]> git.proxmox.com Git - mirror_qemu.git/blame - block/qcow2-cluster.c
Merge remote-tracking branch 'remotes/stefanha/tags/tracing-pull-request' into staging
[mirror_qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
80c71a24 25#include "qemu/osdep.h"
45aba42f
KW
26#include <zlib.h>
27
c9a442e4 28#include "qapi/error.h"
45aba42f 29#include "qemu-common.h"
737e150e 30#include "block/block_int.h"
0d8c41da 31#include "qcow2.h"
58369e22 32#include "qemu/bswap.h"
3cce16f4 33#include "trace.h"
45aba42f 34
46b732cd
PB
35int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
36{
37 BDRVQcow2State *s = bs->opaque;
38 int new_l1_size, i, ret;
39
40 if (exact_size >= s->l1_size) {
41 return 0;
42 }
43
44 new_l1_size = exact_size;
45
46#ifdef DEBUG_ALLOC2
47 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48#endif
49
50 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52 new_l1_size * sizeof(uint64_t),
53 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54 if (ret < 0) {
55 goto fail;
56 }
57
58 ret = bdrv_flush(bs->file->bs);
59 if (ret < 0) {
60 goto fail;
61 }
62
63 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66 continue;
67 }
68 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69 s->cluster_size, QCOW2_DISCARD_ALWAYS);
70 s->l1_table[i] = 0;
71 }
72 return 0;
73
74fail:
75 /*
76 * If the write in the l1_table failed the image may contain a partially
77 * overwritten l1_table. In this case it would be better to clear the
78 * l1_table in memory to avoid possible image corruption.
79 */
80 memset(s->l1_table + new_l1_size, 0,
81 (s->l1_size - new_l1_size) * sizeof(uint64_t));
82 return ret;
83}
84
2cf7cfa1
KW
85int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86 bool exact_size)
45aba42f 87{
ff99129a 88 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 89 int new_l1_size2, ret, i;
45aba42f 90 uint64_t *new_l1_table;
fda74f82 91 int64_t old_l1_table_offset, old_l1_size;
2cf7cfa1 92 int64_t new_l1_table_offset, new_l1_size;
45aba42f
KW
93 uint8_t data[12];
94
72893756 95 if (min_size <= s->l1_size)
45aba42f 96 return 0;
72893756 97
b93f9950
HR
98 /* Do a sanity check on min_size before trying to calculate new_l1_size
99 * (this prevents overflows during the while loop for the calculation of
100 * new_l1_size) */
101 if (min_size > INT_MAX / sizeof(uint64_t)) {
102 return -EFBIG;
103 }
104
72893756
SH
105 if (exact_size) {
106 new_l1_size = min_size;
107 } else {
108 /* Bump size up to reduce the number of times we have to grow */
109 new_l1_size = s->l1_size;
110 if (new_l1_size == 0) {
111 new_l1_size = 1;
112 }
113 while (min_size > new_l1_size) {
21cf3e12 114 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
72893756 115 }
45aba42f 116 }
72893756 117
84c26520
HR
118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2cf7cfa1
KW
120 return -EFBIG;
121 }
122
45aba42f 123#ifdef DEBUG_ALLOC2
2cf7cfa1
KW
124 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125 s->l1_size, new_l1_size);
45aba42f
KW
126#endif
127
128 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
9a4f4c31 129 new_l1_table = qemu_try_blockalign(bs->file->bs,
9e029689 130 ROUND_UP(new_l1_size2, 512));
de82815d
KW
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
133 }
9e029689 134 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
de82815d 135
0647d47c
SH
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
138 }
45aba42f
KW
139
140 /* write new table (align to cluster) */
66f82cee 141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 143 if (new_l1_table_offset < 0) {
de82815d 144 qemu_vfree(new_l1_table);
5d757b56
KW
145 return new_l1_table_offset;
146 }
29c1a730
KW
147
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
80fa3341 150 goto fail;
29c1a730 151 }
45aba42f 152
cf93980e
HR
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
231bb267 155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
966b000f 156 new_l1_size2, false);
cf93980e
HR
157 if (ret < 0) {
158 goto fail;
159 }
160
66f82cee 161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
d9ca2ea2 164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
9a4f4c31 165 new_l1_table, new_l1_size2);
8b3b7206 166 if (ret < 0)
45aba42f
KW
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170
171 /* set new table */
66f82cee 172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
f1f7a1dd 173 stl_be_p(data, new_l1_size);
e4ef9f46 174 stq_be_p(data + 4, new_l1_table_offset);
d9ca2ea2 175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
9a4f4c31 176 data, sizeof(data));
8b3b7206 177 if (ret < 0) {
45aba42f 178 goto fail;
fb8fa77c 179 }
de82815d 180 qemu_vfree(s->l1_table);
fda74f82 181 old_l1_table_offset = s->l1_table_offset;
45aba42f
KW
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
fda74f82 184 old_l1_size = s->l1_size;
45aba42f 185 s->l1_size = new_l1_size;
fda74f82
HR
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187 QCOW2_DISCARD_OTHER);
45aba42f
KW
188 return 0;
189 fail:
de82815d 190 qemu_vfree(new_l1_table);
6cfcb9b8
KW
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
8b3b7206 193 return ret;
45aba42f
KW
194}
195
45aba42f
KW
196/*
197 * l2_load
198 *
e2b5713e
AG
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
201 * table to load.
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
45aba42f 204 *
e2b5713e
AG
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
208 * file.
45aba42f 209 */
e2b5713e
AG
210static int l2_load(BlockDriverState *bs, uint64_t offset,
211 uint64_t l2_offset, uint64_t **l2_slice)
45aba42f 212{
ff99129a 213 BDRVQcow2State *s = bs->opaque;
e2b5713e
AG
214 int start_of_slice = sizeof(uint64_t) *
215 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
45aba42f 216
e2b5713e
AG
217 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218 (void **)l2_slice);
45aba42f
KW
219}
220
6583e3c7
KW
221/*
222 * Writes one sector of the L1 table to the disk (can't update single entries
223 * and we really don't want bdrv_pread to perform a read-modify-write)
224 */
225#define L1_ENTRIES_PER_SECTOR (512 / 8)
e23e400e 226int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 227{
ff99129a 228 BDRVQcow2State *s = bs->opaque;
a1391444 229 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
6583e3c7 230 int l1_start_index;
f7defcb6 231 int i, ret;
6583e3c7
KW
232
233 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
a1391444
HR
234 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
235 i++)
236 {
6583e3c7
KW
237 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
238 }
239
231bb267 240 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
966b000f 241 s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
cf93980e
HR
242 if (ret < 0) {
243 return ret;
244 }
245
66f82cee 246 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
d9ca2ea2 247 ret = bdrv_pwrite_sync(bs->file,
9a4f4c31
KW
248 s->l1_table_offset + 8 * l1_start_index,
249 buf, sizeof(buf));
f7defcb6
KW
250 if (ret < 0) {
251 return ret;
6583e3c7
KW
252 }
253
254 return 0;
255}
256
45aba42f
KW
257/*
258 * l2_allocate
259 *
260 * Allocate a new l2 entry in the file. If l1_index points to an already
261 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
262 * table) copy the contents of the old L2 table into the newly allocated one.
263 * Otherwise the new table is initialized with zeros.
