]> git.proxmox.com Git - mirror_qemu.git/blame - block/nvme.c
block/nvme: Use union of NvmeIdCtrl / NvmeIdNs structures
[mirror_qemu.git] / block / nvme.c
CommitLineData
bdd6a90a
FZ
1/*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14#include "qemu/osdep.h"
15#include <linux/vfio.h>
16#include "qapi/error.h"
17#include "qapi/qmp/qdict.h"
18#include "qapi/qmp/qstring.h"
19#include "qemu/error-report.h"
db725815 20#include "qemu/main-loop.h"
0b8fa32f 21#include "qemu/module.h"
bdd6a90a 22#include "qemu/cutils.h"
922a01a0 23#include "qemu/option.h"
bdd6a90a
FZ
24#include "qemu/vfio-helpers.h"
25#include "block/block_int.h"
e4ec5ad4 26#include "sysemu/replay.h"
bdd6a90a
FZ
27#include "trace.h"
28
a3d9a352 29#include "block/nvme.h"
bdd6a90a
FZ
30
31#define NVME_SQ_ENTRY_BYTES 64
32#define NVME_CQ_ENTRY_BYTES 16
33#define NVME_QUEUE_SIZE 128
34#define NVME_BAR_SIZE 8192
35
1086e95d
SH
36/*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
b75fd5f5
SH
42typedef struct BDRVNVMeState BDRVNVMeState;
43
bdd6a90a
FZ
44typedef struct {
45 int32_t head, tail;
46 uint8_t *queue;
47 uint64_t iova;
48 /* Hardware MMIO register */
49 volatile uint32_t *doorbell;
50} NVMeQueue;
51
52typedef struct {
53 BlockCompletionFunc *cb;
54 void *opaque;
55 int cid;
56 void *prp_list_page;
57 uint64_t prp_list_iova;
1086e95d 58 int free_req_next; /* q->reqs[] index of next free req */
bdd6a90a
FZ
59} NVMeRequest;
60
61typedef struct {
bdd6a90a
FZ
62 QemuMutex lock;
63
b75fd5f5
SH
64 /* Read from I/O code path, initialized under BQL */
65 BDRVNVMeState *s;
66 int index;
67
bdd6a90a 68 /* Fields protected by BQL */
bdd6a90a
FZ
69 uint8_t *prp_list_pages;
70
71 /* Fields protected by @lock */
a5db74f3 72 CoQueue free_req_queue;
bdd6a90a
FZ
73 NVMeQueue sq, cq;
74 int cq_phase;
1086e95d
SH
75 int free_req_head;
76 NVMeRequest reqs[NVME_NUM_REQS];
bdd6a90a
FZ
77 int need_kick;
78 int inflight;
7838c67f
SH
79
80 /* Thread-safe, no lock necessary */
81 QEMUBH *completion_bh;
bdd6a90a
FZ
82} NVMeQueuePair;
83
84/* Memory mapped registers */
85typedef volatile struct {
86 uint64_t cap;
87 uint32_t vs;
88 uint32_t intms;
89 uint32_t intmc;
90 uint32_t cc;
91 uint32_t reserved0;
92 uint32_t csts;
93 uint32_t nssr;
94 uint32_t aqa;
95 uint64_t asq;
96 uint64_t acq;
97 uint32_t cmbloc;
98 uint32_t cmbsz;
99 uint8_t reserved1[0xec0];
100 uint8_t cmd_set_specfic[0x100];
101 uint32_t doorbells[];
83c68e14 102} NVMeRegs;
bdd6a90a
FZ
103
104QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
105
73159e52
PMD
106#define INDEX_ADMIN 0
107#define INDEX_IO(n) (1 + n)
108
b75fd5f5 109struct BDRVNVMeState {
bdd6a90a
FZ
110 AioContext *aio_context;
111 QEMUVFIOState *vfio;
112 NVMeRegs *regs;
113 /* The submission/completion queue pairs.
114 * [0]: admin queue.
115 * [1..]: io queues.
116 */
117 NVMeQueuePair **queues;
118 int nr_queues;
119 size_t page_size;
120 /* How many uint32_t elements does each doorbell entry take. */
121 size_t doorbell_scale;
122 bool write_cache_supported;
123 EventNotifier irq_notifier;
118d1b6a 124
bdd6a90a
FZ
125 uint64_t nsze; /* Namespace size reported by identify command */
126 int nsid; /* The namespace id to read/write data. */
1120407b 127 int blkshift;
118d1b6a 128
bdd6a90a 129 uint64_t max_transfer;
2f0d8947 130 bool plugged;
bdd6a90a 131
e0dd95e3 132 bool supports_write_zeroes;
e87a09d6 133 bool supports_discard;
e0dd95e3 134
bdd6a90a
FZ
135 CoMutex dma_map_lock;
136 CoQueue dma_flush_queue;
137
138 /* Total size of mapped qiov, accessed under dma_map_lock */
139 int dma_map_count;
cc61b074
HR
140
141 /* PCI address (required for nvme_refresh_filename()) */
142 char *device;
b75fd5f5 143};
bdd6a90a
FZ
144
145#define NVME_BLOCK_OPT_DEVICE "device"
146#define NVME_BLOCK_OPT_NAMESPACE "namespace"
147
7838c67f
SH
148static void nvme_process_completion_bh(void *opaque);
149
bdd6a90a
FZ
150static QemuOptsList runtime_opts = {
151 .name = "nvme",
152 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
153 .desc = {
154 {
155 .name = NVME_BLOCK_OPT_DEVICE,
156 .type = QEMU_OPT_STRING,
157 .help = "NVMe PCI device address",
158 },
159 {
160 .name = NVME_BLOCK_OPT_NAMESPACE,
161 .type = QEMU_OPT_NUMBER,
162 .help = "NVMe namespace",
163 },
164 { /* end of list */ }
165 },
166};
167
168static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
169 int nentries, int entry_bytes, Error **errp)
170{
171 BDRVNVMeState *s = bs->opaque;
172 size_t bytes;
173 int r;
174
175 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
176 q->head = q->tail = 0;
177 q->queue = qemu_try_blockalign0(bs, bytes);
178
179 if (!q->queue) {
180 error_setg(errp, "Cannot allocate queue");
181 return;
182 }
183 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
184 if (r) {
185 error_setg(errp, "Cannot map queue");
186 }
187}
188
b75fd5f5 189static void nvme_free_queue_pair(NVMeQueuePair *q)
bdd6a90a 190{
7838c67f
SH
191 if (q->completion_bh) {
192 qemu_bh_delete(q->completion_bh);
193 }
bdd6a90a
FZ
194 qemu_vfree(q->prp_list_pages);
195 qemu_vfree(q->sq.queue);
196 qemu_vfree(q->cq.queue);
197 qemu_mutex_destroy(&q->lock);
198 g_free(q);
199}
200
201static void nvme_free_req_queue_cb(void *opaque)
