]> git.proxmox.com Git - mirror_qemu.git/blame - block/qcow2-cluster.c
qcow2: Limit total allocation range to INT_MAX
[mirror_qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
80c71a24 25#include "qemu/osdep.h"
45aba42f
KW
26#include <zlib.h>
27
c9a442e4 28#include "qapi/error.h"
0d8c41da 29#include "qcow2.h"
58369e22 30#include "qemu/bswap.h"
3cce16f4 31#include "trace.h"
45aba42f 32
46b732cd
PB
33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34{
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size, i, ret;
37
38 if (exact_size >= s->l1_size) {
39 return 0;
40 }
41
42 new_l1_size = exact_size;
43
44#ifdef DEBUG_ALLOC2
45 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46#endif
47
48 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50 new_l1_size * sizeof(uint64_t),
51 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
52 if (ret < 0) {
53 goto fail;
54 }
55
56 ret = bdrv_flush(bs->file->bs);
57 if (ret < 0) {
58 goto fail;
59 }
60
61 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64 continue;
65 }
66 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67 s->cluster_size, QCOW2_DISCARD_ALWAYS);
68 s->l1_table[i] = 0;
69 }
70 return 0;
71
72fail:
73 /*
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
77 */
78 memset(s->l1_table + new_l1_size, 0,
79 (s->l1_size - new_l1_size) * sizeof(uint64_t));
80 return ret;
81}
82
2cf7cfa1
KW
83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84 bool exact_size)
45aba42f 85{
ff99129a 86 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 87 int new_l1_size2, ret, i;
45aba42f 88 uint64_t *new_l1_table;
fda74f82 89 int64_t old_l1_table_offset, old_l1_size;
2cf7cfa1 90 int64_t new_l1_table_offset, new_l1_size;
45aba42f
KW
91 uint8_t data[12];
92
72893756 93 if (min_size <= s->l1_size)
45aba42f 94 return 0;
72893756 95
b93f9950
HR
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
98 * new_l1_size) */
99 if (min_size > INT_MAX / sizeof(uint64_t)) {
100 return -EFBIG;
101 }
102
72893756
SH
103 if (exact_size) {
104 new_l1_size = min_size;
105 } else {
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size = s->l1_size;
108 if (new_l1_size == 0) {
109 new_l1_size = 1;
110 }
111 while (min_size > new_l1_size) {
21cf3e12 112 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
72893756 113 }
45aba42f 114 }
72893756 115
84c26520
HR
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2cf7cfa1
KW
118 return -EFBIG;
119 }
120
45aba42f 121#ifdef DEBUG_ALLOC2
2cf7cfa1
KW
122 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123 s->l1_size, new_l1_size);
45aba42f
KW
124#endif
125
126 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
9a4f4c31 127 new_l1_table = qemu_try_blockalign(bs->file->bs,
9e029689 128 ROUND_UP(new_l1_size2, 512));
de82815d
KW
129 if (new_l1_table == NULL) {
130 return -ENOMEM;
131 }
9e029689 132 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
de82815d 133
0647d47c
SH
134 if (s->l1_size) {
135 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
136 }
45aba42f
KW
137
138 /* write new table (align to cluster) */
66f82cee 139 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 140 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 141 if (new_l1_table_offset < 0) {
de82815d 142 qemu_vfree(new_l1_table);
5d757b56
KW
143 return new_l1_table_offset;
144 }
29c1a730
KW
145
146 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
147 if (ret < 0) {
80fa3341 148 goto fail;
29c1a730 149 }
45aba42f 150
cf93980e
HR
151 /* the L1 position has not yet been updated, so these clusters must
152 * indeed be completely free */
231bb267 153 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
966b000f 154 new_l1_size2, false);
cf93980e
HR
155 if (ret < 0) {
156 goto fail;
157 }
158
66f82cee 159 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
160 for(i = 0; i < s->l1_size; i++)
161 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
d9ca2ea2 162 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
9a4f4c31 163 new_l1_table, new_l1_size2);
8b3b7206 164 if (ret < 0)
45aba42f
KW
165 goto fail;
166 for(i = 0; i < s->l1_size; i++)
167 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
168
169 /* set new table */
66f82cee 170 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
f1f7a1dd 171 stl_be_p(data, new_l1_size);
e4ef9f46 172 stq_be_p(data + 4, new_l1_table_offset);
d9ca2ea2 173 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
9a4f4c31 174 data, sizeof(data));
8b3b7206 175 if (ret < 0) {
45aba42f 176 goto fail;
fb8fa77c 177 }
de82815d 178 qemu_vfree(s->l1_table);
fda74f82 179 old_l1_table_offset = s->l1_table_offset;
45aba42f
KW
180 s->l1_table_offset = new_l1_table_offset;
181 s->l1_table = new_l1_table;
fda74f82 182 old_l1_size = s->l1_size;
45aba42f 183 s->l1_size = new_l1_size;
fda74f82
HR
184 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
185 QCOW2_DISCARD_OTHER);
45aba42f
KW
186 return 0;
187 fail:
de82815d 188 qemu_vfree(new_l1_table);
6cfcb9b8
KW
189 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
190 QCOW2_DISCARD_OTHER);
8b3b7206 191 return ret;
45aba42f
KW
192}
193
45aba42f
KW
194/*
195 * l2_load
196 *
e2b5713e
AG
197 * @bs: The BlockDriverState
198 * @offset: A guest offset, used to calculate what slice of the L2
199 * table to load.
200 * @l2_offset: Offset to the L2 table in the image file.
201 * @l2_slice: Location to store the pointer to the L2 slice.
45aba42f 202 *
e2b5713e
AG
203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
204 * that are loaded by the qcow2 cache). If the slice is in the cache,
205 * the cache is used; otherwise the L2 slice is loaded from the image
206 * file.
45aba42f 207 */
e2b5713e
AG
208static int l2_load(BlockDriverState *bs, uint64_t offset,
209 uint64_t l2_offset, uint64_t **l2_slice)
45aba42f 210{
ff99129a 211 BDRVQcow2State *s = bs->opaque;
e2b5713e
AG
212 int start_of_slice = sizeof(uint64_t) *
213 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
45aba42f 214
e2b5713e
AG
215 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
216 (void **)l2_slice);
45aba42f
KW
217}
218
6583e3c7
KW
219/*
220 * Writes one sector of the L1 table to the disk (can't update single entries
221 * and we really don't want bdrv_pread to perform a read-modify-write)
222 */
223#define L1_ENTRIES_PER_SECTOR (512 / 8)
e23e400e 224int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 225{
ff99129a 226 BDRVQcow2State *s = bs->opaque;
a1391444 227 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
6583e3c7 228 int l1_start_index;
f7defcb6 229 int i, ret;
6583e3c7
KW
230
231 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
a1391444
HR
232 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
233 i++)
234 {
6583e3c7
KW
235 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
236 }
237
231bb267 238 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
966b000f 239 s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
cf93980e
HR
240 if (ret < 0) {
241 return ret;
242 }
243
66f82cee 244 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
d9ca2ea2 245 ret = bdrv_pwrite_sync(bs->file,
9a4f4c31
KW
246 s->l1_table_offset + 8 * l1_start_index,
247 buf, sizeof(buf));
f7defcb6
KW
248 if (ret < 0) {
249 return ret;
6583e3c7
KW
250 }
251
252 return 0;
253}
254
45aba42f
KW
255/*
256 * l2_allocate
257 *
258 * Allocate a new l2 entry in the file. If l1_index points to an already
259 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
260 * table) copy the contents of the old L2 table into the newly allocated one.
261 * Otherwise the new table is initialized with zeros.
