]> git.proxmox.com Git - mirror_qemu.git/blame - block/nvme.c
block/nvme: keep BDRVNVMeState pointer in NVMeQueuePair
[mirror_qemu.git] / block / nvme.c
CommitLineData
bdd6a90a
FZ
1/*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14#include "qemu/osdep.h"
15#include <linux/vfio.h>
16#include "qapi/error.h"
17#include "qapi/qmp/qdict.h"
18#include "qapi/qmp/qstring.h"
19#include "qemu/error-report.h"
db725815 20#include "qemu/main-loop.h"
0b8fa32f 21#include "qemu/module.h"
bdd6a90a 22#include "qemu/cutils.h"
922a01a0 23#include "qemu/option.h"
bdd6a90a
FZ
24#include "qemu/vfio-helpers.h"
25#include "block/block_int.h"
e4ec5ad4 26#include "sysemu/replay.h"
bdd6a90a
FZ
27#include "trace.h"
28
a3d9a352 29#include "block/nvme.h"
bdd6a90a
FZ
30
31#define NVME_SQ_ENTRY_BYTES 64
32#define NVME_CQ_ENTRY_BYTES 16
33#define NVME_QUEUE_SIZE 128
34#define NVME_BAR_SIZE 8192
35
1086e95d
SH
36/*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
b75fd5f5
SH
42typedef struct BDRVNVMeState BDRVNVMeState;
43
bdd6a90a
FZ
44typedef struct {
45 int32_t head, tail;
46 uint8_t *queue;
47 uint64_t iova;
48 /* Hardware MMIO register */
49 volatile uint32_t *doorbell;
50} NVMeQueue;
51
52typedef struct {
53 BlockCompletionFunc *cb;
54 void *opaque;
55 int cid;
56 void *prp_list_page;
57 uint64_t prp_list_iova;
1086e95d 58 int free_req_next; /* q->reqs[] index of next free req */
bdd6a90a
FZ
59} NVMeRequest;
60
61typedef struct {
bdd6a90a
FZ
62 QemuMutex lock;
63
b75fd5f5
SH
64 /* Read from I/O code path, initialized under BQL */
65 BDRVNVMeState *s;
66 int index;
67
bdd6a90a 68 /* Fields protected by BQL */
bdd6a90a
FZ
69 uint8_t *prp_list_pages;
70
71 /* Fields protected by @lock */
a5db74f3 72 CoQueue free_req_queue;
bdd6a90a
FZ
73 NVMeQueue sq, cq;
74 int cq_phase;
1086e95d
SH
75 int free_req_head;
76 NVMeRequest reqs[NVME_NUM_REQS];
bdd6a90a
FZ
77 bool busy;
78 int need_kick;
79 int inflight;
80} NVMeQueuePair;
81
82/* Memory mapped registers */
83typedef volatile struct {
84 uint64_t cap;
85 uint32_t vs;
86 uint32_t intms;
87 uint32_t intmc;
88 uint32_t cc;
89 uint32_t reserved0;
90 uint32_t csts;
91 uint32_t nssr;
92 uint32_t aqa;
93 uint64_t asq;
94 uint64_t acq;
95 uint32_t cmbloc;
96 uint32_t cmbsz;
97 uint8_t reserved1[0xec0];
98 uint8_t cmd_set_specfic[0x100];
99 uint32_t doorbells[];
83c68e14 100} NVMeRegs;
bdd6a90a
FZ
101
102QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
103
b75fd5f5 104struct BDRVNVMeState {
bdd6a90a
FZ
105 AioContext *aio_context;
106 QEMUVFIOState *vfio;
107 NVMeRegs *regs;
108 /* The submission/completion queue pairs.
109 * [0]: admin queue.
110 * [1..]: io queues.
111 */
112 NVMeQueuePair **queues;
113 int nr_queues;
114 size_t page_size;
115 /* How many uint32_t elements does each doorbell entry take. */
116 size_t doorbell_scale;
117 bool write_cache_supported;
118 EventNotifier irq_notifier;
118d1b6a 119
bdd6a90a
FZ
120 uint64_t nsze; /* Namespace size reported by identify command */
121 int nsid; /* The namespace id to read/write data. */
1120407b 122 int blkshift;
118d1b6a 123
bdd6a90a 124 uint64_t max_transfer;
2f0d8947 125 bool plugged;
bdd6a90a 126
e0dd95e3 127 bool supports_write_zeroes;
e87a09d6 128 bool supports_discard;
e0dd95e3 129
bdd6a90a
FZ
130 CoMutex dma_map_lock;
131 CoQueue dma_flush_queue;
132
133 /* Total size of mapped qiov, accessed under dma_map_lock */
134 int dma_map_count;
cc61b074
HR
135
136 /* PCI address (required for nvme_refresh_filename()) */
137 char *device;
b75fd5f5 138};
bdd6a90a
FZ
139
140#define NVME_BLOCK_OPT_DEVICE "device"
141#define NVME_BLOCK_OPT_NAMESPACE "namespace"
142
143static QemuOptsList runtime_opts = {
144 .name = "nvme",
145 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
146 .desc = {
147 {
148 .name = NVME_BLOCK_OPT_DEVICE,
149 .type = QEMU_OPT_STRING,
150 .help = "NVMe PCI device address",
151 },
152 {
153 .name = NVME_BLOCK_OPT_NAMESPACE,
154 .type = QEMU_OPT_NUMBER,
155 .help = "NVMe namespace",
156 },
157 { /* end of list */ }
158 },
159};
160
161static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
162 int nentries, int entry_bytes, Error **errp)
163{
164 BDRVNVMeState *s = bs->opaque;
165 size_t bytes;
166 int r;
167
168 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
169 q->head = q->tail = 0;
170 q->queue = qemu_try_blockalign0(bs, bytes);
171
172 if (!q->queue) {
173 error_setg(errp, "Cannot allocate queue");
174 return;
175 }
176 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
177 if (r) {
178 error_setg(errp, "Cannot map queue");
179 }
180}
181
b75fd5f5 182static void nvme_free_queue_pair(NVMeQueuePair *q)
bdd6a90a
FZ
183{
184 qemu_vfree(q->prp_list_pages);
185 qemu_vfree(q->sq.queue);
186 qemu_vfree(q->cq.queue);
187 qemu_mutex_destroy(&q->lock);
188 g_free(q);
189}
190
191static void nvme_free_req_queue_cb(void *opaque)
192{
193 NVMeQueuePair *q = opaque;
194
195 qemu_mutex_lock(&q->lock);
196 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
197 /* Retry all pending requests */
198 }
199 qemu_mutex_unlock(&q->lock);
200}
201
202static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
203 int idx, int size,
204 Error **errp)
205{
206 int i, r;
207 BDRVNVMeState *s = bs->opaque;
208 Error *local_err = NULL;