202{
203 NVMeQueuePair *q = opaque;
204
205 qemu_mutex_lock(&q->lock);
206 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
207 /* Retry all pending requests */
208 }
209 qemu_mutex_unlock(&q->lock);
210}
211
212static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
213 int idx, int size,
214 Error **errp)
215{
216 int i, r;
217 BDRVNVMeState *s = bs->opaque;
218 Error *local_err = NULL;
0ea45f76 219 NVMeQueuePair *q;
bdd6a90a
FZ
220 uint64_t prp_list_iova;
221
0ea45f76
PMD
222 q = g_try_new0(NVMeQueuePair, 1);
223 if (!q) {
224 return NULL;
225 }
226 q->prp_list_pages = qemu_try_blockalign0(bs,
227 s->page_size * NVME_NUM_REQS);
228 if (!q->prp_list_pages) {
229 goto fail;
230 }
bdd6a90a 231 qemu_mutex_init(&q->lock);
b75fd5f5 232 q->s = s;
bdd6a90a
FZ
233 q->index = idx;
234 qemu_co_queue_init(&q->free_req_queue);
7838c67f
SH
235 q->completion_bh = aio_bh_new(bdrv_get_aio_context(bs),
236 nvme_process_completion_bh, q);
bdd6a90a 237 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
1086e95d 238 s->page_size * NVME_NUM_REQS,
bdd6a90a
FZ
239 false, &prp_list_iova);
240 if (r) {
241 goto fail;
242 }
1086e95d
SH
243 q->free_req_head = -1;
244 for (i = 0; i < NVME_NUM_REQS; i++) {
bdd6a90a
FZ
245 NVMeRequest *req = &q->reqs[i];
246 req->cid = i + 1;
1086e95d
SH
247 req->free_req_next = q->free_req_head;
248 q->free_req_head = i;
bdd6a90a
FZ
249 req->prp_list_page = q->prp_list_pages + i * s->page_size;
250 req->prp_list_iova = prp_list_iova + i * s->page_size;
251 }
1086e95d 252
bdd6a90a
FZ
253 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
254 if (local_err) {
255 error_propagate(errp, local_err);
256 goto fail;
257 }
258 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
259
260 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
261 if (local_err) {
262 error_propagate(errp, local_err);
263 goto fail;
264 }
461bba04 265 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
bdd6a90a
FZ
266
267 return q;
268fail:
b75fd5f5 269 nvme_free_queue_pair(q);
bdd6a90a
FZ
270 return NULL;
271}
272
273/* With q->lock */
b75fd5f5 274static void nvme_kick(NVMeQueuePair *q)
bdd6a90a 275{
b75fd5f5
SH
276 BDRVNVMeState *s = q->s;
277
bdd6a90a
FZ
278 if (s->plugged || !q->need_kick) {
279 return;
280 }
281 trace_nvme_kick(s, q->index);
282 assert(!(q->sq.tail & 0xFF00));
283 /* Fence the write to submission queue entry before notifying the device. */
284 smp_wmb();
285 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
286 q->inflight += q->need_kick;
287 q->need_kick = 0;
288}
289
290/* Find a free request element if any, otherwise:
291 * a) if in coroutine context, try to wait for one to become available;
292 * b) if not in coroutine, return NULL;
293 */
294static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
295{
1086e95d 296 NVMeRequest *req;
bdd6a90a
FZ
297
298 qemu_mutex_lock(&q->lock);
1086e95d
SH
299
300 while (q->free_req_head == -1) {
bdd6a90a
FZ
301 if (qemu_in_coroutine()) {
302 trace_nvme_free_req_queue_wait(q);
303 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
304 } else {
305 qemu_mutex_unlock(&q->lock);
306 return NULL;
307 }
308 }
1086e95d
SH
309
310 req = &q->reqs[q->free_req_head];
311 q->free_req_head = req->free_req_next;
312 req->free_req_next = -1;
313
bdd6a90a
FZ
314 qemu_mutex_unlock(&q->lock);
315 return req;
316}
317
1086e95d
SH
318/* With q->lock */
319static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
320{
321 req->free_req_next = q->free_req_head;
322 q->free_req_head = req - q->reqs;
323}
324
325/* With q->lock */
b75fd5f5 326static void nvme_wake_free_req_locked(NVMeQueuePair *q)
1086e95d
SH
327{
328 if (!qemu_co_queue_empty(&q->free_req_queue)) {
b75fd5f5 329 replay_bh_schedule_oneshot_event(q->s->aio_context,
1086e95d
SH
330 nvme_free_req_queue_cb, q);
331 }
332}
333
334/* Insert a request in the freelist and wake waiters */
b75fd5f5 335static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
1086e95d
SH
336{
337 qemu_mutex_lock(&q->lock);
338 nvme_put_free_req_locked(q, req);
b75fd5f5 339 nvme_wake_free_req_locked(q);
1086e95d
SH
340 qemu_mutex_unlock(&q->lock);
341}
342
bdd6a90a
FZ
343static inline int nvme_translate_error(const NvmeCqe *c)
344{
345 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
346 if (status) {
347 trace_nvme_error(le32_to_cpu(c->result),
348 le16_to_cpu(c->sq_head),
349 le16_to_cpu(c->sq_id),
350 le16_to_cpu(c->cid),
351 le16_to_cpu(status));
352 }
353 switch (status) {
354 case 0:
355 return 0;
356 case 1:
357 return -ENOSYS;
358 case 2:
359 return -EINVAL;
360 default:
361 return -EIO;
362 }
363}
364
365/* With q->lock */
b75fd5f5 366static bool nvme_process_completion(NVMeQueuePair *q)
bdd6a90a 367{
b75fd5f5 368 BDRVNVMeState *s = q->s;
bdd6a90a
FZ
369 bool progress = false;
370 NVMeRequest *preq;
371 NVMeRequest req;
372 NvmeCqe *c;
373
374 trace_nvme_process_completion(s, q->index, q->inflight);
7838c67f
SH
375 if (s->plugged) {
376 trace_nvme_process_completion_queue_plugged(s, q->index);
bdd6a90a
FZ
377 return false;
378 }
7838c67f
SH
379
380 /*
381 * Support re-entrancy when a request cb() function invokes aio_poll().