262 *
263 */
264
3861946a 265static int l2_allocate(BlockDriverState *bs, int l1_index)
45aba42f 266{
ff99129a 267 BDRVQcow2State *s = bs->opaque;
6583e3c7 268 uint64_t old_l2_offset;
3861946a
AG
269 uint64_t *l2_slice = NULL;
270 unsigned slice, slice_size2, n_slices;
f4f0d391 271 int64_t l2_offset;
c46e1167 272 int ret;
45aba42f
KW
273
274 old_l2_offset = s->l1_table[l1_index];
275
3cce16f4
KW
276 trace_qcow2_l2_allocate(bs, l1_index);
277
45aba42f
KW
278 /* allocate a new l2 entry */
279
ed6ccf0f 280 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 281 if (l2_offset < 0) {
be0b742e
HR
282 ret = l2_offset;
283 goto fail;
5d757b56 284 }
29c1a730 285
c1c43990
AG
286 /* The offset must fit in the offset field of the L1 table entry */
287 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
288
98839750
AG
289 /* If we're allocating the table at offset 0 then something is wrong */
290 if (l2_offset == 0) {
291 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
292 "allocation of L2 table at offset 0");
293 ret = -EIO;
294 goto fail;
295 }
296
29c1a730
KW
297 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
298 if (ret < 0) {
299 goto fail;
300 }
45aba42f 301
45aba42f
KW
302 /* allocate a new entry in the l2 cache */
303
3861946a
AG
304 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
305 n_slices = s->cluster_size / slice_size2;
306
3cce16f4 307 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
3861946a 308 for (slice = 0; slice < n_slices; slice++) {
6580bb09 309 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
3861946a
AG
310 l2_offset + slice * slice_size2,
311 (void **) &l2_slice);
6580bb09
AG
312 if (ret < 0) {
313 goto fail;
314 }
29c1a730 315
6580bb09 316 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
3861946a
AG
317 /* if there was no old l2 table, clear the new slice */
318 memset(l2_slice, 0, slice_size2);
6580bb09 319 } else {
3861946a
AG
320 uint64_t *old_slice;
321 uint64_t old_l2_slice_offset =
322 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
29c1a730 323
3861946a 324 /* if there was an old l2 table, read a slice from the disk */
6580bb09 325 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
3861946a
AG
326 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
327 (void **) &old_slice);
6580bb09
AG
328 if (ret < 0) {
329 goto fail;
330 }
331
3861946a 332 memcpy(l2_slice, old_slice, slice_size2);
6580bb09 333
3861946a 334 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
29c1a730
KW
335 }
336
3861946a 337 /* write the l2 slice to the file */
6580bb09 338 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 339
6580bb09 340 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
3861946a
AG
341 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
342 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 343 }
29c1a730 344
29c1a730 345 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 346 if (ret < 0) {
175e1152
KW
347 goto fail;
348 }
349
350 /* update the L1 entry */
3cce16f4 351 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152 352 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
e23e400e 353 ret = qcow2_write_l1_entry(bs, l1_index);
175e1152
KW
354 if (ret < 0) {
355 goto fail;
c46e1167 356 }
45aba42f 357
3cce16f4 358 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 359 return 0;
175e1152
KW
360
361fail:
3cce16f4 362 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
3861946a
AG
363 if (l2_slice != NULL) {
364 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
8585afd8 365 }
68dba0bf 366 s->l1_table[l1_index] = old_l2_offset;
e3b21ef9
HR
367 if (l2_offset > 0) {
368 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
369 QCOW2_DISCARD_ALWAYS);
370 }
175e1152 371 return ret;
45aba42f
KW
372}
373
2bfcc4a0 374/*
13f893c4 375 * Checks how many clusters in a given L2 slice are contiguous in the image
2bfcc4a0
KW
376 * file. As soon as one of the flags in the bitmask stop_flags changes compared
377 * to the first cluster, the search is stopped and the cluster is not counted
378 * as contiguous. (This allows it, for example, to stop at the first compressed
379 * cluster which may require a different handling)
380 */
808c2bb4
KW
381static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
382 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
45aba42f
KW
383{
384 int i;
3ef95218 385 QCow2ClusterType first_cluster_type;
78a52ad5 386 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
13f893c4 387 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
15684a47 388 uint64_t offset = first_entry & mask;
45aba42f 389
b8c8353a
KW
390 first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
391 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
45aba42f 392 return 0;
564a6b69 393 }
45aba42f 394
564a6b69 395 /* must be allocated */
564a6b69 396 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
fdfab37d 397 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
15684a47 398
61653008 399 for (i = 0; i < nb_clusters; i++) {
13f893c4 400 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
2bfcc4a0 401 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 402 break;
2bfcc4a0
KW
403 }
404 }
45aba42f 405
7d37435b 406 return i;
45aba42f
KW
407}
408
4341df8a
EB
409/*
410 * Checks how many consecutive unallocated clusters in a given L2
c26f10ba 411 * slice have the same cluster type.
4341df8a 412 */
808c2bb4
KW
413static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
414 int nb_clusters,
c26f10ba 415 uint64_t *l2_slice,
3ef95218 416 QCow2ClusterType wanted_type)
45aba42f 417{
2bfcc4a0
KW
418 int i;
419
fdfab37d 420 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
4341df8a 421 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
2bfcc4a0 422 for (i = 0; i < nb_clusters; i++) {
c26f10ba 423 uint64_t entry = be64_to_cpu(l2_slice[i]);
808c2bb4 424 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
45aba42f 425
fdfab37d 426 if (type != wanted_type) {
2bfcc4a0
KW
427 break;
428 }
429 }
45aba42f
KW
430
431 return i;
432}
433
672f0f2c
AG
434static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
435 uint64_t src_cluster_offset,
436 unsigned offset_in_cluster,
86b862c4 437 QEMUIOVector *qiov)
45aba42f 438{
aaa4d20b 439 int ret;
1b9f1491 440
86b862c4 441 if (qiov->size == 0) {
99450c6f
AG
442 return 0;
443 }
444
66f82cee 445 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6 446
dba28555 447 if (!bs->drv) {
672f0f2c 448 return -ENOMEDIUM;
dba28555
HR
449 }
450
aef4acb6
SH
451 /* Call .bdrv_co_readv() directly instead of using the public block-layer
452 * interface. This avoids double I/O throttling and request tracking,
453 * which can lead to deadlock when block layer copy-on-read is enabled.
454 */
df893d25
VSO
455 ret = bs->drv->bdrv_co_preadv_part(bs,
456 src_cluster_offset + offset_in_cluster,
457 qiov->size, qiov, 0, 0);
1b9f1491 458 if (ret < 0) {
672f0f2c 459 return ret;
1b9f1491
KW
460 }
461
672f0f2c
AG
462 return 0;
463}
464
672f0f2c
AG
465static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
466 uint64_t cluster_offset,
467 unsigned offset_in_cluster,
86b862c4 468 QEMUIOVector *qiov)
672f0f2c 469{
966b000f 470 BDRVQcow2State *s = bs->opaque;
672f0f2c
AG
471 int ret;
472
86b862c4 473 if (qiov->size == 0) {
672f0f2c
AG
474 return 0;
475 }
476
231bb267 477 ret = qcow2_pre_write_overlap_check(bs, 0,
966b000f 478 cluster_offset + offset_in_cluster, qiov->size, true);
cf93980e 479 if (ret < 0) {
672f0f2c 480 return ret;
cf93980e
HR
481 }
482
66f82cee 483 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
966b000f 484 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
86b862c4 485 qiov->size, qiov, 0);
1b9f1491 486 if (ret < 0) {
672f0f2c 487 return ret;
1b9f1491
KW
488 }
489
672f0f2c 490 return 0;
45aba42f
KW
491}
492
493
494/*
495 * get_cluster_offset
496 *
ecfe1863
KW
497 * For a given offset of the virtual disk, find the cluster type and offset in
498 * the qcow2 file. The offset is stored in *cluster_offset.
45aba42f 499 *
ecfe1863
KW
500 * On entry, *bytes is the maximum number of contiguous bytes starting at
501 * offset that we are interested in.
45aba42f 502 *
ecfe1863
KW
503 * On exit, *bytes is the number of bytes starting at offset that have the same
504 * cluster type and (if applicable) are stored contiguously in the image file.
505 * Compressed clusters are always returned one by one.
45aba42f 506 *
68d000a3
KW
507 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
508 * cases.
45aba42f 509 */
1c46efaa 510int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
ecfe1863 511 unsigned int *bytes, uint64_t *cluster_offset)
45aba42f 512{
ff99129a 513 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 514 unsigned int l2_index;
fd630039
AG
515 uint64_t l1_index, l2_offset, *l2_slice;
516 int c;
c834cba9
HR
517 unsigned int offset_in_cluster;
518 uint64_t bytes_available, bytes_needed, nb_clusters;
3ef95218 519 QCow2ClusterType type;
55c17e98 520 int ret;
45aba42f 521
b2f65d6b 522 offset_in_cluster = offset_into_cluster(s, offset);
ecfe1863 523 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
45aba42f 524
b2f65d6b 525 /* compute how many bytes there are between the start of the cluster
fd630039
AG
526 * containing offset and the end of the l2 slice that contains
527 * the entry pointing to it */
528 bytes_available =
529 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
530 << s->cluster_bits;
45aba42f 531
b2f65d6b