209 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
210 uint64_t prp_list_iova;
211
212 qemu_mutex_init(&q->lock);
b75fd5f5 213 q->s = s;
bdd6a90a
FZ
214 q->index = idx;
215 qemu_co_queue_init(&q->free_req_queue);
1086e95d 216 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_NUM_REQS);
bdd6a90a 217 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
1086e95d 218 s->page_size * NVME_NUM_REQS,
bdd6a90a
FZ
219 false, &prp_list_iova);
220 if (r) {
221 goto fail;
222 }
1086e95d
SH
223 q->free_req_head = -1;
224 for (i = 0; i < NVME_NUM_REQS; i++) {
bdd6a90a
FZ
225 NVMeRequest *req = &q->reqs[i];
226 req->cid = i + 1;
1086e95d
SH
227 req->free_req_next = q->free_req_head;
228 q->free_req_head = i;
bdd6a90a
FZ
229 req->prp_list_page = q->prp_list_pages + i * s->page_size;
230 req->prp_list_iova = prp_list_iova + i * s->page_size;
231 }
1086e95d 232
bdd6a90a
FZ
233 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
234 if (local_err) {
235 error_propagate(errp, local_err);
236 goto fail;
237 }
238 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
239
240 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
241 if (local_err) {
242 error_propagate(errp, local_err);
243 goto fail;
244 }
461bba04 245 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
bdd6a90a
FZ
246
247 return q;
248fail:
b75fd5f5 249 nvme_free_queue_pair(q);
bdd6a90a
FZ
250 return NULL;
251}
252
253/* With q->lock */
b75fd5f5 254static void nvme_kick(NVMeQueuePair *q)
bdd6a90a 255{
b75fd5f5
SH
256 BDRVNVMeState *s = q->s;
257
bdd6a90a
FZ
258 if (s->plugged || !q->need_kick) {
259 return;
260 }
261 trace_nvme_kick(s, q->index);
262 assert(!(q->sq.tail & 0xFF00));
263 /* Fence the write to submission queue entry before notifying the device. */
264 smp_wmb();
265 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
266 q->inflight += q->need_kick;
267 q->need_kick = 0;
268}
269
270/* Find a free request element if any, otherwise:
271 * a) if in coroutine context, try to wait for one to become available;
272 * b) if not in coroutine, return NULL;
273 */
274static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
275{
1086e95d 276 NVMeRequest *req;
bdd6a90a
FZ
277
278 qemu_mutex_lock(&q->lock);
1086e95d
SH
279
280 while (q->free_req_head == -1) {
bdd6a90a
FZ
281 if (qemu_in_coroutine()) {
282 trace_nvme_free_req_queue_wait(q);
283 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
284 } else {
285 qemu_mutex_unlock(&q->lock);
286 return NULL;
287 }
288 }
1086e95d
SH
289
290 req = &q->reqs[q->free_req_head];
291 q->free_req_head = req->free_req_next;
292 req->free_req_next = -1;
293
bdd6a90a
FZ
294 qemu_mutex_unlock(&q->lock);
295 return req;
296}
297
1086e95d
SH
298/* With q->lock */
299static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
300{
301 req->free_req_next = q->free_req_head;
302 q->free_req_head = req - q->reqs;
303}
304
305/* With q->lock */
b75fd5f5 306static void nvme_wake_free_req_locked(NVMeQueuePair *q)
1086e95d
SH
307{
308 if (!qemu_co_queue_empty(&q->free_req_queue)) {
b75fd5f5 309 replay_bh_schedule_oneshot_event(q->s->aio_context,
1086e95d
SH
310 nvme_free_req_queue_cb, q);
311 }
312}
313
314/* Insert a request in the freelist and wake waiters */
b75fd5f5 315static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
1086e95d
SH
316{
317 qemu_mutex_lock(&q->lock);
318 nvme_put_free_req_locked(q, req);
b75fd5f5 319 nvme_wake_free_req_locked(q);
1086e95d
SH
320 qemu_mutex_unlock(&q->lock);
321}
322
bdd6a90a
FZ
323static inline int nvme_translate_error(const NvmeCqe *c)
324{
325 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
326 if (status) {
327 trace_nvme_error(le32_to_cpu(c->result),
328 le16_to_cpu(c->sq_head),
329 le16_to_cpu(c->sq_id),
330 le16_to_cpu(c->cid),
331 le16_to_cpu(status));
332 }
333 switch (status) {
334 case 0:
335 return 0;
336 case 1:
337 return -ENOSYS;
338 case 2:
339 return -EINVAL;
340 default:
341 return -EIO;
342 }
343}
344
345/* With q->lock */
b75fd5f5 346static bool nvme_process_completion(NVMeQueuePair *q)
bdd6a90a 347{
b75fd5f5 348 BDRVNVMeState *s = q->s;
bdd6a90a
FZ
349 bool progress = false;
350 NVMeRequest *preq;
351 NVMeRequest req;
352 NvmeCqe *c;
353
354 trace_nvme_process_completion(s, q->index, q->inflight);
355 if (q->busy || s->plugged) {
356 trace_nvme_process_completion_queue_busy(s, q->index);
357 return false;
358 }
359 q->busy = true;
360 assert(q->inflight >= 0);
361 while (q->inflight) {
04b3fb39 362 int ret;
bdd6a90a 363 int16_t cid;
04b3fb39 364
bdd6a90a 365 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
258867d1 366 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
bdd6a90a
FZ
367 break;
368 }
04b3fb39 369 ret = nvme_translate_error(c);
bdd6a90a
FZ
370 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
371 if (!q->cq.head) {
372 q->cq_phase = !q->cq_phase;
373 }
374 cid = le16_to_cpu(c->cid);
375 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
376 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
377 cid);
378 continue;
379 }
bdd6a90a
FZ
380 trace_nvme_complete_command(s, q->index, cid);
381 preq = &q->reqs[cid - 1];
382 req = *preq;
383 assert(req.cid == cid);
384 assert(req.cb);
1086e95d 385 nvme_put_free_req_locked(q, preq);