264 *
265 */
266
3861946a 267static int l2_allocate(BlockDriverState *bs, int l1_index)
45aba42f 268{
ff99129a 269 BDRVQcow2State *s = bs->opaque;
6583e3c7 270 uint64_t old_l2_offset;
3861946a
AG
271 uint64_t *l2_slice = NULL;
272 unsigned slice, slice_size2, n_slices;
f4f0d391 273 int64_t l2_offset;
c46e1167 274 int ret;
45aba42f
KW
275
276 old_l2_offset = s->l1_table[l1_index];
277
3cce16f4
KW
278 trace_qcow2_l2_allocate(bs, l1_index);
279
45aba42f
KW
280 /* allocate a new l2 entry */
281
ed6ccf0f 282 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 283 if (l2_offset < 0) {
be0b742e
HR
284 ret = l2_offset;
285 goto fail;
5d757b56 286 }
29c1a730 287
c1c43990
AG
288 /* The offset must fit in the offset field of the L1 table entry */
289 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
290
98839750
AG
291 /* If we're allocating the table at offset 0 then something is wrong */
292 if (l2_offset == 0) {
293 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
294 "allocation of L2 table at offset 0");
295 ret = -EIO;
296 goto fail;
297 }
298
29c1a730
KW
299 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
300 if (ret < 0) {
301 goto fail;
302 }
45aba42f 303
45aba42f
KW
304 /* allocate a new entry in the l2 cache */
305
3861946a
AG
306 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
307 n_slices = s->cluster_size / slice_size2;
308
3cce16f4 309 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
3861946a 310 for (slice = 0; slice < n_slices; slice++) {
6580bb09 311 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
3861946a
AG
312 l2_offset + slice * slice_size2,
313 (void **) &l2_slice);
6580bb09
AG
314 if (ret < 0) {
315 goto fail;
316 }
29c1a730 317
6580bb09 318 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
3861946a
AG
319 /* if there was no old l2 table, clear the new slice */
320 memset(l2_slice, 0, slice_size2);
6580bb09 321 } else {
3861946a
AG
322 uint64_t *old_slice;
323 uint64_t old_l2_slice_offset =
324 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
29c1a730 325
3861946a 326 /* if there was an old l2 table, read a slice from the disk */
6580bb09 327 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
3861946a
AG
328 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
329 (void **) &old_slice);
6580bb09
AG
330 if (ret < 0) {
331 goto fail;
332 }
333
3861946a 334 memcpy(l2_slice, old_slice, slice_size2);
6580bb09 335
3861946a 336 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
29c1a730
KW
337 }
338
3861946a 339 /* write the l2 slice to the file */
6580bb09 340 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 341
6580bb09 342 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
3861946a
AG
343 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
344 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 345 }
29c1a730 346
29c1a730 347 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 348 if (ret < 0) {
175e1152
KW
349 goto fail;
350 }
351
352 /* update the L1 entry */
3cce16f4 353 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152 354 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
e23e400e 355 ret = qcow2_write_l1_entry(bs, l1_index);
175e1152
KW
356 if (ret < 0) {
357 goto fail;
c46e1167 358 }
45aba42f 359
3cce16f4 360 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 361 return 0;
175e1152
KW
362
363fail:
3cce16f4 364 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
3861946a
AG
365 if (l2_slice != NULL) {
366 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
8585afd8 367 }
68dba0bf 368 s->l1_table[l1_index] = old_l2_offset;
e3b21ef9
HR
369 if (l2_offset > 0) {
370 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
371 QCOW2_DISCARD_ALWAYS);
372 }
175e1152 373 return ret;
45aba42f
KW
374}
375
2bfcc4a0 376/*
13f893c4 377 * Checks how many clusters in a given L2 slice are contiguous in the image
2bfcc4a0
KW
378 * file. As soon as one of the flags in the bitmask stop_flags changes compared
379 * to the first cluster, the search is stopped and the cluster is not counted
380 * as contiguous. (This allows it, for example, to stop at the first compressed
381 * cluster which may require a different handling)
382 */
808c2bb4
KW
383static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
384 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
45aba42f
KW
385{
386 int i;
3ef95218 387 QCow2ClusterType first_cluster_type;
78a52ad5 388 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
13f893c4 389 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
15684a47 390 uint64_t offset = first_entry & mask;
45aba42f 391
b8c8353a
KW
392 first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
393 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
45aba42f 394 return 0;
564a6b69 395 }
45aba42f 396
564a6b69 397 /* must be allocated */
564a6b69 398 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
fdfab37d 399 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
15684a47 400
61653008 401 for (i = 0; i < nb_clusters; i++) {
13f893c4 402 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
2bfcc4a0 403 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 404 break;
2bfcc4a0
KW
405 }
406 }
45aba42f 407
7d37435b 408 return i;
45aba42f
KW
409}
410
4341df8a
EB
411/*
412 * Checks how many consecutive unallocated clusters in a given L2
c26f10ba 413 * slice have the same cluster type.
4341df8a 414 */
808c2bb4
KW
415static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
416 int nb_clusters,
c26f10ba 417 uint64_t *l2_slice,
3ef95218 418 QCow2ClusterType wanted_type)
45aba42f 419{
2bfcc4a0
KW
420 int i;
421
fdfab37d 422 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
4341df8a 423 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
2bfcc4a0 424 for (i = 0; i < nb_clusters; i++) {
c26f10ba 425 uint64_t entry = be64_to_cpu(l2_slice[i]);
808c2bb4 426 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
45aba42f 427
fdfab37d 428 if (type != wanted_type) {
2bfcc4a0
KW
429 break;
430 }
431 }
45aba42f
KW
432
433 return i;
434}
435
672f0f2c
AG
436static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
437 uint64_t src_cluster_offset,
438 unsigned offset_in_cluster,
86b862c4 439 QEMUIOVector *qiov)
45aba42f 440{
aaa4d20b 441 int ret;
1b9f1491 442
86b862c4 443 if (qiov->size == 0) {
99450c6f
AG
444 return 0;
445 }
446
66f82cee 447 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6 448
dba28555 449 if (!bs->drv) {
672f0f2c 450 return -ENOMEDIUM;
dba28555
HR
451 }
452
aef4acb6
SH
453 /* Call .bdrv_co_readv() directly instead of using the public block-layer
454 * interface. This avoids double I/O throttling and request tracking,
455 * which can lead to deadlock when block layer copy-on-read is enabled.
456 */
aaa4d20b 457 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
86b862c4 458 qiov->size, qiov, 0);
1b9f1491 459 if (ret < 0) {
672f0f2c 460 return ret;
1b9f1491
KW
461 }
462
672f0f2c
AG
463 return 0;
464}
465
466static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
467 uint64_t src_cluster_offset,
4652b8f3 468 uint64_t cluster_offset,
672f0f2c
AG
469 unsigned offset_in_cluster,
470 uint8_t *buffer,
471 unsigned bytes)
472{
473 if (bytes && bs->encrypted) {
474 BDRVQcow2State *s = bs->opaque;
4609742a 475 int64_t offset = (s->crypt_physical_offset ?
4652b8f3 476 (cluster_offset + offset_in_cluster) :
4609742a 477 (src_cluster_offset + offset_in_cluster));
aaa4d20b
KW
478 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
479 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
b25b387f 480 assert(s->crypto);
4609742a 481 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
672f0f2c 482 return false;
f6fa64f6 483 }
45aba42f 484 }
672f0f2c
AG
485 return true;
486}
487
488static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
489 uint64_t cluster_offset,
490 unsigned offset_in_cluster,
86b862c4 491 QEMUIOVector *qiov)
672f0f2c 492{
966b000f 493 BDRVQcow2State *s = bs->opaque;
672f0f2c
AG
494 int ret;
495
86b862c4 496 if (qiov->size == 0) {
672f0f2c
AG
497 return 0;
498 }
499
231bb267 500 ret = qcow2_pre_write_overlap_check(bs, 0,
966b000f 501 cluster_offset + offset_in_cluster, qiov->size, true);
cf93980e 502 if (ret < 0) {
672f0f2c 503 return ret;
cf93980e
HR
504 }
505
66f82cee 506 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
966b000f 507 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
86b862c4 508 qiov->size, qiov, 0);
1b9f1491 509 if (ret < 0) {
672f0f2c 510 return ret;
1b9f1491
KW
511 }
512
672f0f2c 513 return 0;
45aba42f
KW
514}
515
516
517/*
518 * get_cluster_offset
519 *
ecfe1863
KW
520 * For a given offset of the virtual disk, find the cluster type and offset in
521 * the qcow2 file. The offset is stored in *cluster_offset.
45aba42f 522 *
ecfe1863
KW
523 * On entry, *bytes is the maximum number of contiguous bytes starting at
524 * offset that we are interested in.
45aba42f 525 *
ecfe1863
KW
526 * On exit, *bytes is the number of bytes starting at offset that have the same
527 * cluster type and (if applicable) are stored contiguously in the image file.
528 * Compressed clusters are always returned one by one.
45aba42f 529 *
68d000a3
KW
530 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
531 * cases.
