317 * Before entering the loop, bio->bi_next is NULL (as all callers
3318 * ensure that) so we have a list with a single bio.
3319 * We pretend that we have just taken it off a longer list, so
3320 * we assign bio_list to the next (which is NULL) and bio_tail
3321 * to &bio_list, thus initialising the bio_list of new bios to be
3322 * added. __generic_make_request may indeed add some more bios
3323 * through a recursive call to generic_make_request. If it
3324 * did, we find a non-NULL value in bio_list and re-enter the loop
3325 * from the top. In this case we really did just take the bio
3326 * of the top of the list (no pretending) and so fixup bio_list and
3327 * bio_tail or bi_next, and call into __generic_make_request again.
3328 *
3329 * The loop was structured like this to make only one call to
3330 * __generic_make_request (which is important as it is large and
3331 * inlined) and to keep the structure simple.
3332 */
3333 BUG_ON(bio->bi_next);
3334 do {
3335 current->bio_list = bio->bi_next;
3336 if (bio->bi_next == NULL)
3337 current->bio_tail = &current->bio_list;
3338 else
3339 bio->bi_next = NULL;
3340 __generic_make_request(bio);
3341 bio = current->bio_list;
3342 } while (bio);
3343 current->bio_tail = NULL; /* deactivate */
3344}
3345
1da177e4
LT
3346EXPORT_SYMBOL(generic_make_request);
3347
3348/**
3349 * submit_bio: submit a bio to the block device layer for I/O
3350 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3351 * @bio: The &struct bio which describes the I/O
3352 *
3353 * submit_bio() is very similar in purpose to generic_make_request(), and
3354 * uses that function to do most of the work. Both are fairly rough
3355 * interfaces, @bio must be presetup and ready for I/O.
3356 *
3357 */
3358void submit_bio(int rw, struct bio *bio)
3359{
3360 int count = bio_sectors(bio);
3361
22e2c507 3362 bio->bi_rw |= rw;
1da177e4 3363
bf2de6f5
JA
3364 /*
3365 * If it's a regular read/write or a barrier with data attached,
3366 * go through the normal accounting stuff before submission.
3367 */
3368 if (!bio_empty_barrier(bio)) {
3369
3370 BIO_BUG_ON(!bio->bi_size);
3371 BIO_BUG_ON(!bio->bi_io_vec);
3372
3373 if (rw & WRITE) {
3374 count_vm_events(PGPGOUT, count);
3375 } else {
3376 task_io_account_read(bio->bi_size);
3377 count_vm_events(PGPGIN, count);
3378 }
3379
3380 if (unlikely(block_dump)) {
3381 char b[BDEVNAME_SIZE];
3382 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 3383 current->comm, task_pid_nr(current),
bf2de6f5
JA
3384 (rw & WRITE) ? "WRITE" : "READ",
3385 (unsigned long long)bio->bi_sector,
3386 bdevname(bio->bi_bdev,b));
3387 }
1da177e4
LT
3388 }
3389
3390 generic_make_request(bio);
3391}
3392
3393EXPORT_SYMBOL(submit_bio);
3394
93d17d3d 3395static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3396{
3397 if (blk_fs_request(rq)) {
3398 rq->hard_sector += nsect;
3399 rq->hard_nr_sectors -= nsect;
3400
3401 /*
3402 * Move the I/O submission pointers ahead if required.