382 * Pending completions must be visible to aio_poll() so that a cb()
383 * function can wait for the completion of another request.
384 *
385 * The aio_poll() loop will execute our BH and we'll resume completion
386 * processing there.
387 */
388 qemu_bh_schedule(q->completion_bh);
389
bdd6a90a
FZ
390 assert(q->inflight >= 0);
391 while (q->inflight) {
04b3fb39 392 int ret;
bdd6a90a 393 int16_t cid;
04b3fb39 394
bdd6a90a 395 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
258867d1 396 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
bdd6a90a
FZ
397 break;
398 }
04b3fb39 399 ret = nvme_translate_error(c);
bdd6a90a
FZ
400 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
401 if (!q->cq.head) {
402 q->cq_phase = !q->cq_phase;
403 }
404 cid = le16_to_cpu(c->cid);
405 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
406 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
407 cid);
408 continue;
409 }
bdd6a90a
FZ
410 trace_nvme_complete_command(s, q->index, cid);
411 preq = &q->reqs[cid - 1];
412 req = *preq;
413 assert(req.cid == cid);
414 assert(req.cb);
1086e95d 415 nvme_put_free_req_locked(q, preq);
bdd6a90a 416 preq->cb = preq->opaque = NULL;
7838c67f 417 q->inflight--;
bdd6a90a 418 qemu_mutex_unlock(&q->lock);
04b3fb39 419 req.cb(req.opaque, ret);
bdd6a90a 420 qemu_mutex_lock(&q->lock);
bdd6a90a
FZ
421 progress = true;
422 }
423 if (progress) {
424 /* Notify the device so it can post more completions. */
425 smp_mb_release();
426 *q->cq.doorbell = cpu_to_le32(q->cq.head);
b75fd5f5 427 nvme_wake_free_req_locked(q);
bdd6a90a 428 }
7838c67f
SH
429
430 qemu_bh_cancel(q->completion_bh);
431
bdd6a90a
FZ
432 return progress;
433}
434
7838c67f
SH
435static void nvme_process_completion_bh(void *opaque)
436{
437 NVMeQueuePair *q = opaque;
438
439 /*
440 * We're being invoked because a nvme_process_completion() cb() function
441 * called aio_poll(). The callback may be waiting for further completions
442 * so notify the device that it has space to fill in more completions now.
443 */
444 smp_mb_release();
445 *q->cq.doorbell = cpu_to_le32(q->cq.head);
446 nvme_wake_free_req_locked(q);
447
448 nvme_process_completion(q);
449}
450
bdd6a90a
FZ
451static void nvme_trace_command(const NvmeCmd *cmd)
452{
453 int i;
454
e266f52c
PMD
455 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
456 return;
457 }
bdd6a90a
FZ
458 for (i = 0; i < 8; ++i) {
459 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
460 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
461 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
462 }
463}
464
b75fd5f5 465static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
bdd6a90a
FZ
466 NvmeCmd *cmd, BlockCompletionFunc cb,
467 void *opaque)
468{
469 assert(!req->cb);
470 req->cb = cb;
471 req->opaque = opaque;
472 cmd->cid = cpu_to_le32(req->cid);
473
b75fd5f5 474 trace_nvme_submit_command(q->s, q->index, req->cid);
bdd6a90a
FZ
475 nvme_trace_command(cmd);
476 qemu_mutex_lock(&q->lock);
477 memcpy((uint8_t *)q->sq.queue +
478 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
479 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
480 q->need_kick++;
b75fd5f5
SH
481 nvme_kick(q);
482 nvme_process_completion(q);
bdd6a90a
FZ
483 qemu_mutex_unlock(&q->lock);
484}
485
486static void nvme_cmd_sync_cb(void *opaque, int ret)
487{
488 int *pret = opaque;
489 *pret = ret;
4720cbee 490 aio_wait_kick();
bdd6a90a
FZ
491}
492
493static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
494 NvmeCmd *cmd)
495{
496 NVMeRequest *req;
bdd6a90a
FZ
497 int ret = -EINPROGRESS;
498 req = nvme_get_free_req(q);
499 if (!req) {
500 return -EBUSY;
501 }
b75fd5f5 502 nvme_submit_command(q, req, cmd, nvme_cmd_sync_cb, &ret);
bdd6a90a
FZ
503
504 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
505 return ret;
506}
507
508static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
509{
510 BDRVNVMeState *s = bs->opaque;
7d3b214a
PMD
511 union {
512 NvmeIdCtrl ctrl;
513 NvmeIdNs ns;
514 } *id;
118d1b6a 515 NvmeLBAF *lbaf;
e0dd95e3 516 uint16_t oncs;
1120407b 517 int r;
bdd6a90a
FZ
518 uint64_t iova;
519 NvmeCmd cmd = {
520 .opcode = NVME_ADM_CMD_IDENTIFY,
521 .cdw10 = cpu_to_le32(0x1),
522 };
523
7d3b214a 524 id = qemu_try_blockalign0(bs, sizeof(*id));
4d980939 525 if (!id) {
bdd6a90a
FZ
526 error_setg(errp, "Cannot allocate buffer for identify response");
527 goto out;
528 }
7d3b214a 529 r = qemu_vfio_dma_map(s->vfio, id, sizeof(*id), true, &iova);
bdd6a90a
FZ
530 if (r) {
531 error_setg(errp, "Cannot map buffer for DMA");
532 goto out;
533 }
c26f2173 534 cmd.dptr.prp1 = cpu_to_le64(iova);
bdd6a90a 535
73159e52 536 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
bdd6a90a
FZ
537 error_setg(errp, "Failed to identify controller");
538 goto out;
539 }
540
7d3b214a 541 if (le32_to_cpu(id->ctrl.nn) < namespace) {
bdd6a90a
FZ
542 error_setg(errp, "Invalid namespace");
543 goto out;
544 }
7d3b214a
PMD
545 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
546 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
bdd6a90a
FZ
547 /* For now the page list buffer per command is one page, to hold at most
548 * s->page_size / sizeof(uint64_t) entries. */
549 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
550 s->page_size / sizeof(uint64_t) * s->page_size);
551
7d3b214a 552 oncs = le16_to_cpu(id->ctrl.oncs);
69265150 553 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
e87a09d6 554 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
