]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/ll_rw_blk.c
[PATCH] ide-cd: quiet down GPCMD_READ_CDVD_CAPACITY failure
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
13#include <linux/config.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
1da177e4
LT
32
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
93d17d3d 40static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675
TH
41static void init_request_from_bio(struct request *req, struct bio *bio);
42static int __make_request(request_queue_t *q, struct bio *bio);
1da177e4
LT
43
44/*
45 * For the allocated request tables
46 */
47static kmem_cache_t *request_cachep;
48
49/*
50 * For queue allocation
51 */
52static kmem_cache_t *requestq_cachep;
53
54/*
55 * For io context allocations
56 */
57static kmem_cache_t *iocontext_cachep;
58
59static wait_queue_head_t congestion_wqh[2] = {
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
61 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
62 };
63
64/*
65 * Controlling structure to kblockd
66 */
ff856bad 67static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
68
69unsigned long blk_max_low_pfn, blk_max_pfn;
70
71EXPORT_SYMBOL(blk_max_low_pfn);
72EXPORT_SYMBOL(blk_max_pfn);
73
ff856bad
JA
74static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75
1da177e4
LT
76/* Amount of time in which a process may batch requests */
77#define BLK_BATCH_TIME (HZ/50UL)
78
79/* Number of requests a "batching" process may submit */
80#define BLK_BATCH_REQ 32
81
82/*
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
86 */
87static inline int queue_congestion_on_threshold(struct request_queue *q)
88{
89 return q->nr_congestion_on;
90}
91
92/*
93 * The threshold at which a queue is considered to be uncongested
94 */
95static inline int queue_congestion_off_threshold(struct request_queue *q)
96{
97 return q->nr_congestion_off;
98}
99
100static void blk_queue_congestion_threshold(struct request_queue *q)
101{
102 int nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
108
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
113}
114
115/*
116 * A queue has just exitted congestion. Note this in the global counter of
117 * congested queues, and wake up anyone who was waiting for requests to be
118 * put back.
119 */
120static void clear_queue_congested(request_queue_t *q, int rw)
121{
122 enum bdi_state bit;
123 wait_queue_head_t *wqh = &congestion_wqh[rw];
124
125 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
126 clear_bit(bit, &q->backing_dev_info.state);
127 smp_mb__after_clear_bit();
128 if (waitqueue_active(wqh))
129 wake_up(wqh);
130}
131
132/*
133 * A queue has just entered congestion. Flag that in the queue's VM-visible
134 * state flags and increment the global gounter of congested queues.
135 */
136static void set_queue_congested(request_queue_t *q, int rw)
137{
138 enum bdi_state bit;
139
140 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
141 set_bit(bit, &q->backing_dev_info.state);
142}
143
144/**
145 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
146 * @bdev: device
147 *
148 * Locates the passed device's request queue and returns the address of its
149 * backing_dev_info
150 *
151 * Will return NULL if the request queue cannot be located.
152 */
153struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
154{
155 struct backing_dev_info *ret = NULL;
156 request_queue_t *q = bdev_get_queue(bdev);
157
158 if (q)
159 ret = &q->backing_dev_info;
160 return ret;
161}
162
163EXPORT_SYMBOL(blk_get_backing_dev_info);
164
165void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
166{
167 q->activity_fn = fn;
168 q->activity_data = data;
169}
170
171EXPORT_SYMBOL(blk_queue_activity_fn);
172
173/**
174 * blk_queue_prep_rq - set a prepare_request function for queue
175 * @q: queue
176 * @pfn: prepare_request function
177 *
178 * It's possible for a queue to register a prepare_request callback which
179 * is invoked before the request is handed to the request_fn. The goal of
180 * the function is to prepare a request for I/O, it can be used to build a
181 * cdb from the request data for instance.
182 *
183 */
184void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
185{
186 q->prep_rq_fn = pfn;
187}
188
189EXPORT_SYMBOL(blk_queue_prep_rq);
190
191/**
192 * blk_queue_merge_bvec - set a merge_bvec function for queue
193 * @q: queue
194 * @mbfn: merge_bvec_fn
195 *
196 * Usually queues have static limitations on the max sectors or segments that
197 * we can put in a request. Stacking drivers may have some settings that
198 * are dynamic, and thus we have to query the queue whether it is ok to
199 * add a new bio_vec to a bio at a given offset or not. If the block device
200 * has such limitations, it needs to register a merge_bvec_fn to control
201 * the size of bio's sent to it. Note that a block device *must* allow a
202 * single page to be added to an empty bio. The block device driver may want
203 * to use the bio_split() function to deal with these bio's. By default
204 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
205 * honored.
206 */
207void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
208{
209 q->merge_bvec_fn = mbfn;
210}
211
212EXPORT_SYMBOL(blk_queue_merge_bvec);
213
ff856bad
JA
214void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
215{
216 q->softirq_done_fn = fn;
217}
218
219EXPORT_SYMBOL(blk_queue_softirq_done);
220
1da177e4
LT
221/**
222 * blk_queue_make_request - define an alternate make_request function for a device
223 * @q: the request queue for the device to be affected
224 * @mfn: the alternate make_request function
225 *
226 * Description:
227 * The normal way for &struct bios to be passed to a device
228 * driver is for them to be collected into requests on a request
229 * queue, and then to allow the device driver to select requests
230 * off that queue when it is ready. This works well for many block
231 * devices. However some block devices (typically virtual devices
232 * such as md or lvm) do not benefit from the processing on the
233 * request queue, and are served best by having the requests passed
234 * directly to them. This can be achieved by providing a function
235 * to blk_queue_make_request().
236 *
237 * Caveat:
238 * The driver that does this *must* be able to deal appropriately
239 * with buffers in "highmemory". This can be accomplished by either calling
240 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
241 * blk_queue_bounce() to create a buffer in normal memory.
242 **/
243void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
244{
245 /*
246 * set defaults
247 */
248 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
249 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
250 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
251 q->make_request_fn = mfn;
252 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
253 q->backing_dev_info.state = 0;
254 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 255 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
256 blk_queue_hardsect_size(q, 512);
257 blk_queue_dma_alignment(q, 511);
258 blk_queue_congestion_threshold(q);
259 q->nr_batching = BLK_BATCH_REQ;
260
261 q->unplug_thresh = 4; /* hmm */
262 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
263 if (q->unplug_delay == 0)
264 q->unplug_delay = 1;
265
266 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
267
268 q->unplug_timer.function = blk_unplug_timeout;
269 q->unplug_timer.data = (unsigned long)q;
270
271 /*
272 * by default assume old behaviour and bounce for any highmem page
273 */
274 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
275
276 blk_queue_activity_fn(q, NULL, NULL);
1da177e4
LT
277}
278
279EXPORT_SYMBOL(blk_queue_make_request);
280
281static inline void rq_init(request_queue_t *q, struct request *rq)
282{
283 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 284 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
285
286 rq->errors = 0;
287 rq->rq_status = RQ_ACTIVE;
288 rq->bio = rq->biotail = NULL;
22e2c507 289 rq->ioprio = 0;
1da177e4
LT
290 rq->buffer = NULL;
291 rq->ref_count = 1;
292 rq->q = q;
293 rq->waiting = NULL;
294 rq->special = NULL;
295 rq->data_len = 0;
296 rq->data = NULL;
df46b9a4 297 rq->nr_phys_segments = 0;
1da177e4
LT
298 rq->sense = NULL;
299 rq->end_io = NULL;
300 rq->end_io_data = NULL;
ff856bad 301 rq->completion_data = NULL;
1da177e4
LT
302}
303
304/**
305 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
306 * @q: the request queue
307 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 308 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
309 *
310 * Description:
311 * For journalled file systems, doing ordered writes on a commit
312 * block instead of explicitly doing wait_on_buffer (which is bad
313 * for performance) can be a big win. Block drivers supporting this
314 * feature should call this function and indicate so.
315 *
316 **/
797e7dbb
TH
317int blk_queue_ordered(request_queue_t *q, unsigned ordered,
318 prepare_flush_fn *prepare_flush_fn)
319{
320 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
321 prepare_flush_fn == NULL) {
322 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
323 return -EINVAL;
324 }
325
326 if (ordered != QUEUE_ORDERED_NONE &&
327 ordered != QUEUE_ORDERED_DRAIN &&
328 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
329 ordered != QUEUE_ORDERED_DRAIN_FUA &&
330 ordered != QUEUE_ORDERED_TAG &&
331 ordered != QUEUE_ORDERED_TAG_FLUSH &&
332 ordered != QUEUE_ORDERED_TAG_FUA) {
333 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
334 return -EINVAL;
1da177e4 335 }
797e7dbb 336
60481b12 337 q->ordered = ordered;
797e7dbb
TH
338 q->next_ordered = ordered;
339 q->prepare_flush_fn = prepare_flush_fn;
340
341 return 0;
1da177e4
LT
342}
343
344EXPORT_SYMBOL(blk_queue_ordered);
345
346/**
347 * blk_queue_issue_flush_fn - set function for issuing a flush
348 * @q: the request queue
349 * @iff: the function to be called issuing the flush
350 *
351 * Description:
352 * If a driver supports issuing a flush command, the support is notified
353 * to the block layer by defining it through this call.
354 *
355 **/
356void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
357{
358 q->issue_flush_fn = iff;
359}
360
361EXPORT_SYMBOL(blk_queue_issue_flush_fn);
362
363/*
364 * Cache flushing for ordered writes handling
365 */
797e7dbb 366inline unsigned blk_ordered_cur_seq(request_queue_t *q)
1da177e4 367{
797e7dbb
TH
368 if (!q->ordseq)
369 return 0;
370 return 1 << ffz(q->ordseq);
1da177e4
LT
371}
372
797e7dbb 373unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 374{
1da177e4
LT
375 request_queue_t *q = rq->q;
376
797e7dbb 377 BUG_ON(q->ordseq == 0);
8922e16c 378
797e7dbb
TH
379 if (rq == &q->pre_flush_rq)
380 return QUEUE_ORDSEQ_PREFLUSH;
381 if (rq == &q->bar_rq)
382 return QUEUE_ORDSEQ_BAR;
383 if (rq == &q->post_flush_rq)
384 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 385
797e7dbb
TH
386 if ((rq->flags & REQ_ORDERED_COLOR) ==
387 (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
388 return QUEUE_ORDSEQ_DRAIN;
389 else
390 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
391}
392
797e7dbb 393void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
1da177e4 394{
797e7dbb
TH
395 struct request *rq;
396 int uptodate;
1da177e4 397
797e7dbb
TH
398 if (error && !q->orderr)
399 q->orderr = error;
1da177e4 400
797e7dbb
TH
401 BUG_ON(q->ordseq & seq);
402 q->ordseq |= seq;
1da177e4 403
797e7dbb
TH
404 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
405 return;
1da177e4
LT
406
407 /*
797e7dbb 408 * Okay, sequence complete.
1da177e4 409 */
797e7dbb
TH
410 rq = q->orig_bar_rq;
411 uptodate = q->orderr ? q->orderr : 1;
1da177e4 412
797e7dbb 413 q->ordseq = 0;
1da177e4 414
797e7dbb
TH
415 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
416 end_that_request_last(rq, uptodate);
1da177e4
LT
417}
418
797e7dbb 419static void pre_flush_end_io(struct request *rq, int error)
1da177e4 420{
797e7dbb
TH
421 elv_completed_request(rq->q, rq);
422 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
423}
1da177e4 424
797e7dbb
TH
425static void bar_end_io(struct request *rq, int error)
426{
427 elv_completed_request(rq->q, rq);
428 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
429}
1da177e4 430
797e7dbb
TH
431static void post_flush_end_io(struct request *rq, int error)
432{
433 elv_completed_request(rq->q, rq);
434 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
435}
1da177e4 436
797e7dbb
TH
437static void queue_flush(request_queue_t *q, unsigned which)
438{
439 struct request *rq;
440 rq_end_io_fn *end_io;
1da177e4 441
797e7dbb
TH
442 if (which == QUEUE_ORDERED_PREFLUSH) {
443 rq = &q->pre_flush_rq;
444 end_io = pre_flush_end_io;
445 } else {
446 rq = &q->post_flush_rq;
447 end_io = post_flush_end_io;
1da177e4 448 }
797e7dbb
TH
449
450 rq_init(q, rq);
451 rq->flags = REQ_HARDBARRIER;
452 rq->elevator_private = NULL;
453 rq->rq_disk = q->bar_rq.rq_disk;
454 rq->rl = NULL;
455 rq->end_io = end_io;
456 q->prepare_flush_fn(q, rq);
457
30e9656c 458 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
459}
460
797e7dbb
TH
461static inline struct request *start_ordered(request_queue_t *q,
462 struct request *rq)
1da177e4 463{
797e7dbb
TH
464 q->bi_size = 0;
465 q->orderr = 0;
466 q->ordered = q->next_ordered;
467 q->ordseq |= QUEUE_ORDSEQ_STARTED;
468
469 /*
470 * Prep proxy barrier request.
471 */
472 blkdev_dequeue_request(rq);
473 q->orig_bar_rq = rq;
474 rq = &q->bar_rq;
475 rq_init(q, rq);
476 rq->flags = bio_data_dir(q->orig_bar_rq->bio);
477 rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
478 rq->elevator_private = NULL;
479 rq->rl = NULL;
480 init_request_from_bio(rq, q->orig_bar_rq->bio);
481 rq->end_io = bar_end_io;
482
483 /*
484 * Queue ordered sequence. As we stack them at the head, we
485 * need to queue in reverse order. Note that we rely on that
486 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
487 * request gets inbetween ordered sequence.
488 */
489 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
490 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
491 else
492 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
493
30e9656c 494 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
495
496 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
497 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
498 rq = &q->pre_flush_rq;
499 } else
500 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 501
797e7dbb
TH
502 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
503 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
504 else
505 rq = NULL;
506
507 return rq;
1da177e4
LT
508}
509
797e7dbb 510int blk_do_ordered(request_queue_t *q, struct request **rqp)
1da177e4 511{
9a7a67af 512 struct request *rq = *rqp;
797e7dbb 513 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 514
797e7dbb
TH
515 if (!q->ordseq) {
516 if (!is_barrier)
517 return 1;
1da177e4 518
797e7dbb
TH
519 if (q->next_ordered != QUEUE_ORDERED_NONE) {
520 *rqp = start_ordered(q, rq);
521 return 1;
522 } else {
523 /*
524 * This can happen when the queue switches to
525 * ORDERED_NONE while this request is on it.