3403 */
3404 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3405 (rq->sector <= rq->hard_sector)) {
3406 rq->sector = rq->hard_sector;
3407 rq->nr_sectors = rq->hard_nr_sectors;
3408 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3409 rq->current_nr_sectors = rq->hard_cur_sectors;
3410 rq->buffer = bio_data(rq->bio);
3411 }
3412
3413 /*
3414 * if total number of sectors is less than the first segment
3415 * size, something has gone terribly wrong
3416 */
3417 if (rq->nr_sectors < rq->current_nr_sectors) {
3418 printk("blk: request botched\n");
3419 rq->nr_sectors = rq->current_nr_sectors;
3420 }
3421 }
3422}
3423
3424static int __end_that_request_first(struct request *req, int uptodate,
3425 int nr_bytes)
3426{
3427 int total_bytes, bio_nbytes, error, next_idx = 0;
3428 struct bio *bio;
3429
2056a782
JA
3430 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3431
1da177e4
LT
3432 /*
3433 * extend uptodate bool to allow < 0 value to be direct io error
3434 */
3435 error = 0;
3436 if (end_io_error(uptodate))
3437 error = !uptodate ? -EIO : uptodate;
3438
3439 /*
3440 * for a REQ_BLOCK_PC request, we want to carry any eventual
3441 * sense key with us all the way through
3442 */
3443 if (!blk_pc_request(req))
3444 req->errors = 0;
3445
3446 if (!uptodate) {
4aff5e23 3447 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3448 printk("end_request: I/O error, dev %s, sector %llu\n",
3449 req->rq_disk ? req->rq_disk->disk_name : "?",
3450 (unsigned long long)req->sector);
3451 }
3452
d72d904a 3453 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3454 const int rw = rq_data_dir(req);
3455
53e86061 3456 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3457 }
3458
1da177e4
LT
3459 total_bytes = bio_nbytes = 0;
3460 while ((bio = req->bio) != NULL) {
3461 int nbytes;
3462
bf2de6f5
JA
3463 /*
3464 * For an empty barrier request, the low level driver must
3465 * store a potential error location in ->sector. We pass
3466 * that back up in ->bi_sector.
3467 */
3468 if (blk_empty_barrier(req))
3469 bio->bi_sector = req->sector;
3470
1da177e4
LT
3471 if (nr_bytes >= bio->bi_size) {
3472 req->bio = bio->bi_next;
3473 nbytes = bio->bi_size;
5bb23a68 3474 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3475 next_idx = 0;
3476 bio_nbytes = 0;
3477 } else {
3478 int idx = bio->bi_idx + next_idx;
3479
3480 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3481 blk_dump_rq_flags(req, "__end_that");
3482 printk("%s: bio idx %d >= vcnt %d\n",
3483 __FUNCTION__,
3484 bio->bi_idx, bio->bi_vcnt);
3485 break;
3486 }
3487
3488 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3489 BIO_BUG_ON(nbytes > bio->bi_size);
3490
3491 /*
3492 * not a complete bvec done
3493 */
3494 if (unlikely(nbytes > nr_bytes)) {
3495 bio_nbytes += nr_bytes;
3496 total_bytes += nr_bytes;
3497 break;
3498 }
3499
3500 /*
3501 * advance to the next vector
3502 */
3503 next_idx++;
3504 bio_nbytes += nbytes;
3505 }
3506
3507 total_bytes += nbytes;
3508 nr_bytes -= nbytes;
3509
3510 if ((bio = req->bio)) {
3511 /*
3512 * end more in this run, or just return 'not-done'
3513 */
3514 if (unlikely(nr_bytes <= 0))
3515 break;
3516 }
3517 }
3518
3519 /*
3520 * completely done
3521 */
3522 if (!req->bio)
3523 return 0;
3524
3525 /*
3526 * if the request wasn't completed, update state
3527 */
3528 if (bio_nbytes) {
5bb23a68 3529 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3530 bio->bi_idx += next_idx;
3531 bio_iovec(bio)->bv_offset += nr_bytes;
3532 bio_iovec(bio)->bv_len -= nr_bytes;
3533 }
3534
3535 blk_recalc_rq_sectors(req, total_bytes >> 9);
3536 blk_recalc_rq_segments(req);
3537 return 1;
3538}
3539
3540/**
3541 * end_that_request_first - end I/O on a request
3542 * @req: the request being processed
3543 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3544 * @nr_sectors: number of sectors to end I/O on
3545 *
3546 * Description:
3547 * Ends I/O on a number of sectors attached to @req, and sets it up
3548 * for the next range of segments (if any) in the cluster.
3549 *
3550 * Return:
3551 * 0 - we are done with this request, call end_that_request_last()
3552 * 1 - still buffers pending for this request
3553 **/
3554int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3555{
3556 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3557}
3558
3559EXPORT_SYMBOL(end_that_request_first);
3560
3561/**
3562 * end_that_request_chunk - end I/O on a request
3563 * @req: the request being processed
3564 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3565 * @nr_bytes: number of bytes to complete
3566 *
3567 * Description:
3568 * Ends I/O on a number of bytes attached to @req, and sets it up
3569 * for the next range of segments (if any). Like end_that_request_first(),
3570 * but deals with bytes instead of sectors.