45aba42f 532 */
1c46efaa 533int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
ecfe1863 534 unsigned int *bytes, uint64_t *cluster_offset)
45aba42f 535{
ff99129a 536 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 537 unsigned int l2_index;
fd630039
AG
538 uint64_t l1_index, l2_offset, *l2_slice;
539 int c;
c834cba9
HR
540 unsigned int offset_in_cluster;
541 uint64_t bytes_available, bytes_needed, nb_clusters;
3ef95218 542 QCow2ClusterType type;
55c17e98 543 int ret;
45aba42f 544
b2f65d6b 545 offset_in_cluster = offset_into_cluster(s, offset);
ecfe1863 546 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
45aba42f 547
b2f65d6b 548 /* compute how many bytes there are between the start of the cluster
fd630039
AG
549 * containing offset and the end of the l2 slice that contains
550 * the entry pointing to it */
551 bytes_available =
552 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
553 << s->cluster_bits;
45aba42f 554
b2f65d6b
KW
555 if (bytes_needed > bytes_available) {
556 bytes_needed = bytes_available;
45aba42f
KW
557 }
558
1c46efaa 559 *cluster_offset = 0;
45aba42f 560
b6af0975 561 /* seek to the l2 offset in the l1 table */
45aba42f 562
05b5b6ee 563 l1_index = offset_to_l1_index(s, offset);
68d000a3 564 if (l1_index >= s->l1_size) {
3ef95218 565 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 566 goto out;
68d000a3 567 }
45aba42f 568
68d000a3
KW
569 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
570 if (!l2_offset) {
3ef95218 571 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 572 goto out;
68d000a3 573 }
45aba42f 574
a97c67ee
HR
575 if (offset_into_cluster(s, l2_offset)) {
576 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
577 " unaligned (L1 index: %#" PRIx64 ")",
578 l2_offset, l1_index);
579 return -EIO;
580 }
581
fd630039 582 /* load the l2 slice in memory */
45aba42f 583
fd630039 584 ret = l2_load(bs, offset, l2_offset, &l2_slice);
55c17e98
KW
585 if (ret < 0) {
586 return ret;
1c46efaa 587 }
45aba42f
KW
588
589 /* find the cluster offset for the given disk offset */
590
fd630039
AG
591 l2_index = offset_to_l2_slice_index(s, offset);
592 *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
b6d36def 593
b2f65d6b 594 nb_clusters = size_to_clusters(s, bytes_needed);
c834cba9
HR
595 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
596 * integers; the minimum cluster size is 512, so this assertion is always
597 * true */
598 assert(nb_clusters <= INT_MAX);
45aba42f 599
808c2bb4 600 type = qcow2_get_cluster_type(bs, *cluster_offset);
fdfab37d
EB
601 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
602 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
603 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
604 " in pre-v3 image (L2 offset: %#" PRIx64
605 ", L2 index: %#x)", l2_offset, l2_index);
606 ret = -EIO;
607 goto fail;
608 }
3ef95218 609 switch (type) {
68d000a3 610 case QCOW2_CLUSTER_COMPRESSED:
966b000f
KW
611 if (has_data_file(bs)) {
612 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
613 "entry found in image with external data "
614 "file (L2 offset: %#" PRIx64 ", L2 index: "
615 "%#x)", l2_offset, l2_index);
616 ret = -EIO;
617 goto fail;
618 }
68d000a3
KW
619 /* Compressed clusters can only be processed one by one */
620 c = 1;
621 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
622 break;
fdfab37d 623 case QCOW2_CLUSTER_ZERO_PLAIN:
68d000a3 624 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f 625 /* how many empty clusters ? */
808c2bb4 626 c = count_contiguous_clusters_unallocated(bs, nb_clusters,
fd630039 627 &l2_slice[l2_index], type);
68d000a3
KW
628 *cluster_offset = 0;
629 break;
fdfab37d 630 case QCOW2_CLUSTER_ZERO_ALLOC:
68d000a3 631 case QCOW2_CLUSTER_NORMAL:
45aba42f 632 /* how many allocated clusters ? */
808c2bb4 633 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
fd630039 634 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
68d000a3 635 *cluster_offset &= L2E_OFFSET_MASK;
a97c67ee 636 if (offset_into_cluster(s, *cluster_offset)) {
fdfab37d
EB
637 qcow2_signal_corruption(bs, true, -1, -1,
638 "Cluster allocation offset %#"
a97c67ee
HR
639 PRIx64 " unaligned (L2 offset: %#" PRIx64
640 ", L2 index: %#x)", *cluster_offset,
641 l2_offset, l2_index);
642 ret = -EIO;
643 goto fail;
644 }
966b000f
KW
645 if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
646 {
647 qcow2_signal_corruption(bs, true, -1, -1,
648 "External data file host cluster offset %#"
649 PRIx64 " does not match guest cluster "
650 "offset: %#" PRIx64
651 ", L2 index: %#x)", *cluster_offset,
652 offset - offset_in_cluster, l2_index);
653 ret = -EIO;
654 goto fail;
655 }
68d000a3 656 break;
1417d7e4
KW
657 default:
658 abort();
45aba42f
KW
659 }
660
fd630039 661 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
29c1a730 662
c834cba9 663 bytes_available = (int64_t)c * s->cluster_size;
68d000a3 664
45aba42f 665out:
b2f65d6b
KW
666 if (bytes_available > bytes_needed) {
667 bytes_available = bytes_needed;
668 }
45aba42f 669
c834cba9
HR
670 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
671 * subtracting offset_in_cluster will therefore definitely yield something
672 * not exceeding UINT_MAX */
673 assert(bytes_available - offset_in_cluster <= UINT_MAX);
ecfe1863 674 *bytes = bytes_available - offset_in_cluster;
45aba42f 675
3ef95218 676 return type;
a97c67ee
HR
677
678fail:
fd630039 679 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
a97c67ee 680 return ret;
45aba42f
KW
681}
682
683/*
684 * get_cluster_table
685 *
686 * for a given disk offset, load (and allocate if needed)
c03bfc5b 687 * the appropriate slice of its l2 table.
45aba42f 688 *
c03bfc5b 689 * the cluster index in the l2 slice is given to the caller.
45aba42f 690 *
1e3e8f1a 691 * Returns 0 on success, -errno in failure case
45aba42f 692 */
45aba42f 693static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
c03bfc5b 694 uint64_t **new_l2_slice,
45aba42f
KW
695 int *new_l2_index)
696{
ff99129a 697 BDRVQcow2State *s = bs->opaque;
2cf7cfa1
KW
698 unsigned int l2_index;
699 uint64_t l1_index, l2_offset;
c03bfc5b 700 uint64_t *l2_slice = NULL;
80ee15a6 701 int ret;
45aba42f 702
b6af0975 703 /* seek to the l2 offset in the l1 table */
45aba42f 704
05b5b6ee 705 l1_index = offset_to_l1_index(s, offset);
45aba42f 706 if (l1_index >= s->l1_size) {
72893756 707 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
708 if (ret < 0) {
709 return ret;
710 }
45aba42f 711 }
8e37f681 712
2cf7cfa1 713 assert(l1_index < s->l1_size);
8e37f681 714 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
a97c67ee
HR
715 if (offset_into_cluster(s, l2_offset)) {
716 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
717 " unaligned (L1 index: %#" PRIx64 ")",
718 l2_offset, l1_index);
719 return -EIO;
720 }
45aba42f 721
05f9ee46 722 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
16fde5f2 723 /* First allocate a new L2 table (and do COW if needed) */
3861946a 724 ret = l2_allocate(bs, l1_index);
c46e1167
KW
725 if (ret < 0) {
726 return ret;
1e3e8f1a 727 }
16fde5f2
KW
728
729 /* Then decrease the refcount of the old table */
730 if (l2_offset) {
6cfcb9b8
KW
731 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
732 QCOW2_DISCARD_OTHER);
16fde5f2 733 }
3861946a
AG
734
735 /* Get the offset of the newly-allocated l2 table */
736 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
737 assert(offset_into_cluster(s, l2_offset) == 0);
05f9ee46
AG
738 }
739
c03bfc5b
AG
740 /* load the l2 slice in memory */
741 ret = l2_load(bs, offset, l2_offset, &l2_slice);
05f9ee46
AG
742 if (ret < 0) {
743 return ret;
45aba42f
KW
744 }
745
746 /* find the cluster offset for the given disk offset */
747
c03bfc5b 748 l2_index = offset_to_l2_slice_index(s, offset);
45aba42f 749
c03bfc5b 750 *new_l2_slice = l2_slice;
45aba42f
KW
751 *new_l2_index = l2_index;
752
1e3e8f1a 753 return 0;
45aba42f
KW
754}
755
756/*
757 * alloc_compressed_cluster_offset
758 *
77e023ff
KW
759 * For a given offset on the virtual disk, allocate a new compressed cluster
760 * and put the host offset of the cluster into *host_offset. If a cluster is
761 * already allocated at the offset, return an error.
45aba42f 762 *
77e023ff 763 * Return 0 on success and -errno in error cases
45aba42f 764 */
77e023ff
KW
765int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
766 uint64_t offset,
767 int compressed_size,
768 uint64_t *host_offset)
45aba42f 769{
ff99129a 770 BDRVQcow2State *s = bs->opaque;
45aba42f 771 int l2_index, ret;
e4e72548 772 uint64_t *l2_slice;
f4f0d391 773 int64_t cluster_offset;
45aba42f
KW
774 int nb_csectors;
775
966b000f
KW
776 if (has_data_file(bs)) {
777 return 0;
778 }
779
e4e72548 780 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1e3e8f1a 781 if (ret < 0) {
77e023ff 782 return ret;
1e3e8f1a 783 }
45aba42f 784
b0b6862e
KW
785 /* Compression can't overwrite anything. Fail if the cluster was already
786 * allocated. */
e4e72548 787 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
b0b6862e 788 if (cluster_offset & L2E_OFFSET_MASK) {
e4e72548 789 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 790 return -EIO;
8f1efd00 791 }
45aba42f 792
ed6ccf0f 793 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 794 if (cluster_offset < 0) {
e4e72548 795 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 796 return cluster_offset;
5d757b56
KW
797 }
798
45aba42f
KW
799 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
800 (cluster_offset >> 9);
801
802 cluster_offset |= QCOW_OFLAG_COMPRESSED |
803 ((uint64_t)nb_csectors << s->csize_shift);
804
805 /* update L2 table */
806
807 /* compressed clusters never have the copied flag */
808
66f82cee 809 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
e4e72548
AG
810 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
811 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
812 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
4c1612d9 813
77e023ff
KW
814 *host_offset = cluster_offset & s->cluster_offset_mask;
815 return 0;
4c1612d9
KW
816}
817
99450c6f 818static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
593fb83c 819{
ff99129a 820 BDRVQcow2State *s = bs->opaque;
99450c6f
AG
821 Qcow2COWRegion *start = &m->cow_start;
822 Qcow2COWRegion *end = &m->cow_end;
672f0f2c 823 unsigned buffer_size;
b3cf1c7c
AG
824 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
825 bool merge_reads;
672f0f2c 826 uint8_t *start_buffer, *end_buffer;
86b862c4 827 QEMUIOVector qiov;
593fb83c
KW
828 int ret;
829
672f0f2c 830 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
b3cf1c7c
AG
831 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
832 assert(start->offset + start->nb_bytes <= end->offset);
ee22a9d8 833 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
672f0f2c 834
99450c6f 835 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
593fb83c
KW
836 return 0;
837 }
838
b3cf1c7c
AG
839 /* If we have to read both the start and end COW regions and the
840 * middle region is not too large then perform just one read
841 * operation */
842 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
843 if (merge_reads) {
844 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
845 } else {
846 /* If we have to do two reads, add some padding in the middle
847 * if necessary to make sure that the end region is optimally
848 * aligned. */
849 size_t align = bdrv_opt_mem_align(bs);
850 assert(align > 0 && align <= UINT_MAX);
851 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
852 UINT_MAX - end->nb_bytes);
853 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
854 }
855
856 /* Reserve a buffer large enough to store all the data that we're
857 * going to read */
672f0f2c
AG
858 start_buffer = qemu_try_blockalign(bs, buffer_size);
859 if (start_buffer == NULL) {
860 return -ENOMEM;
861 }
862 /* The part of the buffer where the end region is located */
863 end_buffer = start_buffer + buffer_size - end->nb_bytes;
864
ee22a9d8 865 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
86b862c4 866
593fb83c 867 qemu_co_mutex_unlock(&s->lock);
b3cf1c7c
AG
868 /* First we read the existing data from both COW regions. We
869 * either read the whole region in one go, or the start and end
870 * regions separately. */
871 if (merge_reads) {
86b862c4
AG
872 qemu_iovec_add(&qiov, start_buffer, buffer_size);
873 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c 874 } else {
86b862c4
AG
875 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
876 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c
AG
877 if (ret < 0) {
878 goto fail;
879 }
672f0f2c 880
86b862c4
AG
881 qemu_iovec_reset(&qiov);
882 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
883 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
b3cf1c7c 884 }
593fb83c 885 if (ret < 0) {
99450c6f 886 goto fail;
593fb83c
KW
887 }
888
672f0f2c
AG
889 /* Encrypt the data if necessary before writing it */
890 if (bs->encrypted) {
4652b8f3
DB
891 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
892 start->offset, start_buffer,
893 start->nb_bytes) ||
894 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
895 end->offset, end_buffer, end->nb_bytes)) {
672f0f2c
AG
896 ret = -EIO;
897 goto fail;
898 }
899 }
900
ee22a9d8
AG
901 /* And now we can write everything. If we have the guest data we
902 * can write everything in one single operation */
903 if (m->data_qiov) {
904 qemu_iovec_reset(&qiov);
905 if (start->nb_bytes) {
906 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
907 }
908 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
909 if (end->nb_bytes) {
910 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
911 }
912 /* NOTE: we have a write_aio blkdebug event here followed by
913 * a cow_write one in do_perform_cow_write(), but there's only
914 * one single I/O operation */
915 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
916 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
917 } else {
918 /* If there's no guest data then write both COW regions separately */
919 qemu_iovec_reset(&qiov);
920 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
921 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
922 if (ret < 0) {
923 goto fail;
924 }
925
926 qemu_iovec_reset(&qiov);
927 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
928 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
672f0f2c 929 }
99450c6f
AG
930
931fail:
932 qemu_co_mutex_lock(&s->lock);
933
593fb83c
KW
934 /*
935 * Before we update the L2 table to actually point to the new cluster, we
936 * need to be sure that the refcounts have been increased and COW was
937 * handled.