bdd6a90a
FZ
386 preq->cb = preq->opaque = NULL;
387 qemu_mutex_unlock(&q->lock);
04b3fb39 388 req.cb(req.opaque, ret);
bdd6a90a 389 qemu_mutex_lock(&q->lock);
bdd6a90a 390 q->inflight--;
bdd6a90a
FZ
391 progress = true;
392 }
393 if (progress) {
394 /* Notify the device so it can post more completions. */
395 smp_mb_release();
396 *q->cq.doorbell = cpu_to_le32(q->cq.head);
b75fd5f5 397 nvme_wake_free_req_locked(q);
bdd6a90a
FZ
398 }
399 q->busy = false;
400 return progress;
401}
402
403static void nvme_trace_command(const NvmeCmd *cmd)
404{
405 int i;
406
407 for (i = 0; i < 8; ++i) {
408 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
409 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
410 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
411 }
412}
413
b75fd5f5 414static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
bdd6a90a
FZ
415 NvmeCmd *cmd, BlockCompletionFunc cb,
416 void *opaque)
417{
418 assert(!req->cb);
419 req->cb = cb;
420 req->opaque = opaque;
421 cmd->cid = cpu_to_le32(req->cid);
422
b75fd5f5 423 trace_nvme_submit_command(q->s, q->index, req->cid);
bdd6a90a
FZ
424 nvme_trace_command(cmd);
425 qemu_mutex_lock(&q->lock);
426 memcpy((uint8_t *)q->sq.queue +
427 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
428 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
429 q->need_kick++;
b75fd5f5
SH
430 nvme_kick(q);
431 nvme_process_completion(q);
bdd6a90a
FZ
432 qemu_mutex_unlock(&q->lock);
433}
434
435static void nvme_cmd_sync_cb(void *opaque, int ret)
436{
437 int *pret = opaque;
438 *pret = ret;
4720cbee 439 aio_wait_kick();
bdd6a90a
FZ
440}
441
442static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
443 NvmeCmd *cmd)
444{
445 NVMeRequest *req;
bdd6a90a
FZ
446 int ret = -EINPROGRESS;
447 req = nvme_get_free_req(q);
448 if (!req) {
449 return -EBUSY;
450 }
b75fd5f5 451 nvme_submit_command(q, req, cmd, nvme_cmd_sync_cb, &ret);
bdd6a90a
FZ
452
453 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
454 return ret;
455}
456
457static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
458{
459 BDRVNVMeState *s = bs->opaque;
460 NvmeIdCtrl *idctrl;
461 NvmeIdNs *idns;
118d1b6a 462 NvmeLBAF *lbaf;
bdd6a90a 463 uint8_t *resp;
e0dd95e3 464 uint16_t oncs;
1120407b 465 int r;
bdd6a90a
FZ
466 uint64_t iova;
467 NvmeCmd cmd = {
468 .opcode = NVME_ADM_CMD_IDENTIFY,
469 .cdw10 = cpu_to_le32(0x1),
470 };
471
472 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
473 if (!resp) {
474 error_setg(errp, "Cannot allocate buffer for identify response");
475 goto out;
476 }
477 idctrl = (NvmeIdCtrl *)resp;
478 idns = (NvmeIdNs *)resp;
479 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
480 if (r) {
481 error_setg(errp, "Cannot map buffer for DMA");
482 goto out;
483 }
484 cmd.prp1 = cpu_to_le64(iova);
485
486 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
487 error_setg(errp, "Failed to identify controller");
488 goto out;
489 }
490
491 if (le32_to_cpu(idctrl->nn) < namespace) {
492 error_setg(errp, "Invalid namespace");
493 goto out;
494 }
495 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
496 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
497 /* For now the page list buffer per command is one page, to hold at most
498 * s->page_size / sizeof(uint64_t) entries. */
499 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
500 s->page_size / sizeof(uint64_t) * s->page_size);
501
e0dd95e3
ML
502 oncs = le16_to_cpu(idctrl->oncs);
503 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROS);
e87a09d6 504 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
e0dd95e3 505
bdd6a90a
FZ
506 memset(resp, 0, 4096);
507
508 cmd.cdw10 = 0;
509 cmd.nsid = cpu_to_le32(namespace);
510 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
511 error_setg(errp, "Failed to identify namespace");
512 goto out;
513 }
514
515 s->nsze = le64_to_cpu(idns->nsze);
118d1b6a
ML
516 lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
517
e0dd95e3
ML
518 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns->dlfeat) &&
519 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns->dlfeat) ==
520 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
521 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
522 }
523
118d1b6a
ML
524 if (lbaf->ms) {
525 error_setg(errp, "Namespaces with metadata are not yet supported");
526 goto out;
527 }
528
1120407b
HR
529 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
530 (1 << lbaf->ds) > s->page_size)
531 {
532 error_setg(errp, "Namespace has unsupported block size (2^%d)",
533 lbaf->ds);
118d1b6a
ML
534 goto out;
535 }
bdd6a90a 536
118d1b6a 537 s->blkshift = lbaf->ds;
bdd6a90a
FZ
538out:
539 qemu_vfio_dma_unmap(s->vfio, resp);
540 qemu_vfree(resp);
541}
542
543static bool nvme_poll_queues(BDRVNVMeState *s)
544{
545 bool progress = false;
546 int i;
547
548 for (i = 0; i < s->nr_queues; i++) {
549 NVMeQueuePair *q = s->queues[i];
2446e0e2
SH
550 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
551 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
552
553 /*
554 * Do an early check for completions. q->lock isn't needed because
555 * nvme_process_completion() only runs in the event loop thread and
556 * cannot race with itself.