3571 *
3572 * Return:
3573 * 0 - we are done with this request, call end_that_request_last()
3574 * 1 - still buffers pending for this request
3575 **/
3576int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3577{
3578 return __end_that_request_first(req, uptodate, nr_bytes);
3579}
3580
3581EXPORT_SYMBOL(end_that_request_chunk);
3582
ff856bad
JA
3583/*
3584 * splice the completion data to a local structure and hand off to
3585 * process_completion_queue() to complete the requests
3586 */
3587static void blk_done_softirq(struct softirq_action *h)
3588{
626ab0e6 3589 struct list_head *cpu_list, local_list;
ff856bad
JA
3590
3591 local_irq_disable();
3592 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3593 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3594 local_irq_enable();
3595
3596 while (!list_empty(&local_list)) {
3597 struct request *rq = list_entry(local_list.next, struct request, donelist);
3598
3599 list_del_init(&rq->donelist);
3600 rq->q->softirq_done_fn(rq);
3601 }
3602}
3603
db47d475 3604static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3605 void *hcpu)
3606{
3607 /*
3608 * If a CPU goes away, splice its entries to the current CPU
3609 * and trigger a run of the softirq
3610 */
8bb78442 3611 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3612 int cpu = (unsigned long) hcpu;
3613
3614 local_irq_disable();
3615 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3616 &__get_cpu_var(blk_cpu_done));
3617 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3618 local_irq_enable();
3619 }
3620
3621 return NOTIFY_OK;
3622}
3623
3624
db47d475 3625static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3626 .notifier_call = blk_cpu_notify,
3627};
3628
ff856bad
JA
3629/**
3630 * blk_complete_request - end I/O on a request
3631 * @req: the request being processed
3632 *
3633 * Description:
3634 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3635 * unless the driver actually implements this in its completion callback
4fa253f3 3636 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3637 * through a softirq handler. The user must have registered a completion
3638 * callback through blk_queue_softirq_done().
3639 **/
3640
3641void blk_complete_request(struct request *req)
3642{
3643 struct list_head *cpu_list;
3644 unsigned long flags;
3645
3646 BUG_ON(!req->q->softirq_done_fn);
3647
3648 local_irq_save(flags);
3649
3650 cpu_list = &__get_cpu_var(blk_cpu_done);
3651 list_add_tail(&req->donelist, cpu_list);
3652 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3653
3654 local_irq_restore(flags);
3655}
3656
3657EXPORT_SYMBOL(blk_complete_request);
3658
1da177e4
LT
3659/*
3660 * queue lock must be held
3661 */
8ffdc655 3662void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3663{
3664 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3665 int error;
3666
3667 /*
3668 * extend uptodate bool to allow < 0 value to be direct io error
3669 */
3670 error = 0;
3671 if (end_io_error(uptodate))
3672 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3673
3674 if (unlikely(laptop_mode) && blk_fs_request(req))
3675 laptop_io_completion();
3676
fd0ff8aa
JA
3677 /*
3678 * Account IO completion. bar_rq isn't accounted as a normal
3679 * IO on queueing nor completion. Accounting the containing
3680 * request is enough.
3681 */
3682 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3683 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3684 const int rw = rq_data_dir(req);
3685
3686 __disk_stat_inc(disk, ios[rw]);
3687 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3688 disk_round_stats(disk);
3689 disk->in_flight--;
3690 }
3691 if (req->end_io)
8ffdc655 3692 req->end_io(req, error);
1da177e4
LT
3693 else
3694 __blk_put_request(req->q, req);
3695}
3696
3697EXPORT_SYMBOL(end_that_request_last);
3698
a0cd1285
JA
3699static inline void __end_request(struct request *rq, int uptodate,
3700 unsigned int nr_bytes, int dequeue)
1da177e4 3701{
a0cd1285
JA
3702 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3703 if (dequeue)
3704 blkdev_dequeue_request(rq);
3705 add_disk_randomness(rq->rq_disk);
3706 end_that_request_last(rq, uptodate);
1da177e4
LT
3707 }
3708}
3709
a0cd1285
JA
3710static unsigned int rq_byte_size(struct request *rq)
3711{
3712 if (blk_fs_request(rq))
3713 return rq->hard_nr_sectors << 9;
3714
3715 return rq->data_len;
3716}
3717
3718/**
3719 * end_queued_request - end all I/O on a queued request
3720 * @rq: the request being processed
3721 * @uptodate: error value or 0/1 uptodate flag
3722 *
3723 * Description:
3724 * Ends all I/O on a request, and removes it from the block layer queues.