526 */
527 blkdev_dequeue_request(rq);
528 end_that_request_first(rq, -EOPNOTSUPP,
529 rq->hard_nr_sectors);
530 end_that_request_last(rq, -EOPNOTSUPP);
531 *rqp = NULL;
532 return 0;
533 }
534 }
1da177e4 535
9a7a67af
JA
536 /*
537 * Ordered sequence in progress
538 */
539
540 /* Special requests are not subject to ordering rules. */
541 if (!blk_fs_request(rq) &&
542 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
543 return 1;
544
797e7dbb 545 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 546 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
547 if (is_barrier && rq != &q->bar_rq)
548 *rqp = NULL;
9a7a67af
JA
549 } else {
550 /* Ordered by draining. Wait for turn. */
551 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
552 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
553 *rqp = NULL;
1da177e4
LT
554 }
555
556 return 1;
557}
558
797e7dbb 559static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 560{
797e7dbb
TH
561 request_queue_t *q = bio->bi_private;
562 struct bio_vec *bvec;
563 int i;
564
565 /*
566 * This is dry run, restore bio_sector and size. We'll finish
567 * this request again with the original bi_end_io after an
568 * error occurs or post flush is complete.
569 */
570 q->bi_size += bytes;
571
572 if (bio->bi_size)
573 return 1;
574
575 /* Rewind bvec's */
576 bio->bi_idx = 0;
577 bio_for_each_segment(bvec, bio, i) {
578 bvec->bv_len += bvec->bv_offset;
579 bvec->bv_offset = 0;
580 }
581
582 /* Reset bio */
583 set_bit(BIO_UPTODATE, &bio->bi_flags);
584 bio->bi_size = q->bi_size;
585 bio->bi_sector -= (q->bi_size >> 9);
586 q->bi_size = 0;
587
588 return 0;
1da177e4 589}
1da177e4 590
797e7dbb
TH
591static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
592 unsigned int nbytes, int error)
1da177e4 593{
797e7dbb
TH
594 request_queue_t *q = rq->q;
595 bio_end_io_t *endio;
596 void *private;
597
598 if (&q->bar_rq != rq)
599 return 0;
600
601 /*
602 * Okay, this is the barrier request in progress, dry finish it.
603 */
604 if (error && !q->orderr)
605 q->orderr = error;
606
607 endio = bio->bi_end_io;
608 private = bio->bi_private;
609 bio->bi_end_io = flush_dry_bio_endio;
610 bio->bi_private = q;
611
612 bio_endio(bio, nbytes, error);
613
614 bio->bi_end_io = endio;
615 bio->bi_private = private;
616
617 return 1;
1da177e4 618}
1da177e4
LT
619
620/**
621 * blk_queue_bounce_limit - set bounce buffer limit for queue
622 * @q: the request queue for the device
623 * @dma_addr: bus address limit
624 *
625 * Description:
626 * Different hardware can have different requirements as to what pages
627 * it can do I/O directly to. A low level driver can call
628 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 629 * buffers for doing I/O to pages residing above @page.
1da177e4
LT
630 **/
631void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
632{
633 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
634 int dma = 0;
635
636 q->bounce_gfp = GFP_NOIO;
637#if BITS_PER_LONG == 64
638 /* Assume anything <= 4GB can be handled by IOMMU.
639 Actually some IOMMUs can handle everything, but I don't
640 know of a way to test this here. */
641 if (bounce_pfn < (0xffffffff>>PAGE_SHIFT))
642 dma = 1;
643 q->bounce_pfn = max_low_pfn;
644#else
645 if (bounce_pfn < blk_max_low_pfn)
646 dma = 1;
647 q->bounce_pfn = bounce_pfn;
648#endif
649 if (dma) {
1da177e4
LT
650 init_emergency_isa_pool();
651 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
652 q->bounce_pfn = bounce_pfn;
653 }
1da177e4
LT
654}
655
656EXPORT_SYMBOL(blk_queue_bounce_limit);
657
658/**
659 * blk_queue_max_sectors - set max sectors for a request for this queue
660 * @q: the request queue for the device
661 * @max_sectors: max sectors in the usual 512b unit
662 *
663 * Description:
664 * Enables a low level driver to set an upper limit on the size of
665 * received requests.
666 **/
2cb2e147 667void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
1da177e4
LT
668{
669 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
670 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
671 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
672 }
673
defd94b7
MC
674 if (BLK_DEF_MAX_SECTORS > max_sectors)
675 q->max_hw_sectors = q->max_sectors = max_sectors;
676 else {
677 q->max_sectors = BLK_DEF_MAX_SECTORS;
678 q->max_hw_sectors = max_sectors;
679 }
1da177e4
LT
680}
681
682EXPORT_SYMBOL(blk_queue_max_sectors);
683
684/**
685 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
686 * @q: the request queue for the device
687 * @max_segments: max number of segments
688 *
689 * Description:
690 * Enables a low level driver to set an upper limit on the number of
691 * physical data segments in a request. This would be the largest sized
692 * scatter list the driver could handle.
693 **/
694void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
695{
696 if (!max_segments) {
697 max_segments = 1;
698 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
699 }
700
701 q->max_phys_segments = max_segments;
702}
703
704EXPORT_SYMBOL(blk_queue_max_phys_segments);
705
706/**
707 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
708 * @q: the request queue for the device
709 * @max_segments: max number of segments
710 *
711 * Description:
712 * Enables a low level driver to set an upper limit on the number of
713 * hw data segments in a request. This would be the largest number of
714 * address/length pairs the host adapter can actually give as once
715 * to the device.
716 **/
717void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
718{
719 if (!max_segments) {
720 max_segments = 1;
721 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
722 }
723
724 q->max_hw_segments = max_segments;
725}
726
727EXPORT_SYMBOL(blk_queue_max_hw_segments);
728
729/**
730 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
731 * @q: the request queue for the device
732 * @max_size: max size of segment in bytes
733 *
734 * Description:
735 * Enables a low level driver to set an upper limit on the size of a
736 * coalesced segment
737 **/
738void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
739{
740 if (max_size < PAGE_CACHE_SIZE) {
741 max_size = PAGE_CACHE_SIZE;
742 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
743 }
744
745 q->max_segment_size = max_size;
746}
747
748EXPORT_SYMBOL(blk_queue_max_segment_size);
749
750/**
751 * blk_queue_hardsect_size - set hardware sector size for the queue
752 * @q: the request queue for the device
753 * @size: the hardware sector size, in bytes
754 *
755 * Description:
756 * This should typically be set to the lowest possible sector size
757 * that the hardware can operate on (possible without reverting to
758 * even internal read-modify-write operations). Usually the default
759 * of 512 covers most hardware.
760 **/
761void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
762{
763 q->hardsect_size = size;
764}
765
766EXPORT_SYMBOL(blk_queue_hardsect_size);
767
768/*
769 * Returns the minimum that is _not_ zero, unless both are zero.
770 */
771#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
772
773/**
774 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
775 * @t: the stacking driver (top)
776 * @b: the underlying device (bottom)
777 **/
778void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
779{
780 /* zero is "infinity" */
defd94b7
MC
781 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
782 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
783
784 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
785 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
786 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
787 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
788}
789
790EXPORT_SYMBOL(blk_queue_stack_limits);
791
792/**
793 * blk_queue_segment_boundary - set boundary rules for segment merging
794 * @q: the request queue for the device
795 * @mask: the memory boundary mask
796 **/
797void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
798{
799 if (mask < PAGE_CACHE_SIZE - 1) {
800 mask = PAGE_CACHE_SIZE - 1;
801 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
802 }
803
804 q->seg_boundary_mask = mask;
805}
806
807EXPORT_SYMBOL(blk_queue_segment_boundary);
808
809/**
810 * blk_queue_dma_alignment - set dma length and memory alignment
811 * @q: the request queue for the device
812 * @mask: alignment mask
813 *
814 * description:
815 * set required memory and length aligment for direct dma transactions.
816 * this is used when buiding direct io requests for the queue.
817 *
818 **/
819void blk_queue_dma_alignment(request_queue_t *q, int mask)
820{
821 q->dma_alignment = mask;
822}
823
824EXPORT_SYMBOL(blk_queue_dma_alignment);
825
826/**
827 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
828 * @q: The request queue for the device
829 * @tag: The tag of the request
830 *
831 * Notes:
832 * Should be used when a device returns a tag and you want to match
833 * it with a request.
834 *
835 * no locks need be held.
836 **/
837struct request *blk_queue_find_tag(request_queue_t *q, int tag)
838{
839 struct blk_queue_tag *bqt = q->queue_tags;
840
ba025082 841 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1da177e4
LT
842 return NULL;
843
844 return bqt->tag_index[tag];
845}
846
847EXPORT_SYMBOL(blk_queue_find_tag);
848
849/**
850 * __blk_queue_free_tags - release tag maintenance info
851 * @q: the request queue for the device
852 *
853 * Notes:
854 * blk_cleanup_queue() will take care of calling this function, if tagging
855 * has been used. So there's no need to call this directly.
856 **/
857static void __blk_queue_free_tags(request_queue_t *q)
858{
859 struct blk_queue_tag *bqt = q->queue_tags;
860
861 if (!bqt)
862 return;
863
864 if (atomic_dec_and_test(&bqt->refcnt)) {
865 BUG_ON(bqt->busy);
866 BUG_ON(!list_empty(&bqt->busy_list));
867
868 kfree(bqt->tag_index);
869 bqt->tag_index = NULL;
870
871 kfree(bqt->tag_map);
872 bqt->tag_map = NULL;
873
874 kfree(bqt);
875 }
876
877 q->queue_tags = NULL;
878 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
879}
880
881/**
882 * blk_queue_free_tags - release tag maintenance info
883 * @q: the request queue for the device
884 *
885 * Notes:
886 * This is used to disabled tagged queuing to a device, yet leave
887 * queue in function.
888 **/
889void blk_queue_free_tags(request_queue_t *q)
890{
891 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
892}
893
894EXPORT_SYMBOL(blk_queue_free_tags);
895
896static int
897init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
898{
1da177e4
LT
899 struct request **tag_index;
900 unsigned long *tag_map;
fa72b903 901 int nr_ulongs;
1da177e4
LT
902
903 if (depth > q->nr_requests * 2) {
904 depth = q->nr_requests * 2;
905 printk(KERN_ERR "%s: adjusted depth to %d\n",
906 __FUNCTION__, depth);
907 }
908
f68110fc 909 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
910 if (!tag_index)
911 goto fail;
912
f7d37d02 913 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 914 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
915 if (!tag_map)
916 goto fail;
917
ba025082 918 tags->real_max_depth = depth;
1da177e4 919 tags->max_depth = depth;
1da177e4
LT
920 tags->tag_index = tag_index;
921 tags->tag_map = tag_map;
922
1da177e4
LT
923 return 0;
924fail:
925 kfree(tag_index);
926 return -ENOMEM;
927}
928
929/**
930 * blk_queue_init_tags - initialize the queue tag info
931 * @q: the request queue for the device
932 * @depth: the maximum queue depth supported
933 * @tags: the tag to use
934 **/
935int blk_queue_init_tags(request_queue_t *q, int depth,
936 struct blk_queue_tag *tags)
937{
938 int rc;
939
940 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
941
942 if (!tags && !q->queue_tags) {
943 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
944 if (!tags)
945 goto fail;
946
947 if (init_tag_map(q, tags, depth))
948 goto fail;
949
950 INIT_LIST_HEAD(&tags->busy_list);
951 tags->busy = 0;
952 atomic_set(&tags->refcnt, 1);
953 } else if (q->queue_tags) {
954 if ((rc = blk_queue_resize_tags(q, depth)))
955 return rc;
956 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
957 return 0;
958 } else
959 atomic_inc(&tags->refcnt);
960
961 /*
962 * assign it, all done
963 */
964 q->queue_tags = tags;
965 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
966 return 0;
967fail:
968 kfree(tags);
969 return -ENOMEM;
970}
971
972EXPORT_SYMBOL(blk_queue_init_tags);
973
974/**
975 * blk_queue_resize_tags - change the queueing depth
976 * @q: the request queue for the device
977 * @new_depth: the new max command queueing depth
978 *
979 * Notes:
980 * Must be called with the queue lock held.
981 **/
982int blk_queue_resize_tags(request_queue_t *q, int new_depth)
983{
984 struct blk_queue_tag *bqt = q->queue_tags;
985 struct request **tag_index;
986 unsigned long *tag_map;
fa72b903 987 int max_depth, nr_ulongs;
1da177e4
LT
988
989 if (!bqt)
990 return -ENXIO;
991
ba025082
TH
992 /*
993 * if we already have large enough real_max_depth. just
994 * adjust max_depth. *NOTE* as requests with tag value
995 * between new_depth and real_max_depth can be in-flight, tag
996 * map can not be shrunk blindly here.
997 */
998 if (new_depth <= bqt->real_max_depth) {
999 bqt->max_depth = new_depth;
1000 return 0;
1001 }
1002
1da177e4
LT
1003 /*
1004 * save the old state info, so we can copy it back
1005 */
1006 tag_index = bqt->tag_index;
1007 tag_map = bqt->tag_map;
ba025082 1008 max_depth = bqt->real_max_depth;
1da177e4
LT
1009
1010 if (init_tag_map(q, bqt, new_depth))
1011 return -ENOMEM;
1012
1013 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1014 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1015 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1016
1017 kfree(tag_index);
1018 kfree(tag_map);
1019 return 0;
1020}
1021
1022EXPORT_SYMBOL(blk_queue_resize_tags);
1023
1024/**
1025 * blk_queue_end_tag - end tag operations for a request
1026 * @q: the request queue for the device
1027 * @rq: the request that has completed
1028 *
1029 * Description:
1030 * Typically called when end_that_request_first() returns 0, meaning
1031 * all transfers have been done for a request. It's important to call
1032 * this function before end_that_request_last(), as that will put the
1033 * request back on the free list thus corrupting the internal tag list.
1034 *
1035 * Notes:
1036 * queue lock must be held.
1037 **/
1038void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1039{
1040 struct blk_queue_tag *bqt = q->queue_tags;
1041 int tag = rq->tag;
1042
1043 BUG_ON(tag == -1);
1044
ba025082 1045 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1046 /*
1047 * This can happen after tag depth has been reduced.
1048 * FIXME: how about a warning or info message here?
1049 */
1da177e4
LT
1050 return;
1051
1052 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
1053 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1054 __FUNCTION__, tag);
1da177e4
LT
1055 return;
1056 }
1057
1058 list_del_init(&rq->queuelist);
1059 rq->flags &= ~REQ_QUEUED;
1060 rq->tag = -1;
1061
1062 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1063 printk(KERN_ERR "%s: tag %d is missing\n",
1064 __FUNCTION__, tag);
1da177e4
LT
1065
1066 bqt->tag_index[tag] = NULL;
1067 bqt->busy--;
1068}
1069
1070EXPORT_SYMBOL(blk_queue_end_tag);
1071
1072/**
1073 * blk_queue_start_tag - find a free tag and assign it
1074 * @q: the request queue for the device
1075 * @rq: the block request that needs tagging
1076 *
1077 * Description:
1078 * This can either be used as a stand-alone helper, or possibly be
1079 * assigned as the queue &prep_rq_fn (in which case &struct request
1080 * automagically gets a tag assigned). Note that this function
1081 * assumes that any type of request can be queued! if this is not
1082 * true for your device, you must check the request type before
1083 * calling this function. The request will also be removed from
1084 * the request queue, so it's the drivers responsibility to readd
1085 * it if it should need to be restarted for some reason.