557 */
558 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
559 continue;
560 }
561
bdd6a90a 562 qemu_mutex_lock(&q->lock);
b75fd5f5 563 while (nvme_process_completion(q)) {
bdd6a90a
FZ
564 /* Keep polling */
565 progress = true;
566 }
567 qemu_mutex_unlock(&q->lock);
568 }
569 return progress;
570}
571
572static void nvme_handle_event(EventNotifier *n)
573{
574 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
575
576 trace_nvme_handle_event(s);
bdd6a90a
FZ
577 event_notifier_test_and_clear(n);
578 nvme_poll_queues(s);
bdd6a90a
FZ
579}
580
581static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
582{
583 BDRVNVMeState *s = bs->opaque;
584 int n = s->nr_queues;
585 NVMeQueuePair *q;
586 NvmeCmd cmd;
587 int queue_size = NVME_QUEUE_SIZE;
588
589 q = nvme_create_queue_pair(bs, n, queue_size, errp);
590 if (!q) {
591 return false;
592 }
593 cmd = (NvmeCmd) {
594 .opcode = NVME_ADM_CMD_CREATE_CQ,
595 .prp1 = cpu_to_le64(q->cq.iova),
596 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
597 .cdw11 = cpu_to_le32(0x3),
598 };
599 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
600 error_setg(errp, "Failed to create io queue [%d]", n);
b75fd5f5 601 nvme_free_queue_pair(q);
bdd6a90a
FZ
602 return false;
603 }
604 cmd = (NvmeCmd) {
605 .opcode = NVME_ADM_CMD_CREATE_SQ,
606 .prp1 = cpu_to_le64(q->sq.iova),
607 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
608 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
609 };
610 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
611 error_setg(errp, "Failed to create io queue [%d]", n);
b75fd5f5 612 nvme_free_queue_pair(q);
bdd6a90a
FZ
613 return false;
614 }
615 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
616 s->queues[n] = q;
617 s->nr_queues++;
618 return true;
619}
620
621static bool nvme_poll_cb(void *opaque)
622{
623 EventNotifier *e = opaque;
624 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
bdd6a90a
FZ
625
626 trace_nvme_poll_cb(s);
b3ac2b94 627 return nvme_poll_queues(s);
bdd6a90a
FZ
628}
629
630static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
631 Error **errp)
632{
633 BDRVNVMeState *s = bs->opaque;
634 int ret;
635 uint64_t cap;
636 uint64_t timeout_ms;
637 uint64_t deadline, now;
638 Error *local_err = NULL;
639
640 qemu_co_mutex_init(&s->dma_map_lock);
641 qemu_co_queue_init(&s->dma_flush_queue);
cc61b074 642 s->device = g_strdup(device);
bdd6a90a
FZ
643 s->nsid = namespace;
644 s->aio_context = bdrv_get_aio_context(bs);
645 ret = event_notifier_init(&s->irq_notifier, 0);
646 if (ret) {
647 error_setg(errp, "Failed to init event notifier");
648 return ret;
649 }
650
651 s->vfio = qemu_vfio_open_pci(device, errp);
652 if (!s->vfio) {
653 ret = -EINVAL;
9582f357 654 goto out;
bdd6a90a
FZ
655 }
656
657 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
658 if (!s->regs) {
659 ret = -EINVAL;
9582f357 660 goto out;
bdd6a90a
FZ
661 }
662
663 /* Perform initialize sequence as described in NVMe spec "7.6.1
664 * Initialization". */
665
666 cap = le64_to_cpu(s->regs->cap);
667 if (!(cap & (1ULL << 37))) {
668 error_setg(errp, "Device doesn't support NVMe command set");
669 ret = -EINVAL;
9582f357 670 goto out;
bdd6a90a
FZ
671 }
672
673 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
674 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
675 bs->bl.opt_mem_alignment = s->page_size;
676 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
677
678 /* Reset device to get a clean state. */
679 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
680 /* Wait for CSTS.RDY = 0. */
681 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
682 while (le32_to_cpu(s->regs->csts) & 0x1) {
683 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
684 error_setg(errp, "Timeout while waiting for device to reset (%"
685 PRId64 " ms)",
686 timeout_ms);
687 ret = -ETIMEDOUT;
9582f357 688 goto out;
bdd6a90a
FZ
689 }
690 }
691
692 /* Set up admin queue. */
693 s->queues = g_new(NVMeQueuePair *, 1);
bdd6a90a
FZ
694 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
695 if (!s->queues[0]) {
696 ret = -EINVAL;
9582f357 697 goto out;
bdd6a90a 698 }
95667c3b 699 s->nr_queues = 1;
bdd6a90a
FZ
700 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
701 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
702 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
703 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
704
705 /* After setting up all control registers we can enable device now. */
706 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
707 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
708 0x1);
709 /* Wait for CSTS.RDY = 1. */
710 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
711 deadline = now + timeout_ms * 1000000;
712 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
713 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
714 error_setg(errp, "Timeout while waiting for device to start (%"