938 */
99450c6f
AG
939 if (ret == 0) {
940 qcow2_cache_depends_on_flush(s->l2_table_cache);
941 }
593fb83c 942
672f0f2c 943 qemu_vfree(start_buffer);
86b862c4 944 qemu_iovec_destroy(&qiov);
99450c6f 945 return ret;
593fb83c
KW
946}
947
148da7ea 948int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f 949{
ff99129a 950 BDRVQcow2State *s = bs->opaque;
45aba42f 951 int i, j = 0, l2_index, ret;
a002c0b0 952 uint64_t *old_cluster, *l2_slice;
250196f1 953 uint64_t cluster_offset = m->alloc_offset;
45aba42f 954
3cce16f4 955 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 956 assert(m->nb_clusters > 0);
45aba42f 957
5839e53b 958 old_cluster = g_try_new(uint64_t, m->nb_clusters);
de82815d
KW
959 if (old_cluster == NULL) {
960 ret = -ENOMEM;
961 goto err;
962 }
45aba42f
KW
963
964 /* copy content of unmodified sectors */
99450c6f 965 ret = perform_cow(bs, m);
593fb83c
KW
966 if (ret < 0) {
967 goto err;
29c1a730
KW
968 }
969
593fb83c 970 /* Update L2 table. */
74c4510a 971 if (s->use_lazy_refcounts) {
280d3735
KW
972 qcow2_mark_dirty(bs);
973 }
bfe8043e
SH
974 if (qcow2_need_accurate_refcounts(s)) {
975 qcow2_cache_set_dependency(bs, s->l2_table_cache,
976 s->refcount_block_cache);
977 }
280d3735 978
a002c0b0 979 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1e3e8f1a 980 if (ret < 0) {
45aba42f 981 goto err;
1e3e8f1a 982 }
a002c0b0 983 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
45aba42f 984
a002c0b0 985 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
45aba42f
KW
986 for (i = 0; i < m->nb_clusters; i++) {
987 /* if two concurrent writes happen to the same unallocated cluster
aaa4d20b
KW
988 * each write allocates separate cluster and writes data concurrently.
989 * The first one to complete updates l2 table with pointer to its
990 * cluster the second one has to do RMW (which is done above by
991 * perform_cow()), update l2 table with its cluster pointer and free
992 * old cluster. This is what this loop does */
a002c0b0
AG
993 if (l2_slice[l2_index + i] != 0) {
994 old_cluster[j++] = l2_slice[l2_index + i];
aaa4d20b 995 }
45aba42f 996
a002c0b0 997 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
45aba42f
KW
998 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
999 }
1000
9f8e668e 1001
a002c0b0 1002 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 1003
7ec5e6a4
KW
1004 /*
1005 * If this was a COW, we need to decrease the refcount of the old cluster.
6cfcb9b8
KW
1006 *
1007 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1008 * clusters), the next write will reuse them anyway.
7ec5e6a4 1009 */
564a6b69 1010 if (!m->keep_old_clusters && j != 0) {
7ec5e6a4 1011 for (i = 0; i < j; i++) {
6cfcb9b8
KW
1012 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1013 QCOW2_DISCARD_NEVER);
7ec5e6a4
KW
1014 }
1015 }
45aba42f
KW
1016
1017 ret = 0;
1018err:
7267c094 1019 g_free(old_cluster);
45aba42f
KW
1020 return ret;
1021 }
1022
8b24cd14
KW
1023/**
1024 * Frees the allocated clusters because the request failed and they won't
1025 * actually be linked.
1026 */
1027void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1028{
1029 BDRVQcow2State *s = bs->opaque;
1030 qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1031 QCOW2_DISCARD_NEVER);
1032}
1033
bf319ece
KW
1034/*
1035 * Returns the number of contiguous clusters that can be used for an allocating
1036 * write, but require COW to be performed (this includes yet unallocated space,
1037 * which must copy from the backing file)
1038 */
808c2bb4 1039static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
dd32c881 1040 uint64_t *l2_slice, int l2_index)
bf319ece 1041{
143550a8 1042 int i;
bf319ece 1043
143550a8 1044 for (i = 0; i < nb_clusters; i++) {
dd32c881 1045 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
808c2bb4 1046 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
143550a8
KW
1047
1048 switch(cluster_type) {
1049 case QCOW2_CLUSTER_NORMAL:
1050 if (l2_entry & QCOW_OFLAG_COPIED) {
1051 goto out;
1052 }
bf319ece 1053 break;
143550a8
KW
1054 case QCOW2_CLUSTER_UNALLOCATED:
1055 case QCOW2_CLUSTER_COMPRESSED:
fdfab37d
EB
1056 case QCOW2_CLUSTER_ZERO_PLAIN:
1057 case QCOW2_CLUSTER_ZERO_ALLOC:
bf319ece 1058 break;
143550a8
KW
1059 default:
1060 abort();
1061 }
bf319ece
KW
1062 }
1063
143550a8 1064out:
bf319ece
KW
1065 assert(i <= nb_clusters);
1066 return i;
1067}
1068
250196f1 1069/*
226c3c26
KW
1070 * Check if there already is an AIO write request in flight which allocates
1071 * the same cluster. In this case we need to wait until the previous
1072 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
1073 *
1074 * Returns:
1075 * 0 if there was no dependency. *cur_bytes indicates the number of
1076 * bytes from guest_offset that can be read before the next
1077 * dependency must be processed (or the request is complete)
1078 *
1079 * -EAGAIN if we had to wait for another request, previously gathered
1080 * information on cluster allocation may be invalid now. The caller
1081 * must start over anyway, so consider *cur_bytes undefined.