e0dd95e3 555
7d3b214a 556 memset(id, 0, sizeof(*id));
bdd6a90a
FZ
557 cmd.cdw10 = 0;
558 cmd.nsid = cpu_to_le32(namespace);
73159e52 559 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
bdd6a90a
FZ
560 error_setg(errp, "Failed to identify namespace");
561 goto out;
562 }
563
7d3b214a
PMD
564 s->nsze = le64_to_cpu(id->ns.nsze);
565 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
118d1b6a 566
7d3b214a
PMD
567 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
568 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
e0dd95e3
ML
569 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
570 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
571 }
572
118d1b6a
ML
573 if (lbaf->ms) {
574 error_setg(errp, "Namespaces with metadata are not yet supported");
575 goto out;
576 }
577
1120407b
HR
578 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
579 (1 << lbaf->ds) > s->page_size)
580 {
581 error_setg(errp, "Namespace has unsupported block size (2^%d)",
582 lbaf->ds);
118d1b6a
ML
583 goto out;
584 }
bdd6a90a 585
118d1b6a 586 s->blkshift = lbaf->ds;
bdd6a90a 587out:
4d980939
PMD
588 qemu_vfio_dma_unmap(s->vfio, id);
589 qemu_vfree(id);
bdd6a90a
FZ
590}
591
592static bool nvme_poll_queues(BDRVNVMeState *s)
593{
594 bool progress = false;
595 int i;
596
597 for (i = 0; i < s->nr_queues; i++) {
598 NVMeQueuePair *q = s->queues[i];
2446e0e2
SH
599 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
600 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
601
602 /*
603 * Do an early check for completions. q->lock isn't needed because
604 * nvme_process_completion() only runs in the event loop thread and
605 * cannot race with itself.
606 */
607 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
608 continue;
609 }
610
bdd6a90a 611 qemu_mutex_lock(&q->lock);
b75fd5f5 612 while (nvme_process_completion(q)) {
bdd6a90a
FZ
613 /* Keep polling */
614 progress = true;
615 }
616 qemu_mutex_unlock(&q->lock);
617 }
618 return progress;
619}
620
621static void nvme_handle_event(EventNotifier *n)
622{
623 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
624
625 trace_nvme_handle_event(s);
bdd6a90a
FZ
626 event_notifier_test_and_clear(n);
627 nvme_poll_queues(s);
bdd6a90a
FZ
628}
629
630static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
631{
632 BDRVNVMeState *s = bs->opaque;
633 int n = s->nr_queues;
634 NVMeQueuePair *q;
635 NvmeCmd cmd;
636 int queue_size = NVME_QUEUE_SIZE;
637
638 q = nvme_create_queue_pair(bs, n, queue_size, errp);
639 if (!q) {
640 return false;
641 }
642 cmd = (NvmeCmd) {
643 .opcode = NVME_ADM_CMD_CREATE_CQ,
c26f2173 644 .dptr.prp1 = cpu_to_le64(q->cq.iova),
bdd6a90a
FZ
645 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
646 .cdw11 = cpu_to_le32(0x3),
647 };
73159e52 648 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
bf6ce5ec 649 error_setg(errp, "Failed to create CQ io queue [%d]", n);
c8edbfb2 650 goto out_error;
bdd6a90a
FZ
651 }
652 cmd = (NvmeCmd) {
653 .opcode = NVME_ADM_CMD_CREATE_SQ,
c26f2173 654 .dptr.prp1 = cpu_to_le64(q->sq.iova),
bdd6a90a
FZ
655 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
656 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
657 };
73159e52 658 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
bf6ce5ec 659 error_setg(errp, "Failed to create SQ io queue [%d]", n);
c8edbfb2 660 goto out_error;
bdd6a90a
FZ
661 }
662 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
663 s->queues[n] = q;
664 s->nr_queues++;
665 return true;
c8edbfb2
PMD
666out_error:
667 nvme_free_queue_pair(q);
668 return false;
bdd6a90a
FZ
669}
670
671static bool nvme_poll_cb(void *opaque)
672{
673 EventNotifier *e = opaque;
674 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
bdd6a90a
FZ
675
676 trace_nvme_poll_cb(s);
b3ac2b94 677 return nvme_poll_queues(s);
bdd6a90a
FZ
678}
679
680static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
681 Error **errp)
682{
683 BDRVNVMeState *s = bs->opaque;
684 int ret;
685 uint64_t cap;
686 uint64_t timeout_ms;
687 uint64_t deadline, now;
688 Error *local_err = NULL;
689
690 qemu_co_mutex_init(&s->dma_map_lock);
691 qemu_co_queue_init(&s->dma_flush_queue);
cc61b074 692 s->device = g_strdup(device);
bdd6a90a
FZ
693 s->nsid = namespace;
694 s->aio_context = bdrv_get_aio_context(bs);
695 ret = event_notifier_init(&s->irq_notifier, 0);
696 if (ret) {
697 error_setg(errp, "Failed to init event notifier");
698 return ret;
699 }
700
701 s->vfio = qemu_vfio_open_pci(device, errp);
702 if (!s->vfio) {
703 ret = -EINVAL;
9582f357 704 goto out;
bdd6a90a
FZ
705 }
706
707 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
708 if (!s->regs) {
709 ret = -EINVAL;
9582f357 710 goto out;
bdd6a90a
FZ
711 }
712
713 /* Perform initialize sequence as described in NVMe spec "7.6.1
714 * Initialization". */
715
716 cap = le64_to_cpu(s->regs->cap);
717 if (!(cap & (1ULL << 37))) {
718 error_setg(errp, "Device doesn't support NVMe command set");
719 ret = -EINVAL;
9582f357 720 goto out;
bdd6a90a
FZ
721 }
722
723 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
724 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
725 bs->bl.opt_mem_alignment = s->page_size;
726 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
727
728 /* Reset device to get a clean state. */
729 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
730 /* Wait for CSTS.RDY = 0. */
e4f310fe 731 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