KW
532 if (bytes_needed > bytes_available) {
533 bytes_needed = bytes_available;
45aba42f
KW
534 }
535
1c46efaa 536 *cluster_offset = 0;
45aba42f 537
b6af0975 538 /* seek to the l2 offset in the l1 table */
45aba42f 539
05b5b6ee 540 l1_index = offset_to_l1_index(s, offset);
68d000a3 541 if (l1_index >= s->l1_size) {
3ef95218 542 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 543 goto out;
68d000a3 544 }
45aba42f 545
68d000a3
KW
546 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
547 if (!l2_offset) {
3ef95218 548 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 549 goto out;
68d000a3 550 }
45aba42f 551
a97c67ee
HR
552 if (offset_into_cluster(s, l2_offset)) {
553 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
554 " unaligned (L1 index: %#" PRIx64 ")",
555 l2_offset, l1_index);
556 return -EIO;
557 }
558
fd630039 559 /* load the l2 slice in memory */
45aba42f 560
fd630039 561 ret = l2_load(bs, offset, l2_offset, &l2_slice);
55c17e98
KW
562 if (ret < 0) {
563 return ret;
1c46efaa 564 }
45aba42f
KW
565
566 /* find the cluster offset for the given disk offset */
567
fd630039
AG
568 l2_index = offset_to_l2_slice_index(s, offset);
569 *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
b6d36def 570
b2f65d6b 571 nb_clusters = size_to_clusters(s, bytes_needed);
c834cba9
HR
572 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
573 * integers; the minimum cluster size is 512, so this assertion is always
574 * true */
575 assert(nb_clusters <= INT_MAX);
45aba42f 576
808c2bb4 577 type = qcow2_get_cluster_type(bs, *cluster_offset);
fdfab37d
EB
578 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
579 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
580 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
581 " in pre-v3 image (L2 offset: %#" PRIx64
582 ", L2 index: %#x)", l2_offset, l2_index);
583 ret = -EIO;
584 goto fail;
585 }
3ef95218 586 switch (type) {
68d000a3 587 case QCOW2_CLUSTER_COMPRESSED:
966b000f
KW
588 if (has_data_file(bs)) {
589 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
590 "entry found in image with external data "
591 "file (L2 offset: %#" PRIx64 ", L2 index: "
592 "%#x)", l2_offset, l2_index);
593 ret = -EIO;
594 goto fail;
595 }
68d000a3
KW
596 /* Compressed clusters can only be processed one by one */
597 c = 1;
598 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
599 break;
fdfab37d 600 case QCOW2_CLUSTER_ZERO_PLAIN:
68d000a3 601 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f 602 /* how many empty clusters ? */
808c2bb4 603 c = count_contiguous_clusters_unallocated(bs, nb_clusters,
fd630039 604 &l2_slice[l2_index], type);
68d000a3
KW
605 *cluster_offset = 0;
606 break;
fdfab37d 607 case QCOW2_CLUSTER_ZERO_ALLOC:
68d000a3 608 case QCOW2_CLUSTER_NORMAL:
45aba42f 609 /* how many allocated clusters ? */
808c2bb4 610 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
fd630039 611 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
68d000a3 612 *cluster_offset &= L2E_OFFSET_MASK;
a97c67ee 613 if (offset_into_cluster(s, *cluster_offset)) {
fdfab37d
EB
614 qcow2_signal_corruption(bs, true, -1, -1,
615 "Cluster allocation offset %#"
a97c67ee
HR
616 PRIx64 " unaligned (L2 offset: %#" PRIx64
617 ", L2 index: %#x)", *cluster_offset,
618 l2_offset, l2_index);
619 ret = -EIO;
620 goto fail;
621 }
966b000f
KW
622 if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
623 {
624 qcow2_signal_corruption(bs, true, -1, -1,
625 "External data file host cluster offset %#"
626 PRIx64 " does not match guest cluster "
627 "offset: %#" PRIx64
628 ", L2 index: %#x)", *cluster_offset,
629 offset - offset_in_cluster, l2_index);
630 ret = -EIO;
631 goto fail;
632 }
68d000a3 633 break;
1417d7e4
KW
634 default:
635 abort();
45aba42f
KW
636 }
637
fd630039 638 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
29c1a730 639
c834cba9 640 bytes_available = (int64_t)c * s->cluster_size;
68d000a3 641
45aba42f 642out:
b2f65d6b
KW
643 if (bytes_available > bytes_needed) {
644 bytes_available = bytes_needed;
645 }
45aba42f 646
c834cba9
HR
647 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
648 * subtracting offset_in_cluster will therefore definitely yield something
649 * not exceeding UINT_MAX */
650 assert(bytes_available - offset_in_cluster <= UINT_MAX);
ecfe1863 651 *bytes = bytes_available - offset_in_cluster;
45aba42f 652
3ef95218 653 return type;
a97c67ee
HR
654
655fail:
fd630039 656 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
a97c67ee 657 return ret;
45aba42f
KW
658}
659
660/*
661 * get_cluster_table
662 *
663 * for a given disk offset, load (and allocate if needed)
c03bfc5b 664 * the appropriate slice of its l2 table.
45aba42f 665 *
c03bfc5b 666 * the cluster index in the l2 slice is given to the caller.
45aba42f 667 *
1e3e8f1a 668 * Returns 0 on success, -errno in failure case
45aba42f 669 */
45aba42f 670static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
c03bfc5b 671 uint64_t **new_l2_slice,
45aba42f
KW
672 int *new_l2_index)
673{
ff99129a 674 BDRVQcow2State *s = bs->opaque;
2cf7cfa1
KW
675 unsigned int l2_index;
676 uint64_t l1_index, l2_offset;
c03bfc5b 677 uint64_t *l2_slice = NULL;
80ee15a6 678 int ret;
45aba42f 679
b6af0975 680 /* seek to the l2 offset in the l1 table */
45aba42f 681
05b5b6ee 682 l1_index = offset_to_l1_index(s, offset);
45aba42f 683 if (l1_index >= s->l1_size) {
72893756 684 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
685 if (ret < 0) {
686 return ret;
687 }
45aba42f 688 }
8e37f681 689
2cf7cfa1 690 assert(l1_index < s->l1_size);
8e37f681 691 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
a97c67ee
HR
692 if (offset_into_cluster(s, l2_offset)) {
693 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
694 " unaligned (L1 index: %#" PRIx64 ")",
695 l2_offset, l1_index);
696 return -EIO;
697 }
45aba42f 698
05f9ee46 699 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
16fde5f2 700 /* First allocate a new L2 table (and do COW if needed) */
3861946a 701 ret = l2_allocate(bs, l1_index);
c46e1167
KW
702 if (ret < 0) {
703 return ret;
1e3e8f1a 704 }
16fde5f2
KW
705
706 /* Then decrease the refcount of the old table */
707 if (l2_offset) {
6cfcb9b8
KW
708 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
709 QCOW2_DISCARD_OTHER);
16fde5f2 710 }
3861946a
AG
711
712 /* Get the offset of the newly-allocated l2 table */
713 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
714 assert(offset_into_cluster(s, l2_offset) == 0);
05f9ee46
AG
715 }
716
c03bfc5b
AG
717 /* load the l2 slice in memory */
718 ret = l2_load(bs, offset, l2_offset, &l2_slice);
05f9ee46
AG
719 if (ret < 0) {
720 return ret;
45aba42f
KW
721 }
722
723 /* find the cluster offset for the given disk offset */
724
c03bfc5b 725 l2_index = offset_to_l2_slice_index(s, offset);
45aba42f 726
c03bfc5b 727 *new_l2_slice = l2_slice;
45aba42f
KW
728 *new_l2_index = l2_index;
729
1e3e8f1a 730 return 0;
45aba42f
KW
731}
732
733/*
734 * alloc_compressed_cluster_offset
735 *
77e023ff
KW
736 * For a given offset on the virtual disk, allocate a new compressed cluster
737 * and put the host offset of the cluster into *host_offset. If a cluster is
738 * already allocated at the offset, return an error.
45aba42f 739 *
77e023ff 740 * Return 0 on success and -errno in error cases
45aba42f 741 */
77e023ff
KW
742int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
743 uint64_t offset,
744 int compressed_size,
745 uint64_t *host_offset)
45aba42f 746{
ff99129a 747 BDRVQcow2State *s = bs->opaque;
45aba42f 748 int l2_index, ret;
e4e72548 749 uint64_t *l2_slice;
f4f0d391 750 int64_t cluster_offset;
45aba42f
KW
751 int nb_csectors;
752
966b000f
KW
753 if (has_data_file(bs)) {
754 return 0;
755 }
756
e4e72548 757 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1e3e8f1a 758 if (ret < 0) {
77e023ff 759 return ret;
1e3e8f1a 760 }
45aba42f 761
b0b6862e
KW
762 /* Compression can't overwrite anything. Fail if the cluster was already
763 * allocated. */
e4e72548 764 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
b0b6862e 765 if (cluster_offset & L2E_OFFSET_MASK) {
e4e72548 766 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 767 return -EIO;
8f1efd00 768 }
45aba42f 769
ed6ccf0f 770 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 771 if (cluster_offset < 0) {
e4e72548 772 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 773 return cluster_offset;
5d757b56
KW
774 }
775
b6c24694
AG
776 nb_csectors =
777 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
778 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
45aba42f
KW
779
780 cluster_offset |= QCOW_OFLAG_COMPRESSED |
781 ((uint64_t)nb_csectors << s->csize_shift);
782
783 /* update L2 table */
784
785 /* compressed clusters never have the copied flag */
786
66f82cee 787 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
e4e72548
AG
788 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
789 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
790 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
4c1612d9 791
77e023ff
KW
792 *host_offset = cluster_offset & s->cluster_offset_mask;
793 return 0;
4c1612d9
KW
794}
795
99450c6f 796static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
593fb83c 797{
ff99129a 798 BDRVQcow2State *s = bs->opaque;
99450c6f
AG
799 Qcow2COWRegion *start = &m->cow_start;
800 Qcow2COWRegion *end = &m->cow_end;
672f0f2c 801 unsigned buffer_size;
b3cf1c7c
AG
802 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