1086 *
1087 * Notes:
1088 * queue lock must be held.
1089 **/
1090int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1091{
1092 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1093 int tag;
1da177e4
LT
1094
1095 if (unlikely((rq->flags & REQ_QUEUED))) {
1096 printk(KERN_ERR
040c928c
TH
1097 "%s: request %p for device [%s] already tagged %d",
1098 __FUNCTION__, rq,
1099 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1100 BUG();
1101 }
1102
2bf0fdad
TH
1103 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1104 if (tag >= bqt->max_depth)
1105 return 1;
1da177e4 1106
1da177e4
LT
1107 __set_bit(tag, bqt->tag_map);
1108
1109 rq->flags |= REQ_QUEUED;
1110 rq->tag = tag;
1111 bqt->tag_index[tag] = rq;
1112 blkdev_dequeue_request(rq);
1113 list_add(&rq->queuelist, &bqt->busy_list);
1114 bqt->busy++;
1115 return 0;
1116}
1117
1118EXPORT_SYMBOL(blk_queue_start_tag);
1119
1120/**
1121 * blk_queue_invalidate_tags - invalidate all pending tags
1122 * @q: the request queue for the device
1123 *
1124 * Description:
1125 * Hardware conditions may dictate a need to stop all pending requests.
1126 * In this case, we will safely clear the block side of the tag queue and
1127 * readd all requests to the request queue in the right order.
1128 *
1129 * Notes:
1130 * queue lock must be held.
1131 **/
1132void blk_queue_invalidate_tags(request_queue_t *q)
1133{
1134 struct blk_queue_tag *bqt = q->queue_tags;
1135 struct list_head *tmp, *n;
1136 struct request *rq;
1137
1138 list_for_each_safe(tmp, n, &bqt->busy_list) {
1139 rq = list_entry_rq(tmp);
1140
1141 if (rq->tag == -1) {
040c928c
TH
1142 printk(KERN_ERR
1143 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4
LT
1144 list_del_init(&rq->queuelist);
1145 rq->flags &= ~REQ_QUEUED;
1146 } else
1147 blk_queue_end_tag(q, rq);
1148
1149 rq->flags &= ~REQ_STARTED;
1150 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1151 }
1152}
1153
1154EXPORT_SYMBOL(blk_queue_invalidate_tags);
1155
64100099 1156static const char * const rq_flags[] = {
1da177e4
LT
1157 "REQ_RW",
1158 "REQ_FAILFAST",
8922e16c 1159 "REQ_SORTED",
1da177e4
LT
1160 "REQ_SOFTBARRIER",
1161 "REQ_HARDBARRIER",
797e7dbb 1162 "REQ_FUA",
1da177e4
LT
1163 "REQ_CMD",
1164 "REQ_NOMERGE",
1165 "REQ_STARTED",
1166 "REQ_DONTPREP",
1167 "REQ_QUEUED",
cb98fc8b 1168 "REQ_ELVPRIV",
1da177e4
LT
1169 "REQ_PC",
1170 "REQ_BLOCK_PC",
1171 "REQ_SENSE",
1172 "REQ_FAILED",
1173 "REQ_QUIET",
1174 "REQ_SPECIAL",
1175 "REQ_DRIVE_CMD",
1176 "REQ_DRIVE_TASK",
1177 "REQ_DRIVE_TASKFILE",
1178 "REQ_PREEMPT",
1179 "REQ_PM_SUSPEND",
1180 "REQ_PM_RESUME",
1181 "REQ_PM_SHUTDOWN",
797e7dbb 1182 "REQ_ORDERED_COLOR",
1da177e4
LT
1183};
1184
1185void blk_dump_rq_flags(struct request *rq, char *msg)
1186{
1187 int bit;
1188
1189 printk("%s: dev %s: flags = ", msg,
1190 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1191 bit = 0;
1192 do {
1193 if (rq->flags & (1 << bit))
1194 printk("%s ", rq_flags[bit]);
1195 bit++;
1196 } while (bit < __REQ_NR_BITS);
1197
1198 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1199 rq->nr_sectors,
1200 rq->current_nr_sectors);
1201 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1202
1203 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1204 printk("cdb: ");
1205 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1206 printk("%02x ", rq->cmd[bit]);
1207 printk("\n");
1208 }
1209}
1210
1211EXPORT_SYMBOL(blk_dump_rq_flags);
1212
1213void blk_recount_segments(request_queue_t *q, struct bio *bio)
1214{
1215 struct bio_vec *bv, *bvprv = NULL;
1216 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1217 int high, highprv = 1;
1218
1219 if (unlikely(!bio->bi_io_vec))
1220 return;
1221
1222 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1223 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1224 bio_for_each_segment(bv, bio, i) {
1225 /*
1226 * the trick here is making sure that a high page is never
1227 * considered part of another segment, since that might
1228 * change with the bounce page.
1229 */
1230 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1231 if (high || highprv)
1232 goto new_hw_segment;
1233 if (cluster) {
1234 if (seg_size + bv->bv_len > q->max_segment_size)
1235 goto new_segment;
1236 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1237 goto new_segment;
1238 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1239 goto new_segment;
1240 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1241 goto new_hw_segment;
1242
1243 seg_size += bv->bv_len;
1244 hw_seg_size += bv->bv_len;
1245 bvprv = bv;
1246 continue;
1247 }
1248new_segment:
1249 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1250 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1251 hw_seg_size += bv->bv_len;
1252 } else {
1253new_hw_segment:
1254 if (hw_seg_size > bio->bi_hw_front_size)
1255 bio->bi_hw_front_size = hw_seg_size;
1256 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1257 nr_hw_segs++;
1258 }
1259
1260 nr_phys_segs++;
1261 bvprv = bv;
1262 seg_size = bv->bv_len;
1263 highprv = high;
1264 }
1265 if (hw_seg_size > bio->bi_hw_back_size)
1266 bio->bi_hw_back_size = hw_seg_size;
1267 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1268 bio->bi_hw_front_size = hw_seg_size;
1269 bio->bi_phys_segments = nr_phys_segs;
1270 bio->bi_hw_segments = nr_hw_segs;
1271 bio->bi_flags |= (1 << BIO_SEG_VALID);
1272}
1273
1274
93d17d3d 1275static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1276 struct bio *nxt)
1277{
1278 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1279 return 0;
1280
1281 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1282 return 0;
1283 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1284 return 0;
1285
1286 /*
1287 * bio and nxt are contigous in memory, check if the queue allows
1288 * these two to be merged into one
1289 */
1290 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1291 return 1;
1292
1293 return 0;
1294}
1295
93d17d3d 1296static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1297 struct bio *nxt)
1298{
1299 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1300 blk_recount_segments(q, bio);
1301 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1302 blk_recount_segments(q, nxt);
1303 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1304 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1305 return 0;
1306 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1307 return 0;
1308
1309 return 1;
1310}
1311
1da177e4
LT
1312/*
1313 * map a request to scatterlist, return number of sg entries setup. Caller
1314 * must make sure sg can hold rq->nr_phys_segments entries
1315 */
1316int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1317{
1318 struct bio_vec *bvec, *bvprv;
1319 struct bio *bio;
1320 int nsegs, i, cluster;
1321
1322 nsegs = 0;
1323 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1324
1325 /*
1326 * for each bio in rq
1327 */
1328 bvprv = NULL;
1329 rq_for_each_bio(bio, rq) {
1330 /*
1331 * for each segment in bio
1332 */
1333 bio_for_each_segment(bvec, bio, i) {
1334 int nbytes = bvec->bv_len;
1335
1336 if (bvprv && cluster) {
1337 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1338 goto new_segment;
1339
1340 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1341 goto new_segment;
1342 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1343 goto new_segment;
1344
1345 sg[nsegs - 1].length += nbytes;
1346 } else {
1347new_segment:
1348 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1349 sg[nsegs].page = bvec->bv_page;
1350 sg[nsegs].length = nbytes;
1351 sg[nsegs].offset = bvec->bv_offset;
1352
1353 nsegs++;
1354 }
1355 bvprv = bvec;
1356 } /* segments in bio */
1357 } /* bios in rq */
1358
1359 return nsegs;
1360}
1361
1362EXPORT_SYMBOL(blk_rq_map_sg);
1363
1364/*
1365 * the standard queue merge functions, can be overridden with device
1366 * specific ones if so desired
1367 */
1368
1369static inline int ll_new_mergeable(request_queue_t *q,
1370 struct request *req,
1371 struct bio *bio)
1372{
1373 int nr_phys_segs = bio_phys_segments(q, bio);
1374
1375 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1376 req->flags |= REQ_NOMERGE;
1377 if (req == q->last_merge)
1378 q->last_merge = NULL;
1379 return 0;
1380 }
1381
1382 /*
1383 * A hw segment is just getting larger, bump just the phys
1384 * counter.
1385 */
1386 req->nr_phys_segments += nr_phys_segs;
1387 return 1;
1388}
1389
1390static inline int ll_new_hw_segment(request_queue_t *q,
1391 struct request *req,
1392 struct bio *bio)
1393{
1394 int nr_hw_segs = bio_hw_segments(q, bio);
1395 int nr_phys_segs = bio_phys_segments(q, bio);
1396
1397 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1398 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1399 req->flags |= REQ_NOMERGE;
1400 if (req == q->last_merge)
1401 q->last_merge = NULL;
1402 return 0;
1403 }
1404
1405 /*
1406 * This will form the start of a new hw segment. Bump both
1407 * counters.
1408 */
1409 req->nr_hw_segments += nr_hw_segs;
1410 req->nr_phys_segments += nr_phys_segs;
1411 return 1;
1412}
1413
1414static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1415 struct bio *bio)
1416{
defd94b7 1417 unsigned short max_sectors;
1da177e4
LT
1418 int len;
1419
defd94b7
MC
1420 if (unlikely(blk_pc_request(req)))
1421 max_sectors = q->max_hw_sectors;
1422 else
1423 max_sectors = q->max_sectors;
1424
1425 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1da177e4
LT
1426 req->flags |= REQ_NOMERGE;
1427 if (req == q->last_merge)
1428 q->last_merge = NULL;
1429 return 0;
1430 }
1431 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1432 blk_recount_segments(q, req->biotail);
1433 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1434 blk_recount_segments(q, bio);
1435 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1436 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1437 !BIOVEC_VIRT_OVERSIZE(len)) {
1438 int mergeable = ll_new_mergeable(q, req, bio);
1439
1440 if (mergeable) {
1441 if (req->nr_hw_segments == 1)
1442 req->bio->bi_hw_front_size = len;
1443 if (bio->bi_hw_segments == 1)
1444 bio->bi_hw_back_size = len;
1445 }
1446 return mergeable;
1447 }
1448
1449 return ll_new_hw_segment(q, req, bio);
1450}
1451
1452static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1453 struct bio *bio)
1454{
defd94b7 1455 unsigned short max_sectors;
1da177e4
LT
1456 int len;
1457
defd94b7
MC
1458 if (unlikely(blk_pc_request(req)))
1459 max_sectors = q->max_hw_sectors;
1460 else
1461 max_sectors = q->max_sectors;
1462
1463
1464 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1da177e4
LT
1465 req->flags |= REQ_NOMERGE;
1466 if (req == q->last_merge)
1467 q->last_merge = NULL;
1468 return 0;
1469 }
1470 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1471 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1472 blk_recount_segments(q, bio);
1473 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, req->bio);
1475 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1476 !BIOVEC_VIRT_OVERSIZE(len)) {
1477 int mergeable = ll_new_mergeable(q, req, bio);
1478
1479 if (mergeable) {
1480 if (bio->bi_hw_segments == 1)
1481 bio->bi_hw_front_size = len;
1482 if (req->nr_hw_segments == 1)
1483 req->biotail->bi_hw_back_size = len;
1484 }
1485 return mergeable;
1486 }
1487
1488 return ll_new_hw_segment(q, req, bio);
1489}
1490
1491static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1492 struct request *next)
1493{
dfa1a553
ND
1494 int total_phys_segments;
1495 int total_hw_segments;
1da177e4
LT
1496
1497 /*
1498 * First check if the either of the requests are re-queued
1499 * requests. Can't merge them if they are.
1500 */
1501 if (req->special || next->special)
1502 return 0;
1503
1504 /*
dfa1a553 1505 * Will it become too large?
1da177e4
LT
1506 */
1507 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1508 return 0;
1509
1510 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1511 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1512 total_phys_segments--;
1513
1514 if (total_phys_segments > q->max_phys_segments)
1515 return 0;
1516
1517 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1518 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1519 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1520 /*
1521 * propagate the combined length to the end of the requests
1522 */
1523 if (req->nr_hw_segments == 1)
1524 req->bio->bi_hw_front_size = len;
1525 if (next->nr_hw_segments == 1)
1526 next->biotail->bi_hw_back_size = len;
1527 total_hw_segments--;
1528 }
1529
1530 if (total_hw_segments > q->max_hw_segments)
1531 return 0;
1532
1533 /* Merge is OK... */
1534 req->nr_phys_segments = total_phys_segments;
1535 req->nr_hw_segments = total_hw_segments;
1536 return 1;
1537}
1538
1539/*
1540 * "plug" the device if there are no outstanding requests: this will
1541 * force the transfer to start only after we have put all the requests
1542 * on the list.
1543 *
1544 * This is called with interrupts off and no requests on the queue and
1545 * with the queue lock held.
1546 */
1547void blk_plug_device(request_queue_t *q)
1548{
1549 WARN_ON(!irqs_disabled());
1550
1551 /*
1552 * don't plug a stopped queue, it must be paired with blk_start_queue()
1553 * which will restart the queueing
1554 */
1555 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1556 return;
1557
2056a782 1558 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1559 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1560 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1561 }
1da177e4
LT
1562}
1563
1564EXPORT_SYMBOL(blk_plug_device);
1565
1566/*
1567 * remove the queue from the plugged list, if present. called with
1568 * queue lock held and interrupts disabled.
1569 */
1570int blk_remove_plug(request_queue_t *q)
1571{
1572 WARN_ON(!irqs_disabled());
1573
1574 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1575 return 0;
1576
1577 del_timer(&q->unplug_timer);
1578 return 1;
1579}
1580
1581EXPORT_SYMBOL(blk_remove_plug);
1582
1583/*
1584 * remove the plug and let it rip..