3725 * Not suitable for normal IO completion, unless the driver still has
3726 * the request attached to the block layer.
3727 *
3728 **/
3729void end_queued_request(struct request *rq, int uptodate)
3730{
3731 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3732}
3733EXPORT_SYMBOL(end_queued_request);
3734
3735/**
3736 * end_dequeued_request - end all I/O on a dequeued request
3737 * @rq: the request being processed
3738 * @uptodate: error value or 0/1 uptodate flag
3739 *
3740 * Description:
3741 * Ends all I/O on a request. The request must already have been
3742 * dequeued using blkdev_dequeue_request(), as is normally the case
3743 * for most drivers.
3744 *
3745 **/
3746void end_dequeued_request(struct request *rq, int uptodate)
3747{
3748 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3749}
3750EXPORT_SYMBOL(end_dequeued_request);
3751
3752
3753/**
3754 * end_request - end I/O on the current segment of the request
8f731f7d 3755 * @req: the request being processed
a0cd1285
JA
3756 * @uptodate: error value or 0/1 uptodate flag
3757 *
3758 * Description:
3759 * Ends I/O on the current segment of a request. If that is the only
3760 * remaining segment, the request is also completed and freed.
3761 *
3762 * This is a remnant of how older block drivers handled IO completions.
3763 * Modern drivers typically end IO on the full request in one go, unless
3764 * they have a residual value to account for. For that case this function
3765 * isn't really useful, unless the residual just happens to be the
3766 * full current segment. In other words, don't use this function in new
3767 * code. Either use end_request_completely(), or the
3768 * end_that_request_chunk() (along with end_that_request_last()) for
3769 * partial completions.
3770 *
3771 **/
3772void end_request(struct request *req, int uptodate)
3773{
3774 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3775}
1da177e4
LT
3776EXPORT_SYMBOL(end_request);
3777
66846572
N
3778static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3779 struct bio *bio)
1da177e4 3780{
4aff5e23
JA
3781 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3782 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3783
3784 rq->nr_phys_segments = bio_phys_segments(q, bio);
3785 rq->nr_hw_segments = bio_hw_segments(q, bio);
3786 rq->current_nr_sectors = bio_cur_sectors(bio);
3787 rq->hard_cur_sectors = rq->current_nr_sectors;
3788 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3789 rq->buffer = bio_data(bio);
0e75f906 3790 rq->data_len = bio->bi_size;
1da177e4
LT
3791
3792 rq->bio = rq->biotail = bio;
1da177e4 3793
66846572
N
3794 if (bio->bi_bdev)
3795 rq->rq_disk = bio->bi_bdev->bd_disk;
3796}
1da177e4
LT
3797
3798int kblockd_schedule_work(struct work_struct *work)
3799{
3800 return queue_work(kblockd_workqueue, work);
3801}
3802
3803EXPORT_SYMBOL(kblockd_schedule_work);
3804
19a75d83 3805void kblockd_flush_work(struct work_struct *work)
1da177e4 3806{
28e53bdd 3807 cancel_work_sync(work);
1da177e4 3808}
19a75d83 3809EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3810
3811int __init blk_dev_init(void)
3812{
ff856bad
JA
3813 int i;
3814
1da177e4
LT
3815 kblockd_workqueue = create_workqueue("kblockd");
3816 if (!kblockd_workqueue)
3817 panic("Failed to create kblockd\n");
3818
3819 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3820 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3821
3822 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3823 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3824