bdd6a90a
FZ
732 while (le32_to_cpu(s->regs->csts) & 0x1) {
733 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
734 error_setg(errp, "Timeout while waiting for device to reset (%"
735 PRId64 " ms)",
736 timeout_ms);
737 ret = -ETIMEDOUT;
9582f357 738 goto out;
bdd6a90a
FZ
739 }
740 }
741
742 /* Set up admin queue. */
743 s->queues = g_new(NVMeQueuePair *, 1);
73159e52
PMD
744 s->queues[INDEX_ADMIN] = nvme_create_queue_pair(bs, 0,
745 NVME_QUEUE_SIZE,
746 errp);
747 if (!s->queues[INDEX_ADMIN]) {
bdd6a90a 748 ret = -EINVAL;
9582f357 749 goto out;
bdd6a90a 750 }
95667c3b 751 s->nr_queues = 1;
bdd6a90a
FZ
752 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
753 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
73159e52
PMD
754 s->regs->asq = cpu_to_le64(s->queues[INDEX_ADMIN]->sq.iova);
755 s->regs->acq = cpu_to_le64(s->queues[INDEX_ADMIN]->cq.iova);
bdd6a90a
FZ
756
757 /* After setting up all control registers we can enable device now. */
758 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
759 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
760 0x1);
761 /* Wait for CSTS.RDY = 1. */
762 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
763 deadline = now + timeout_ms * 1000000;
764 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
765 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
766 error_setg(errp, "Timeout while waiting for device to start (%"
767 PRId64 " ms)",
768 timeout_ms);
769 ret = -ETIMEDOUT;
9582f357 770 goto out;
bdd6a90a
FZ
771 }
772 }
773
774 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
775 VFIO_PCI_MSIX_IRQ_INDEX, errp);
776 if (ret) {
9582f357 777 goto out;
bdd6a90a
FZ
778 }
779 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
780 false, nvme_handle_event, nvme_poll_cb);
781
78d8c99e 782 nvme_identify(bs, namespace, &local_err);
bdd6a90a
FZ
783 if (local_err) {
784 error_propagate(errp, local_err);
785 ret = -EIO;
9582f357 786 goto out;
bdd6a90a
FZ
787 }
788
789 /* Set up command queues. */
790 if (!nvme_add_io_queue(bs, errp)) {
791 ret = -EIO;
bdd6a90a 792 }
9582f357
FZ
793out:
794 /* Cleaning up is done in nvme_file_open() upon error. */
bdd6a90a
FZ
795 return ret;
796}
797
798/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
799 *
800 * nvme://0000:44:00.0/1
801 *
802 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
803 * is the PCI address, and the last part is the namespace number starting from
804 * 1 according to the NVMe spec. */
805static void nvme_parse_filename(const char *filename, QDict *options,
806 Error **errp)
807{
808 int pref = strlen("nvme://");
809
810 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
811 const char *tmp = filename + pref;
812 char *device;
813 const char *namespace;
814 unsigned long ns;
815 const char *slash = strchr(tmp, '/');
816 if (!slash) {
625eaca9 817 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
bdd6a90a
FZ
818 return;
819 }
820 device = g_strndup(tmp, slash - tmp);
625eaca9 821 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
bdd6a90a
FZ
822 g_free(device);
823 namespace = slash + 1;
824 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
825 error_setg(errp, "Invalid namespace '%s', positive number expected",
826 namespace);
827 return;
828 }
625eaca9
LV
829 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
830 *namespace ? namespace : "1");
bdd6a90a
FZ
831 }
832}
833
834static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
835 Error **errp)
836{
837 int ret;
838 BDRVNVMeState *s = bs->opaque;
839 NvmeCmd cmd = {
840 .opcode = NVME_ADM_CMD_SET_FEATURES,
841 .nsid = cpu_to_le32(s->nsid),
842 .cdw10 = cpu_to_le32(0x06),
843 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
844 };
845
73159e52 846 ret = nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd);
bdd6a90a
FZ
847 if (ret) {
848 error_setg(errp, "Failed to configure NVMe write cache");
849 }
850 return ret;
851}
852
853static void nvme_close(BlockDriverState *bs)
854{
855 int i;
856 BDRVNVMeState *s = bs->opaque;
857
858 for (i = 0; i < s->nr_queues; ++i) {
b75fd5f5 859 nvme_free_queue_pair(s->queues[i]);
bdd6a90a 860 }
9582f357 861 g_free(s->queues);
bdd6a90a
FZ
862 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
863 false, NULL, NULL);
9582f357 864 event_notifier_cleanup(&s->irq_notifier);
bdd6a90a
FZ
865 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
866 qemu_vfio_close(s->vfio);
cc61b074
HR
867
868 g_free(s->device);
bdd6a90a
FZ
869}
870
871static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
872 Error **errp)
873{
874 const char *device;
875 QemuOpts *opts;
876 int namespace;
877 int ret;
878 BDRVNVMeState *s = bs->opaque;
879
e0dd95e3
ML
880 bs->supported_write_flags = BDRV_REQ_FUA;
881
bdd6a90a
FZ
882 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
883 qemu_opts_absorb_qdict(opts, options, &error_abort);
884 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
885 if (!device) {
886 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
887 qemu_opts_del(opts);
888 return -EINVAL;
889 }
890
891 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
892 ret = nvme_init(bs, device, namespace, errp);
893 qemu_opts_del(opts);
894 if (ret) {
895 goto fail;
896 }
897 if (flags & BDRV_O_NOCACHE) {
898 if (!s->write_cache_supported) {
899 error_setg(errp,
900 "NVMe controller doesn't support write cache configuration");
901 ret = -EINVAL;
902 } else {
903 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