1585 */
1586void __generic_unplug_device(request_queue_t *q)
1587{
fde6ad22 1588 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1da177e4
LT
1589 return;
1590
1591 if (!blk_remove_plug(q))
1592 return;
1593
22e2c507 1594 q->request_fn(q);
1da177e4
LT
1595}
1596EXPORT_SYMBOL(__generic_unplug_device);
1597
1598/**
1599 * generic_unplug_device - fire a request queue
1600 * @q: The &request_queue_t in question
1601 *
1602 * Description:
1603 * Linux uses plugging to build bigger requests queues before letting
1604 * the device have at them. If a queue is plugged, the I/O scheduler
1605 * is still adding and merging requests on the queue. Once the queue
1606 * gets unplugged, the request_fn defined for the queue is invoked and
1607 * transfers started.
1608 **/
1609void generic_unplug_device(request_queue_t *q)
1610{
1611 spin_lock_irq(q->queue_lock);
1612 __generic_unplug_device(q);
1613 spin_unlock_irq(q->queue_lock);
1614}
1615EXPORT_SYMBOL(generic_unplug_device);
1616
1617static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1618 struct page *page)
1619{
1620 request_queue_t *q = bdi->unplug_io_data;
1621
1622 /*
1623 * devices don't necessarily have an ->unplug_fn defined
1624 */
2056a782
JA
1625 if (q->unplug_fn) {
1626 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1627 q->rq.count[READ] + q->rq.count[WRITE]);
1628
1da177e4 1629 q->unplug_fn(q);
2056a782 1630 }
1da177e4
LT
1631}
1632
1633static void blk_unplug_work(void *data)
1634{
1635 request_queue_t *q = data;
1636
2056a782
JA
1637 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1638 q->rq.count[READ] + q->rq.count[WRITE]);
1639
1da177e4
LT
1640 q->unplug_fn(q);
1641}
1642
1643static void blk_unplug_timeout(unsigned long data)
1644{
1645 request_queue_t *q = (request_queue_t *)data;
1646
2056a782
JA
1647 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1648 q->rq.count[READ] + q->rq.count[WRITE]);
1649
1da177e4
LT
1650 kblockd_schedule_work(&q->unplug_work);
1651}
1652
1653/**
1654 * blk_start_queue - restart a previously stopped queue
1655 * @q: The &request_queue_t in question
1656 *
1657 * Description:
1658 * blk_start_queue() will clear the stop flag on the queue, and call
1659 * the request_fn for the queue if it was in a stopped state when
1660 * entered. Also see blk_stop_queue(). Queue lock must be held.
1661 **/
1662void blk_start_queue(request_queue_t *q)
1663{
1664 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1665
1666 /*
1667 * one level of recursion is ok and is much faster than kicking
1668 * the unplug handling
1669 */
1670 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1671 q->request_fn(q);
1672 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1673 } else {
1674 blk_plug_device(q);
1675 kblockd_schedule_work(&q->unplug_work);
1676 }
1677}
1678
1679EXPORT_SYMBOL(blk_start_queue);
1680
1681/**
1682 * blk_stop_queue - stop a queue
1683 * @q: The &request_queue_t in question
1684 *
1685 * Description:
1686 * The Linux block layer assumes that a block driver will consume all
1687 * entries on the request queue when the request_fn strategy is called.
1688 * Often this will not happen, because of hardware limitations (queue
1689 * depth settings). If a device driver gets a 'queue full' response,
1690 * or if it simply chooses not to queue more I/O at one point, it can
1691 * call this function to prevent the request_fn from being called until
1692 * the driver has signalled it's ready to go again. This happens by calling
1693 * blk_start_queue() to restart queue operations. Queue lock must be held.
1694 **/
1695void blk_stop_queue(request_queue_t *q)
1696{
1697 blk_remove_plug(q);
1698 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1699}
1700EXPORT_SYMBOL(blk_stop_queue);
1701
1702/**
1703 * blk_sync_queue - cancel any pending callbacks on a queue
1704 * @q: the queue
1705 *
1706 * Description:
1707 * The block layer may perform asynchronous callback activity
1708 * on a queue, such as calling the unplug function after a timeout.
1709 * A block device may call blk_sync_queue to ensure that any
1710 * such activity is cancelled, thus allowing it to release resources
1711 * the the callbacks might use. The caller must already have made sure
1712 * that its ->make_request_fn will not re-add plugging prior to calling
1713 * this function.
1714 *
1715 */
1716void blk_sync_queue(struct request_queue *q)
1717{
1718 del_timer_sync(&q->unplug_timer);
1719 kblockd_flush();
1720}
1721EXPORT_SYMBOL(blk_sync_queue);
1722
1723/**
1724 * blk_run_queue - run a single device queue
1725 * @q: The queue to run
1726 */
1727void blk_run_queue(struct request_queue *q)
1728{
1729 unsigned long flags;
1730
1731 spin_lock_irqsave(q->queue_lock, flags);
1732 blk_remove_plug(q);
a2997382
KC
1733 if (!elv_queue_empty(q))
1734 q->request_fn(q);
1da177e4
LT
1735 spin_unlock_irqrestore(q->queue_lock, flags);
1736}
1737EXPORT_SYMBOL(blk_run_queue);
1738
1739/**
1740 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1741 * @q: the request queue to be released
1742 *
1743 * Description:
1744 * blk_cleanup_queue is the pair to blk_init_queue() or
1745 * blk_queue_make_request(). It should be called when a request queue is
1746 * being released; typically when a block device is being de-registered.
1747 * Currently, its primary task it to free all the &struct request
1748 * structures that were allocated to the queue and the queue itself.
1749 *
1750 * Caveat:
1751 * Hopefully the low level driver will have finished any
1752 * outstanding requests first...
1753 **/
483f4afc 1754static void blk_release_queue(struct kobject *kobj)
1da177e4 1755{
483f4afc 1756 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1757 struct request_list *rl = &q->rq;
1758
1da177e4
LT
1759 blk_sync_queue(q);
1760
1761 if (rl->rq_pool)
1762 mempool_destroy(rl->rq_pool);
1763
1764 if (q->queue_tags)
1765 __blk_queue_free_tags(q);
1766
2056a782
JA
1767 if (q->blk_trace)
1768 blk_trace_shutdown(q);
1769
1da177e4
LT
1770 kmem_cache_free(requestq_cachep, q);
1771}
1772
483f4afc
AV
1773void blk_put_queue(request_queue_t *q)
1774{
1775 kobject_put(&q->kobj);
1776}
1777EXPORT_SYMBOL(blk_put_queue);
1778
1779void blk_cleanup_queue(request_queue_t * q)
1780{
1781 mutex_lock(&q->sysfs_lock);
1782 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1783 mutex_unlock(&q->sysfs_lock);
1784
1785 if (q->elevator)
1786 elevator_exit(q->elevator);
1787
1788 blk_put_queue(q);
1789}
1790
1da177e4
LT
1791EXPORT_SYMBOL(blk_cleanup_queue);
1792
1793static int blk_init_free_list(request_queue_t *q)
1794{
1795 struct request_list *rl = &q->rq;
1796
1797 rl->count[READ] = rl->count[WRITE] = 0;
1798 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1799 rl->elvpriv = 0;
1da177e4
LT
1800 init_waitqueue_head(&rl->wait[READ]);
1801 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1802
1946089a
CL
1803 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1804 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1805
1806 if (!rl->rq_pool)
1807 return -ENOMEM;
1808
1809 return 0;
1810}
1811
8267e268 1812request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1813{
1946089a
CL
1814 return blk_alloc_queue_node(gfp_mask, -1);
1815}
1816EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1817
483f4afc
AV
1818static struct kobj_type queue_ktype;
1819
8267e268 1820request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a
CL
1821{
1822 request_queue_t *q;
1823
1824 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1825 if (!q)
1826 return NULL;
1827
1828 memset(q, 0, sizeof(*q));
1829 init_timer(&q->unplug_timer);
483f4afc
AV
1830
1831 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1832 q->kobj.ktype = &queue_ktype;
1833 kobject_init(&q->kobj);
1da177e4
LT
1834
1835 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1836 q->backing_dev_info.unplug_io_data = q;
1837
483f4afc
AV
1838 mutex_init(&q->sysfs_lock);
1839
1da177e4
LT
1840 return q;
1841}
1946089a 1842EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1843
1844/**
1845 * blk_init_queue - prepare a request queue for use with a block device
1846 * @rfn: The function to be called to process requests that have been
1847 * placed on the queue.
1848 * @lock: Request queue spin lock
1849 *
1850 * Description:
1851 * If a block device wishes to use the standard request handling procedures,
1852 * which sorts requests and coalesces adjacent requests, then it must
1853 * call blk_init_queue(). The function @rfn will be called when there
1854 * are requests on the queue that need to be processed. If the device
1855 * supports plugging, then @rfn may not be called immediately when requests
1856 * are available on the queue, but may be called at some time later instead.
1857 * Plugged queues are generally unplugged when a buffer belonging to one
1858 * of the requests on the queue is needed, or due to memory pressure.
1859 *
1860 * @rfn is not required, or even expected, to remove all requests off the
1861 * queue, but only as many as it can handle at a time. If it does leave
1862 * requests on the queue, it is responsible for arranging that the requests
1863 * get dealt with eventually.
1864 *
1865 * The queue spin lock must be held while manipulating the requests on the
1866 * request queue.
1867 *
1868 * Function returns a pointer to the initialized request queue, or NULL if
1869 * it didn't succeed.
1870 *
1871 * Note:
1872 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1873 * when the block device is deactivated (such as at module unload).
1874 **/
1946089a 1875
1da177e4
LT
1876request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1877{
1946089a
CL
1878 return blk_init_queue_node(rfn, lock, -1);
1879}
1880EXPORT_SYMBOL(blk_init_queue);
1881
1882request_queue_t *
1883blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1884{
1885 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1886
1887 if (!q)
1888 return NULL;
1889
1946089a 1890 q->node = node_id;
8669aafd
AV
1891 if (blk_init_free_list(q)) {
1892 kmem_cache_free(requestq_cachep, q);
1893 return NULL;
1894 }
1da177e4 1895
152587de
JA
1896 /*
1897 * if caller didn't supply a lock, they get per-queue locking with
1898 * our embedded lock
1899 */
1900 if (!lock) {
1901 spin_lock_init(&q->__queue_lock);
1902 lock = &q->__queue_lock;
1903 }
1904
1da177e4
LT
1905 q->request_fn = rfn;
1906 q->back_merge_fn = ll_back_merge_fn;
1907 q->front_merge_fn = ll_front_merge_fn;
1908 q->merge_requests_fn = ll_merge_requests_fn;
1909 q->prep_rq_fn = NULL;
1910 q->unplug_fn = generic_unplug_device;
1911 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1912 q->queue_lock = lock;
1913
1914 blk_queue_segment_boundary(q, 0xffffffff);
1915
1916 blk_queue_make_request(q, __make_request);
1917 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1918
1919 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1920 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1921
1922 /*
1923 * all done
1924 */
1925 if (!elevator_init(q, NULL)) {
1926 blk_queue_congestion_threshold(q);
1927 return q;
1928 }
1929
8669aafd 1930 blk_put_queue(q);
1da177e4
LT
1931 return NULL;
1932}
1946089a 1933EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1934
1935int blk_get_queue(request_queue_t *q)
1936{
fde6ad22 1937 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1938 kobject_get(&q->kobj);
1da177e4
LT
1939 return 0;
1940 }
1941
1942 return 1;
1943}
1944
1945EXPORT_SYMBOL(blk_get_queue);
1946
1947static inline void blk_free_request(request_queue_t *q, struct request *rq)
1948{
cb98fc8b
TH
1949 if (rq->flags & REQ_ELVPRIV)
1950 elv_put_request(q, rq);
1da177e4
LT
1951 mempool_free(rq, q->rq.rq_pool);
1952}
1953
22e2c507 1954static inline struct request *
cb98fc8b 1955blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
5dd96249 1956 int priv, gfp_t gfp_mask)
1da177e4
LT
1957{
1958 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1959
1960 if (!rq)
1961 return NULL;
1962
1963 /*
1964 * first three bits are identical in rq->flags and bio->bi_rw,
1965 * see bio.h and blkdev.h
1966 */
1967 rq->flags = rw;
1968
cb98fc8b
TH
1969 if (priv) {
1970 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
1971 mempool_free(rq, q->rq.rq_pool);
1972 return NULL;
1973 }
1974 rq->flags |= REQ_ELVPRIV;
1975 }
1da177e4 1976
cb98fc8b 1977 return rq;
1da177e4
LT
1978}
1979
1980/*
1981 * ioc_batching returns true if the ioc is a valid batching request and
1982 * should be given priority access to a request.
1983 */
1984static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1985{
1986 if (!ioc)
1987 return 0;
1988
1989 /*
1990 * Make sure the process is able to allocate at least 1 request
1991 * even if the batch times out, otherwise we could theoretically
1992 * lose wakeups.
1993 */
1994 return ioc->nr_batch_requests == q->nr_batching ||
1995 (ioc->nr_batch_requests > 0
1996 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1997}
1998
1999/*
2000 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2001 * will cause the process to be a "batcher" on all queues in the system. This
2002 * is the behaviour we want though - once it gets a wakeup it should be given
2003 * a nice run.
2004 */
93d17d3d 2005static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
2006{
2007 if (!ioc || ioc_batching(q, ioc))
2008 return;
2009
2010 ioc->nr_batch_requests = q->nr_batching;
2011 ioc->last_waited = jiffies;
2012}
2013
2014static void __freed_request(request_queue_t *q, int rw)
2015{
2016 struct request_list *rl = &q->rq;
2017
2018 if (rl->count[rw] < queue_congestion_off_threshold(q))
2019 clear_queue_congested(q, rw);
2020
2021 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2022 if (waitqueue_active(&rl->wait[rw]))
2023 wake_up(&rl->wait[rw]);
2024
2025 blk_clear_queue_full(q, rw);
2026 }
2027}
2028
2029/*
2030 * A request has just been released. Account for it, update the full and
2031 * congestion status, wake up any waiters. Called under q->queue_lock.
2032 */
cb98fc8b 2033static void freed_request(request_queue_t *q, int rw, int priv)
1da177e4
LT
2034{
2035 struct request_list *rl = &q->rq;
2036
2037 rl->count[rw]--;
cb98fc8b
TH
2038 if (priv)
2039 rl->elvpriv--;
1da177e4
LT
2040
2041 __freed_request(q, rw);
2042
2043 if (unlikely(rl->starved[rw ^ 1]))
2044 __freed_request(q, rw ^ 1);
1da177e4
LT
2045}
2046
2047#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2048/*
d6344532
NP
2049 * Get a free request, queue_lock must be held.
2050 * Returns NULL on failure, with queue_lock held.