803 bool merge_reads;
672f0f2c 804 uint8_t *start_buffer, *end_buffer;
86b862c4 805 QEMUIOVector qiov;
593fb83c
KW
806 int ret;
807
672f0f2c 808 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
b3cf1c7c
AG
809 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
810 assert(start->offset + start->nb_bytes <= end->offset);
672f0f2c 811
c8bb23cb 812 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
593fb83c
KW
813 return 0;
814 }
815
b3cf1c7c
AG
816 /* If we have to read both the start and end COW regions and the
817 * middle region is not too large then perform just one read
818 * operation */
819 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
820 if (merge_reads) {
821 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
822 } else {
823 /* If we have to do two reads, add some padding in the middle
824 * if necessary to make sure that the end region is optimally
825 * aligned. */
826 size_t align = bdrv_opt_mem_align(bs);
827 assert(align > 0 && align <= UINT_MAX);
828 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
829 UINT_MAX - end->nb_bytes);
830 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
831 }
832
833 /* Reserve a buffer large enough to store all the data that we're
834 * going to read */
672f0f2c
AG
835 start_buffer = qemu_try_blockalign(bs, buffer_size);
836 if (start_buffer == NULL) {
837 return -ENOMEM;
838 }
839 /* The part of the buffer where the end region is located */
840 end_buffer = start_buffer + buffer_size - end->nb_bytes;
841
5396234b
VSO
842 qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
843 qemu_iovec_subvec_niov(m->data_qiov,
844 m->data_qiov_offset,
845 data_bytes)
846 : 0));
86b862c4 847
593fb83c 848 qemu_co_mutex_unlock(&s->lock);
b3cf1c7c
AG
849 /* First we read the existing data from both COW regions. We
850 * either read the whole region in one go, or the start and end
851 * regions separately. */
852 if (merge_reads) {
86b862c4
AG
853 qemu_iovec_add(&qiov, start_buffer, buffer_size);
854 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c 855 } else {
86b862c4
AG
856 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
857 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c
AG
858 if (ret < 0) {
859 goto fail;
860 }
672f0f2c 861
86b862c4
AG
862 qemu_iovec_reset(&qiov);
863 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
864 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
b3cf1c7c 865 }
593fb83c 866 if (ret < 0) {
99450c6f 867 goto fail;
593fb83c
KW
868 }
869
672f0f2c
AG
870 /* Encrypt the data if necessary before writing it */
871 if (bs->encrypted) {
603fbd07
ML
872 ret = qcow2_co_encrypt(bs,
873 m->alloc_offset + start->offset,
874 m->offset + start->offset,
875 start_buffer, start->nb_bytes);
876 if (ret < 0) {
877 goto fail;
878 }
879
880 ret = qcow2_co_encrypt(bs,
881 m->alloc_offset + end->offset,
882 m->offset + end->offset,
883 end_buffer, end->nb_bytes);
884 if (ret < 0) {
672f0f2c
AG
885 goto fail;
886 }
887 }
888
ee22a9d8
AG
889 /* And now we can write everything. If we have the guest data we
890 * can write everything in one single operation */
891 if (m->data_qiov) {
892 qemu_iovec_reset(&qiov);
893 if (start->nb_bytes) {
894 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
895 }
5396234b 896 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
ee22a9d8
AG
897 if (end->nb_bytes) {
898 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
899 }
900 /* NOTE: we have a write_aio blkdebug event here followed by
901 * a cow_write one in do_perform_cow_write(), but there's only
902 * one single I/O operation */
903 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
904 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
905 } else {
906 /* If there's no guest data then write both COW regions separately */
907 qemu_iovec_reset(&qiov);
908 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
909 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
910 if (ret < 0) {
911 goto fail;
912 }
913
914 qemu_iovec_reset(&qiov);
915 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
916 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
672f0f2c 917 }
99450c6f
AG
918
919fail:
920 qemu_co_mutex_lock(&s->lock);
921
593fb83c
KW
922 /*
923 * Before we update the L2 table to actually point to the new cluster, we
924 * need to be sure that the refcounts have been increased and COW was
925 * handled.
926 */
99450c6f
AG
927 if (ret == 0) {
928 qcow2_cache_depends_on_flush(s->l2_table_cache);
929 }
593fb83c 930
672f0f2c 931 qemu_vfree(start_buffer);
86b862c4 932 qemu_iovec_destroy(&qiov);
99450c6f 933 return ret;
593fb83c
KW
934}
935
148da7ea 936int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f 937{
ff99129a 938 BDRVQcow2State *s = bs->opaque;
45aba42f 939 int i, j = 0, l2_index, ret;
a002c0b0 940 uint64_t *old_cluster, *l2_slice;
250196f1 941 uint64_t cluster_offset = m->alloc_offset;
45aba42f 942
3cce16f4 943 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 944 assert(m->nb_clusters > 0);
45aba42f 945
5839e53b 946 old_cluster = g_try_new(uint64_t, m->nb_clusters);
de82815d
KW
947 if (old_cluster == NULL) {
948 ret = -ENOMEM;
949 goto err;
950 }
45aba42f
KW
951
952 /* copy content of unmodified sectors */
99450c6f 953 ret = perform_cow(bs, m);
593fb83c
KW
954 if (ret < 0) {
955 goto err;
29c1a730
KW
956 }
957
593fb83c 958 /* Update L2 table. */
74c4510a 959 if (s->use_lazy_refcounts) {
280d3735
KW
960 qcow2_mark_dirty(bs);
961 }
bfe8043e
SH
962 if (qcow2_need_accurate_refcounts(s)) {
963 qcow2_cache_set_dependency(bs, s->l2_table_cache,
964 s->refcount_block_cache);
965 }
280d3735 966
a002c0b0 967 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1e3e8f1a 968 if (ret < 0) {
45aba42f 969 goto err;
1e3e8f1a 970 }
a002c0b0 971 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
45aba42f 972
a002c0b0 973 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
45aba42f
KW
974 for (i = 0; i < m->nb_clusters; i++) {
975 /* if two concurrent writes happen to the same unallocated cluster
aaa4d20b
KW
976 * each write allocates separate cluster and writes data concurrently.
977 * The first one to complete updates l2 table with pointer to its
978 * cluster the second one has to do RMW (which is done above by
979 * perform_cow()), update l2 table with its cluster pointer and free
980 * old cluster. This is what this loop does */
a002c0b0
AG
981 if (l2_slice[l2_index + i] != 0) {
982 old_cluster[j++] = l2_slice[l2_index + i];
aaa4d20b 983 }
45aba42f 984
a002c0b0 985 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
45aba42f
KW
986 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
987 }
988
9f8e668e 989
a002c0b0 990 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 991
7ec5e6a4
KW
992 /*
993 * If this was a COW, we need to decrease the refcount of the old cluster.
6cfcb9b8
KW
994 *
995 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
996 * clusters), the next write will reuse them anyway.
7ec5e6a4 997 */
564a6b69 998 if (!m->keep_old_clusters && j != 0) {
7ec5e6a4 999 for (i = 0; i < j; i++) {
6cfcb9b8
KW
1000 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1001 QCOW2_DISCARD_NEVER);
7ec5e6a4
KW
1002 }
1003 }
45aba42f
KW
1004
1005 ret = 0;
1006err:
7267c094 1007 g_free(old_cluster);
45aba42f
KW
1008 return ret;
1009 }
1010
8b24cd14
KW
1011/**
1012 * Frees the allocated clusters because the request failed and they won't
1013 * actually be linked.
1014 */
1015void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1016{
1017 BDRVQcow2State *s = bs->opaque;
1018 qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1019 QCOW2_DISCARD_NEVER);
1020}
1021
bf319ece
KW
1022/*
1023 * Returns the number of contiguous clusters that can be used for an allocating
1024 * write, but require COW to be performed (this includes yet unallocated space,
1025 * which must copy from the backing file)
1026 */
808c2bb4 1027static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
dd32c881 1028 uint64_t *l2_slice, int l2_index)
bf319ece 1029{
143550a8 1030 int i;
bf319ece 1031
143550a8 1032 for (i = 0; i < nb_clusters; i++) {
dd32c881 1033 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
808c2bb4 1034 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
143550a8
KW
1035
1036 switch(cluster_type) {
1037 case QCOW2_CLUSTER_NORMAL:
1038 if (l2_entry & QCOW_OFLAG_COPIED) {
1039 goto out;
1040 }
bf319ece 1041 break;
143550a8
KW
1042 case QCOW2_CLUSTER_UNALLOCATED:
1043 case QCOW2_CLUSTER_COMPRESSED:
fdfab37d
EB
1044 case QCOW2_CLUSTER_ZERO_PLAIN:
1045 case QCOW2_CLUSTER_ZERO_ALLOC:
bf319ece 1046 break;
143550a8
KW
1047 default:
1048 abort();
1049 }
bf319ece
KW
1050 }
1051
143550a8 1052out:
bf319ece
KW
1053 assert(i <= nb_clusters);
1054 return i;
1055}
1056
250196f1 1057/*
226c3c26
KW
1058 * Check if there already is an AIO write request in flight which allocates
1059 * the same cluster. In this case we need to wait until the previous
1060 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
1061 *
1062 * Returns:
1063 * 0 if there was no dependency. *cur_bytes indicates the number of
1064 * bytes from guest_offset that can be read before the next
1065 * dependency must be processed (or the request is complete)
1066 *
1067 * -EAGAIN if we had to wait for another request, previously gathered
1068 * information on cluster allocation may be invalid now. The caller
1069 * must start over anyway, so consider *cur_bytes undefined.