715 PRId64 " ms)",
716 timeout_ms);
717 ret = -ETIMEDOUT;
9582f357 718 goto out;
bdd6a90a
FZ
719 }
720 }
721
722 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
723 VFIO_PCI_MSIX_IRQ_INDEX, errp);
724 if (ret) {
9582f357 725 goto out;
bdd6a90a
FZ
726 }
727 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
728 false, nvme_handle_event, nvme_poll_cb);
729
78d8c99e 730 nvme_identify(bs, namespace, &local_err);
bdd6a90a
FZ
731 if (local_err) {
732 error_propagate(errp, local_err);
733 ret = -EIO;
9582f357 734 goto out;
bdd6a90a
FZ
735 }
736
737 /* Set up command queues. */
738 if (!nvme_add_io_queue(bs, errp)) {
739 ret = -EIO;
bdd6a90a 740 }
9582f357
FZ
741out:
742 /* Cleaning up is done in nvme_file_open() upon error. */
bdd6a90a
FZ
743 return ret;
744}
745
746/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
747 *
748 * nvme://0000:44:00.0/1
749 *
750 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
751 * is the PCI address, and the last part is the namespace number starting from
752 * 1 according to the NVMe spec. */
753static void nvme_parse_filename(const char *filename, QDict *options,
754 Error **errp)
755{
756 int pref = strlen("nvme://");
757
758 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
759 const char *tmp = filename + pref;
760 char *device;
761 const char *namespace;
762 unsigned long ns;
763 const char *slash = strchr(tmp, '/');
764 if (!slash) {
625eaca9 765 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
bdd6a90a
FZ
766 return;
767 }
768 device = g_strndup(tmp, slash - tmp);
625eaca9 769 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
bdd6a90a
FZ
770 g_free(device);
771 namespace = slash + 1;
772 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
773 error_setg(errp, "Invalid namespace '%s', positive number expected",
774 namespace);
775 return;
776 }
625eaca9
LV
777 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
778 *namespace ? namespace : "1");
bdd6a90a
FZ
779 }
780}
781
782static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
783 Error **errp)
784{
785 int ret;
786 BDRVNVMeState *s = bs->opaque;
787 NvmeCmd cmd = {
788 .opcode = NVME_ADM_CMD_SET_FEATURES,
789 .nsid = cpu_to_le32(s->nsid),
790 .cdw10 = cpu_to_le32(0x06),
791 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
792 };
793
794 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
795 if (ret) {
796 error_setg(errp, "Failed to configure NVMe write cache");
797 }
798 return ret;
799}
800
801static void nvme_close(BlockDriverState *bs)
802{
803 int i;
804 BDRVNVMeState *s = bs->opaque;
805
806 for (i = 0; i < s->nr_queues; ++i) {
b75fd5f5 807 nvme_free_queue_pair(s->queues[i]);
bdd6a90a 808 }
9582f357 809 g_free(s->queues);
bdd6a90a
FZ
810 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
811 false, NULL, NULL);
9582f357 812 event_notifier_cleanup(&s->irq_notifier);
bdd6a90a
FZ
813 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
814 qemu_vfio_close(s->vfio);
cc61b074
HR
815
816 g_free(s->device);
bdd6a90a
FZ
817}
818
819static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
820 Error **errp)
821{
822 const char *device;
823 QemuOpts *opts;
824 int namespace;
825 int ret;
826 BDRVNVMeState *s = bs->opaque;
827
e0dd95e3
ML
828 bs->supported_write_flags = BDRV_REQ_FUA;
829
bdd6a90a
FZ
830 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
831 qemu_opts_absorb_qdict(opts, options, &error_abort);
832 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
833 if (!device) {
834 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
835 qemu_opts_del(opts);
836 return -EINVAL;
837 }
838
839 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
840 ret = nvme_init(bs, device, namespace, errp);
841 qemu_opts_del(opts);
842 if (ret) {
843 goto fail;
844 }
845 if (flags & BDRV_O_NOCACHE) {
846 if (!s->write_cache_supported) {
847 error_setg(errp,
848 "NVMe controller doesn't support write cache configuration");
849 ret = -EINVAL;
850 } else {
851 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
852 errp);
853 }
854 if (ret) {
855 goto fail;
856 }
857 }
bdd6a90a
FZ
858 return 0;
859fail:
860 nvme_close(bs);
861 return ret;
862}
863
864static int64_t nvme_getlength(BlockDriverState *bs)
865{
866 BDRVNVMeState *s = bs->opaque;
118d1b6a
ML
867 return s->nsze << s->blkshift;
868}
bdd6a90a 869
1120407b 870static uint32_t nvme_get_blocksize(BlockDriverState *bs)
118d1b6a
ML
871{
872 BDRVNVMeState *s = bs->opaque;
1120407b
HR
873 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
874 return UINT32_C(1) << s->blkshift;
118d1b6a
ML
875}
876
877static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
878{
1120407b 879 uint32_t blocksize = nvme_get_blocksize(bs);
118d1b6a
ML
880 bsz->phys = blocksize;
881 bsz->log = blocksize;
882 return 0;
bdd6a90a
FZ
883}
884
885/* Called with s->dma_map_lock */
886static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
887 QEMUIOVector *qiov)