2051 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2052 */
22e2c507 2053static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
8267e268 2054 gfp_t gfp_mask)
1da177e4
LT
2055{
2056 struct request *rq = NULL;
2057 struct request_list *rl = &q->rq;
88ee5ef1
JA
2058 struct io_context *ioc = NULL;
2059 int may_queue, priv;
2060
2061 may_queue = elv_may_queue(q, rw, bio);
2062 if (may_queue == ELV_MQUEUE_NO)
2063 goto rq_starved;
2064
2065 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2066 if (rl->count[rw]+1 >= q->nr_requests) {
2067 ioc = current_io_context(GFP_ATOMIC);
2068 /*
2069 * The queue will fill after this allocation, so set
2070 * it as full, and mark this process as "batching".
2071 * This process will be allowed to complete a batch of
2072 * requests, others will be blocked.
2073 */
2074 if (!blk_queue_full(q, rw)) {
2075 ioc_set_batching(q, ioc);
2076 blk_set_queue_full(q, rw);
2077 } else {
2078 if (may_queue != ELV_MQUEUE_MUST
2079 && !ioc_batching(q, ioc)) {
2080 /*
2081 * The queue is full and the allocating
2082 * process is not a "batcher", and not
2083 * exempted by the IO scheduler
2084 */
2085 goto out;
2086 }
2087 }
1da177e4 2088 }
88ee5ef1 2089 set_queue_congested(q, rw);
1da177e4
LT
2090 }
2091
082cf69e
JA
2092 /*
2093 * Only allow batching queuers to allocate up to 50% over the defined
2094 * limit of requests, otherwise we could have thousands of requests
2095 * allocated with any setting of ->nr_requests
2096 */
fd782a4a 2097 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2098 goto out;
fd782a4a 2099
1da177e4
LT
2100 rl->count[rw]++;
2101 rl->starved[rw] = 0;
cb98fc8b 2102
64521d1a 2103 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2104 if (priv)
2105 rl->elvpriv++;
2106
1da177e4
LT
2107 spin_unlock_irq(q->queue_lock);
2108
cb98fc8b 2109 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
88ee5ef1 2110 if (unlikely(!rq)) {
1da177e4
LT
2111 /*
2112 * Allocation failed presumably due to memory. Undo anything
2113 * we might have messed up.
2114 *
2115 * Allocating task should really be put onto the front of the
2116 * wait queue, but this is pretty rare.
2117 */
2118 spin_lock_irq(q->queue_lock);
cb98fc8b 2119 freed_request(q, rw, priv);
1da177e4
LT
2120
2121 /*
2122 * in the very unlikely event that allocation failed and no
2123 * requests for this direction was pending, mark us starved
2124 * so that freeing of a request in the other direction will
2125 * notice us. another possible fix would be to split the
2126 * rq mempool into READ and WRITE
2127 */
2128rq_starved:
2129 if (unlikely(rl->count[rw] == 0))
2130 rl->starved[rw] = 1;
2131
1da177e4
LT
2132 goto out;
2133 }
2134
88ee5ef1
JA
2135 /*
2136 * ioc may be NULL here, and ioc_batching will be false. That's
2137 * OK, if the queue is under the request limit then requests need
2138 * not count toward the nr_batch_requests limit. There will always
2139 * be some limit enforced by BLK_BATCH_TIME.
2140 */
1da177e4
LT
2141 if (ioc_batching(q, ioc))
2142 ioc->nr_batch_requests--;
2143
2144 rq_init(q, rq);
2145 rq->rl = rl;
2056a782
JA
2146
2147 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2148out:
1da177e4
LT
2149 return rq;
2150}
2151
2152/*
2153 * No available requests for this queue, unplug the device and wait for some
2154 * requests to become available.
d6344532
NP
2155 *
2156 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2157 */
22e2c507
JA
2158static struct request *get_request_wait(request_queue_t *q, int rw,
2159 struct bio *bio)
1da177e4 2160{
1da177e4
LT
2161 struct request *rq;
2162
450991bc
NP
2163 rq = get_request(q, rw, bio, GFP_NOIO);
2164 while (!rq) {
2165 DEFINE_WAIT(wait);
1da177e4
LT
2166 struct request_list *rl = &q->rq;
2167
2168 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2169 TASK_UNINTERRUPTIBLE);
2170
22e2c507 2171 rq = get_request(q, rw, bio, GFP_NOIO);
1da177e4
LT
2172
2173 if (!rq) {
2174 struct io_context *ioc;
2175
2056a782
JA
2176 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2177
d6344532
NP
2178 __generic_unplug_device(q);
2179 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2180 io_schedule();
2181
2182 /*
2183 * After sleeping, we become a "batching" process and
2184 * will be able to allocate at least one request, and
2185 * up to a big batch of them for a small period time.
2186 * See ioc_batching, ioc_set_batching
2187 */
fb3cc432 2188 ioc = current_io_context(GFP_NOIO);
1da177e4 2189 ioc_set_batching(q, ioc);
d6344532
NP
2190
2191 spin_lock_irq(q->queue_lock);
1da177e4
LT
2192 }
2193 finish_wait(&rl->wait[rw], &wait);
450991bc 2194 }
1da177e4
LT
2195
2196 return rq;
2197}
2198
8267e268 2199struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2200{
2201 struct request *rq;
2202
2203 BUG_ON(rw != READ && rw != WRITE);
2204
d6344532
NP
2205 spin_lock_irq(q->queue_lock);
2206 if (gfp_mask & __GFP_WAIT) {
22e2c507 2207 rq = get_request_wait(q, rw, NULL);
d6344532 2208 } else {
22e2c507 2209 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2210 if (!rq)
2211 spin_unlock_irq(q->queue_lock);
2212 }
2213 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2214
2215 return rq;
2216}
1da177e4
LT
2217EXPORT_SYMBOL(blk_get_request);
2218
2219/**
2220 * blk_requeue_request - put a request back on queue
2221 * @q: request queue where request should be inserted
2222 * @rq: request to be inserted
2223 *
2224 * Description:
2225 * Drivers often keep queueing requests until the hardware cannot accept
2226 * more, when that condition happens we need to put the request back
2227 * on the queue. Must be called with queue lock held.
2228 */
2229void blk_requeue_request(request_queue_t *q, struct request *rq)
2230{
2056a782
JA
2231 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2232
1da177e4
LT
2233 if (blk_rq_tagged(rq))
2234 blk_queue_end_tag(q, rq);
2235
2236 elv_requeue_request(q, rq);
2237}
2238
2239EXPORT_SYMBOL(blk_requeue_request);
2240
2241/**
2242 * blk_insert_request - insert a special request in to a request queue
2243 * @q: request queue where request should be inserted
2244 * @rq: request to be inserted
2245 * @at_head: insert request at head or tail of queue
2246 * @data: private data
1da177e4
LT
2247 *
2248 * Description:
2249 * Many block devices need to execute commands asynchronously, so they don't
2250 * block the whole kernel from preemption during request execution. This is
2251 * accomplished normally by inserting aritficial requests tagged as
2252 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2253 * scheduled for actual execution by the request queue.
2254 *
2255 * We have the option of inserting the head or the tail of the queue.
2256 * Typically we use the tail for new ioctls and so forth. We use the head
2257 * of the queue for things like a QUEUE_FULL message from a device, or a
2258 * host that is unable to accept a particular command.
2259 */
2260void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2261 int at_head, void *data)
1da177e4 2262{
867d1191 2263 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2264 unsigned long flags;
2265
2266 /*
2267 * tell I/O scheduler that this isn't a regular read/write (ie it
2268 * must not attempt merges on this) and that it acts as a soft
2269 * barrier
2270 */
2271 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2272
2273 rq->special = data;
2274
2275 spin_lock_irqsave(q->queue_lock, flags);
2276
2277 /*
2278 * If command is tagged, release the tag
2279 */
867d1191
TH
2280 if (blk_rq_tagged(rq))
2281 blk_queue_end_tag(q, rq);
1da177e4 2282
867d1191
TH
2283 drive_stat_acct(rq, rq->nr_sectors, 1);
2284 __elv_add_request(q, rq, where, 0);
1da177e4 2285
1da177e4
LT
2286 if (blk_queue_plugged(q))
2287 __generic_unplug_device(q);
2288 else
2289 q->request_fn(q);
2290 spin_unlock_irqrestore(q->queue_lock, flags);
2291}
2292
2293EXPORT_SYMBOL(blk_insert_request);
2294
2295/**
2296 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2297 * @q: request queue where request should be inserted
73747aed 2298 * @rq: request structure to fill
1da177e4
LT
2299 * @ubuf: the user buffer
2300 * @len: length of user data
2301 *
2302 * Description:
2303 * Data will be mapped directly for zero copy io, if possible. Otherwise
2304 * a kernel bounce buffer is used.
2305 *
2306 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2307 * still in process context.
2308 *
2309 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2310 * before being submitted to the device, as pages mapped may be out of
2311 * reach. It's the callers responsibility to make sure this happens. The
2312 * original bio must be passed back in to blk_rq_unmap_user() for proper
2313 * unmapping.
2314 */
dd1cab95
JA
2315int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2316 unsigned int len)
1da177e4
LT
2317{
2318 unsigned long uaddr;
1da177e4 2319 struct bio *bio;
dd1cab95 2320 int reading;
1da177e4 2321
defd94b7 2322 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2323 return -EINVAL;
2324 if (!len || !ubuf)
2325 return -EINVAL;
1da177e4 2326
dd1cab95 2327 reading = rq_data_dir(rq) == READ;
1da177e4
LT
2328
2329 /*
2330 * if alignment requirement is satisfied, map in user pages for
2331 * direct dma. else, set up kernel bounce buffers
2332 */
2333 uaddr = (unsigned long) ubuf;
2334 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
dd1cab95 2335 bio = bio_map_user(q, NULL, uaddr, len, reading);
1da177e4 2336 else
dd1cab95 2337 bio = bio_copy_user(q, uaddr, len, reading);
1da177e4
LT
2338
2339 if (!IS_ERR(bio)) {
2340 rq->bio = rq->biotail = bio;
2341 blk_rq_bio_prep(q, rq, bio);
2342
2343 rq->buffer = rq->data = NULL;
2344 rq->data_len = len;
dd1cab95 2345 return 0;
1da177e4
LT
2346 }
2347
2348 /*
2349 * bio is the err-ptr
2350 */
dd1cab95 2351 return PTR_ERR(bio);
1da177e4
LT
2352}
2353
2354EXPORT_SYMBOL(blk_rq_map_user);
2355
f1970baf
JB
2356/**
2357 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2358 * @q: request queue where request should be inserted
2359 * @rq: request to map data to
2360 * @iov: pointer to the iovec
2361 * @iov_count: number of elements in the iovec
2362 *
2363 * Description:
2364 * Data will be mapped directly for zero copy io, if possible. Otherwise
2365 * a kernel bounce buffer is used.
2366 *
2367 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2368 * still in process context.
2369 *
2370 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2371 * before being submitted to the device, as pages mapped may be out of
2372 * reach. It's the callers responsibility to make sure this happens. The
2373 * original bio must be passed back in to blk_rq_unmap_user() for proper
2374 * unmapping.
2375 */
2376int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2377 struct sg_iovec *iov, int iov_count)
2378{
2379 struct bio *bio;
2380
2381 if (!iov || iov_count <= 0)
2382 return -EINVAL;
2383
2384 /* we don't allow misaligned data like bio_map_user() does. If the
2385 * user is using sg, they're expected to know the alignment constraints
2386 * and respect them accordingly */
2387 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2388 if (IS_ERR(bio))
2389 return PTR_ERR(bio);
2390
2391 rq->bio = rq->biotail = bio;
2392 blk_rq_bio_prep(q, rq, bio);
2393 rq->buffer = rq->data = NULL;
2394 rq->data_len = bio->bi_size;
2395 return 0;
2396}
2397
2398EXPORT_SYMBOL(blk_rq_map_user_iov);
2399
1da177e4
LT
2400/**
2401 * blk_rq_unmap_user - unmap a request with user data
73747aed 2402 * @bio: bio to be unmapped
1da177e4
LT
2403 * @ulen: length of user buffer
2404 *
2405 * Description:
73747aed 2406 * Unmap a bio previously mapped by blk_rq_map_user().
1da177e4 2407 */
dd1cab95 2408int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
1da177e4
LT
2409{
2410 int ret = 0;
2411
2412 if (bio) {
2413 if (bio_flagged(bio, BIO_USER_MAPPED))
2414 bio_unmap_user(bio);
2415 else
2416 ret = bio_uncopy_user(bio);
2417 }
2418
dd1cab95 2419 return 0;
1da177e4
LT
2420}
2421
2422EXPORT_SYMBOL(blk_rq_unmap_user);
2423
df46b9a4
MC
2424/**
2425 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2426 * @q: request queue where request should be inserted
73747aed 2427 * @rq: request to fill
df46b9a4
MC
2428 * @kbuf: the kernel buffer
2429 * @len: length of user data
73747aed 2430 * @gfp_mask: memory allocation flags
df46b9a4 2431 */
dd1cab95 2432int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
8267e268 2433 unsigned int len, gfp_t gfp_mask)
df46b9a4 2434{
df46b9a4
MC
2435 struct bio *bio;
2436
defd94b7 2437 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2438 return -EINVAL;
2439 if (!len || !kbuf)
2440 return -EINVAL;
df46b9a4
MC
2441
2442 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2443 if (IS_ERR(bio))
2444 return PTR_ERR(bio);
df46b9a4 2445
dd1cab95
JA
2446 if (rq_data_dir(rq) == WRITE)
2447 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2448
dd1cab95
JA
2449 rq->bio = rq->biotail = bio;
2450 blk_rq_bio_prep(q, rq, bio);
df46b9a4 2451
dd1cab95
JA
2452 rq->buffer = rq->data = NULL;
2453 rq->data_len = len;
2454 return 0;
df46b9a4
MC
2455}
2456
2457EXPORT_SYMBOL(blk_rq_map_kern);
2458
73747aed
CH
2459/**
2460 * blk_execute_rq_nowait - insert a request into queue for execution
2461 * @q: queue to insert the request in
2462 * @bd_disk: matching gendisk
2463 * @rq: request to insert
2464 * @at_head: insert request at head or tail of queue
2465 * @done: I/O completion handler
2466 *
2467 * Description:
2468 * Insert a fully prepared request at the back of the io scheduler queue
2469 * for execution. Don't wait for completion.
2470 */
f1970baf
JB
2471void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2472 struct request *rq, int at_head,
8ffdc655 2473 rq_end_io_fn *done)
f1970baf
JB
2474{
2475 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2476
2477 rq->rq_disk = bd_disk;
2478 rq->flags |= REQ_NOMERGE;
2479 rq->end_io = done;
2480 elv_add_request(q, rq, where, 1);
2481 generic_unplug_device(q);
2482}
2483
6e39b69e
MC
2484EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2485
1da177e4
LT
2486/**
2487 * blk_execute_rq - insert a request into queue for execution
2488 * @q: queue to insert the request in
2489 * @bd_disk: matching gendisk
2490 * @rq: request to insert
994ca9a1 2491 * @at_head: insert request at head or tail of queue
1da177e4
LT
2492 *
2493 * Description:
2494 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2495 * for execution and wait for completion.