3825 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3826 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3827
0a945022 3828 for_each_possible_cpu(i)
ff856bad
JA
3829 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3830
3831 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3832 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3833
f772b3d9
VT
3834 blk_max_low_pfn = max_low_pfn - 1;
3835 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3836
3837 return 0;
3838}
3839
3840/*
3841 * IO Context helper functions
3842 */
3843void put_io_context(struct io_context *ioc)
3844{
3845 if (ioc == NULL)
3846 return;
3847
3848 BUG_ON(atomic_read(&ioc->refcount) == 0);
3849
3850 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3851 struct cfq_io_context *cic;
3852
334e94de 3853 rcu_read_lock();
1da177e4
LT
3854 if (ioc->aic && ioc->aic->dtor)
3855 ioc->aic->dtor(ioc->aic);
e2d74ac0 3856 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3857 struct rb_node *n = rb_first(&ioc->cic_root);
3858
3859 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3860 cic->dtor(ioc);
3861 }
334e94de 3862 rcu_read_unlock();
1da177e4
LT
3863
3864 kmem_cache_free(iocontext_cachep, ioc);
3865 }
3866}
3867EXPORT_SYMBOL(put_io_context);
3868
3869/* Called by the exitting task */
3870void exit_io_context(void)
3871{
1da177e4 3872 struct io_context *ioc;
e2d74ac0 3873 struct cfq_io_context *cic;
1da177e4 3874
22e2c507 3875 task_lock(current);
1da177e4
LT
3876 ioc = current->io_context;
3877 current->io_context = NULL;
22e2c507 3878 task_unlock(current);
1da177e4 3879
25034d7a 3880 ioc->task = NULL;
1da177e4
LT
3881 if (ioc->aic && ioc->aic->exit)
3882 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3883 if (ioc->cic_root.rb_node != NULL) {
3884 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3885 cic->exit(ioc);
3886 }
25034d7a 3887
1da177e4
LT
3888 put_io_context(ioc);
3889}
3890
3891/*
3892 * If the current task has no IO context then create one and initialise it.
fb3cc432 3893 * Otherwise, return its existing IO context.
1da177e4 3894 *
fb3cc432
NP
3895 * This returned IO context doesn't have a specifically elevated refcount,
3896 * but since the current task itself holds a reference, the context can be
3897 * used in general code, so long as it stays within `current` context.
1da177e4 3898 */
b5deef90 3899static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3900{
3901 struct task_struct *tsk = current;
1da177e4
LT
3902 struct io_context *ret;
3903
1da177e4 3904 ret = tsk->io_context;
fb3cc432
NP
3905 if (likely(ret))
3906 return ret;
1da177e4 3907
b5deef90 3908 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3909 if (ret) {
3910 atomic_set(&ret->refcount, 1);
22e2c507 3911 ret->task = current;
fc46379d 3912 ret->ioprio_changed = 0;
1da177e4
LT
3913 ret->last_waited = jiffies; /* doesn't matter... */
3914 ret->nr_batch_requests = 0; /* because this is 0 */
3915 ret->aic = NULL;
e2d74ac0 3916 ret->cic_root.rb_node = NULL;
4e521c27 3917 ret->ioc_data = NULL;
9f83e45e
ON
3918 /* make sure set_task_ioprio() sees the settings above */
3919 smp_wmb();
fb3cc432
NP
3920 tsk->io_context = ret;
3921 }
1da177e4 3922
fb3cc432
NP
3923 return ret;
3924}
1da177e4 3925
fb3cc432
NP
3926/*
3927 * If the current task has no IO context then create one and initialise it.
3928 * If it does have a context, take a ref on it.
3929 *
3930 * This is always called in the context of the task which submitted the I/O.