250196f1 1082 */
226c3c26 1083static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
ecdd5333 1084 uint64_t *cur_bytes, QCowL2Meta **m)
250196f1 1085{
ff99129a 1086 BDRVQcow2State *s = bs->opaque;
250196f1 1087 QCowL2Meta *old_alloc;
65eb2e35 1088 uint64_t bytes = *cur_bytes;
250196f1 1089
250196f1
KW
1090 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1091
65eb2e35
KW
1092 uint64_t start = guest_offset;
1093 uint64_t end = start + bytes;
1094 uint64_t old_start = l2meta_cow_start(old_alloc);
1095 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 1096
d9d74f41 1097 if (end <= old_start || start >= old_end) {
250196f1
KW
1098 /* No intersection */
1099 } else {
1100 if (start < old_start) {
1101 /* Stop at the start of a running allocation */
65eb2e35 1102 bytes = old_start - start;
250196f1 1103 } else {
65eb2e35 1104 bytes = 0;
250196f1
KW
1105 }
1106
ecdd5333
KW
1107 /* Stop if already an l2meta exists. After yielding, it wouldn't
1108 * be valid any more, so we'd have to clean up the old L2Metas
1109 * and deal with requests depending on them before starting to
1110 * gather new ones. Not worth the trouble. */
1111 if (bytes == 0 && *m) {
1112 *cur_bytes = 0;
1113 return 0;
1114 }
1115
65eb2e35 1116 if (bytes == 0) {
250196f1
KW
1117 /* Wait for the dependency to complete. We need to recheck
1118 * the free/allocated clusters when we continue. */
1ace7cea 1119 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
250196f1
KW
1120 return -EAGAIN;
1121 }
1122 }
1123 }
1124
65eb2e35
KW
1125 /* Make sure that existing clusters and new allocations are only used up to
1126 * the next dependency if we shortened the request above */
1127 *cur_bytes = bytes;
250196f1 1128
226c3c26
KW
1129 return 0;
1130}
1131
0af729ec
KW
1132/*
1133 * Checks how many already allocated clusters that don't require a copy on
c6d619cc
KW
1134 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1135 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1136 * offset are counted.
0af729ec 1137 *
411d62b0
KW
1138 * Note that guest_offset may not be cluster aligned. In this case, the
1139 * returned *host_offset points to exact byte referenced by guest_offset and
1140 * therefore isn't cluster aligned as well.
0af729ec
KW
1141 *
1142 * Returns:
1143 * 0: if no allocated clusters are available at the given offset.
1144 * *bytes is normally unchanged. It is set to 0 if the cluster
1145 * is allocated and doesn't need COW, but doesn't have the right
1146 * physical offset.
1147 *
1148 * 1: if allocated clusters that don't require a COW are available at
1149 * the requested offset. *bytes may have decreased and describes
1150 * the length of the area that can be written to.
1151 *
1152 * -errno: in error cases
0af729ec
KW
1153 */
1154static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 1155 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec 1156{
ff99129a 1157 BDRVQcow2State *s = bs->opaque;
0af729ec
KW
1158 int l2_index;
1159 uint64_t cluster_offset;
cde91766 1160 uint64_t *l2_slice;
b6d36def 1161 uint64_t nb_clusters;
c53ede9f 1162 unsigned int keep_clusters;
a3f1afb4 1163 int ret;
0af729ec
KW
1164
1165 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1166 *bytes);
0af729ec 1167
c6d619cc
KW
1168 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1169 == offset_into_cluster(s, *host_offset));
411d62b0 1170
acb0467f 1171 /*
cde91766 1172 * Calculate the number of clusters to look for. We stop at L2 slice
acb0467f
KW
1173 * boundaries to keep things simple.
1174 */
1175 nb_clusters =
1176 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1177
cde91766
AG
1178 l2_index = offset_to_l2_slice_index(s, guest_offset);
1179 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1180 assert(nb_clusters <= INT_MAX);
acb0467f 1181
0af729ec 1182 /* Find L2 entry for the first involved cluster */
cde91766 1183 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
0af729ec
KW
1184 if (ret < 0) {
1185 return ret;
1186 }
1187
cde91766 1188 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
0af729ec
KW
1189
1190 /* Check how many clusters are already allocated and don't need COW */
808c2bb4 1191 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
0af729ec
KW
1192 && (cluster_offset & QCOW_OFLAG_COPIED))
1193 {
e62daaf6
KW
1194 /* If a specific host_offset is required, check it */
1195 bool offset_matches =
1196 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1197
a97c67ee
HR
1198 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1199 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1200 "%#llx unaligned (guest offset: %#" PRIx64
1201 ")", cluster_offset & L2E_OFFSET_MASK,
1202 guest_offset);
1203 ret = -EIO;
1204 goto out;
1205 }
1206
c6d619cc 1207 if (*host_offset != INV_OFFSET && !offset_matches) {
e62daaf6
KW
1208 *bytes = 0;
1209 ret = 0;
1210 goto out;
1211 }
1212
0af729ec 1213 /* We keep all QCOW_OFLAG_COPIED clusters */
c53ede9f 1214 keep_clusters =
808c2bb4 1215 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
cde91766 1216 &l2_slice[l2_index],
0af729ec 1217 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
c53ede9f
KW
1218 assert(keep_clusters <= nb_clusters);
1219
1220 *bytes = MIN(*bytes,
1221 keep_clusters * s->cluster_size
1222 - offset_into_cluster(s, guest_offset));
0af729ec
KW
1223
1224 ret = 1;
1225 } else {
0af729ec
KW
1226 ret = 0;
1227 }
1228
0af729ec 1229 /* Cleanup */
e62daaf6 1230out:
cde91766 1231 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
0af729ec 1232
e62daaf6
KW
1233 /* Only return a host offset if we actually made progress. Otherwise we
1234 * would make requirements for handle_alloc() that it can't fulfill */
a97c67ee 1235 if (ret > 0) {
411d62b0
KW
1236 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1237 + offset_into_cluster(s, guest_offset);
e62daaf6
KW
1238 }
1239
0af729ec
KW
1240 return ret;
1241}
1242
226c3c26
KW
1243/*
1244 * Allocates new clusters for the given guest_offset.
1245 *
1246 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1247 * contain the number of clusters that have been allocated and are contiguous
1248 * in the image file.
1249 *
c6d619cc
KW
1250 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1251 * at which the new clusters must start. *nb_clusters can be 0 on return in
1252 * this case if the cluster at host_offset is already in use. If *host_offset
1253 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
226c3c26
KW
1254 *
1255 * *host_offset is updated to contain the offset into the image file at which
1256 * the first allocated cluster starts.
1257 *
1258 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1259 * function has been waiting for another request and the allocation must be
1260 * restarted, but the whole request should not be failed.
1261 */
1262static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
b6d36def 1263 uint64_t *host_offset, uint64_t *nb_clusters)
226c3c26 1264{
ff99129a 1265 BDRVQcow2State *s = bs->opaque;
226c3c26
KW
1266
1267 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1268 *host_offset, *nb_clusters);
1269
966b000f
KW
1270 if (has_data_file(bs)) {
1271 assert(*host_offset == INV_OFFSET ||
1272 *host_offset == start_of_cluster(s, guest_offset));
1273 *host_offset = start_of_cluster(s, guest_offset);
1274 return 0;
1275 }
1276
250196f1
KW
1277 /* Allocate new clusters */
1278 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
c6d619cc 1279 if (*host_offset == INV_OFFSET) {
df021791
KW
1280 int64_t cluster_offset =
1281 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1282 if (cluster_offset < 0) {
1283 return cluster_offset;
1284 }
1285 *host_offset = cluster_offset;
1286 return 0;
250196f1 1287 } else {
b6d36def 1288 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
1289 if (ret < 0) {
1290 return ret;
1291 }
1292 *nb_clusters = ret;
1293 return 0;
250196f1 1294 }
250196f1
KW
1295}
1296
10f0ed8b
KW
1297/*
1298 * Allocates new clusters for an area that either is yet unallocated or needs a
c6d619cc
KW
1299 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1300 * allocated if the new allocation can match the specified host offset.
10f0ed8b 1301 *
411d62b0
KW
1302 * Note that guest_offset may not be cluster aligned. In this case, the
1303 * returned *host_offset points to exact byte referenced by guest_offset and
1304 * therefore isn't cluster aligned as well.
10f0ed8b
KW
1305 *
1306 * Returns:
1307 * 0: if no clusters could be allocated. *bytes is set to 0,
1308 * *host_offset is left unchanged.
1309 *
1310 * 1: if new clusters were allocated. *bytes may be decreased if the
1311 * new allocation doesn't cover all of the requested area.
1312 * *host_offset is updated to contain the host offset of the first
1313 * newly allocated cluster.
1314 *
1315 * -errno: in error cases
10f0ed8b
KW
1316 */
1317static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 1318 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b 1319{
ff99129a 1320 BDRVQcow2State *s = bs->opaque;
10f0ed8b 1321 int l2_index;
6d99a344 1322 uint64_t *l2_slice;
10f0ed8b 1323 uint64_t entry;
b6d36def 1324 uint64_t nb_clusters;
10f0ed8b 1325 int ret;
564a6b69 1326 bool keep_old_clusters = false;
10f0ed8b 1327
c6d619cc 1328 uint64_t alloc_cluster_offset = INV_OFFSET;
10f0ed8b
KW
1329
1330 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1331 *bytes);
1332 assert(*bytes > 0);
1333
f5bc6350 1334 /*
6d99a344 1335 * Calculate the number of clusters to look for. We stop at L2 slice
f5bc6350
KW
1336 * boundaries to keep things simple.