904 errp);
905 }
906 if (ret) {
907 goto fail;
908 }
909 }
bdd6a90a
FZ
910 return 0;
911fail:
912 nvme_close(bs);
913 return ret;
914}
915
916static int64_t nvme_getlength(BlockDriverState *bs)
917{
918 BDRVNVMeState *s = bs->opaque;
118d1b6a
ML
919 return s->nsze << s->blkshift;
920}
bdd6a90a 921
1120407b 922static uint32_t nvme_get_blocksize(BlockDriverState *bs)
118d1b6a
ML
923{
924 BDRVNVMeState *s = bs->opaque;
1120407b
HR
925 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
926 return UINT32_C(1) << s->blkshift;
118d1b6a
ML
927}
928
929static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
930{
1120407b 931 uint32_t blocksize = nvme_get_blocksize(bs);
118d1b6a
ML
932 bsz->phys = blocksize;
933 bsz->log = blocksize;
934 return 0;
bdd6a90a
FZ
935}
936
937/* Called with s->dma_map_lock */
938static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
939 QEMUIOVector *qiov)
940{
941 int r = 0;
942 BDRVNVMeState *s = bs->opaque;
943
944 s->dma_map_count -= qiov->size;
945 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
946 r = qemu_vfio_dma_reset_temporary(s->vfio);
947 if (!r) {
948 qemu_co_queue_restart_all(&s->dma_flush_queue);
949 }
950 }
951 return r;
952}
953
954/* Called with s->dma_map_lock */
955static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
956 NVMeRequest *req, QEMUIOVector *qiov)
957{
958 BDRVNVMeState *s = bs->opaque;
959 uint64_t *pagelist = req->prp_list_page;
960 int i, j, r;
961 int entries = 0;
962
963 assert(qiov->size);
964 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
965 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
966 for (i = 0; i < qiov->niov; ++i) {
967 bool retry = true;
968 uint64_t iova;
969try_map:
970 r = qemu_vfio_dma_map(s->vfio,
971 qiov->iov[i].iov_base,
972 qiov->iov[i].iov_len,
973 true, &iova);
974 if (r == -ENOMEM && retry) {
975 retry = false;
976 trace_nvme_dma_flush_queue_wait(s);
977 if (s->dma_map_count) {
978 trace_nvme_dma_map_flush(s);
979 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
980 } else {
981 r = qemu_vfio_dma_reset_temporary(s->vfio);
982 if (r) {
983 goto fail;
984 }
985 }
986 goto try_map;
987 }
988 if (r) {
989 goto fail;
990 }
991
992 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
2916405a 993 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
bdd6a90a
FZ
994 }
995 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
996 qiov->iov[i].iov_len / s->page_size);
997 }
998
999 s->dma_map_count += qiov->size;
1000
1001 assert(entries <= s->page_size / sizeof(uint64_t));
1002 switch (entries) {
1003 case 0:
1004 abort();
1005 case 1:
c26f2173
KJ
1006 cmd->dptr.prp1 = pagelist[0];
1007 cmd->dptr.prp2 = 0;
bdd6a90a
FZ
1008 break;
1009 case 2:
c26f2173
KJ
1010 cmd->dptr.prp1 = pagelist[0];
1011 cmd->dptr.prp2 = pagelist[1];
bdd6a90a
FZ
1012 break;
1013 default:
c26f2173
KJ
1014 cmd->dptr.prp1 = pagelist[0];
1015 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
bdd6a90a
FZ
1016 break;
1017 }
1018 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1019 for (i = 0; i < entries; ++i) {
1020 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1021 }
1022 return 0;
1023fail:
1024 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1025 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1026 * because they are already mapped before calling this function; for
1027 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1028 * calling qemu_vfio_dma_reset_temporary when necessary. */
1029 return r;
1030}
1031
1032typedef struct {
1033 Coroutine *co;
1034 int ret;
1035 AioContext *ctx;
1036} NVMeCoData;
1037
1038static void nvme_rw_cb_bh(void *opaque)
1039{
1040 NVMeCoData *data = opaque;
1041 qemu_coroutine_enter(data->co);
1042}
1043
1044static void nvme_rw_cb(void *opaque, int ret)
1045{
1046 NVMeCoData *data = opaque;
1047 data->ret = ret;
1048 if (!data->co) {
1049 /* The rw coroutine hasn't yielded, don't try to enter. */
1050 return;
1051 }
e4ec5ad4 1052 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
bdd6a90a
FZ
1053}
1054
1055static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1056 uint64_t offset, uint64_t bytes,
1057 QEMUIOVector *qiov,
1058 bool is_write,
1059 int flags)
1060{
1061 int r;
1062 BDRVNVMeState *s = bs->opaque;
73159e52 1063 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
bdd6a90a 1064 NVMeRequest *req;
118d1b6a
ML
1065
1066 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
bdd6a90a
FZ
1067 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1068 NvmeCmd cmd = {
1069 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1070 .nsid = cpu_to_le32(s->nsid),
118d1b6a
ML
1071 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1072 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
bdd6a90a
FZ
1073 .cdw12 = cpu_to_le32(cdw12),
1074 };
1075 NVMeCoData data = {
1076 .ctx = bdrv_get_aio_context(bs),
1077 .ret = -EINPROGRESS,
1078 };
1079
1080 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1081 assert(s->nr_queues > 1);
1082 req = nvme_get_free_req(ioq);
1083 assert(req);
1084
1085 qemu_co_mutex_lock(&s->dma_map_lock);
1086 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1087 qemu_co_mutex_unlock(&s->dma_map_lock);
1088 if (r) {
b75fd5f5 1089 nvme_put_free_req_and_wake(ioq, req);
bdd6a90a
FZ
1090 return r;
1091 }
b75fd5f5 1092 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
bdd6a90a
FZ
1093
1094 data.co = qemu_coroutine_self();
1095 while (data.ret == -EINPROGRESS) {