250196f1 1070 */
226c3c26 1071static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
ecdd5333 1072 uint64_t *cur_bytes, QCowL2Meta **m)
250196f1 1073{
ff99129a 1074 BDRVQcow2State *s = bs->opaque;
250196f1 1075 QCowL2Meta *old_alloc;
65eb2e35 1076 uint64_t bytes = *cur_bytes;
250196f1 1077
250196f1
KW
1078 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1079
65eb2e35
KW
1080 uint64_t start = guest_offset;
1081 uint64_t end = start + bytes;
1082 uint64_t old_start = l2meta_cow_start(old_alloc);
1083 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 1084
d9d74f41 1085 if (end <= old_start || start >= old_end) {
250196f1
KW
1086 /* No intersection */
1087 } else {
1088 if (start < old_start) {
1089 /* Stop at the start of a running allocation */
65eb2e35 1090 bytes = old_start - start;
250196f1 1091 } else {
65eb2e35 1092 bytes = 0;
250196f1
KW
1093 }
1094
ecdd5333
KW
1095 /* Stop if already an l2meta exists. After yielding, it wouldn't
1096 * be valid any more, so we'd have to clean up the old L2Metas
1097 * and deal with requests depending on them before starting to
1098 * gather new ones. Not worth the trouble. */
1099 if (bytes == 0 && *m) {
1100 *cur_bytes = 0;
1101 return 0;
1102 }
1103
65eb2e35 1104 if (bytes == 0) {
250196f1
KW
1105 /* Wait for the dependency to complete. We need to recheck
1106 * the free/allocated clusters when we continue. */
1ace7cea 1107 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
250196f1
KW
1108 return -EAGAIN;
1109 }
1110 }
1111 }
1112
65eb2e35
KW
1113 /* Make sure that existing clusters and new allocations are only used up to
1114 * the next dependency if we shortened the request above */
1115 *cur_bytes = bytes;
250196f1 1116
226c3c26
KW
1117 return 0;
1118}
1119
0af729ec
KW
1120/*
1121 * Checks how many already allocated clusters that don't require a copy on
c6d619cc
KW
1122 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1123 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1124 * offset are counted.
0af729ec 1125 *
411d62b0
KW
1126 * Note that guest_offset may not be cluster aligned. In this case, the
1127 * returned *host_offset points to exact byte referenced by guest_offset and
1128 * therefore isn't cluster aligned as well.
0af729ec
KW
1129 *
1130 * Returns:
1131 * 0: if no allocated clusters are available at the given offset.
1132 * *bytes is normally unchanged. It is set to 0 if the cluster
1133 * is allocated and doesn't need COW, but doesn't have the right
1134 * physical offset.
1135 *
1136 * 1: if allocated clusters that don't require a COW are available at
1137 * the requested offset. *bytes may have decreased and describes
1138 * the length of the area that can be written to.
1139 *
1140 * -errno: in error cases
0af729ec
KW
1141 */
1142static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 1143 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec 1144{
ff99129a 1145 BDRVQcow2State *s = bs->opaque;
0af729ec
KW
1146 int l2_index;
1147 uint64_t cluster_offset;
cde91766 1148 uint64_t *l2_slice;
b6d36def 1149 uint64_t nb_clusters;
c53ede9f 1150 unsigned int keep_clusters;
a3f1afb4 1151 int ret;
0af729ec
KW
1152
1153 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1154 *bytes);
0af729ec 1155
c6d619cc
KW
1156 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1157 == offset_into_cluster(s, *host_offset));
411d62b0 1158
acb0467f 1159 /*
cde91766 1160 * Calculate the number of clusters to look for. We stop at L2 slice
acb0467f
KW
1161 * boundaries to keep things simple.
1162 */
1163 nb_clusters =
1164 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1165
cde91766
AG
1166 l2_index = offset_to_l2_slice_index(s, guest_offset);
1167 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1168 assert(nb_clusters <= INT_MAX);
acb0467f 1169
0af729ec 1170 /* Find L2 entry for the first involved cluster */
cde91766 1171 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
0af729ec
KW
1172 if (ret < 0) {
1173 return ret;
1174 }
1175
cde91766 1176 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
0af729ec
KW
1177
1178 /* Check how many clusters are already allocated and don't need COW */
808c2bb4 1179 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
0af729ec
KW
1180 && (cluster_offset & QCOW_OFLAG_COPIED))
1181 {
e62daaf6
KW
1182 /* If a specific host_offset is required, check it */
1183 bool offset_matches =
1184 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1185
a97c67ee
HR
1186 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1187 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1188 "%#llx unaligned (guest offset: %#" PRIx64
1189 ")", cluster_offset & L2E_OFFSET_MASK,
1190 guest_offset);
1191 ret = -EIO;
1192 goto out;
1193 }
1194
c6d619cc 1195 if (*host_offset != INV_OFFSET && !offset_matches) {
e62daaf6
KW
1196 *bytes = 0;
1197 ret = 0;
1198 goto out;
1199 }
1200
0af729ec 1201 /* We keep all QCOW_OFLAG_COPIED clusters */
c53ede9f 1202 keep_clusters =
808c2bb4 1203 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
cde91766 1204 &l2_slice[l2_index],
0af729ec 1205 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
c53ede9f
KW
1206 assert(keep_clusters <= nb_clusters);
1207
1208 *bytes = MIN(*bytes,
1209 keep_clusters * s->cluster_size
1210 - offset_into_cluster(s, guest_offset));
0af729ec
KW
1211
1212 ret = 1;
1213 } else {
0af729ec
KW
1214 ret = 0;
1215 }
1216
0af729ec 1217 /* Cleanup */
e62daaf6 1218out:
cde91766 1219 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
0af729ec 1220
e62daaf6
KW
1221 /* Only return a host offset if we actually made progress. Otherwise we
1222 * would make requirements for handle_alloc() that it can't fulfill */
a97c67ee 1223 if (ret > 0) {
411d62b0
KW
1224 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1225 + offset_into_cluster(s, guest_offset);
e62daaf6
KW
1226 }
1227
0af729ec
KW
1228 return ret;
1229}
1230
226c3c26
KW
1231/*
1232 * Allocates new clusters for the given guest_offset.
1233 *
1234 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1235 * contain the number of clusters that have been allocated and are contiguous
1236 * in the image file.
1237 *
c6d619cc
KW
1238 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1239 * at which the new clusters must start. *nb_clusters can be 0 on return in
1240 * this case if the cluster at host_offset is already in use. If *host_offset
1241 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
226c3c26
KW
1242 *
1243 * *host_offset is updated to contain the offset into the image file at which
1244 * the first allocated cluster starts.
1245 *
1246 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1247 * function has been waiting for another request and the allocation must be
1248 * restarted, but the whole request should not be failed.
1249 */
1250static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
b6d36def 1251 uint64_t *host_offset, uint64_t *nb_clusters)
226c3c26 1252{
ff99129a 1253 BDRVQcow2State *s = bs->opaque;
226c3c26
KW
1254
1255 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1256 *host_offset, *nb_clusters);
1257
966b000f
KW
1258 if (has_data_file(bs)) {
1259 assert(*host_offset == INV_OFFSET ||
1260 *host_offset == start_of_cluster(s, guest_offset));
1261 *host_offset = start_of_cluster(s, guest_offset);
1262 return 0;
1263 }
1264
250196f1
KW
1265 /* Allocate new clusters */
1266 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
c6d619cc 1267 if (*host_offset == INV_OFFSET) {
df021791
KW
1268 int64_t cluster_offset =
1269 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1270 if (cluster_offset < 0) {
1271 return cluster_offset;
1272 }
1273 *host_offset = cluster_offset;
1274 return 0;
250196f1 1275 } else {
b6d36def 1276 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
1277 if (ret < 0) {
1278 return ret;
1279 }
1280 *nb_clusters = ret;
1281 return 0;
250196f1 1282 }
250196f1
KW
1283}
1284
10f0ed8b
KW
1285/*
1286 * Allocates new clusters for an area that either is yet unallocated or needs a
c6d619cc
KW
1287 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1288 * allocated if the new allocation can match the specified host offset.
10f0ed8b 1289 *
411d62b0
KW
1290 * Note that guest_offset may not be cluster aligned. In this case, the
1291 * returned *host_offset points to exact byte referenced by guest_offset and
1292 * therefore isn't cluster aligned as well.
10f0ed8b
KW
1293 *
1294 * Returns:
1295 * 0: if no clusters could be allocated. *bytes is set to 0,
1296 * *host_offset is left unchanged.
1297 *
1298 * 1: if new clusters were allocated. *bytes may be decreased if the
1299 * new allocation doesn't cover all of the requested area.
1300 * *host_offset is updated to contain the host offset of the first
1301 * newly allocated cluster.
1302 *
1303 * -errno: in error cases
10f0ed8b
KW
1304 */
1305static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 1306 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b 1307{
ff99129a 1308 BDRVQcow2State *s = bs->opaque;
10f0ed8b 1309 int l2_index;
6d99a344 1310 uint64_t *l2_slice;
10f0ed8b 1311 uint64_t entry;
b6d36def 1312 uint64_t nb_clusters;
10f0ed8b 1313 int ret;
564a6b69 1314 bool keep_old_clusters = false;
10f0ed8b 1315
c6d619cc 1316 uint64_t alloc_cluster_offset = INV_OFFSET;
10f0ed8b
KW
1317
1318 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1319 *bytes);
1320 assert(*bytes > 0);
1321
f5bc6350 1322 /*
6d99a344 1323 * Calculate the number of clusters to look for. We stop at L2 slice
f5bc6350
KW
1324 * boundaries to keep things simple.