888{
889 int r = 0;
890 BDRVNVMeState *s = bs->opaque;
891
892 s->dma_map_count -= qiov->size;
893 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
894 r = qemu_vfio_dma_reset_temporary(s->vfio);
895 if (!r) {
896 qemu_co_queue_restart_all(&s->dma_flush_queue);
897 }
898 }
899 return r;
900}
901
902/* Called with s->dma_map_lock */
903static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
904 NVMeRequest *req, QEMUIOVector *qiov)
905{
906 BDRVNVMeState *s = bs->opaque;
907 uint64_t *pagelist = req->prp_list_page;
908 int i, j, r;
909 int entries = 0;
910
911 assert(qiov->size);
912 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
913 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
914 for (i = 0; i < qiov->niov; ++i) {
915 bool retry = true;
916 uint64_t iova;
917try_map:
918 r = qemu_vfio_dma_map(s->vfio,
919 qiov->iov[i].iov_base,
920 qiov->iov[i].iov_len,
921 true, &iova);
922 if (r == -ENOMEM && retry) {
923 retry = false;
924 trace_nvme_dma_flush_queue_wait(s);
925 if (s->dma_map_count) {
926 trace_nvme_dma_map_flush(s);
927 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
928 } else {
929 r = qemu_vfio_dma_reset_temporary(s->vfio);
930 if (r) {
931 goto fail;
932 }
933 }
934 goto try_map;
935 }
936 if (r) {
937 goto fail;
938 }
939
940 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
2916405a 941 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
bdd6a90a
FZ
942 }
943 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
944 qiov->iov[i].iov_len / s->page_size);
945 }
946
947 s->dma_map_count += qiov->size;
948
949 assert(entries <= s->page_size / sizeof(uint64_t));
950 switch (entries) {
951 case 0:
952 abort();
953 case 1:
2916405a 954 cmd->prp1 = pagelist[0];
bdd6a90a
FZ
955 cmd->prp2 = 0;
956 break;
957 case 2:
2916405a
LF
958 cmd->prp1 = pagelist[0];
959 cmd->prp2 = pagelist[1];
bdd6a90a
FZ
960 break;
961 default:
2916405a
LF
962 cmd->prp1 = pagelist[0];
963 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
bdd6a90a
FZ
964 break;
965 }
966 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
967 for (i = 0; i < entries; ++i) {
968 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
969 }
970 return 0;
971fail:
972 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
973 * increment s->dma_map_count. This is okay for fixed mapping memory areas
974 * because they are already mapped before calling this function; for
975 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
976 * calling qemu_vfio_dma_reset_temporary when necessary. */
977 return r;
978}
979
980typedef struct {
981 Coroutine *co;
982 int ret;
983 AioContext *ctx;
984} NVMeCoData;
985
986static void nvme_rw_cb_bh(void *opaque)
987{
988 NVMeCoData *data = opaque;
989 qemu_coroutine_enter(data->co);
990}
991
992static void nvme_rw_cb(void *opaque, int ret)
993{
994 NVMeCoData *data = opaque;
995 data->ret = ret;
996 if (!data->co) {
997 /* The rw coroutine hasn't yielded, don't try to enter. */
998 return;
999 }
e4ec5ad4 1000 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
bdd6a90a
FZ
1001}
1002
1003static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1004 uint64_t offset, uint64_t bytes,
1005 QEMUIOVector *qiov,
1006 bool is_write,
1007 int flags)
1008{
1009 int r;
1010 BDRVNVMeState *s = bs->opaque;
1011 NVMeQueuePair *ioq = s->queues[1];
1012 NVMeRequest *req;
118d1b6a
ML
1013
1014 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
bdd6a90a
FZ
1015 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1016 NvmeCmd cmd = {
1017 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1018 .nsid = cpu_to_le32(s->nsid),
118d1b6a
ML
1019 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1020 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
bdd6a90a
FZ
1021 .cdw12 = cpu_to_le32(cdw12),
1022 };
1023 NVMeCoData data = {
1024 .ctx = bdrv_get_aio_context(bs),
1025 .ret = -EINPROGRESS,
1026 };
1027
1028 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1029 assert(s->nr_queues > 1);
1030 req = nvme_get_free_req(ioq);
1031 assert(req);
1032
1033 qemu_co_mutex_lock(&s->dma_map_lock);
1034 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1035 qemu_co_mutex_unlock(&s->dma_map_lock);
1036 if (r) {
b75fd5f5 1037 nvme_put_free_req_and_wake(ioq, req);
bdd6a90a
FZ
1038 return r;
1039 }
b75fd5f5 1040 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
bdd6a90a
FZ
1041
1042 data.co = qemu_coroutine_self();
1043 while (data.ret == -EINPROGRESS) {
1044 qemu_coroutine_yield();
1045 }
1046
1047 qemu_co_mutex_lock(&s->dma_map_lock);
1048 r = nvme_cmd_unmap_qiov(bs, qiov);
1049 qemu_co_mutex_unlock(&s->dma_map_lock);
1050 if (r) {
1051 return r;
1052 }
1053
1054 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1055 return data.ret;
1056}
1057
1058static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1059 const QEMUIOVector *qiov)
1060{
1061 int i;
1062 BDRVNVMeState *s = bs->opaque;
1063