1337 */
c37f4cd7
KW
1338 nb_clusters =
1339 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1340
6d99a344
AG
1341 l2_index = offset_to_l2_slice_index(s, guest_offset);
1342 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1343 assert(nb_clusters <= INT_MAX);
f5bc6350 1344
10f0ed8b 1345 /* Find L2 entry for the first involved cluster */
6d99a344 1346 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
10f0ed8b
KW
1347 if (ret < 0) {
1348 return ret;
1349 }
1350
6d99a344 1351 entry = be64_to_cpu(l2_slice[l2_index]);
10f0ed8b
KW
1352
1353 /* For the moment, overwrite compressed clusters one by one */
1354 if (entry & QCOW_OFLAG_COMPRESSED) {
1355 nb_clusters = 1;
1356 } else {
808c2bb4 1357 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
10f0ed8b
KW
1358 }
1359
ecdd5333
KW
1360 /* This function is only called when there were no non-COW clusters, so if
1361 * we can't find any unallocated or COW clusters either, something is
1362 * wrong with our code. */
1363 assert(nb_clusters > 0);
1364
808c2bb4 1365 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
fdfab37d 1366 (entry & QCOW_OFLAG_COPIED) &&
c6d619cc 1367 (*host_offset == INV_OFFSET ||
564a6b69
HR
1368 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1369 {
93bbaf03
HR
1370 int preallocated_nb_clusters;
1371
1372 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1373 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1374 "cluster offset %#llx unaligned (guest "
1375 "offset: %#" PRIx64 ")",
1376 entry & L2E_OFFSET_MASK, guest_offset);
1377 ret = -EIO;
1378 goto fail;
1379 }
1380
564a6b69
HR
1381 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1382 * would be fine, too, but count_cow_clusters() above has limited
1383 * nb_clusters already to a range of COW clusters */
93bbaf03 1384 preallocated_nb_clusters =
808c2bb4 1385 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
6d99a344 1386 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
564a6b69 1387 assert(preallocated_nb_clusters > 0);
10f0ed8b 1388
564a6b69
HR
1389 nb_clusters = preallocated_nb_clusters;
1390 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
10f0ed8b 1391
564a6b69
HR
1392 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1393 * should not free them. */
1394 keep_old_clusters = true;
10f0ed8b
KW
1395 }
1396
6d99a344 1397 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
564a6b69 1398
c6d619cc 1399 if (alloc_cluster_offset == INV_OFFSET) {
564a6b69 1400 /* Allocate, if necessary at a given offset in the image file */
c6d619cc
KW
1401 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1402 start_of_cluster(s, *host_offset);
564a6b69
HR
1403 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1404 &nb_clusters);
1405 if (ret < 0) {
1406 goto fail;
1407 }
1408
1409 /* Can't extend contiguous allocation */
1410 if (nb_clusters == 0) {
1411 *bytes = 0;
1412 return 0;
1413 }
1414
c6d619cc 1415 assert(alloc_cluster_offset != INV_OFFSET);
ff52aab2
HR
1416 }
1417
83baa9a4
KW
1418 /*
1419 * Save info needed for meta data update.
1420 *
85567393 1421 * requested_bytes: Number of bytes from the start of the first
83baa9a4
KW
1422 * newly allocated cluster to the end of the (possibly shortened
1423 * before) write request.
1424 *
85567393 1425 * avail_bytes: Number of bytes from the start of the first
83baa9a4
KW
1426 * newly allocated to the end of the last newly allocated cluster.
1427 *
85567393 1428 * nb_bytes: The number of bytes from the start of the first
83baa9a4
KW
1429 * newly allocated cluster to the end of the area that the write
1430 * request actually writes to (excluding COW at the end)
1431 */
85567393
KW
1432 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1433 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1434 int nb_bytes = MIN(requested_bytes, avail_bytes);
88c6588c 1435 QCowL2Meta *old_m = *m;
83baa9a4 1436
83baa9a4
KW
1437 *m = g_malloc0(sizeof(**m));
1438
1439 **m = (QCowL2Meta) {
88c6588c
KW
1440 .next = old_m,
1441
411d62b0 1442 .alloc_offset = alloc_cluster_offset,
83baa9a4
KW
1443 .offset = start_of_cluster(s, guest_offset),
1444 .nb_clusters = nb_clusters,
83baa9a4 1445
564a6b69
HR
1446 .keep_old_clusters = keep_old_clusters,
1447
83baa9a4
KW
1448 .cow_start = {
1449 .offset = 0,
85567393 1450 .nb_bytes = offset_into_cluster(s, guest_offset),
83baa9a4
KW
1451 },
1452 .cow_end = {
85567393
KW
1453 .offset = nb_bytes,
1454 .nb_bytes = avail_bytes - nb_bytes,
83baa9a4
KW
1455 },
1456 };
1457 qemu_co_queue_init(&(*m)->dependent_requests);
1458 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1459
411d62b0 1460 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
85567393 1461 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
83baa9a4
KW
1462 assert(*bytes != 0);
1463
10f0ed8b
KW
1464 return 1;
1465
1466fail:
1467 if (*m && (*m)->nb_clusters > 0) {
1468 QLIST_REMOVE(*m, next_in_flight);
1469 }
1470 return ret;
1471}
1472
45aba42f
KW
1473/*
1474 * alloc_cluster_offset
1475 *
250196f1
KW
1476 * For a given offset on the virtual disk, find the cluster offset in qcow2
1477 * file. If the offset is not found, allocate a new cluster.
45aba42f 1478 *
250196f1 1479 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1480 * other fields in m are meaningless.
148da7ea
KW
1481 *
1482 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1483 * contiguous clusters that have been allocated. In this case, the other
1484 * fields of m are valid and contain information about the first allocated
1485 * cluster.
45aba42f 1486 *
68d100e9
KW
1487 * If the request conflicts with another write request in flight, the coroutine
1488 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1489 *
1490 * Return 0 on success and -errno in error cases
45aba42f 1491 */
f4f0d391 1492int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
d46a0bb2
KW
1493 unsigned int *bytes, uint64_t *host_offset,
1494 QCowL2Meta **m)
45aba42f 1495{
ff99129a 1496 BDRVQcow2State *s = bs->opaque;
710c2496 1497 uint64_t start, remaining;
250196f1 1498 uint64_t cluster_offset;
65eb2e35 1499 uint64_t cur_bytes;
710c2496 1500 int ret;
45aba42f 1501
d46a0bb2 1502 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
710c2496 1503
72424114 1504again:
16f0587e 1505 start = offset;
d46a0bb2 1506 remaining = *bytes;
c6d619cc
KW
1507 cluster_offset = INV_OFFSET;
1508 *host_offset = INV_OFFSET;
ecdd5333
KW
1509 cur_bytes = 0;
1510 *m = NULL;
0af729ec 1511
2c3b32d2 1512 while (true) {
ecdd5333 1513
c6d619cc 1514 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
ecdd5333
KW
1515 *host_offset = start_of_cluster(s, cluster_offset);
1516 }
1517
1518 assert(remaining >= cur_bytes);
1519
1520 start += cur_bytes;
1521 remaining -= cur_bytes;
c6d619cc
KW
1522
1523 if (cluster_offset != INV_OFFSET) {
1524 cluster_offset += cur_bytes;
1525 }
ecdd5333
KW
1526
1527 if (remaining == 0) {
1528 break;
1529 }
1530
1531 cur_bytes = remaining;
1532
2c3b32d2
KW
1533 /*
1534 * Now start gathering as many contiguous clusters as possible:
1535 *
1536 * 1. Check for overlaps with in-flight allocations
1537 *
1538 * a) Overlap not in the first cluster -> shorten this request and
1539 * let the caller handle the rest in its next loop iteration.
1540 *
1541 * b) Real overlaps of two requests. Yield and restart the search
1542 * for contiguous clusters (the situation could have changed
1543 * while we were sleeping)
1544 *
1545 * c) TODO: Request starts in the same cluster as the in-flight
1546 * allocation ends. Shorten the COW of the in-fight allocation,
1547 * set cluster_offset to write to the same cluster and set up
1548 * the right synchronisation between the in-flight request and
1549 * the new one.
1550 */
ecdd5333 1551 ret = handle_dependencies(bs, start, &cur_bytes, m);
2c3b32d2 1552 if (ret == -EAGAIN) {
ecdd5333
KW
1553 /* Currently handle_dependencies() doesn't yield if we already had
1554 * an allocation. If it did, we would have to clean up the L2Meta
1555 * structs before starting over. */
1556 assert(*m == NULL);
2c3b32d2
KW
1557 goto again;
1558 } else if (ret < 0) {
1559 return ret;
ecdd5333
KW
1560 } else if (cur_bytes == 0) {
1561 break;
2c3b32d2
KW
1562 } else {
1563 /* handle_dependencies() may have decreased cur_bytes (shortened
1564 * the allocations below) so that the next dependency is processed
1565 * correctly during the next loop iteration. */
0af729ec 1566 }
710c2496 1567
2c3b32d2
KW
1568 /*
1569 * 2. Count contiguous COPIED clusters.
1570 */
1571 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1572 if (ret < 0) {
1573 return ret;
1574 } else if (ret) {
ecdd5333 1575 continue;
2c3b32d2
KW
1576 } else if (cur_bytes == 0) {
1577 break;
1578 }
060bee89 1579
2c3b32d2
KW
1580 /*
1581 * 3. If the request still hasn't completed, allocate new clusters,
1582 * considering any cluster_offset of steps 1c or 2.
1583 */
1584 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1585 if (ret < 0) {
1586 return ret;
1587 } else if (ret) {
ecdd5333 1588 continue;
2c3b32d2
KW
1589 } else {
1590 assert(cur_bytes == 0);
1591 break;
1592 }
f5bc6350 1593 }
10f0ed8b 1594
d46a0bb2
KW
1595 *bytes -= remaining;
1596 assert(*bytes > 0);
c6d619cc 1597 assert(*host_offset != INV_OFFSET);
45aba42f 1598
148da7ea 1599 return 0;
45aba42f
KW
1600}
1601
5ea929e3
KW
1602/*
1603 * This discards as many clusters of nb_clusters as possible at once (i.e.