1325 */
c37f4cd7
KW
1326 nb_clusters =
1327 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1328
6d99a344
AG
1329 l2_index = offset_to_l2_slice_index(s, guest_offset);
1330 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1331 assert(nb_clusters <= INT_MAX);
f5bc6350 1332
d1b9d19f
HR
1333 /* Limit total allocation byte count to INT_MAX */
1334 nb_clusters = MIN(nb_clusters, INT_MAX >> s->cluster_bits);
1335
10f0ed8b 1336 /* Find L2 entry for the first involved cluster */
6d99a344 1337 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
10f0ed8b
KW
1338 if (ret < 0) {
1339 return ret;
1340 }
1341
6d99a344 1342 entry = be64_to_cpu(l2_slice[l2_index]);
bf3d78ae 1343 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
10f0ed8b 1344
ecdd5333
KW
1345 /* This function is only called when there were no non-COW clusters, so if
1346 * we can't find any unallocated or COW clusters either, something is
1347 * wrong with our code. */
1348 assert(nb_clusters > 0);
1349
808c2bb4 1350 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
fdfab37d 1351 (entry & QCOW_OFLAG_COPIED) &&
c6d619cc 1352 (*host_offset == INV_OFFSET ||
564a6b69
HR
1353 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1354 {
93bbaf03
HR
1355 int preallocated_nb_clusters;
1356
1357 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1358 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1359 "cluster offset %#llx unaligned (guest "
1360 "offset: %#" PRIx64 ")",
1361 entry & L2E_OFFSET_MASK, guest_offset);
1362 ret = -EIO;
1363 goto fail;
1364 }
1365
564a6b69
HR
1366 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1367 * would be fine, too, but count_cow_clusters() above has limited
1368 * nb_clusters already to a range of COW clusters */
93bbaf03 1369 preallocated_nb_clusters =
808c2bb4 1370 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
6d99a344 1371 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
564a6b69 1372 assert(preallocated_nb_clusters > 0);
10f0ed8b 1373
564a6b69
HR
1374 nb_clusters = preallocated_nb_clusters;
1375 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
10f0ed8b 1376
564a6b69
HR
1377 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1378 * should not free them. */
1379 keep_old_clusters = true;
10f0ed8b
KW
1380 }
1381
6d99a344 1382 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
564a6b69 1383
c6d619cc 1384 if (alloc_cluster_offset == INV_OFFSET) {
564a6b69 1385 /* Allocate, if necessary at a given offset in the image file */
c6d619cc
KW
1386 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1387 start_of_cluster(s, *host_offset);
564a6b69
HR
1388 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1389 &nb_clusters);
1390 if (ret < 0) {
1391 goto fail;
1392 }
1393
1394 /* Can't extend contiguous allocation */
1395 if (nb_clusters == 0) {
1396 *bytes = 0;
1397 return 0;
1398 }
1399
c6d619cc 1400 assert(alloc_cluster_offset != INV_OFFSET);
ff52aab2
HR
1401 }
1402
83baa9a4
KW
1403 /*
1404 * Save info needed for meta data update.
1405 *
85567393 1406 * requested_bytes: Number of bytes from the start of the first
83baa9a4
KW
1407 * newly allocated cluster to the end of the (possibly shortened
1408 * before) write request.
1409 *
85567393 1410 * avail_bytes: Number of bytes from the start of the first
83baa9a4
KW
1411 * newly allocated to the end of the last newly allocated cluster.
1412 *
85567393 1413 * nb_bytes: The number of bytes from the start of the first
83baa9a4
KW
1414 * newly allocated cluster to the end of the area that the write
1415 * request actually writes to (excluding COW at the end)
1416 */
85567393 1417 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
d1b9d19f 1418 int avail_bytes = nb_clusters << s->cluster_bits;
85567393 1419 int nb_bytes = MIN(requested_bytes, avail_bytes);
88c6588c 1420 QCowL2Meta *old_m = *m;
83baa9a4 1421
83baa9a4
KW
1422 *m = g_malloc0(sizeof(**m));
1423
1424 **m = (QCowL2Meta) {
88c6588c
KW
1425 .next = old_m,
1426
411d62b0 1427 .alloc_offset = alloc_cluster_offset,
83baa9a4
KW
1428 .offset = start_of_cluster(s, guest_offset),
1429 .nb_clusters = nb_clusters,
83baa9a4 1430
564a6b69
HR
1431 .keep_old_clusters = keep_old_clusters,
1432
83baa9a4
KW
1433 .cow_start = {
1434 .offset = 0,
85567393 1435 .nb_bytes = offset_into_cluster(s, guest_offset),
83baa9a4
KW
1436 },
1437 .cow_end = {
85567393
KW
1438 .offset = nb_bytes,
1439 .nb_bytes = avail_bytes - nb_bytes,
83baa9a4
KW
1440 },
1441 };
1442 qemu_co_queue_init(&(*m)->dependent_requests);
1443 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1444
411d62b0 1445 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
85567393 1446 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
83baa9a4
KW
1447 assert(*bytes != 0);
1448
10f0ed8b
KW
1449 return 1;
1450
1451fail:
1452 if (*m && (*m)->nb_clusters > 0) {
1453 QLIST_REMOVE(*m, next_in_flight);
1454 }
1455 return ret;
1456}
1457
45aba42f
KW
1458/*
1459 * alloc_cluster_offset
1460 *
250196f1
KW
1461 * For a given offset on the virtual disk, find the cluster offset in qcow2
1462 * file. If the offset is not found, allocate a new cluster.
45aba42f 1463 *
250196f1 1464 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1465 * other fields in m are meaningless.
148da7ea
KW
1466 *
1467 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1468 * contiguous clusters that have been allocated. In this case, the other
1469 * fields of m are valid and contain information about the first allocated
1470 * cluster.
45aba42f 1471 *
68d100e9
KW
1472 * If the request conflicts with another write request in flight, the coroutine
1473 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1474 *
1475 * Return 0 on success and -errno in error cases
45aba42f 1476 */
f4f0d391 1477int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
d46a0bb2
KW
1478 unsigned int *bytes, uint64_t *host_offset,
1479 QCowL2Meta **m)
45aba42f 1480{
ff99129a 1481 BDRVQcow2State *s = bs->opaque;
710c2496 1482 uint64_t start, remaining;
250196f1 1483 uint64_t cluster_offset;
65eb2e35 1484 uint64_t cur_bytes;
710c2496 1485 int ret;
45aba42f 1486
d46a0bb2 1487 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
710c2496 1488
72424114 1489again:
16f0587e 1490 start = offset;
d46a0bb2 1491 remaining = *bytes;
c6d619cc
KW
1492 cluster_offset = INV_OFFSET;
1493 *host_offset = INV_OFFSET;
ecdd5333
KW
1494 cur_bytes = 0;
1495 *m = NULL;
0af729ec 1496
2c3b32d2 1497 while (true) {
ecdd5333 1498
c6d619cc 1499 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
ecdd5333
KW
1500 *host_offset = start_of_cluster(s, cluster_offset);
1501 }
1502
1503 assert(remaining >= cur_bytes);
1504
1505 start += cur_bytes;
1506 remaining -= cur_bytes;
c6d619cc
KW
1507
1508 if (cluster_offset != INV_OFFSET) {
1509 cluster_offset += cur_bytes;
1510 }
ecdd5333
KW
1511
1512 if (remaining == 0) {
1513 break;
1514 }
1515
1516 cur_bytes = remaining;
1517
2c3b32d2
KW
1518 /*
1519 * Now start gathering as many contiguous clusters as possible:
1520 *
1521 * 1. Check for overlaps with in-flight allocations
1522 *
1523 * a) Overlap not in the first cluster -> shorten this request and
1524 * let the caller handle the rest in its next loop iteration.
1525 *
1526 * b) Real overlaps of two requests. Yield and restart the search
1527 * for contiguous clusters (the situation could have changed
1528 * while we were sleeping)
1529 *
1530 * c) TODO: Request starts in the same cluster as the in-flight
1531 * allocation ends. Shorten the COW of the in-fight allocation,
1532 * set cluster_offset to write to the same cluster and set up
1533 * the right synchronisation between the in-flight request and
1534 * the new one.
1535 */
ecdd5333 1536 ret = handle_dependencies(bs, start, &cur_bytes, m);
2c3b32d2 1537 if (ret == -EAGAIN) {
ecdd5333
KW
1538 /* Currently handle_dependencies() doesn't yield if we already had
1539 * an allocation. If it did, we would have to clean up the L2Meta
1540 * structs before starting over. */
1541 assert(*m == NULL);
2c3b32d2
KW
1542 goto again;
1543 } else if (ret < 0) {
1544 return ret;
ecdd5333
KW
1545 } else if (cur_bytes == 0) {
1546 break;
2c3b32d2
KW
1547 } else {
1548 /* handle_dependencies() may have decreased cur_bytes (shortened
1549 * the allocations below) so that the next dependency is processed
1550 * correctly during the next loop iteration. */
0af729ec 1551 }
710c2496 1552
2c3b32d2
KW
1553 /*
1554 * 2. Count contiguous COPIED clusters.
1555 */
1556 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1557 if (ret < 0) {
1558 return ret;
1559 } else if (ret) {
ecdd5333 1560 continue;
2c3b32d2
KW
1561 } else if (cur_bytes == 0) {
1562 break;
1563 }
060bee89 1564
2c3b32d2
KW
1565 /*
1566 * 3. If the request still hasn't completed, allocate new clusters,
1567 * considering any cluster_offset of steps 1c or 2.
1568 */
1569 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1570 if (ret < 0) {
1571 return ret;
1572 } else if (ret) {
ecdd5333 1573 continue;
2c3b32d2
KW
1574 } else {
1575 assert(cur_bytes == 0);
1576 break;
1577 }
f5bc6350 1578 }
10f0ed8b 1579
d46a0bb2
KW
1580 *bytes -= remaining;
1581 assert(*bytes > 0);
c6d619cc 1582 assert(*host_offset != INV_OFFSET);
45aba42f 1583
148da7ea 1584 return 0;
45aba42f
KW
1585}
1586
5ea929e3
KW
1587/*
1588 * This discards as many clusters of nb_clusters as possible at once (i.e.