1064 for (i = 0; i < qiov->niov; ++i) {
1065 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1066 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1067 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1068 qiov->iov[i].iov_len, s->page_size);
1069 return false;
1070 }
1071 }
1072 return true;
1073}
1074
1075static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1076 QEMUIOVector *qiov, bool is_write, int flags)
1077{
1078 BDRVNVMeState *s = bs->opaque;
1079 int r;
1080 uint8_t *buf = NULL;
1081 QEMUIOVector local_qiov;
1082
1083 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1084 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1085 assert(bytes <= s->max_transfer);
1086 if (nvme_qiov_aligned(bs, qiov)) {
1087 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1088 }
1089 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1090 buf = qemu_try_blockalign(bs, bytes);
1091
1092 if (!buf) {
1093 return -ENOMEM;
1094 }
1095 qemu_iovec_init(&local_qiov, 1);
1096 if (is_write) {
1097 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1098 }
1099 qemu_iovec_add(&local_qiov, buf, bytes);
1100 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1101 qemu_iovec_destroy(&local_qiov);
1102 if (!r && !is_write) {
1103 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1104 }
1105 qemu_vfree(buf);
1106 return r;
1107}
1108
1109static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1110 uint64_t offset, uint64_t bytes,
1111 QEMUIOVector *qiov, int flags)
1112{
1113 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1114}
1115
1116static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1117 uint64_t offset, uint64_t bytes,
1118 QEMUIOVector *qiov, int flags)
1119{
1120 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1121}
1122
1123static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1124{
1125 BDRVNVMeState *s = bs->opaque;
1126 NVMeQueuePair *ioq = s->queues[1];
1127 NVMeRequest *req;
1128 NvmeCmd cmd = {
1129 .opcode = NVME_CMD_FLUSH,
1130 .nsid = cpu_to_le32(s->nsid),
1131 };
1132 NVMeCoData data = {
1133 .ctx = bdrv_get_aio_context(bs),
1134 .ret = -EINPROGRESS,
1135 };
1136
1137 assert(s->nr_queues > 1);
1138 req = nvme_get_free_req(ioq);
1139 assert(req);
b75fd5f5 1140 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
bdd6a90a
FZ
1141
1142 data.co = qemu_coroutine_self();
1143 if (data.ret == -EINPROGRESS) {
1144 qemu_coroutine_yield();
1145 }
1146
1147 return data.ret;
1148}
1149
1150
e0dd95e3
ML
1151static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1152 int64_t offset,
1153 int bytes,
1154 BdrvRequestFlags flags)
1155{
1156 BDRVNVMeState *s = bs->opaque;
1157 NVMeQueuePair *ioq = s->queues[1];
1158 NVMeRequest *req;
1159
1160 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1161
1162 if (!s->supports_write_zeroes) {
1163 return -ENOTSUP;
1164 }
1165
1166 NvmeCmd cmd = {
1167 .opcode = NVME_CMD_WRITE_ZEROS,
1168 .nsid = cpu_to_le32(s->nsid),
1169 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1170 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1171 };
1172
1173 NVMeCoData data = {
1174 .ctx = bdrv_get_aio_context(bs),
1175 .ret = -EINPROGRESS,
1176 };
1177
1178 if (flags & BDRV_REQ_MAY_UNMAP) {
1179 cdw12 |= (1 << 25);
1180 }
1181
1182 if (flags & BDRV_REQ_FUA) {
1183 cdw12 |= (1 << 30);
1184 }
1185
1186 cmd.cdw12 = cpu_to_le32(cdw12);
1187
1188 trace_nvme_write_zeroes(s, offset, bytes, flags);
1189 assert(s->nr_queues > 1);
1190 req = nvme_get_free_req(ioq);
1191 assert(req);
1192
b75fd5f5 1193 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
e0dd95e3
ML
1194
1195 data.co = qemu_coroutine_self();
1196 while (data.ret == -EINPROGRESS) {
1197 qemu_coroutine_yield();
1198 }
1199
1200 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1201 return data.ret;
1202}
1203
1204
e87a09d6
ML
1205static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1206 int64_t offset,
1207 int bytes)
1208{
1209 BDRVNVMeState *s = bs->opaque;
1210 NVMeQueuePair *ioq = s->queues[1];
1211 NVMeRequest *req;
1212 NvmeDsmRange *buf;
1213 QEMUIOVector local_qiov;
1214 int ret;
1215
1216 NvmeCmd cmd = {
1217 .opcode = NVME_CMD_DSM,
1218 .nsid = cpu_to_le32(s->nsid),
1219 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1220 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1221 };
1222
1223 NVMeCoData data = {
1224 .ctx = bdrv_get_aio_context(bs),
1225 .ret = -EINPROGRESS,
1226 };
1227
1228 if (!s->supports_discard) {
1229 return -ENOTSUP;
1230 }
1231
1232 assert(s->nr_queues > 1);
1233
1234 buf = qemu_try_blockalign0(bs, s->page_size);
1235 if (!buf) {
1236 return -ENOMEM;
1237 }
1238
1239 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1240 buf->slba = cpu_to_le64(offset >> s->blkshift);
1241 buf->cattr = 0;
1242
1243 qemu_iovec_init(&local_qiov, 1);
1244 qemu_iovec_add(&local_qiov, buf, 4096);
1245
1246 req = nvme_get_free_req(ioq);
1247 assert(req);
1248