21ab3add 1604 * all clusters in the same L2 slice) and returns the number of discarded
5ea929e3
KW
1605 * clusters.
1606 */
21ab3add
AG
1607static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1608 uint64_t nb_clusters,
1609 enum qcow2_discard_type type, bool full_discard)
5ea929e3 1610{
ff99129a 1611 BDRVQcow2State *s = bs->opaque;
21ab3add 1612 uint64_t *l2_slice;
5ea929e3
KW
1613 int l2_index;
1614 int ret;
1615 int i;
1616
21ab3add 1617 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
5ea929e3
KW
1618 if (ret < 0) {
1619 return ret;
1620 }
1621
21ab3add
AG
1622 /* Limit nb_clusters to one L2 slice */
1623 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1624 assert(nb_clusters <= INT_MAX);
5ea929e3
KW
1625
1626 for (i = 0; i < nb_clusters; i++) {
c883db0d 1627 uint64_t old_l2_entry;
5ea929e3 1628
21ab3add 1629 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
a71835a0
KW
1630
1631 /*
808c4b6f
HR
1632 * If full_discard is false, make sure that a discarded area reads back
1633 * as zeroes for v3 images (we cannot do it for v2 without actually
1634 * writing a zero-filled buffer). We can skip the operation if the
1635 * cluster is already marked as zero, or if it's unallocated and we
1636 * don't have a backing file.
a71835a0 1637 *
237d78f8 1638 * TODO We might want to use bdrv_block_status(bs) here, but we're
a71835a0 1639 * holding s->lock, so that doesn't work today.
808c4b6f
HR
1640 *
1641 * If full_discard is true, the sector should not read back as zeroes,
1642 * but rather fall through to the backing file.
a71835a0 1643 */
808c2bb4 1644 switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
bbd995d8
EB
1645 case QCOW2_CLUSTER_UNALLOCATED:
1646 if (full_discard || !bs->backing) {
1647 continue;
1648 }
1649 break;
1650
fdfab37d
EB
1651 case QCOW2_CLUSTER_ZERO_PLAIN:
1652 if (!full_discard) {
bbd995d8
EB
1653 continue;
1654 }
1655 break;
1656
fdfab37d 1657 case QCOW2_CLUSTER_ZERO_ALLOC:
bbd995d8
EB
1658 case QCOW2_CLUSTER_NORMAL:
1659 case QCOW2_CLUSTER_COMPRESSED:
1660 break;
1661
1662 default:
1663 abort();
5ea929e3
KW
1664 }
1665
1666 /* First remove L2 entries */
21ab3add 1667 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
808c4b6f 1668 if (!full_discard && s->qcow_version >= 3) {
21ab3add 1669 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
a71835a0 1670 } else {
21ab3add 1671 l2_slice[l2_index + i] = cpu_to_be64(0);
a71835a0 1672 }
5ea929e3
KW
1673
1674 /* Then decrease the refcount */
c883db0d 1675 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
5ea929e3
KW
1676 }
1677
21ab3add 1678 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
5ea929e3
KW
1679
1680 return nb_clusters;
1681}
1682
d2cb36af
EB
1683int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1684 uint64_t bytes, enum qcow2_discard_type type,
1685 bool full_discard)
5ea929e3 1686{
ff99129a 1687 BDRVQcow2State *s = bs->opaque;
d2cb36af 1688 uint64_t end_offset = offset + bytes;
b6d36def 1689 uint64_t nb_clusters;
d2cb36af 1690 int64_t cleared;
5ea929e3
KW
1691 int ret;
1692
f10ee139 1693 /* Caller must pass aligned values, except at image end */
0c1bd469 1694 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
f10ee139
EB
1695 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1696 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
5ea929e3 1697
d2cb36af 1698 nb_clusters = size_to_clusters(s, bytes);
5ea929e3 1699
0b919fae
KW
1700 s->cache_discards = true;
1701
21ab3add 1702 /* Each L2 slice is handled by its own loop iteration */
5ea929e3 1703 while (nb_clusters > 0) {
21ab3add
AG
1704 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1705 full_discard);
d2cb36af
EB
1706 if (cleared < 0) {
1707 ret = cleared;
0b919fae 1708 goto fail;
5ea929e3
KW
1709 }
1710
d2cb36af
EB
1711 nb_clusters -= cleared;
1712 offset += (cleared * s->cluster_size);
5ea929e3
KW
1713 }
1714
0b919fae
KW
1715 ret = 0;
1716fail:
1717 s->cache_discards = false;
1718 qcow2_process_discards(bs, ret);
1719
1720 return ret;
5ea929e3 1721}
621f0589
KW
1722
1723/*
1724 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
a9a9f8f0 1725 * all clusters in the same L2 slice) and returns the number of zeroed
621f0589
KW
1726 * clusters.
1727 */
a9a9f8f0
AG
1728static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1729 uint64_t nb_clusters, int flags)
621f0589 1730{
ff99129a 1731 BDRVQcow2State *s = bs->opaque;
a9a9f8f0 1732 uint64_t *l2_slice;
621f0589
KW
1733 int l2_index;
1734 int ret;
1735 int i;
06cc5e2b 1736 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
621f0589 1737
a9a9f8f0 1738 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
621f0589
KW
1739 if (ret < 0) {
1740 return ret;
1741 }
1742
a9a9f8f0
AG
1743 /* Limit nb_clusters to one L2 slice */
1744 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1745 assert(nb_clusters <= INT_MAX);
621f0589
KW
1746
1747 for (i = 0; i < nb_clusters; i++) {
1748 uint64_t old_offset;
06cc5e2b 1749 QCow2ClusterType cluster_type;
621f0589 1750
a9a9f8f0 1751 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
621f0589 1752
06cc5e2b
EB
1753 /*
1754 * Minimize L2 changes if the cluster already reads back as
1755 * zeroes with correct allocation.
1756 */
808c2bb4 1757 cluster_type = qcow2_get_cluster_type(bs, old_offset);
06cc5e2b
EB
1758 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1759 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1760 continue;
1761 }
1762
a9a9f8f0 1763 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
06cc5e2b 1764 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
a9a9f8f0 1765 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
6cfcb9b8 1766 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
621f0589 1767 } else {
a9a9f8f0 1768 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
621f0589
KW
1769 }
1770 }
1771
a9a9f8f0 1772 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
621f0589
KW
1773
1774 return nb_clusters;
1775}
1776
d2cb36af
EB
1777int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1778 uint64_t bytes, int flags)
621f0589 1779{
ff99129a 1780 BDRVQcow2State *s = bs->opaque;
d2cb36af 1781 uint64_t end_offset = offset + bytes;
b6d36def 1782 uint64_t nb_clusters;
d2cb36af 1783 int64_t cleared;
621f0589
KW
1784 int ret;
1785
6c3944dc
KW
1786 /* If we have to stay in sync with an external data file, zero out
1787 * s->data_file first. */
1788 if (data_file_is_raw(bs)) {
1789 assert(has_data_file(bs));
1790 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1791 if (ret < 0) {
1792 return ret;
1793 }
1794 }
1795
f10ee139
EB
1796 /* Caller must pass aligned values, except at image end */
1797 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1798 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1799 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1800
621f0589
KW
1801 /* The zero flag is only supported by version 3 and newer */
1802 if (s->qcow_version < 3) {
1803 return -ENOTSUP;
1804 }
1805
a9a9f8f0 1806 /* Each L2 slice is handled by its own loop iteration */
d2cb36af 1807 nb_clusters = size_to_clusters(s, bytes);
621f0589 1808
0b919fae
KW
1809 s->cache_discards = true;
1810
621f0589 1811 while (nb_clusters > 0) {
a9a9f8f0 1812 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
d2cb36af
EB
1813 if (cleared < 0) {
1814 ret = cleared;
0b919fae 1815 goto fail;
621f0589
KW
1816 }
1817
d2cb36af
EB
1818 nb_clusters -= cleared;
1819 offset += (cleared * s->cluster_size);
621f0589
KW
1820 }
1821
0b919fae
KW
1822 ret = 0;
1823fail:
1824 s->cache_discards = false;
1825 qcow2_process_discards(bs, ret);
1826
1827 return ret;
621f0589 1828}
32b6444d
HR
1829
1830/*
1831 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1832 * non-backed non-pre-allocated zero clusters).
1833 *
4057a2b2
HR
1834 * l1_entries and *visited_l1_entries are used to keep track of progress for
1835 * status_cb(). l1_entries contains the total number of L1 entries and
1836 * *visited_l1_entries counts all visited L1 entries.