21ab3add 1589 * all clusters in the same L2 slice) and returns the number of discarded
5ea929e3
KW
1590 * clusters.
1591 */
21ab3add
AG
1592static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1593 uint64_t nb_clusters,
1594 enum qcow2_discard_type type, bool full_discard)
5ea929e3 1595{
ff99129a 1596 BDRVQcow2State *s = bs->opaque;
21ab3add 1597 uint64_t *l2_slice;
5ea929e3
KW
1598 int l2_index;
1599 int ret;
1600 int i;
1601
21ab3add 1602 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
5ea929e3
KW
1603 if (ret < 0) {
1604 return ret;
1605 }
1606
21ab3add
AG
1607 /* Limit nb_clusters to one L2 slice */
1608 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1609 assert(nb_clusters <= INT_MAX);
5ea929e3
KW
1610
1611 for (i = 0; i < nb_clusters; i++) {
c883db0d 1612 uint64_t old_l2_entry;
5ea929e3 1613
21ab3add 1614 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
a71835a0
KW
1615
1616 /*
808c4b6f
HR
1617 * If full_discard is false, make sure that a discarded area reads back
1618 * as zeroes for v3 images (we cannot do it for v2 without actually
1619 * writing a zero-filled buffer). We can skip the operation if the
1620 * cluster is already marked as zero, or if it's unallocated and we
1621 * don't have a backing file.
a71835a0 1622 *
237d78f8 1623 * TODO We might want to use bdrv_block_status(bs) here, but we're
a71835a0 1624 * holding s->lock, so that doesn't work today.
808c4b6f
HR
1625 *
1626 * If full_discard is true, the sector should not read back as zeroes,
1627 * but rather fall through to the backing file.
a71835a0 1628 */
808c2bb4 1629 switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
bbd995d8
EB
1630 case QCOW2_CLUSTER_UNALLOCATED:
1631 if (full_discard || !bs->backing) {
1632 continue;
1633 }
1634 break;
1635
fdfab37d
EB
1636 case QCOW2_CLUSTER_ZERO_PLAIN:
1637 if (!full_discard) {
bbd995d8
EB
1638 continue;
1639 }
1640 break;
1641
fdfab37d 1642 case QCOW2_CLUSTER_ZERO_ALLOC:
bbd995d8
EB
1643 case QCOW2_CLUSTER_NORMAL:
1644 case QCOW2_CLUSTER_COMPRESSED:
1645 break;
1646
1647 default:
1648 abort();
5ea929e3
KW
1649 }
1650
1651 /* First remove L2 entries */
21ab3add 1652 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
808c4b6f 1653 if (!full_discard && s->qcow_version >= 3) {
21ab3add 1654 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
a71835a0 1655 } else {
21ab3add 1656 l2_slice[l2_index + i] = cpu_to_be64(0);
a71835a0 1657 }
5ea929e3
KW
1658
1659 /* Then decrease the refcount */
c883db0d 1660 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
5ea929e3
KW
1661 }
1662
21ab3add 1663 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
5ea929e3
KW
1664
1665 return nb_clusters;
1666}
1667
d2cb36af
EB
1668int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1669 uint64_t bytes, enum qcow2_discard_type type,
1670 bool full_discard)
5ea929e3 1671{
ff99129a 1672 BDRVQcow2State *s = bs->opaque;
d2cb36af 1673 uint64_t end_offset = offset + bytes;
b6d36def 1674 uint64_t nb_clusters;
d2cb36af 1675 int64_t cleared;
5ea929e3
KW
1676 int ret;
1677
f10ee139 1678 /* Caller must pass aligned values, except at image end */
0c1bd469 1679 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
f10ee139
EB
1680 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1681 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
5ea929e3 1682
d2cb36af 1683 nb_clusters = size_to_clusters(s, bytes);
5ea929e3 1684
0b919fae
KW
1685 s->cache_discards = true;
1686
21ab3add 1687 /* Each L2 slice is handled by its own loop iteration */
5ea929e3 1688 while (nb_clusters > 0) {
21ab3add
AG
1689 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1690 full_discard);
d2cb36af
EB
1691 if (cleared < 0) {
1692 ret = cleared;
0b919fae 1693 goto fail;
5ea929e3
KW
1694 }
1695
d2cb36af
EB
1696 nb_clusters -= cleared;
1697 offset += (cleared * s->cluster_size);
5ea929e3
KW
1698 }
1699
0b919fae
KW
1700 ret = 0;
1701fail:
1702 s->cache_discards = false;
1703 qcow2_process_discards(bs, ret);
1704
1705 return ret;
5ea929e3 1706}
621f0589
KW
1707
1708/*
1709 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
a9a9f8f0 1710 * all clusters in the same L2 slice) and returns the number of zeroed
621f0589
KW
1711 * clusters.
1712 */
a9a9f8f0
AG
1713static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1714 uint64_t nb_clusters, int flags)
621f0589 1715{
ff99129a 1716 BDRVQcow2State *s = bs->opaque;
a9a9f8f0 1717 uint64_t *l2_slice;
621f0589
KW
1718 int l2_index;
1719 int ret;
1720 int i;
06cc5e2b 1721 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
621f0589 1722
a9a9f8f0 1723 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
621f0589
KW
1724 if (ret < 0) {
1725 return ret;
1726 }
1727
a9a9f8f0
AG
1728 /* Limit nb_clusters to one L2 slice */
1729 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1730 assert(nb_clusters <= INT_MAX);
621f0589
KW
1731
1732 for (i = 0; i < nb_clusters; i++) {
1733 uint64_t old_offset;
06cc5e2b 1734 QCow2ClusterType cluster_type;
621f0589 1735
a9a9f8f0 1736 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
621f0589 1737
06cc5e2b
EB
1738 /*
1739 * Minimize L2 changes if the cluster already reads back as
1740 * zeroes with correct allocation.
1741 */
808c2bb4 1742 cluster_type = qcow2_get_cluster_type(bs, old_offset);
06cc5e2b
EB
1743 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1744 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1745 continue;
1746 }
1747
a9a9f8f0 1748 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
06cc5e2b 1749 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
a9a9f8f0 1750 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
6cfcb9b8 1751 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
621f0589 1752 } else {
a9a9f8f0 1753 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
621f0589
KW
1754 }
1755 }
1756
a9a9f8f0 1757 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
621f0589
KW
1758
1759 return nb_clusters;
1760}
1761
d2cb36af
EB
1762int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1763 uint64_t bytes, int flags)
621f0589 1764{
ff99129a 1765 BDRVQcow2State *s = bs->opaque;
d2cb36af 1766 uint64_t end_offset = offset + bytes;
b6d36def 1767 uint64_t nb_clusters;
d2cb36af 1768 int64_t cleared;
621f0589
KW
1769 int ret;
1770
6c3944dc
KW
1771 /* If we have to stay in sync with an external data file, zero out
1772 * s->data_file first. */
1773 if (data_file_is_raw(bs)) {
1774 assert(has_data_file(bs));
1775 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1776 if (ret < 0) {
1777 return ret;
1778 }
1779 }
1780
f10ee139
EB
1781 /* Caller must pass aligned values, except at image end */
1782 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1783 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1784 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1785
621f0589
KW
1786 /* The zero flag is only supported by version 3 and newer */
1787 if (s->qcow_version < 3) {
1788 return -ENOTSUP;
1789 }
1790
a9a9f8f0 1791 /* Each L2 slice is handled by its own loop iteration */
d2cb36af 1792 nb_clusters = size_to_clusters(s, bytes);
621f0589 1793
0b919fae
KW
1794 s->cache_discards = true;
1795
621f0589 1796 while (nb_clusters > 0) {
a9a9f8f0 1797 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
d2cb36af
EB
1798 if (cleared < 0) {
1799 ret = cleared;
0b919fae 1800 goto fail;
621f0589
KW
1801 }
1802
d2cb36af
EB
1803 nb_clusters -= cleared;
1804 offset += (cleared * s->cluster_size);
621f0589
KW
1805 }
1806
0b919fae
KW
1807 ret = 0;
1808fail:
1809 s->cache_discards = false;
1810 qcow2_process_discards(bs, ret);
1811
1812 return ret;
621f0589 1813}
32b6444d
HR
1814
1815/*
1816 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1817 * non-backed non-pre-allocated zero clusters).
1818 *
4057a2b2
HR
1819 * l1_entries and *visited_l1_entries are used to keep track of progress for
1820 * status_cb(). l1_entries contains the total number of L1 entries and
1821 * *visited_l1_entries counts all visited L1 entries.