1096 qemu_coroutine_yield();
1097 }
1098
1099 qemu_co_mutex_lock(&s->dma_map_lock);
1100 r = nvme_cmd_unmap_qiov(bs, qiov);
1101 qemu_co_mutex_unlock(&s->dma_map_lock);
1102 if (r) {
1103 return r;
1104 }
1105
1106 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1107 return data.ret;
1108}
1109
1110static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1111 const QEMUIOVector *qiov)
1112{
1113 int i;
1114 BDRVNVMeState *s = bs->opaque;
1115
1116 for (i = 0; i < qiov->niov; ++i) {
1117 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1118 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1119 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1120 qiov->iov[i].iov_len, s->page_size);
1121 return false;
1122 }
1123 }
1124 return true;
1125}
1126
1127static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1128 QEMUIOVector *qiov, bool is_write, int flags)
1129{
1130 BDRVNVMeState *s = bs->opaque;
1131 int r;
1132 uint8_t *buf = NULL;
1133 QEMUIOVector local_qiov;
1134
1135 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1136 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1137 assert(bytes <= s->max_transfer);
1138 if (nvme_qiov_aligned(bs, qiov)) {
1139 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1140 }
1141 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1142 buf = qemu_try_blockalign(bs, bytes);
1143
1144 if (!buf) {
1145 return -ENOMEM;
1146 }
1147 qemu_iovec_init(&local_qiov, 1);
1148 if (is_write) {
1149 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1150 }
1151 qemu_iovec_add(&local_qiov, buf, bytes);
1152 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1153 qemu_iovec_destroy(&local_qiov);
1154 if (!r && !is_write) {
1155 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1156 }
1157 qemu_vfree(buf);
1158 return r;
1159}
1160
1161static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1162 uint64_t offset, uint64_t bytes,
1163 QEMUIOVector *qiov, int flags)
1164{
1165 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1166}
1167
1168static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1169 uint64_t offset, uint64_t bytes,
1170 QEMUIOVector *qiov, int flags)
1171{
1172 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1173}
1174
1175static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1176{
1177 BDRVNVMeState *s = bs->opaque;
73159e52 1178 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
bdd6a90a
FZ
1179 NVMeRequest *req;
1180 NvmeCmd cmd = {
1181 .opcode = NVME_CMD_FLUSH,
1182 .nsid = cpu_to_le32(s->nsid),
1183 };
1184 NVMeCoData data = {
1185 .ctx = bdrv_get_aio_context(bs),
1186 .ret = -EINPROGRESS,
1187 };
1188
1189 assert(s->nr_queues > 1);
1190 req = nvme_get_free_req(ioq);
1191 assert(req);
b75fd5f5 1192 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
bdd6a90a
FZ
1193
1194 data.co = qemu_coroutine_self();
1195 if (data.ret == -EINPROGRESS) {
1196 qemu_coroutine_yield();
1197 }
1198
1199 return data.ret;
1200}
1201
1202
e0dd95e3
ML
1203static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1204 int64_t offset,
1205 int bytes,
1206 BdrvRequestFlags flags)
1207{
1208 BDRVNVMeState *s = bs->opaque;
73159e52 1209 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
e0dd95e3
ML
1210 NVMeRequest *req;
1211
1212 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1213
1214 if (!s->supports_write_zeroes) {
1215 return -ENOTSUP;
1216 }
1217
1218 NvmeCmd cmd = {
69265150 1219 .opcode = NVME_CMD_WRITE_ZEROES,
e0dd95e3
ML
1220 .nsid = cpu_to_le32(s->nsid),
1221 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1222 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1223 };
1224
1225 NVMeCoData data = {
1226 .ctx = bdrv_get_aio_context(bs),
1227 .ret = -EINPROGRESS,
1228 };
1229
1230 if (flags & BDRV_REQ_MAY_UNMAP) {
1231 cdw12 |= (1 << 25);
1232 }
1233
1234 if (flags & BDRV_REQ_FUA) {
1235 cdw12 |= (1 << 30);
1236 }
1237
1238 cmd.cdw12 = cpu_to_le32(cdw12);
1239
1240 trace_nvme_write_zeroes(s, offset, bytes, flags);
1241 assert(s->nr_queues > 1);
1242 req = nvme_get_free_req(ioq);
1243 assert(req);
1244
b75fd5f5 1245 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
e0dd95e3
ML
1246
1247 data.co = qemu_coroutine_self();
1248 while (data.ret == -EINPROGRESS) {
1249 qemu_coroutine_yield();
1250 }
1251
1252 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1253 return data.ret;
1254}
1255
1256
e87a09d6
ML
1257static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1258 int64_t offset,
1259 int bytes)
1260{
1261 BDRVNVMeState *s = bs->opaque;
73159e52 1262 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
e87a09d6
ML
1263 NVMeRequest *req;
1264 NvmeDsmRange *buf;
1265 QEMUIOVector local_qiov;
1266 int ret;
1267
1268 NvmeCmd cmd = {
1269 .opcode = NVME_CMD_DSM,
1270 .nsid = cpu_to_le32(s->nsid),
1271 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1272 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1273 };
1274
1275 NVMeCoData data = {
1276 .ctx = bdrv_get_aio_context(bs),
1277 .ret = -EINPROGRESS,
1278 };
1279
1280 if (!s->supports_discard) {
1281 return -ENOTSUP;
1282 }
1283
1284 assert(s->nr_queues > 1);
1285
1286 buf = qemu_try_blockalign0(bs, s->page_size);
1287 if (!buf) {
1288 return -ENOMEM;
1289 }
1290
1291 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1292 buf->slba = cpu_to_le64(offset >> s->blkshift);
1293 buf->cattr = 0;
1294
1295 qemu_iovec_init(&local_qiov, 1);
1296 qemu_iovec_add(&local_qiov, buf, 4096);