1249 qemu_co_mutex_lock(&s->dma_map_lock);
1250 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1251 qemu_co_mutex_unlock(&s->dma_map_lock);
1252
1253 if (ret) {
b75fd5f5 1254 nvme_put_free_req_and_wake(ioq, req);
e87a09d6
ML
1255 goto out;
1256 }
1257
1258 trace_nvme_dsm(s, offset, bytes);
1259
b75fd5f5 1260 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
e87a09d6
ML
1261
1262 data.co = qemu_coroutine_self();
1263 while (data.ret == -EINPROGRESS) {
1264 qemu_coroutine_yield();
1265 }
1266
1267 qemu_co_mutex_lock(&s->dma_map_lock);
1268 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1269 qemu_co_mutex_unlock(&s->dma_map_lock);
1270
1271 if (ret) {
1272 goto out;
1273 }
1274
1275 ret = data.ret;
1276 trace_nvme_dsm_done(s, offset, bytes, ret);
1277out:
1278 qemu_iovec_destroy(&local_qiov);
1279 qemu_vfree(buf);
1280 return ret;
1281
1282}
1283
1284
bdd6a90a
FZ
1285static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1286 BlockReopenQueue *queue, Error **errp)
1287{
1288 return 0;
1289}
1290
998b3a1e 1291static void nvme_refresh_filename(BlockDriverState *bs)
bdd6a90a 1292{
cc61b074 1293 BDRVNVMeState *s = bs->opaque;
bdd6a90a 1294
cc61b074
HR
1295 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1296 s->device, s->nsid);
bdd6a90a
FZ
1297}
1298
1299static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1300{
1301 BDRVNVMeState *s = bs->opaque;
1302
1303 bs->bl.opt_mem_alignment = s->page_size;
1304 bs->bl.request_alignment = s->page_size;
1305 bs->bl.max_transfer = s->max_transfer;
1306}
1307
1308static void nvme_detach_aio_context(BlockDriverState *bs)
1309{
1310 BDRVNVMeState *s = bs->opaque;
1311
1312 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1313 false, NULL, NULL);
1314}
1315
1316static void nvme_attach_aio_context(BlockDriverState *bs,
1317 AioContext *new_context)
1318{
1319 BDRVNVMeState *s = bs->opaque;
1320
1321 s->aio_context = new_context;
1322 aio_set_event_notifier(new_context, &s->irq_notifier,
1323 false, nvme_handle_event, nvme_poll_cb);
1324}
1325
1326static void nvme_aio_plug(BlockDriverState *bs)
1327{
1328 BDRVNVMeState *s = bs->opaque;
2f0d8947
PB
1329 assert(!s->plugged);
1330 s->plugged = true;
bdd6a90a
FZ
1331}
1332
1333static void nvme_aio_unplug(BlockDriverState *bs)
1334{
1335 int i;
1336 BDRVNVMeState *s = bs->opaque;
1337 assert(s->plugged);
2f0d8947
PB
1338 s->plugged = false;
1339 for (i = 1; i < s->nr_queues; i++) {
1340 NVMeQueuePair *q = s->queues[i];
1341 qemu_mutex_lock(&q->lock);
b75fd5f5
SH
1342 nvme_kick(q);
1343 nvme_process_completion(q);
2f0d8947 1344 qemu_mutex_unlock(&q->lock);
bdd6a90a
FZ
1345 }
1346}
1347
9ed61612
FZ
1348static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1349{
1350 int ret;
1351 BDRVNVMeState *s = bs->opaque;
1352
1353 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1354 if (ret) {
1355 /* FIXME: we may run out of IOVA addresses after repeated
1356 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1357 * doesn't reclaim addresses for fixed mappings. */
1358 error_report("nvme_register_buf failed: %s", strerror(-ret));
1359 }
1360}
1361
1362static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1363{
1364 BDRVNVMeState *s = bs->opaque;
1365
1366 qemu_vfio_dma_unmap(s->vfio, host);
1367}
1368
2654267c
HR
1369static const char *const nvme_strong_runtime_opts[] = {
1370 NVME_BLOCK_OPT_DEVICE,
1371 NVME_BLOCK_OPT_NAMESPACE,
1372
1373 NULL
1374};
1375
bdd6a90a
FZ
1376static BlockDriver bdrv_nvme = {
1377 .format_name = "nvme",
1378 .protocol_name = "nvme",
1379 .instance_size = sizeof(BDRVNVMeState),
1380
5a5e7f8c
ML
1381 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1382 .create_opts = &bdrv_create_opts_simple,
1383
bdd6a90a
FZ
1384 .bdrv_parse_filename = nvme_parse_filename,
1385 .bdrv_file_open = nvme_file_open,
1386 .bdrv_close = nvme_close,
1387 .bdrv_getlength = nvme_getlength,
118d1b6a 1388 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
bdd6a90a
FZ
1389
1390 .bdrv_co_preadv = nvme_co_preadv,
1391 .bdrv_co_pwritev = nvme_co_pwritev,
e0dd95e3
ML
1392
1393 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
e87a09d6 1394 .bdrv_co_pdiscard = nvme_co_pdiscard,
e0dd95e3 1395
bdd6a90a
FZ
1396 .bdrv_co_flush_to_disk = nvme_co_flush,
1397 .bdrv_reopen_prepare = nvme_reopen_prepare,
1398
bdd6a90a
FZ
1399 .bdrv_refresh_filename = nvme_refresh_filename,
1400 .bdrv_refresh_limits = nvme_refresh_limits,
2654267c 1401 .strong_runtime_opts = nvme_strong_runtime_opts,
bdd6a90a
FZ
1402
1403 .bdrv_detach_aio_context = nvme_detach_aio_context,
1404 .bdrv_attach_aio_context = nvme_attach_aio_context,
1405
1406 .bdrv_io_plug = nvme_aio_plug,
1407 .bdrv_io_unplug = nvme_aio_unplug,
9ed61612
FZ
1408
1409 .bdrv_register_buf = nvme_register_buf,
1410 .bdrv_unregister_buf = nvme_unregister_buf,
bdd6a90a
FZ
1411};
1412
1413static void bdrv_nvme_init(void)
1414{
1415 bdrv_register(&bdrv_nvme);
1416}
1417
1418block_init(bdrv_nvme_init);