32b6444d
HR
1822 */
1823static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
ecf58777 1824 int l1_size, int64_t *visited_l1_entries,
4057a2b2 1825 int64_t l1_entries,
8b13976d
HR
1826 BlockDriverAmendStatusCB *status_cb,
1827 void *cb_opaque)
32b6444d 1828{
ff99129a 1829 BDRVQcow2State *s = bs->opaque;
32b6444d 1830 bool is_active_l1 = (l1_table == s->l1_table);
415184f5
AG
1831 uint64_t *l2_slice = NULL;
1832 unsigned slice, slice_size2, n_slices;
32b6444d
HR
1833 int ret;
1834 int i, j;
1835
415184f5
AG
1836 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1837 n_slices = s->cluster_size / slice_size2;
1838
32b6444d
HR
1839 if (!is_active_l1) {
1840 /* inactive L2 tables require a buffer to be stored in when loading
1841 * them from disk */
415184f5
AG
1842 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1843 if (l2_slice == NULL) {
de82815d
KW
1844 return -ENOMEM;
1845 }
32b6444d
HR
1846 }
1847
1848 for (i = 0; i < l1_size; i++) {
1849 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
0e06528e 1850 uint64_t l2_refcount;
32b6444d
HR
1851
1852 if (!l2_offset) {
1853 /* unallocated */
4057a2b2
HR
1854 (*visited_l1_entries)++;
1855 if (status_cb) {
8b13976d 1856 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 1857 }
32b6444d
HR
1858 continue;
1859 }
1860
8dd93d93
HR
1861 if (offset_into_cluster(s, l2_offset)) {
1862 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1863 PRIx64 " unaligned (L1 index: %#x)",
1864 l2_offset, i);
1865 ret = -EIO;
1866 goto fail;
1867 }
1868
9b765486
AG
1869 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1870 &l2_refcount);
1871 if (ret < 0) {
1872 goto fail;
1873 }
1874
415184f5
AG
1875 for (slice = 0; slice < n_slices; slice++) {
1876 uint64_t slice_offset = l2_offset + slice * slice_size2;
1877 bool l2_dirty = false;
226494ff
AG
1878 if (is_active_l1) {
1879 /* get active L2 tables from cache */
415184f5
AG
1880 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1881 (void **)&l2_slice);
226494ff
AG
1882 } else {
1883 /* load inactive L2 tables from disk */
415184f5 1884 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
226494ff
AG
1885 }
1886 if (ret < 0) {
1887 goto fail;
32b6444d
HR
1888 }
1889
415184f5
AG
1890 for (j = 0; j < s->l2_slice_size; j++) {
1891 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
226494ff
AG
1892 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1893 QCow2ClusterType cluster_type =
808c2bb4 1894 qcow2_get_cluster_type(bs, l2_entry);
226494ff
AG
1895
1896 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1897 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
32b6444d
HR
1898 continue;
1899 }
1900
226494ff
AG
1901 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1902 if (!bs->backing) {
1903 /* not backed; therefore we can simply deallocate the
1904 * cluster */
415184f5 1905 l2_slice[j] = 0;
226494ff
AG
1906 l2_dirty = true;
1907 continue;
1908 }
1909
1910 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1911 if (offset < 0) {
1912 ret = offset;
1913 goto fail;
1914 }
ecf58777 1915
226494ff
AG
1916 if (l2_refcount > 1) {
1917 /* For shared L2 tables, set the refcount accordingly
1918 * (it is already 1 and needs to be l2_refcount) */
1919 ret = qcow2_update_cluster_refcount(
1920 bs, offset >> s->cluster_bits,
2aabe7c7 1921 refcount_diff(1, l2_refcount), false,
ecf58777 1922 QCOW2_DISCARD_OTHER);
226494ff
AG
1923 if (ret < 0) {
1924 qcow2_free_clusters(bs, offset, s->cluster_size,
1925 QCOW2_DISCARD_OTHER);
1926 goto fail;
1927 }
ecf58777
HR
1928 }
1929 }
32b6444d 1930
226494ff 1931 if (offset_into_cluster(s, offset)) {
415184f5 1932 int l2_index = slice * s->l2_slice_size + j;
226494ff
AG
1933 qcow2_signal_corruption(
1934 bs, true, -1, -1,
1935 "Cluster allocation offset "
1936 "%#" PRIx64 " unaligned (L2 offset: %#"
1937 PRIx64 ", L2 index: %#x)", offset,
415184f5 1938 l2_offset, l2_index);
226494ff
AG
1939 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1940 qcow2_free_clusters(bs, offset, s->cluster_size,
1941 QCOW2_DISCARD_ALWAYS);
1942 }
1943 ret = -EIO;
1944 goto fail;
8dd93d93 1945 }
8dd93d93 1946
226494ff 1947 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
966b000f 1948 s->cluster_size, true);
226494ff
AG
1949 if (ret < 0) {
1950 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1951 qcow2_free_clusters(bs, offset, s->cluster_size,
1952 QCOW2_DISCARD_ALWAYS);
1953 }
1954 goto fail;
320c7066 1955 }
32b6444d 1956
966b000f
KW
1957 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1958 s->cluster_size, 0);
226494ff
AG
1959 if (ret < 0) {
1960 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1961 qcow2_free_clusters(bs, offset, s->cluster_size,
1962 QCOW2_DISCARD_ALWAYS);
1963 }
1964 goto fail;
320c7066 1965 }
32b6444d 1966
226494ff 1967 if (l2_refcount == 1) {
415184f5 1968 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
226494ff 1969 } else {
415184f5 1970 l2_slice[j] = cpu_to_be64(offset);
226494ff
AG
1971 }
1972 l2_dirty = true;
e390cf5a 1973 }
32b6444d 1974
226494ff
AG
1975 if (is_active_l1) {
1976 if (l2_dirty) {
415184f5 1977 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
226494ff 1978 qcow2_cache_depends_on_flush(s->l2_table_cache);
32b6444d 1979 }
415184f5 1980 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
226494ff
AG
1981 } else {
1982 if (l2_dirty) {
1983 ret = qcow2_pre_write_overlap_check(
1984 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
966b000f 1985 slice_offset, slice_size2, false);
226494ff
AG
1986 if (ret < 0) {
1987 goto fail;
1988 }
32b6444d 1989
415184f5
AG
1990 ret = bdrv_pwrite(bs->file, slice_offset,
1991 l2_slice, slice_size2);
226494ff
AG
1992 if (ret < 0) {
1993 goto fail;
1994 }
32b6444d
HR
1995 }
1996 }
1997 }
4057a2b2
HR
1998
1999 (*visited_l1_entries)++;
2000 if (status_cb) {
8b13976d 2001 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 2002 }
32b6444d
HR
2003 }
2004
2005 ret = 0;
2006
2007fail:
415184f5 2008 if (l2_slice) {
32b6444d 2009 if (!is_active_l1) {
415184f5 2010 qemu_vfree(l2_slice);
32b6444d 2011 } else {
415184f5 2012 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
32b6444d
HR
2013 }
2014 }
2015 return ret;
2016}
2017
2018/*
2019 * For backed images, expands all zero clusters on the image. For non-backed
2020 * images, deallocates all non-pre-allocated zero clusters (and claims the
2021 * allocation for pre-allocated ones). This is important for downgrading to a
2022 * qcow2 version which doesn't yet support metadata zero clusters.
2023 */
4057a2b2 2024int qcow2_expand_zero_clusters(BlockDriverState *bs,
8b13976d
HR
2025 BlockDriverAmendStatusCB *status_cb,
2026 void *cb_opaque)
32b6444d 2027{
ff99129a 2028 BDRVQcow2State *s = bs->opaque;
32b6444d 2029 uint64_t *l1_table = NULL;
4057a2b2 2030 int64_t l1_entries = 0, visited_l1_entries = 0;
32b6444d
HR
2031 int ret;
2032 int i, j;
2033
4057a2b2
HR
2034 if (status_cb) {
2035 l1_entries = s->l1_size;
2036 for (i = 0; i < s->nb_snapshots; i++) {
2037 l1_entries += s->snapshots[i].l1_size;
2038 }
2039 }
2040
32b6444d 2041 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
4057a2b2 2042 &visited_l1_entries, l1_entries,
8b13976d 2043 status_cb, cb_opaque);
32b6444d
HR
2044 if (ret < 0) {
2045 goto fail;
2046 }
2047
2048 /* Inactive L1 tables may point to active L2 tables - therefore it is
2049 * necessary to flush the L2 table cache before trying to access the L2
2050 * tables pointed to by inactive L1 entries (else we might try to expand
2051 * zero clusters that have already been expanded); furthermore, it is also
2052 * necessary to empty the L2 table cache, since it may contain tables which
2053 * are now going to be modified directly on disk, bypassing the cache.
2054 * qcow2_cache_empty() does both for us. */
2055 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2056 if (ret < 0) {
2057 goto fail;
2058 }
2059
2060 for (i = 0; i < s->nb_snapshots; i++) {
c9a442e4
AG
2061 int l1_size2;
2062 uint64_t *new_l1_table;
2063 Error *local_err = NULL;
2064
2065 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2066 s->snapshots[i].l1_size, sizeof(uint64_t),
2067 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2068 &local_err);
2069 if (ret < 0) {
2070 error_report_err(local_err);
2071 goto fail;
2072 }
32b6444d 2073
c9a442e4
AG
2074 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2075 new_l1_table = g_try_realloc(l1_table, l1_size2);
de7269d2
AG
2076
2077 if (!new_l1_table) {
2078 ret = -ENOMEM;
2079 goto fail;
2080 }
2081
2082 l1_table = new_l1_table;
32b6444d 2083
c9a442e4
AG
2084 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2085 l1_table, l1_size2);
32b6444d
HR
2086 if (ret < 0) {
2087 goto fail;
2088 }
2089
2090 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2091 be64_to_cpus(&l1_table[j]);
2092 }
2093
2094 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
4057a2b2 2095 &visited_l1_entries, l1_entries,
8b13976d 2096 status_cb, cb_opaque);
32b6444d
HR
2097 if (ret < 0) {
2098 goto fail;
2099 }
2100 }
2101
2102 ret = 0;
2103
2104fail:
32b6444d
HR
2105 g_free(l1_table);
2106 return ret;
2107}