1da177e4
LT
2496 */
2497int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
994ca9a1 2498 struct request *rq, int at_head)
1da177e4
LT
2499{
2500 DECLARE_COMPLETION(wait);
2501 char sense[SCSI_SENSE_BUFFERSIZE];
2502 int err = 0;
2503
1da177e4
LT
2504 /*
2505 * we need an extra reference to the request, so we can look at
2506 * it after io completion
2507 */
2508 rq->ref_count++;
2509
2510 if (!rq->sense) {
2511 memset(sense, 0, sizeof(sense));
2512 rq->sense = sense;
2513 rq->sense_len = 0;
2514 }
2515
1da177e4 2516 rq->waiting = &wait;
994ca9a1 2517 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4
LT
2518 wait_for_completion(&wait);
2519 rq->waiting = NULL;
2520
2521 if (rq->errors)
2522 err = -EIO;
2523
2524 return err;
2525}
2526
2527EXPORT_SYMBOL(blk_execute_rq);
2528
2529/**
2530 * blkdev_issue_flush - queue a flush
2531 * @bdev: blockdev to issue flush for
2532 * @error_sector: error sector
2533 *
2534 * Description:
2535 * Issue a flush for the block device in question. Caller can supply
2536 * room for storing the error offset in case of a flush error, if they
2537 * wish to. Caller must run wait_for_completion() on its own.
2538 */
2539int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2540{
2541 request_queue_t *q;
2542
2543 if (bdev->bd_disk == NULL)
2544 return -ENXIO;
2545
2546 q = bdev_get_queue(bdev);
2547 if (!q)
2548 return -ENXIO;
2549 if (!q->issue_flush_fn)
2550 return -EOPNOTSUPP;
2551
2552 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2553}
2554
2555EXPORT_SYMBOL(blkdev_issue_flush);
2556
93d17d3d 2557static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2558{
2559 int rw = rq_data_dir(rq);
2560
2561 if (!blk_fs_request(rq) || !rq->rq_disk)
2562 return;
2563
d72d904a 2564 if (!new_io) {
a362357b 2565 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2566 } else {
1da177e4
LT
2567 disk_round_stats(rq->rq_disk);
2568 rq->rq_disk->in_flight++;
2569 }
2570}
2571
2572/*
2573 * add-request adds a request to the linked list.
2574 * queue lock is held and interrupts disabled, as we muck with the
2575 * request queue list.
2576 */
2577static inline void add_request(request_queue_t * q, struct request * req)
2578{
2579 drive_stat_acct(req, req->nr_sectors, 1);
2580
2581 if (q->activity_fn)
2582 q->activity_fn(q->activity_data, rq_data_dir(req));
2583
2584 /*
2585 * elevator indicated where it wants this request to be
2586 * inserted at elevator_merge time
2587 */
2588 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2589}
2590
2591/*
2592 * disk_round_stats() - Round off the performance stats on a struct
2593 * disk_stats.
2594 *
2595 * The average IO queue length and utilisation statistics are maintained
2596 * by observing the current state of the queue length and the amount of
2597 * time it has been in this state for.
2598 *
2599 * Normally, that accounting is done on IO completion, but that can result
2600 * in more than a second's worth of IO being accounted for within any one
2601 * second, leading to >100% utilisation. To deal with that, we call this
2602 * function to do a round-off before returning the results when reading
2603 * /proc/diskstats. This accounts immediately for all queue usage up to
2604 * the current jiffies and restarts the counters again.
2605 */
2606void disk_round_stats(struct gendisk *disk)
2607{
2608 unsigned long now = jiffies;
2609
b2982649
KC
2610 if (now == disk->stamp)
2611 return;
1da177e4 2612
20e5c81f
KC
2613 if (disk->in_flight) {
2614 __disk_stat_add(disk, time_in_queue,
2615 disk->in_flight * (now - disk->stamp));
2616 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2617 }
1da177e4 2618 disk->stamp = now;
1da177e4
LT
2619}
2620
3eaf840e
JNN
2621EXPORT_SYMBOL_GPL(disk_round_stats);
2622
1da177e4
LT
2623/*
2624 * queue lock must be held
2625 */
6e39b69e 2626void __blk_put_request(request_queue_t *q, struct request *req)
1da177e4
LT
2627{
2628 struct request_list *rl = req->rl;
2629
2630 if (unlikely(!q))
2631 return;
2632 if (unlikely(--req->ref_count))
2633 return;
2634
8922e16c
TH
2635 elv_completed_request(q, req);
2636
1da177e4 2637 req->rq_status = RQ_INACTIVE;
1da177e4
LT
2638 req->rl = NULL;
2639
2640 /*
2641 * Request may not have originated from ll_rw_blk. if not,
2642 * it didn't come out of our reserved rq pools
2643 */
2644 if (rl) {
2645 int rw = rq_data_dir(req);
cb98fc8b 2646 int priv = req->flags & REQ_ELVPRIV;
1da177e4 2647
1da177e4
LT
2648 BUG_ON(!list_empty(&req->queuelist));
2649
2650 blk_free_request(q, req);
cb98fc8b 2651 freed_request(q, rw, priv);
1da177e4
LT
2652 }
2653}
2654
6e39b69e
MC
2655EXPORT_SYMBOL_GPL(__blk_put_request);
2656
1da177e4
LT
2657void blk_put_request(struct request *req)
2658{
8922e16c
TH
2659 unsigned long flags;
2660 request_queue_t *q = req->q;
2661
1da177e4 2662 /*
8922e16c
TH
2663 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2664 * following if (q) test.
1da177e4 2665 */
8922e16c 2666 if (q) {
1da177e4
LT
2667 spin_lock_irqsave(q->queue_lock, flags);
2668 __blk_put_request(q, req);
2669 spin_unlock_irqrestore(q->queue_lock, flags);
2670 }
2671}
2672
2673EXPORT_SYMBOL(blk_put_request);
2674
2675/**
2676 * blk_end_sync_rq - executes a completion event on a request
2677 * @rq: request to complete
fddfdeaf 2678 * @error: end io status of the request
1da177e4 2679 */
8ffdc655 2680void blk_end_sync_rq(struct request *rq, int error)
1da177e4
LT
2681{
2682 struct completion *waiting = rq->waiting;
2683
2684 rq->waiting = NULL;
2685 __blk_put_request(rq->q, rq);
2686
2687 /*
2688 * complete last, if this is a stack request the process (and thus
2689 * the rq pointer) could be invalid right after this complete()
2690 */
2691 complete(waiting);
2692}
2693EXPORT_SYMBOL(blk_end_sync_rq);
2694
2695/**
2696 * blk_congestion_wait - wait for a queue to become uncongested
2697 * @rw: READ or WRITE
2698 * @timeout: timeout in jiffies
2699 *
2700 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2701 * If no queues are congested then just wait for the next request to be
2702 * returned.
2703 */
2704long blk_congestion_wait(int rw, long timeout)
2705{
2706 long ret;
2707 DEFINE_WAIT(wait);
2708 wait_queue_head_t *wqh = &congestion_wqh[rw];
2709
2710 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2711 ret = io_schedule_timeout(timeout);
2712 finish_wait(wqh, &wait);
2713 return ret;
2714}
2715
2716EXPORT_SYMBOL(blk_congestion_wait);
2717
2718/*
2719 * Has to be called with the request spinlock acquired
2720 */
2721static int attempt_merge(request_queue_t *q, struct request *req,
2722 struct request *next)
2723{
2724 if (!rq_mergeable(req) || !rq_mergeable(next))
2725 return 0;
2726
2727 /*
2728 * not contigious
2729 */
2730 if (req->sector + req->nr_sectors != next->sector)
2731 return 0;
2732
2733 if (rq_data_dir(req) != rq_data_dir(next)
2734 || req->rq_disk != next->rq_disk
2735 || next->waiting || next->special)
2736 return 0;
2737
2738 /*
2739 * If we are allowed to merge, then append bio list
2740 * from next to rq and release next. merge_requests_fn
2741 * will have updated segment counts, update sector
2742 * counts here.
2743 */
2744 if (!q->merge_requests_fn(q, req, next))
2745 return 0;
2746
2747 /*
2748 * At this point we have either done a back merge
2749 * or front merge. We need the smaller start_time of
2750 * the merged requests to be the current request
2751 * for accounting purposes.
2752 */
2753 if (time_after(req->start_time, next->start_time))
2754 req->start_time = next->start_time;
2755
2756 req->biotail->bi_next = next->bio;
2757 req->biotail = next->biotail;
2758
2759 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2760
2761 elv_merge_requests(q, req, next);
2762
2763 if (req->rq_disk) {
2764 disk_round_stats(req->rq_disk);
2765 req->rq_disk->in_flight--;
2766 }
2767
22e2c507
JA
2768 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2769
1da177e4
LT
2770 __blk_put_request(q, next);
2771 return 1;
2772}
2773
2774static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2775{
2776 struct request *next = elv_latter_request(q, rq);
2777
2778 if (next)
2779 return attempt_merge(q, rq, next);
2780
2781 return 0;
2782}
2783
2784static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2785{
2786 struct request *prev = elv_former_request(q, rq);
2787
2788 if (prev)
2789 return attempt_merge(q, prev, rq);
2790
2791 return 0;
2792}
2793
52d9e675
TH
2794static void init_request_from_bio(struct request *req, struct bio *bio)
2795{
2796 req->flags |= REQ_CMD;
2797
2798 /*
2799 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2800 */
2801 if (bio_rw_ahead(bio) || bio_failfast(bio))
2802 req->flags |= REQ_FAILFAST;
2803
2804 /*
2805 * REQ_BARRIER implies no merging, but lets make it explicit
2806 */
2807 if (unlikely(bio_barrier(bio)))
2808 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2809
2810 req->errors = 0;
2811 req->hard_sector = req->sector = bio->bi_sector;
2812 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2813 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2814 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2815 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2816 req->buffer = bio_data(bio); /* see ->buffer comment above */
2817 req->waiting = NULL;
2818 req->bio = req->biotail = bio;
2819 req->ioprio = bio_prio(bio);
2820 req->rq_disk = bio->bi_bdev->bd_disk;
2821 req->start_time = jiffies;
2822}
2823
1da177e4
LT
2824static int __make_request(request_queue_t *q, struct bio *bio)
2825{
450991bc 2826 struct request *req;
4a534f93 2827 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
22e2c507 2828 unsigned short prio;
1da177e4
LT
2829 sector_t sector;
2830
2831 sector = bio->bi_sector;
2832 nr_sectors = bio_sectors(bio);
2833 cur_nr_sectors = bio_cur_sectors(bio);
22e2c507 2834 prio = bio_prio(bio);
1da177e4
LT
2835
2836 rw = bio_data_dir(bio);
4a534f93 2837 sync = bio_sync(bio);
1da177e4
LT
2838
2839 /*
2840 * low level driver can indicate that it wants pages above a
2841 * certain limit bounced to low memory (ie for highmem, or even
2842 * ISA dma in theory)
2843 */
2844 blk_queue_bounce(q, &bio);
2845
2846 spin_lock_prefetch(q->queue_lock);
2847
2848 barrier = bio_barrier(bio);
797e7dbb 2849 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2850 err = -EOPNOTSUPP;
2851 goto end_io;
2852 }
2853
1da177e4
LT
2854 spin_lock_irq(q->queue_lock);
2855
450991bc 2856 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2857 goto get_rq;
2858
2859 el_ret = elv_merge(q, &req, bio);
2860 switch (el_ret) {
2861 case ELEVATOR_BACK_MERGE:
2862 BUG_ON(!rq_mergeable(req));
2863
2864 if (!q->back_merge_fn(q, req, bio))
2865 break;
2866
2056a782
JA
2867 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2868
1da177e4
LT
2869 req->biotail->bi_next = bio;
2870 req->biotail = bio;
2871 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2872 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2873 drive_stat_acct(req, nr_sectors, 0);
2874 if (!attempt_back_merge(q, req))
2875 elv_merged_request(q, req);
2876 goto out;
2877
2878 case ELEVATOR_FRONT_MERGE:
2879 BUG_ON(!rq_mergeable(req));
2880
2881 if (!q->front_merge_fn(q, req, bio))
2882 break;
2883
2056a782
JA
2884 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2885
1da177e4
LT
2886 bio->bi_next = req->bio;
2887 req->bio = bio;
2888
2889 /*
2890 * may not be valid. if the low level driver said
2891 * it didn't need a bounce buffer then it better
2892 * not touch req->buffer either...
2893 */
2894 req->buffer = bio_data(bio);
2895 req->current_nr_sectors = cur_nr_sectors;
2896 req->hard_cur_sectors = cur_nr_sectors;
2897 req->sector = req->hard_sector = sector;
2898 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2899 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2900 drive_stat_acct(req, nr_sectors, 0);
2901 if (!attempt_front_merge(q, req))
2902 elv_merged_request(q, req);
2903 goto out;
2904
450991bc 2905 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 2906 default:
450991bc 2907 ;
1da177e4
LT
2908 }
2909
450991bc 2910get_rq:
1da177e4 2911 /*
450991bc 2912 * Grab a free request. This is might sleep but can not fail.
d6344532 2913 * Returns with the queue unlocked.
450991bc 2914 */
450991bc 2915 req = get_request_wait(q, rw, bio);
d6344532 2916
450991bc
NP
2917 /*
2918 * After dropping the lock and possibly sleeping here, our request
2919 * may now be mergeable after it had proven unmergeable (above).
2920 * We don't worry about that case for efficiency. It won't happen
2921 * often, and the elevators are able to handle it.
1da177e4 2922 */
52d9e675 2923 init_request_from_bio(req, bio);
1da177e4 2924
450991bc
NP
2925 spin_lock_irq(q->queue_lock);
2926 if (elv_queue_empty(q))
2927 blk_plug_device(q);
1da177e4
LT
2928 add_request(q, req);
2929out:
4a534f93 2930 if (sync)
1da177e4
LT
2931 __generic_unplug_device(q);
2932
2933 spin_unlock_irq(q->queue_lock);
2934 return 0;
2935
2936end_io:
2937 bio_endio(bio, nr_sectors << 9, err);
2938 return 0;
2939}
2940
2941/*
2942 * If bio->bi_dev is a partition, remap the location
2943 */
2944static inline void blk_partition_remap(struct bio *bio)
2945{
2946 struct block_device *bdev = bio->bi_bdev;
2947
2948 if (bdev != bdev->bd_contains) {
2949 struct hd_struct *p = bdev->bd_part;
a362357b
JA
2950 const int rw = bio_data_dir(bio);
2951
2952 p->sectors[rw] += bio_sectors(bio);
2953 p->ios[rw]++;
1da177e4 2954
1da177e4
LT
2955 bio->bi_sector += p->start_sect;
2956 bio->bi_bdev = bdev->bd_contains;
2957 }
2958}
2959
1da177e4
LT
2960static void handle_bad_sector(struct bio *bio)
2961{
2962 char b[BDEVNAME_SIZE];
2963
2964 printk(KERN_INFO "attempt to access beyond end of device\n");
2965 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2966 bdevname(bio->bi_bdev, b),
2967 bio->bi_rw,
2968 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2969 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2970
2971 set_bit(BIO_EOF, &bio->bi_flags);
2972}
2973
2974/**
2975 * generic_make_request: hand a buffer to its device driver for I/O
2976 * @bio: The bio describing the location in memory and on the device.