3931 */
b5deef90 3932struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3933{
3934 struct io_context *ret;
b5deef90 3935 ret = current_io_context(gfp_flags, node);
fb3cc432 3936 if (likely(ret))
1da177e4 3937 atomic_inc(&ret->refcount);
1da177e4
LT
3938 return ret;
3939}
3940EXPORT_SYMBOL(get_io_context);
3941
3942void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3943{
3944 struct io_context *src = *psrc;
3945 struct io_context *dst = *pdst;
3946
3947 if (src) {
3948 BUG_ON(atomic_read(&src->refcount) == 0);
3949 atomic_inc(&src->refcount);
3950 put_io_context(dst);
3951 *pdst = src;
3952 }
3953}
3954EXPORT_SYMBOL(copy_io_context);
3955
3956void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3957{
3958 struct io_context *temp;
3959 temp = *ioc1;
3960 *ioc1 = *ioc2;
3961 *ioc2 = temp;
3962}
3963EXPORT_SYMBOL(swap_io_context);
3964
3965/*
3966 * sysfs parts below
3967 */
3968struct queue_sysfs_entry {
3969 struct attribute attr;
3970 ssize_t (*show)(struct request_queue *, char *);
3971 ssize_t (*store)(struct request_queue *, const char *, size_t);
3972};
3973
3974static ssize_t
3975queue_var_show(unsigned int var, char *page)
3976{
3977 return sprintf(page, "%d\n", var);
3978}
3979
3980static ssize_t
3981queue_var_store(unsigned long *var, const char *page, size_t count)
3982{
3983 char *p = (char *) page;
3984
3985 *var = simple_strtoul(p, &p, 10);
3986 return count;
3987}
3988
3989static ssize_t queue_requests_show(struct request_queue *q, char *page)
3990{
3991 return queue_var_show(q->nr_requests, (page));
3992}
3993
3994static ssize_t
3995queue_requests_store(struct request_queue *q, const char *page, size_t count)
3996{
3997 struct request_list *rl = &q->rq;
c981ff9f
AV
3998 unsigned long nr;
3999 int ret = queue_var_store(&nr, page, count);
4000 if (nr < BLKDEV_MIN_RQ)
4001 nr = BLKDEV_MIN_RQ;
1da177e4 4002
c981ff9f
AV
4003 spin_lock_irq(q->queue_lock);
4004 q->nr_requests = nr;
1da177e4
LT
4005 blk_queue_congestion_threshold(q);
4006
4007 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 4008 blk_set_queue_congested(q, READ);
1da177e4 4009 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 4010 blk_clear_queue_congested(q, READ);
1da177e4
LT
4011
4012 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 4013 blk_set_queue_congested(q, WRITE);
1da177e4 4014 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4015 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4016
4017 if (rl->count[READ] >= q->nr_requests) {
4018 blk_set_queue_full(q, READ);
4019 } else if (rl->count[READ]+1 <= q->nr_requests) {
4020 blk_clear_queue_full(q, READ);
4021 wake_up(&rl->wait[READ]);
4022 }
4023
4024 if (rl->count[WRITE] >= q->nr_requests) {
4025 blk_set_queue_full(q, WRITE);
4026 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4027 blk_clear_queue_full(q, WRITE);
4028 wake_up(&rl->wait[WRITE]);
4029 }
c981ff9f 4030 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4031 return ret;
4032}
4033
4034static ssize_t queue_ra_show(struct request_queue *q, char *page)
4035{
4036 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4037
4038 return queue_var_show(ra_kb, (page));
4039}
4040
4041static ssize_t
4042queue_ra_store(struct request_queue *q, const char *page, size_t count)
4043{
4044 unsigned long ra_kb;
4045 ssize_t ret = queue_var_store(&ra_kb, page, count);
4046
4047 spin_lock_irq(q->queue_lock);
1da177e4
LT
4048 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4049 spin_unlock_irq(q->queue_lock);
4050
4051 return ret;
4052}
4053
4054static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4055{
4056 int max_sectors_kb = q->max_sectors >> 1;
4057
4058 return queue_var_show(max_sectors_kb, (page));
4059}
4060
4061static ssize_t
4062queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4063{
4064 unsigned long max_sectors_kb,
4065 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4066 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4067 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4068
4069 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4070 return -EINVAL;
4071 /*
4072 * Take the queue lock to update the readahead and max_sectors
4073 * values synchronously:
4074 */
4075 spin_lock_irq(q->queue_lock);
1da177e4
LT
4076 q->max_sectors = max_sectors_kb << 1;
4077 spin_unlock_irq(q->queue_lock);
4078
4079 return ret;
4080}
4081
4082static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4083{
4084 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4085
4086 return queue_var_show(max_hw_sectors_kb, (page));
4087}
4088
563063a8
JA