1297
1298 req = nvme_get_free_req(ioq);
1299 assert(req);
1300
1301 qemu_co_mutex_lock(&s->dma_map_lock);
1302 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1303 qemu_co_mutex_unlock(&s->dma_map_lock);
1304
1305 if (ret) {
b75fd5f5 1306 nvme_put_free_req_and_wake(ioq, req);
e87a09d6
ML
1307 goto out;
1308 }
1309
1310 trace_nvme_dsm(s, offset, bytes);
1311
b75fd5f5 1312 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
e87a09d6
ML
1313
1314 data.co = qemu_coroutine_self();
1315 while (data.ret == -EINPROGRESS) {
1316 qemu_coroutine_yield();
1317 }
1318
1319 qemu_co_mutex_lock(&s->dma_map_lock);
1320 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1321 qemu_co_mutex_unlock(&s->dma_map_lock);
1322
1323 if (ret) {
1324 goto out;
1325 }
1326
1327 ret = data.ret;
1328 trace_nvme_dsm_done(s, offset, bytes, ret);
1329out:
1330 qemu_iovec_destroy(&local_qiov);
1331 qemu_vfree(buf);
1332 return ret;
1333
1334}
1335
1336
bdd6a90a
FZ
1337static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1338 BlockReopenQueue *queue, Error **errp)
1339{
1340 return 0;
1341}
1342
998b3a1e 1343static void nvme_refresh_filename(BlockDriverState *bs)
bdd6a90a 1344{
cc61b074 1345 BDRVNVMeState *s = bs->opaque;
bdd6a90a 1346
cc61b074
HR
1347 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1348 s->device, s->nsid);
bdd6a90a
FZ
1349}
1350
1351static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1352{
1353 BDRVNVMeState *s = bs->opaque;
1354
1355 bs->bl.opt_mem_alignment = s->page_size;
1356 bs->bl.request_alignment = s->page_size;
1357 bs->bl.max_transfer = s->max_transfer;
1358}
1359
1360static void nvme_detach_aio_context(BlockDriverState *bs)
1361{
1362 BDRVNVMeState *s = bs->opaque;
1363
7838c67f
SH
1364 for (int i = 0; i < s->nr_queues; i++) {
1365 NVMeQueuePair *q = s->queues[i];
1366
1367 qemu_bh_delete(q->completion_bh);
1368 q->completion_bh = NULL;
1369 }
1370
bdd6a90a
FZ
1371 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1372 false, NULL, NULL);
1373}
1374
1375static void nvme_attach_aio_context(BlockDriverState *bs,
1376 AioContext *new_context)
1377{
1378 BDRVNVMeState *s = bs->opaque;
1379
1380 s->aio_context = new_context;
1381 aio_set_event_notifier(new_context, &s->irq_notifier,
1382 false, nvme_handle_event, nvme_poll_cb);
7838c67f
SH
1383
1384 for (int i = 0; i < s->nr_queues; i++) {
1385 NVMeQueuePair *q = s->queues[i];
1386
1387 q->completion_bh =
1388 aio_bh_new(new_context, nvme_process_completion_bh, q);
1389 }
bdd6a90a
FZ
1390}
1391
1392static void nvme_aio_plug(BlockDriverState *bs)
1393{
1394 BDRVNVMeState *s = bs->opaque;
2f0d8947
PB
1395 assert(!s->plugged);
1396 s->plugged = true;
bdd6a90a
FZ
1397}
1398
1399static void nvme_aio_unplug(BlockDriverState *bs)
1400{
1401 int i;
1402 BDRVNVMeState *s = bs->opaque;
1403 assert(s->plugged);
2f0d8947 1404 s->plugged = false;
73159e52 1405 for (i = INDEX_IO(0); i < s->nr_queues; i++) {
2f0d8947
PB
1406 NVMeQueuePair *q = s->queues[i];
1407 qemu_mutex_lock(&q->lock);
b75fd5f5
SH
1408 nvme_kick(q);
1409 nvme_process_completion(q);
2f0d8947 1410 qemu_mutex_unlock(&q->lock);
bdd6a90a
FZ
1411 }
1412}
1413
9ed61612
FZ
1414static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1415{
1416 int ret;
1417 BDRVNVMeState *s = bs->opaque;
1418
1419 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1420 if (ret) {
1421 /* FIXME: we may run out of IOVA addresses after repeated
1422 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1423 * doesn't reclaim addresses for fixed mappings. */
1424 error_report("nvme_register_buf failed: %s", strerror(-ret));
1425 }
1426}
1427
1428static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1429{
1430 BDRVNVMeState *s = bs->opaque;
1431
1432 qemu_vfio_dma_unmap(s->vfio, host);
1433}
1434
2654267c
HR
1435static const char *const nvme_strong_runtime_opts[] = {
1436 NVME_BLOCK_OPT_DEVICE,
1437 NVME_BLOCK_OPT_NAMESPACE,
1438
1439 NULL
1440};
1441
bdd6a90a
FZ
1442static BlockDriver bdrv_nvme = {
1443 .format_name = "nvme",
1444 .protocol_name = "nvme",
1445 .instance_size = sizeof(BDRVNVMeState),
1446
5a5e7f8c
ML
1447 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1448 .create_opts = &bdrv_create_opts_simple,
1449
bdd6a90a
FZ
1450 .bdrv_parse_filename = nvme_parse_filename,
1451 .bdrv_file_open = nvme_file_open,
1452 .bdrv_close = nvme_close,
1453 .bdrv_getlength = nvme_getlength,
118d1b6a 1454 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
bdd6a90a
FZ
1455
1456 .bdrv_co_preadv = nvme_co_preadv,
1457 .bdrv_co_pwritev = nvme_co_pwritev,
e0dd95e3
ML
1458
1459 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
e87a09d6 1460 .bdrv_co_pdiscard = nvme_co_pdiscard,
e0dd95e3 1461
bdd6a90a
FZ
1462 .bdrv_co_flush_to_disk = nvme_co_flush,
1463 .bdrv_reopen_prepare = nvme_reopen_prepare,
1464
bdd6a90a
FZ
1465 .bdrv_refresh_filename = nvme_refresh_filename,
1466 .bdrv_refresh_limits = nvme_refresh_limits,
2654267c 1467 .strong_runtime_opts = nvme_strong_runtime_opts,
bdd6a90a
FZ
1468
1469 .bdrv_detach_aio_context = nvme_detach_aio_context,
1470 .bdrv_attach_aio_context = nvme_attach_aio_context,
1471
1472 .bdrv_io_plug = nvme_aio_plug,
1473 .bdrv_io_unplug = nvme_aio_unplug,
9ed61612
FZ
1474
1475 .bdrv_register_buf = nvme_register_buf,
1476 .bdrv_unregister_buf = nvme_unregister_buf,
bdd6a90a
FZ
1477};
1478
1479static void bdrv_nvme_init(void)
1480{
1481 bdrv_register(&bdrv_nvme);
1482}
1483
1484block_init(bdrv_nvme_init);