2977 *
2978 * generic_make_request() is used to make I/O requests of block
2979 * devices. It is passed a &struct bio, which describes the I/O that needs
2980 * to be done.
2981 *
2982 * generic_make_request() does not return any status. The
2983 * success/failure status of the request, along with notification of
2984 * completion, is delivered asynchronously through the bio->bi_end_io
2985 * function described (one day) else where.
2986 *
2987 * The caller of generic_make_request must make sure that bi_io_vec
2988 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2989 * set to describe the device address, and the
2990 * bi_end_io and optionally bi_private are set to describe how
2991 * completion notification should be signaled.
2992 *
2993 * generic_make_request and the drivers it calls may use bi_next if this
2994 * bio happens to be merged with someone else, and may change bi_dev and
2995 * bi_sector for remaps as it sees fit. So the values of these fields
2996 * should NOT be depended on after the call to generic_make_request.
2997 */
2998void generic_make_request(struct bio *bio)
2999{
3000 request_queue_t *q;
3001 sector_t maxsector;
3002 int ret, nr_sectors = bio_sectors(bio);
2056a782 3003 dev_t old_dev;
1da177e4
LT
3004
3005 might_sleep();
3006 /* Test device or partition size, when known. */
3007 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3008 if (maxsector) {
3009 sector_t sector = bio->bi_sector;
3010
3011 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3012 /*
3013 * This may well happen - the kernel calls bread()
3014 * without checking the size of the device, e.g., when
3015 * mounting a device.
3016 */
3017 handle_bad_sector(bio);
3018 goto end_io;
3019 }
3020 }
3021
3022 /*
3023 * Resolve the mapping until finished. (drivers are
3024 * still free to implement/resolve their own stacking
3025 * by explicitly returning 0)
3026 *
3027 * NOTE: we don't repeat the blk_size check for each new device.
3028 * Stacking drivers are expected to know what they are doing.
3029 */
2056a782
JA
3030 maxsector = -1;
3031 old_dev = 0;
1da177e4
LT
3032 do {
3033 char b[BDEVNAME_SIZE];
3034
3035 q = bdev_get_queue(bio->bi_bdev);
3036 if (!q) {
3037 printk(KERN_ERR
3038 "generic_make_request: Trying to access "
3039 "nonexistent block-device %s (%Lu)\n",
3040 bdevname(bio->bi_bdev, b),
3041 (long long) bio->bi_sector);
3042end_io:
3043 bio_endio(bio, bio->bi_size, -EIO);
3044 break;
3045 }
3046
3047 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3048 printk("bio too big device %s (%u > %u)\n",
3049 bdevname(bio->bi_bdev, b),
3050 bio_sectors(bio),
3051 q->max_hw_sectors);
3052 goto end_io;
3053 }
3054
fde6ad22 3055 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3056 goto end_io;
3057
1da177e4
LT
3058 /*
3059 * If this device has partitions, remap block n
3060 * of partition p to block n+start(p) of the disk.
3061 */
3062 blk_partition_remap(bio);
3063
2056a782
JA
3064 if (maxsector != -1)
3065 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3066 maxsector);
3067
3068 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3069
3070 maxsector = bio->bi_sector;
3071 old_dev = bio->bi_bdev->bd_dev;
3072
1da177e4
LT
3073 ret = q->make_request_fn(q, bio);
3074 } while (ret);
3075}
3076
3077EXPORT_SYMBOL(generic_make_request);
3078
3079/**
3080 * submit_bio: submit a bio to the block device layer for I/O
3081 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3082 * @bio: The &struct bio which describes the I/O
3083 *
3084 * submit_bio() is very similar in purpose to generic_make_request(), and
3085 * uses that function to do most of the work. Both are fairly rough
3086 * interfaces, @bio must be presetup and ready for I/O.
3087 *
3088 */
3089void submit_bio(int rw, struct bio *bio)
3090{
3091 int count = bio_sectors(bio);
3092
3093 BIO_BUG_ON(!bio->bi_size);
3094 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3095 bio->bi_rw |= rw;
1da177e4
LT
3096 if (rw & WRITE)
3097 mod_page_state(pgpgout, count);
3098 else
3099 mod_page_state(pgpgin, count);
3100
3101 if (unlikely(block_dump)) {
3102 char b[BDEVNAME_SIZE];
3103 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3104 current->comm, current->pid,
3105 (rw & WRITE) ? "WRITE" : "READ",
3106 (unsigned long long)bio->bi_sector,
3107 bdevname(bio->bi_bdev,b));
3108 }
3109
3110 generic_make_request(bio);
3111}
3112
3113EXPORT_SYMBOL(submit_bio);
3114
93d17d3d 3115static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
3116{
3117 struct bio *bio, *prevbio = NULL;
3118 int nr_phys_segs, nr_hw_segs;
3119 unsigned int phys_size, hw_size;
3120 request_queue_t *q = rq->q;
3121
3122 if (!rq->bio)
3123 return;
3124
3125 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3126 rq_for_each_bio(bio, rq) {
3127 /* Force bio hw/phys segs to be recalculated. */
3128 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3129
3130 nr_phys_segs += bio_phys_segments(q, bio);
3131 nr_hw_segs += bio_hw_segments(q, bio);
3132 if (prevbio) {
3133 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3134 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3135
3136 if (blk_phys_contig_segment(q, prevbio, bio) &&
3137 pseg <= q->max_segment_size) {
3138 nr_phys_segs--;
3139 phys_size += prevbio->bi_size + bio->bi_size;
3140 } else
3141 phys_size = 0;
3142
3143 if (blk_hw_contig_segment(q, prevbio, bio) &&
3144 hseg <= q->max_segment_size) {
3145 nr_hw_segs--;
3146 hw_size += prevbio->bi_size + bio->bi_size;
3147 } else
3148 hw_size = 0;
3149 }
3150 prevbio = bio;
3151 }
3152
3153 rq->nr_phys_segments = nr_phys_segs;
3154 rq->nr_hw_segments = nr_hw_segs;
3155}
3156
93d17d3d 3157static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3158{
3159 if (blk_fs_request(rq)) {
3160 rq->hard_sector += nsect;
3161 rq->hard_nr_sectors -= nsect;
3162
3163 /*
3164 * Move the I/O submission pointers ahead if required.
3165 */
3166 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3167 (rq->sector <= rq->hard_sector)) {
3168 rq->sector = rq->hard_sector;
3169 rq->nr_sectors = rq->hard_nr_sectors;
3170 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3171 rq->current_nr_sectors = rq->hard_cur_sectors;
3172 rq->buffer = bio_data(rq->bio);
3173 }
3174
3175 /*
3176 * if total number of sectors is less than the first segment
3177 * size, something has gone terribly wrong
3178 */
3179 if (rq->nr_sectors < rq->current_nr_sectors) {
3180 printk("blk: request botched\n");
3181 rq->nr_sectors = rq->current_nr_sectors;
3182 }
3183 }
3184}
3185
3186static int __end_that_request_first(struct request *req, int uptodate,
3187 int nr_bytes)
3188{
3189 int total_bytes, bio_nbytes, error, next_idx = 0;
3190 struct bio *bio;
3191
2056a782
JA
3192 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3193
1da177e4
LT
3194 /*
3195 * extend uptodate bool to allow < 0 value to be direct io error
3196 */
3197 error = 0;
3198 if (end_io_error(uptodate))
3199 error = !uptodate ? -EIO : uptodate;
3200
3201 /*
3202 * for a REQ_BLOCK_PC request, we want to carry any eventual
3203 * sense key with us all the way through
3204 */
3205 if (!blk_pc_request(req))
3206 req->errors = 0;
3207
3208 if (!uptodate) {
3209 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3210 printk("end_request: I/O error, dev %s, sector %llu\n",
3211 req->rq_disk ? req->rq_disk->disk_name : "?",
3212 (unsigned long long)req->sector);
3213 }
3214
d72d904a 3215 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3216 const int rw = rq_data_dir(req);
3217
53e86061 3218 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3219 }
3220
1da177e4
LT
3221 total_bytes = bio_nbytes = 0;
3222 while ((bio = req->bio) != NULL) {
3223 int nbytes;
3224
3225 if (nr_bytes >= bio->bi_size) {
3226 req->bio = bio->bi_next;
3227 nbytes = bio->bi_size;
797e7dbb
TH
3228 if (!ordered_bio_endio(req, bio, nbytes, error))
3229 bio_endio(bio, nbytes, error);
1da177e4
LT
3230 next_idx = 0;
3231 bio_nbytes = 0;
3232 } else {
3233 int idx = bio->bi_idx + next_idx;
3234
3235 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3236 blk_dump_rq_flags(req, "__end_that");
3237 printk("%s: bio idx %d >= vcnt %d\n",
3238 __FUNCTION__,
3239 bio->bi_idx, bio->bi_vcnt);
3240 break;
3241 }
3242
3243 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3244 BIO_BUG_ON(nbytes > bio->bi_size);
3245
3246 /*
3247 * not a complete bvec done
3248 */
3249 if (unlikely(nbytes > nr_bytes)) {
3250 bio_nbytes += nr_bytes;
3251 total_bytes += nr_bytes;
3252 break;
3253 }
3254
3255 /*
3256 * advance to the next vector
3257 */
3258 next_idx++;
3259 bio_nbytes += nbytes;
3260 }
3261
3262 total_bytes += nbytes;
3263 nr_bytes -= nbytes;
3264
3265 if ((bio = req->bio)) {
3266 /*
3267 * end more in this run, or just return 'not-done'
3268 */
3269 if (unlikely(nr_bytes <= 0))
3270 break;
3271 }
3272 }
3273
3274 /*
3275 * completely done
3276 */
3277 if (!req->bio)
3278 return 0;
3279
3280 /*
3281 * if the request wasn't completed, update state
3282 */
3283 if (bio_nbytes) {
797e7dbb
TH
3284 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3285 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3286 bio->bi_idx += next_idx;
3287 bio_iovec(bio)->bv_offset += nr_bytes;
3288 bio_iovec(bio)->bv_len -= nr_bytes;
3289 }
3290
3291 blk_recalc_rq_sectors(req, total_bytes >> 9);
3292 blk_recalc_rq_segments(req);
3293 return 1;
3294}
3295
3296/**
3297 * end_that_request_first - end I/O on a request
3298 * @req: the request being processed
3299 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3300 * @nr_sectors: number of sectors to end I/O on
3301 *
3302 * Description:
3303 * Ends I/O on a number of sectors attached to @req, and sets it up
3304 * for the next range of segments (if any) in the cluster.
3305 *
3306 * Return:
3307 * 0 - we are done with this request, call end_that_request_last()
3308 * 1 - still buffers pending for this request
3309 **/
3310int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3311{
3312 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3313}
3314
3315EXPORT_SYMBOL(end_that_request_first);
3316
3317/**
3318 * end_that_request_chunk - end I/O on a request
3319 * @req: the request being processed
3320 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3321 * @nr_bytes: number of bytes to complete
3322 *
3323 * Description:
3324 * Ends I/O on a number of bytes attached to @req, and sets it up
3325 * for the next range of segments (if any). Like end_that_request_first(),
3326 * but deals with bytes instead of sectors.
3327 *
3328 * Return:
3329 * 0 - we are done with this request, call end_that_request_last()
3330 * 1 - still buffers pending for this request
3331 **/
3332int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3333{
3334 return __end_that_request_first(req, uptodate, nr_bytes);
3335}
3336
3337EXPORT_SYMBOL(end_that_request_chunk);
3338
ff856bad
JA
3339/*
3340 * splice the completion data to a local structure and hand off to
3341 * process_completion_queue() to complete the requests
3342 */
3343static void blk_done_softirq(struct softirq_action *h)
3344{
3345 struct list_head *cpu_list;
3346 LIST_HEAD(local_list);
3347
3348 local_irq_disable();
3349 cpu_list = &__get_cpu_var(blk_cpu_done);
3350 list_splice_init(cpu_list, &local_list);
3351 local_irq_enable();
3352
3353 while (!list_empty(&local_list)) {
3354 struct request *rq = list_entry(local_list.next, struct request, donelist);
3355
3356 list_del_init(&rq->donelist);
3357 rq->q->softirq_done_fn(rq);
3358 }
3359}
3360
3361#ifdef CONFIG_HOTPLUG_CPU
3362
3363static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3364 void *hcpu)
3365{
3366 /*
3367 * If a CPU goes away, splice its entries to the current CPU
3368 * and trigger a run of the softirq
3369 */
3370 if (action == CPU_DEAD) {
3371 int cpu = (unsigned long) hcpu;
3372
3373 local_irq_disable();
3374 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3375 &__get_cpu_var(blk_cpu_done));
3376 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3377 local_irq_enable();
3378 }
3379
3380 return NOTIFY_OK;
3381}
3382
3383
3384static struct notifier_block __devinitdata blk_cpu_notifier = {
3385 .notifier_call = blk_cpu_notify,
3386};
3387
3388#endif /* CONFIG_HOTPLUG_CPU */
3389
3390/**
3391 * blk_complete_request - end I/O on a request
3392 * @req: the request being processed
3393 *
3394 * Description:
3395 * Ends all I/O on a request. It does not handle partial completions,
3396 * unless the driver actually implements this in its completionc callback
3397 * through requeueing. Theh actual completion happens out-of-order,
3398 * through a softirq handler. The user must have registered a completion
3399 * callback through blk_queue_softirq_done().