4089static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4090{
4091 return queue_var_show(q->max_phys_segments, page);
4092}
4093
4094static ssize_t queue_max_segments_store(struct request_queue *q,
4095 const char *page, size_t count)
4096{
4097 unsigned long segments;
4098 ssize_t ret = queue_var_store(&segments, page, count);
1da177e4 4099
563063a8
JA
4100 spin_lock_irq(q->queue_lock);
4101 q->max_phys_segments = segments;
4102 spin_unlock_irq(q->queue_lock);
1da177e4 4103
563063a8
JA
4104 return ret;
4105}
1da177e4
LT
4106static struct queue_sysfs_entry queue_requests_entry = {
4107 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4108 .show = queue_requests_show,
4109 .store = queue_requests_store,
4110};
4111
4112static struct queue_sysfs_entry queue_ra_entry = {
4113 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4114 .show = queue_ra_show,
4115 .store = queue_ra_store,
4116};
4117
4118static struct queue_sysfs_entry queue_max_sectors_entry = {
4119 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4120 .show = queue_max_sectors_show,
4121 .store = queue_max_sectors_store,
4122};
4123
4124static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4125 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4126 .show = queue_max_hw_sectors_show,
4127};
4128
563063a8
JA
4129static struct queue_sysfs_entry queue_max_segments_entry = {
4130 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4131 .show = queue_max_segments_show,
4132 .store = queue_max_segments_store,
4133};
4134
1da177e4
LT
4135static struct queue_sysfs_entry queue_iosched_entry = {
4136 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4137 .show = elv_iosched_show,
4138 .store = elv_iosched_store,
4139};
4140
4141static struct attribute *default_attrs[] = {
4142 &queue_requests_entry.attr,
4143 &queue_ra_entry.attr,
4144 &queue_max_hw_sectors_entry.attr,
4145 &queue_max_sectors_entry.attr,
563063a8 4146 &queue_max_segments_entry.attr,
1da177e4
LT
4147 &queue_iosched_entry.attr,
4148 NULL,
4149};
4150
4151#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4152
4153static ssize_t
4154queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4155{
4156 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4157 struct request_queue *q =
4158 container_of(kobj, struct request_queue, kobj);
483f4afc 4159 ssize_t res;
1da177e4 4160
1da177e4 4161 if (!entry->show)
6c1852a0 4162 return -EIO;
483f4afc
AV
4163 mutex_lock(&q->sysfs_lock);
4164 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4165 mutex_unlock(&q->sysfs_lock);
4166 return -ENOENT;
4167 }
4168 res = entry->show(q, page);
4169 mutex_unlock(&q->sysfs_lock);
4170 return res;
1da177e4
LT
4171}
4172
4173static ssize_t
4174queue_attr_store(struct kobject *kobj, struct attribute *attr,
4175 const char *page, size_t length)
4176{
4177 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4178 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4179
4180 ssize_t res;
1da177e4 4181
1da177e4 4182 if (!entry->store)
6c1852a0 4183 return -EIO;
483f4afc
AV
4184 mutex_lock(&q->sysfs_lock);
4185 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4186 mutex_unlock(&q->sysfs_lock);
4187 return -ENOENT;
4188 }
4189 res = entry->store(q, page, length);
4190 mutex_unlock(&q->sysfs_lock);
4191 return res;
1da177e4
LT
4192}
4193
4194static struct sysfs_ops queue_sysfs_ops = {
4195 .show = queue_attr_show,
4196 .store = queue_attr_store,
4197};
4198
93d17d3d 4199static struct kobj_type queue_ktype = {
1da177e4
LT
4200 .sysfs_ops = &queue_sysfs_ops,
4201 .default_attrs = default_attrs,
483f4afc 4202 .release = blk_release_queue,
1da177e4
LT
4203};
4204
4205int blk_register_queue(struct gendisk *disk)
4206{
4207 int ret;
4208
165125e1 4209 struct request_queue *q = disk->queue;
1da177e4
LT
4210
4211 if (!q || !q->request_fn)
4212 return -ENXIO;
4213
4214 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4215
483f4afc 4216 ret = kobject_add(&q->kobj);
1da177e4
LT
4217 if (ret < 0)
4218 return ret;
4219
483f4afc
AV
4220 kobject_uevent(&q->kobj, KOBJ_ADD);
4221
1da177e4
LT
4222 ret = elv_register_queue(q);
4223 if (ret) {
483f4afc
AV
4224 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4225 kobject_del(&q->kobj);
1da177e4
LT
4226 return ret;
4227 }
4228
4229 return 0;
4230}
4231
4232void blk_unregister_queue(struct gendisk *disk)
4233{
165125e1 4234 struct request_queue *q = disk->queue;
1da177e4
LT
4235
4236 if (q && q->request_fn) {
4237 elv_unregister_queue(q);
4238
483f4afc
AV
4239 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4240 kobject_del(&q->kobj);
1da177e4
LT
4241 kobject_put(&disk->kobj);
4242 }
4243}