32b6444d
HR
1837 */
1838static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
ecf58777 1839 int l1_size, int64_t *visited_l1_entries,
4057a2b2 1840 int64_t l1_entries,
8b13976d
HR
1841 BlockDriverAmendStatusCB *status_cb,
1842 void *cb_opaque)
32b6444d 1843{
ff99129a 1844 BDRVQcow2State *s = bs->opaque;
32b6444d 1845 bool is_active_l1 = (l1_table == s->l1_table);
415184f5
AG
1846 uint64_t *l2_slice = NULL;
1847 unsigned slice, slice_size2, n_slices;
32b6444d
HR
1848 int ret;
1849 int i, j;
1850
415184f5
AG
1851 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1852 n_slices = s->cluster_size / slice_size2;
1853
32b6444d
HR
1854 if (!is_active_l1) {
1855 /* inactive L2 tables require a buffer to be stored in when loading
1856 * them from disk */
415184f5
AG
1857 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1858 if (l2_slice == NULL) {
de82815d
KW
1859 return -ENOMEM;
1860 }
32b6444d
HR
1861 }
1862
1863 for (i = 0; i < l1_size; i++) {
1864 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
0e06528e 1865 uint64_t l2_refcount;
32b6444d
HR
1866
1867 if (!l2_offset) {
1868 /* unallocated */
4057a2b2
HR
1869 (*visited_l1_entries)++;
1870 if (status_cb) {
8b13976d 1871 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 1872 }
32b6444d
HR
1873 continue;
1874 }
1875
8dd93d93
HR
1876 if (offset_into_cluster(s, l2_offset)) {
1877 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1878 PRIx64 " unaligned (L1 index: %#x)",
1879 l2_offset, i);
1880 ret = -EIO;
1881 goto fail;
1882 }
1883
9b765486
AG
1884 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1885 &l2_refcount);
1886 if (ret < 0) {
1887 goto fail;
1888 }
1889
415184f5
AG
1890 for (slice = 0; slice < n_slices; slice++) {
1891 uint64_t slice_offset = l2_offset + slice * slice_size2;
1892 bool l2_dirty = false;
226494ff
AG
1893 if (is_active_l1) {
1894 /* get active L2 tables from cache */
415184f5
AG
1895 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1896 (void **)&l2_slice);
226494ff
AG
1897 } else {
1898 /* load inactive L2 tables from disk */
415184f5 1899 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
226494ff
AG
1900 }
1901 if (ret < 0) {
1902 goto fail;
32b6444d
HR
1903 }
1904
415184f5
AG
1905 for (j = 0; j < s->l2_slice_size; j++) {
1906 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
226494ff
AG
1907 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1908 QCow2ClusterType cluster_type =
808c2bb4 1909 qcow2_get_cluster_type(bs, l2_entry);
226494ff
AG
1910
1911 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1912 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
32b6444d
HR
1913 continue;
1914 }
1915
226494ff
AG
1916 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1917 if (!bs->backing) {
1918 /* not backed; therefore we can simply deallocate the
1919 * cluster */
415184f5 1920 l2_slice[j] = 0;
226494ff
AG
1921 l2_dirty = true;
1922 continue;
1923 }
1924
1925 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1926 if (offset < 0) {
1927 ret = offset;
1928 goto fail;
1929 }
ecf58777 1930
226494ff
AG
1931 if (l2_refcount > 1) {
1932 /* For shared L2 tables, set the refcount accordingly
1933 * (it is already 1 and needs to be l2_refcount) */
1934 ret = qcow2_update_cluster_refcount(
1935 bs, offset >> s->cluster_bits,
2aabe7c7 1936 refcount_diff(1, l2_refcount), false,
ecf58777 1937 QCOW2_DISCARD_OTHER);
226494ff
AG
1938 if (ret < 0) {
1939 qcow2_free_clusters(bs, offset, s->cluster_size,
1940 QCOW2_DISCARD_OTHER);
1941 goto fail;
1942 }
ecf58777
HR
1943 }
1944 }
32b6444d 1945
226494ff 1946 if (offset_into_cluster(s, offset)) {
415184f5 1947 int l2_index = slice * s->l2_slice_size + j;
226494ff
AG
1948 qcow2_signal_corruption(
1949 bs, true, -1, -1,
1950 "Cluster allocation offset "
1951 "%#" PRIx64 " unaligned (L2 offset: %#"
1952 PRIx64 ", L2 index: %#x)", offset,
415184f5 1953 l2_offset, l2_index);
226494ff
AG
1954 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1955 qcow2_free_clusters(bs, offset, s->cluster_size,
1956 QCOW2_DISCARD_ALWAYS);
1957 }
1958 ret = -EIO;
1959 goto fail;
8dd93d93 1960 }
8dd93d93 1961
226494ff 1962 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
966b000f 1963 s->cluster_size, true);
226494ff
AG
1964 if (ret < 0) {
1965 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1966 qcow2_free_clusters(bs, offset, s->cluster_size,
1967 QCOW2_DISCARD_ALWAYS);
1968 }
1969 goto fail;
320c7066 1970 }
32b6444d 1971
966b000f
KW
1972 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1973 s->cluster_size, 0);
226494ff
AG
1974 if (ret < 0) {
1975 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1976 qcow2_free_clusters(bs, offset, s->cluster_size,
1977 QCOW2_DISCARD_ALWAYS);
1978 }
1979 goto fail;
320c7066 1980 }
32b6444d 1981
226494ff 1982 if (l2_refcount == 1) {
415184f5 1983 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
226494ff 1984 } else {
415184f5 1985 l2_slice[j] = cpu_to_be64(offset);
226494ff
AG
1986 }
1987 l2_dirty = true;
e390cf5a 1988 }
32b6444d 1989
226494ff
AG
1990 if (is_active_l1) {
1991 if (l2_dirty) {
415184f5 1992 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
226494ff 1993 qcow2_cache_depends_on_flush(s->l2_table_cache);
32b6444d 1994 }
415184f5 1995 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
226494ff
AG
1996 } else {
1997 if (l2_dirty) {
1998 ret = qcow2_pre_write_overlap_check(
1999 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
966b000f 2000 slice_offset, slice_size2, false);
226494ff
AG
2001 if (ret < 0) {
2002 goto fail;
2003 }
32b6444d 2004
415184f5
AG
2005 ret = bdrv_pwrite(bs->file, slice_offset,
2006 l2_slice, slice_size2);
226494ff
AG
2007 if (ret < 0) {
2008 goto fail;
2009 }
32b6444d
HR
2010 }
2011 }
2012 }
4057a2b2
HR
2013
2014 (*visited_l1_entries)++;
2015 if (status_cb) {
8b13976d 2016 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 2017 }
32b6444d
HR
2018 }
2019
2020 ret = 0;
2021
2022fail:
415184f5 2023 if (l2_slice) {
32b6444d 2024 if (!is_active_l1) {
415184f5 2025 qemu_vfree(l2_slice);
32b6444d 2026 } else {
415184f5 2027 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
32b6444d
HR
2028 }
2029 }
2030 return ret;
2031}
2032
2033/*
2034 * For backed images, expands all zero clusters on the image. For non-backed
2035 * images, deallocates all non-pre-allocated zero clusters (and claims the
2036 * allocation for pre-allocated ones). This is important for downgrading to a
2037 * qcow2 version which doesn't yet support metadata zero clusters.
2038 */
4057a2b2 2039int qcow2_expand_zero_clusters(BlockDriverState *bs,
8b13976d
HR
2040 BlockDriverAmendStatusCB *status_cb,
2041 void *cb_opaque)
32b6444d 2042{
ff99129a 2043 BDRVQcow2State *s = bs->opaque;
32b6444d 2044 uint64_t *l1_table = NULL;
4057a2b2 2045 int64_t l1_entries = 0, visited_l1_entries = 0;
32b6444d
HR
2046 int ret;
2047 int i, j;
2048
4057a2b2
HR
2049 if (status_cb) {
2050 l1_entries = s->l1_size;
2051 for (i = 0; i < s->nb_snapshots; i++) {
2052 l1_entries += s->snapshots[i].l1_size;
2053 }
2054 }
2055
32b6444d 2056 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
4057a2b2 2057 &visited_l1_entries, l1_entries,
8b13976d 2058 status_cb, cb_opaque);
32b6444d
HR
2059 if (ret < 0) {
2060 goto fail;
2061 }
2062
2063 /* Inactive L1 tables may point to active L2 tables - therefore it is
2064 * necessary to flush the L2 table cache before trying to access the L2
2065 * tables pointed to by inactive L1 entries (else we might try to expand
2066 * zero clusters that have already been expanded); furthermore, it is also
2067 * necessary to empty the L2 table cache, since it may contain tables which
2068 * are now going to be modified directly on disk, bypassing the cache.
2069 * qcow2_cache_empty() does both for us. */
2070 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2071 if (ret < 0) {
2072 goto fail;
2073 }
2074
2075 for (i = 0; i < s->nb_snapshots; i++) {
c9a442e4
AG
2076 int l1_size2;
2077 uint64_t *new_l1_table;
2078 Error *local_err = NULL;
2079
2080 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2081 s->snapshots[i].l1_size, sizeof(uint64_t),
2082 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2083 &local_err);
2084 if (ret < 0) {
2085 error_report_err(local_err);
2086 goto fail;
2087 }
32b6444d 2088
c9a442e4
AG
2089 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2090 new_l1_table = g_try_realloc(l1_table, l1_size2);
de7269d2
AG
2091
2092 if (!new_l1_table) {
2093 ret = -ENOMEM;
2094 goto fail;
2095 }
2096
2097 l1_table = new_l1_table;
32b6444d 2098
c9a442e4
AG
2099 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2100 l1_table, l1_size2);
32b6444d
HR
2101 if (ret < 0) {
2102 goto fail;
2103 }
2104
2105 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2106 be64_to_cpus(&l1_table[j]);
2107 }
2108
2109 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
4057a2b2 2110 &visited_l1_entries, l1_entries,
8b13976d 2111 status_cb, cb_opaque);
32b6444d
HR
2112 if (ret < 0) {
2113 goto fail;
2114 }
2115 }
2116
2117 ret = 0;
2118
2119fail:
32b6444d
HR
2120 g_free(l1_table);
2121 return ret;
2122}