3400 **/
3401
3402void blk_complete_request(struct request *req)
3403{
3404 struct list_head *cpu_list;
3405 unsigned long flags;
3406
3407 BUG_ON(!req->q->softirq_done_fn);
3408
3409 local_irq_save(flags);
3410
3411 cpu_list = &__get_cpu_var(blk_cpu_done);
3412 list_add_tail(&req->donelist, cpu_list);
3413 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3414
3415 local_irq_restore(flags);
3416}
3417
3418EXPORT_SYMBOL(blk_complete_request);
3419
1da177e4
LT
3420/*
3421 * queue lock must be held
3422 */
8ffdc655 3423void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3424{
3425 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3426 int error;
3427
3428 /*
3429 * extend uptodate bool to allow < 0 value to be direct io error
3430 */
3431 error = 0;
3432 if (end_io_error(uptodate))
3433 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3434
3435 if (unlikely(laptop_mode) && blk_fs_request(req))
3436 laptop_io_completion();
3437
3438 if (disk && blk_fs_request(req)) {
3439 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3440 const int rw = rq_data_dir(req);
3441
3442 __disk_stat_inc(disk, ios[rw]);
3443 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3444 disk_round_stats(disk);
3445 disk->in_flight--;
3446 }
3447 if (req->end_io)
8ffdc655 3448 req->end_io(req, error);
1da177e4
LT
3449 else
3450 __blk_put_request(req->q, req);
3451}
3452
3453EXPORT_SYMBOL(end_that_request_last);
3454
3455void end_request(struct request *req, int uptodate)
3456{
3457 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3458 add_disk_randomness(req->rq_disk);
3459 blkdev_dequeue_request(req);
8ffdc655 3460 end_that_request_last(req, uptodate);
1da177e4
LT
3461 }
3462}
3463
3464EXPORT_SYMBOL(end_request);
3465
3466void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3467{
3468 /* first three bits are identical in rq->flags and bio->bi_rw */
3469 rq->flags |= (bio->bi_rw & 7);
3470
3471 rq->nr_phys_segments = bio_phys_segments(q, bio);
3472 rq->nr_hw_segments = bio_hw_segments(q, bio);
3473 rq->current_nr_sectors = bio_cur_sectors(bio);
3474 rq->hard_cur_sectors = rq->current_nr_sectors;
3475 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3476 rq->buffer = bio_data(bio);
3477
3478 rq->bio = rq->biotail = bio;
3479}
3480
3481EXPORT_SYMBOL(blk_rq_bio_prep);
3482
3483int kblockd_schedule_work(struct work_struct *work)
3484{
3485 return queue_work(kblockd_workqueue, work);
3486}
3487
3488EXPORT_SYMBOL(kblockd_schedule_work);
3489
3490void kblockd_flush(void)
3491{
3492 flush_workqueue(kblockd_workqueue);
3493}
3494EXPORT_SYMBOL(kblockd_flush);
3495
3496int __init blk_dev_init(void)
3497{
ff856bad
JA
3498 int i;
3499
1da177e4
LT
3500 kblockd_workqueue = create_workqueue("kblockd");
3501 if (!kblockd_workqueue)
3502 panic("Failed to create kblockd\n");
3503
3504 request_cachep = kmem_cache_create("blkdev_requests",
3505 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3506
3507 requestq_cachep = kmem_cache_create("blkdev_queue",
3508 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3509
3510 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3511 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3512
88a2a4ac 3513 for_each_cpu(i)
ff856bad
JA
3514 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3515
3516 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3517#ifdef CONFIG_HOTPLUG_CPU
3518 register_cpu_notifier(&blk_cpu_notifier);
3519#endif
3520
1da177e4
LT
3521 blk_max_low_pfn = max_low_pfn;
3522 blk_max_pfn = max_pfn;
3523
3524 return 0;
3525}
3526
3527/*
3528 * IO Context helper functions
3529 */
3530void put_io_context(struct io_context *ioc)
3531{
3532 if (ioc == NULL)
3533 return;
3534
3535 BUG_ON(atomic_read(&ioc->refcount) == 0);
3536
3537 if (atomic_dec_and_test(&ioc->refcount)) {
334e94de 3538 rcu_read_lock();
1da177e4
LT
3539 if (ioc->aic && ioc->aic->dtor)
3540 ioc->aic->dtor(ioc->aic);
3541 if (ioc->cic && ioc->cic->dtor)
3542 ioc->cic->dtor(ioc->cic);
334e94de 3543 rcu_read_unlock();
1da177e4
LT
3544
3545 kmem_cache_free(iocontext_cachep, ioc);
3546 }
3547}
3548EXPORT_SYMBOL(put_io_context);
3549
3550/* Called by the exitting task */
3551void exit_io_context(void)
3552{
3553 unsigned long flags;
3554 struct io_context *ioc;
3555
3556 local_irq_save(flags);
22e2c507 3557 task_lock(current);
1da177e4
LT
3558 ioc = current->io_context;
3559 current->io_context = NULL;
22e2c507
JA
3560 ioc->task = NULL;
3561 task_unlock(current);
1da177e4
LT
3562 local_irq_restore(flags);
3563
3564 if (ioc->aic && ioc->aic->exit)
3565 ioc->aic->exit(ioc->aic);
3566 if (ioc->cic && ioc->cic->exit)
3567 ioc->cic->exit(ioc->cic);
3568
3569 put_io_context(ioc);
3570}
3571
3572/*
3573 * If the current task has no IO context then create one and initialise it.
fb3cc432 3574 * Otherwise, return its existing IO context.
1da177e4 3575 *
fb3cc432
NP
3576 * This returned IO context doesn't have a specifically elevated refcount,
3577 * but since the current task itself holds a reference, the context can be
3578 * used in general code, so long as it stays within `current` context.
1da177e4 3579 */
8267e268 3580struct io_context *current_io_context(gfp_t gfp_flags)
1da177e4
LT
3581{
3582 struct task_struct *tsk = current;
1da177e4
LT
3583 struct io_context *ret;
3584
1da177e4 3585 ret = tsk->io_context;
fb3cc432
NP
3586 if (likely(ret))
3587 return ret;
1da177e4
LT
3588
3589 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3590 if (ret) {
3591 atomic_set(&ret->refcount, 1);
22e2c507
JA
3592 ret->task = current;
3593 ret->set_ioprio = NULL;
1da177e4
LT
3594 ret->last_waited = jiffies; /* doesn't matter... */
3595 ret->nr_batch_requests = 0; /* because this is 0 */
3596 ret->aic = NULL;
3597 ret->cic = NULL;
fb3cc432
NP
3598 tsk->io_context = ret;
3599 }
1da177e4 3600
fb3cc432
NP
3601 return ret;
3602}
3603EXPORT_SYMBOL(current_io_context);
1da177e4 3604
fb3cc432
NP
3605/*
3606 * If the current task has no IO context then create one and initialise it.
3607 * If it does have a context, take a ref on it.
3608 *
3609 * This is always called in the context of the task which submitted the I/O.
3610 */
8267e268 3611struct io_context *get_io_context(gfp_t gfp_flags)
fb3cc432
NP
3612{
3613 struct io_context *ret;
3614 ret = current_io_context(gfp_flags);
3615 if (likely(ret))
1da177e4 3616 atomic_inc(&ret->refcount);
1da177e4
LT
3617 return ret;
3618}
3619EXPORT_SYMBOL(get_io_context);
3620
3621void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3622{
3623 struct io_context *src = *psrc;
3624 struct io_context *dst = *pdst;
3625
3626 if (src) {
3627 BUG_ON(atomic_read(&src->refcount) == 0);
3628 atomic_inc(&src->refcount);
3629 put_io_context(dst);
3630 *pdst = src;
3631 }
3632}
3633EXPORT_SYMBOL(copy_io_context);
3634
3635void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3636{
3637 struct io_context *temp;
3638 temp = *ioc1;
3639 *ioc1 = *ioc2;
3640 *ioc2 = temp;
3641}
3642EXPORT_SYMBOL(swap_io_context);
3643
3644/*
3645 * sysfs parts below
3646 */
3647struct queue_sysfs_entry {
3648 struct attribute attr;
3649 ssize_t (*show)(struct request_queue *, char *);
3650 ssize_t (*store)(struct request_queue *, const char *, size_t);
3651};
3652
3653static ssize_t
3654queue_var_show(unsigned int var, char *page)
3655{
3656 return sprintf(page, "%d\n", var);
3657}
3658
3659static ssize_t
3660queue_var_store(unsigned long *var, const char *page, size_t count)
3661{
3662 char *p = (char *) page;
3663
3664 *var = simple_strtoul(p, &p, 10);
3665 return count;
3666}
3667
3668static ssize_t queue_requests_show(struct request_queue *q, char *page)
3669{
3670 return queue_var_show(q->nr_requests, (page));
3671}
3672
3673static ssize_t
3674queue_requests_store(struct request_queue *q, const char *page, size_t count)
3675{
3676 struct request_list *rl = &q->rq;
c981ff9f
AV
3677 unsigned long nr;
3678 int ret = queue_var_store(&nr, page, count);
3679 if (nr < BLKDEV_MIN_RQ)
3680 nr = BLKDEV_MIN_RQ;
1da177e4 3681
c981ff9f
AV
3682 spin_lock_irq(q->queue_lock);
3683 q->nr_requests = nr;
1da177e4
LT
3684 blk_queue_congestion_threshold(q);
3685
3686 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3687 set_queue_congested(q, READ);
3688 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3689 clear_queue_congested(q, READ);
3690
3691 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3692 set_queue_congested(q, WRITE);
3693 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3694 clear_queue_congested(q, WRITE);
3695
3696 if (rl->count[READ] >= q->nr_requests) {
3697 blk_set_queue_full(q, READ);
3698 } else if (rl->count[READ]+1 <= q->nr_requests) {
3699 blk_clear_queue_full(q, READ);
3700 wake_up(&rl->wait[READ]);
3701 }
3702
3703 if (rl->count[WRITE] >= q->nr_requests) {
3704 blk_set_queue_full(q, WRITE);
3705 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3706 blk_clear_queue_full(q, WRITE);
3707 wake_up(&rl->wait[WRITE]);
3708 }
c981ff9f 3709 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3710 return ret;
3711}
3712
3713static ssize_t queue_ra_show(struct request_queue *q, char *page)
3714{
3715 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3716
3717 return queue_var_show(ra_kb, (page));
3718}
3719
3720static ssize_t
3721queue_ra_store(struct request_queue *q, const char *page, size_t count)
3722{
3723 unsigned long ra_kb;
3724 ssize_t ret = queue_var_store(&ra_kb, page, count);
3725
3726 spin_lock_irq(q->queue_lock);
3727 if (ra_kb > (q->max_sectors >> 1))
3728 ra_kb = (q->max_sectors >> 1);
3729
3730 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3731 spin_unlock_irq(q->queue_lock);
3732
3733 return ret;
3734}
3735
3736static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3737{
3738 int max_sectors_kb = q->max_sectors >> 1;
3739
3740 return queue_var_show(max_sectors_kb, (page));
3741}
3742
3743static ssize_t
3744queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3745{
3746 unsigned long max_sectors_kb,
3747 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3748 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3749 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3750 int ra_kb;
3751
3752 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3753 return -EINVAL;
3754 /*
3755 * Take the queue lock to update the readahead and max_sectors
3756 * values synchronously:
3757 */
3758 spin_lock_irq(q->queue_lock);
3759 /*
3760 * Trim readahead window as well, if necessary:
3761 */
3762 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3763 if (ra_kb > max_sectors_kb)
3764 q->backing_dev_info.ra_pages =
3765 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3766
3767 q->max_sectors = max_sectors_kb << 1;
3768 spin_unlock_irq(q->queue_lock);
3769
3770 return ret;
3771}
3772
3773static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3774{
3775 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3776
3777 return queue_var_show(max_hw_sectors_kb, (page));
3778}
3779
3780
3781static struct queue_sysfs_entry queue_requests_entry = {
3782 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3783 .show = queue_requests_show,
3784 .store = queue_requests_store,
3785};
3786
3787static struct queue_sysfs_entry queue_ra_entry = {
3788 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3789 .show = queue_ra_show,
3790 .store = queue_ra_store,
3791};
3792
3793static struct queue_sysfs_entry queue_max_sectors_entry = {
3794 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3795 .show = queue_max_sectors_show,
3796 .store = queue_max_sectors_store,
3797};
3798
3799static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3800 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3801 .show = queue_max_hw_sectors_show,
3802};
3803
3804static struct queue_sysfs_entry queue_iosched_entry = {
3805 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3806 .show = elv_iosched_show,
3807 .store = elv_iosched_store,
3808};
3809
3810static struct attribute *default_attrs[] = {
3811 &queue_requests_entry.attr,
3812 &queue_ra_entry.attr,
3813 &queue_max_hw_sectors_entry.attr,
3814 &queue_max_sectors_entry.attr,
3815 &queue_iosched_entry.attr,
3816 NULL,
3817};
3818
3819#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3820
3821static ssize_t
3822queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3823{
3824 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3825 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3826 ssize_t res;
1da177e4 3827
1da177e4 3828 if (!entry->show)
6c1852a0 3829 return -EIO;
483f4afc
AV
3830 mutex_lock(&q->sysfs_lock);
3831 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3832 mutex_unlock(&q->sysfs_lock);
3833 return -ENOENT;
3834 }
3835 res = entry->show(q, page);
3836 mutex_unlock(&q->sysfs_lock);
3837 return res;
1da177e4
LT
3838}
3839
3840static ssize_t
3841queue_attr_store(struct kobject *kobj, struct attribute *attr,
3842 const char *page, size_t length)
3843{
3844 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3845 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3846
3847 ssize_t res;
1da177e4 3848
1da177e4 3849 if (!entry->store)
6c1852a0 3850 return -EIO;
483f4afc
AV
3851 mutex_lock(&q->sysfs_lock);
3852 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3853 mutex_unlock(&q->sysfs_lock);
3854 return -ENOENT;
3855 }
3856 res = entry->store(q, page, length);
3857 mutex_unlock(&q->sysfs_lock);
3858 return res;
1da177e4
LT
3859}
3860
3861static struct sysfs_ops queue_sysfs_ops = {
3862 .show = queue_attr_show,
3863 .store = queue_attr_store,
3864};
3865
93d17d3d 3866static struct kobj_type queue_ktype = {
1da177e4
LT
3867 .sysfs_ops = &queue_sysfs_ops,
3868 .default_attrs = default_attrs,
483f4afc 3869 .release = blk_release_queue,
1da177e4
LT
3870};
3871
3872int blk_register_queue(struct gendisk *disk)
3873{
3874 int ret;
3875
3876 request_queue_t *q = disk->queue;
3877
3878 if (!q || !q->request_fn)
3879 return -ENXIO;
3880
3881 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 3882
483f4afc 3883 ret = kobject_add(&q->kobj);
1da177e4
LT
3884 if (ret < 0)
3885 return ret;
3886
483f4afc
AV
3887 kobject_uevent(&q->kobj, KOBJ_ADD);
3888
1da177e4
LT
3889 ret = elv_register_queue(q);
3890 if (ret) {
483f4afc
AV
3891 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3892 kobject_del(&q->kobj);
1da177e4
LT
3893 return ret;
3894 }
3895
3896 return 0;
3897}
3898
3899void blk_unregister_queue(struct gendisk *disk)
3900{
3901 request_queue_t *q = disk->queue;
3902
3903 if (q && q->request_fn) {
3904 elv_unregister_queue(q);
3905
483f4afc
AV
3906 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3907 kobject_del(&q->kobj);
1da177e4
LT
3908 kobject_put(&disk->kobj);
3909 }
3910}