]> git.proxmox.com Git - mirror_qemu.git/blame - block/qcow2-cluster.c
QemuOpt: add unit tests
[mirror_qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
737e150e 28#include "block/block_int.h"
45aba42f 29#include "block/qcow2.h"
3cce16f4 30#include "trace.h"
45aba42f 31
2cf7cfa1
KW
32int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
45aba42f
KW
34{
35 BDRVQcowState *s = bs->opaque;
2cf7cfa1 36 int new_l1_size2, ret, i;
45aba42f 37 uint64_t *new_l1_table;
fda74f82 38 int64_t old_l1_table_offset, old_l1_size;
2cf7cfa1 39 int64_t new_l1_table_offset, new_l1_size;
45aba42f
KW
40 uint8_t data[12];
41
72893756 42 if (min_size <= s->l1_size)
45aba42f 43 return 0;
72893756 44
b93f9950
HR
45 /* Do a sanity check on min_size before trying to calculate new_l1_size
46 * (this prevents overflows during the while loop for the calculation of
47 * new_l1_size) */
48 if (min_size > INT_MAX / sizeof(uint64_t)) {
49 return -EFBIG;
50 }
51
72893756
SH
52 if (exact_size) {
53 new_l1_size = min_size;
54 } else {
55 /* Bump size up to reduce the number of times we have to grow */
56 new_l1_size = s->l1_size;
57 if (new_l1_size == 0) {
58 new_l1_size = 1;
59 }
60 while (min_size > new_l1_size) {
61 new_l1_size = (new_l1_size * 3 + 1) / 2;
62 }
45aba42f 63 }
72893756 64
cab60de9 65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
2cf7cfa1
KW
66 return -EFBIG;
67 }
68
45aba42f 69#ifdef DEBUG_ALLOC2
2cf7cfa1
KW
70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71 s->l1_size, new_l1_size);
45aba42f
KW
72#endif
73
74 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
7267c094 75 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
45aba42f
KW
76 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
77
78 /* write new table (align to cluster) */
66f82cee 79 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 80 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 81 if (new_l1_table_offset < 0) {
7267c094 82 g_free(new_l1_table);
5d757b56
KW
83 return new_l1_table_offset;
84 }
29c1a730
KW
85
86 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
87 if (ret < 0) {
80fa3341 88 goto fail;
29c1a730 89 }
45aba42f 90
cf93980e
HR
91 /* the L1 position has not yet been updated, so these clusters must
92 * indeed be completely free */
231bb267
HR
93 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
94 new_l1_size2);
cf93980e
HR
95 if (ret < 0) {
96 goto fail;
97 }
98
66f82cee 99 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
100 for(i = 0; i < s->l1_size; i++)
101 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
8b3b7206
KW
102 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
103 if (ret < 0)
45aba42f
KW
104 goto fail;
105 for(i = 0; i < s->l1_size; i++)
106 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
107
108 /* set new table */
66f82cee 109 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
45aba42f 110 cpu_to_be32w((uint32_t*)data, new_l1_size);
e4ef9f46 111 stq_be_p(data + 4, new_l1_table_offset);
8b3b7206
KW
112 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
113 if (ret < 0) {
45aba42f 114 goto fail;
fb8fa77c 115 }
7267c094 116 g_free(s->l1_table);
fda74f82 117 old_l1_table_offset = s->l1_table_offset;
45aba42f
KW
118 s->l1_table_offset = new_l1_table_offset;
119 s->l1_table = new_l1_table;
fda74f82 120 old_l1_size = s->l1_size;
45aba42f 121 s->l1_size = new_l1_size;
fda74f82
HR
122 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
123 QCOW2_DISCARD_OTHER);
45aba42f
KW
124 return 0;
125 fail:
7267c094 126 g_free(new_l1_table);
6cfcb9b8
KW
127 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
128 QCOW2_DISCARD_OTHER);
8b3b7206 129 return ret;
45aba42f
KW
130}
131
45aba42f
KW
132/*
133 * l2_load
134 *
135 * Loads a L2 table into memory. If the table is in the cache, the cache
136 * is used; otherwise the L2 table is loaded from the image file.
137 *
138 * Returns a pointer to the L2 table on success, or NULL if the read from
139 * the image file failed.
140 */
141
55c17e98
KW
142static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
143 uint64_t **l2_table)
45aba42f
KW
144{
145 BDRVQcowState *s = bs->opaque;
55c17e98 146 int ret;
45aba42f 147
29c1a730 148 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
45aba42f 149
29c1a730 150 return ret;
45aba42f
KW
151}
152
6583e3c7
KW
153/*
154 * Writes one sector of the L1 table to the disk (can't update single entries
155 * and we really don't want bdrv_pread to perform a read-modify-write)
156 */
157#define L1_ENTRIES_PER_SECTOR (512 / 8)
e23e400e 158int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 159{
66f82cee 160 BDRVQcowState *s = bs->opaque;
6583e3c7
KW
161 uint64_t buf[L1_ENTRIES_PER_SECTOR];
162 int l1_start_index;
f7defcb6 163 int i, ret;
6583e3c7
KW
164
165 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
166 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
167 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
168 }
169
231bb267 170 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
cf93980e
HR
171 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
172 if (ret < 0) {
173 return ret;
174 }
175
66f82cee 176 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
8b3b7206 177 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
f7defcb6
KW
178 buf, sizeof(buf));
179 if (ret < 0) {
180 return ret;
6583e3c7
KW
181 }
182
183 return 0;
184}
185
45aba42f
KW
186/*
187 * l2_allocate
188 *
189 * Allocate a new l2 entry in the file. If l1_index points to an already
190 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
191 * table) copy the contents of the old L2 table into the newly allocated one.
192 * Otherwise the new table is initialized with zeros.
193 *
194 */
195
c46e1167 196static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
45aba42f
KW
197{
198 BDRVQcowState *s = bs->opaque;
6583e3c7 199 uint64_t old_l2_offset;
8585afd8 200 uint64_t *l2_table = NULL;
f4f0d391 201 int64_t l2_offset;
c46e1167 202 int ret;
45aba42f
KW
203
204 old_l2_offset = s->l1_table[l1_index];
205
3cce16f4
KW
206 trace_qcow2_l2_allocate(bs, l1_index);
207
45aba42f
KW
208 /* allocate a new l2 entry */
209
ed6ccf0f 210 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 211 if (l2_offset < 0) {
be0b742e
HR
212 ret = l2_offset;
213 goto fail;
5d757b56 214 }
29c1a730
KW
215
216 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
217 if (ret < 0) {
218 goto fail;
219 }
45aba42f 220
45aba42f
KW
221 /* allocate a new entry in the l2 cache */
222
3cce16f4 223 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
29c1a730
KW
224 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
225 if (ret < 0) {
be0b742e 226 goto fail;
29c1a730
KW
227 }
228
229 l2_table = *table;
45aba42f 230
8e37f681 231 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
45aba42f
KW
232 /* if there was no old l2 table, clear the new table */
233 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
234 } else {
29c1a730
KW
235 uint64_t* old_table;
236
45aba42f 237 /* if there was an old l2 table, read it from the disk */
66f82cee 238 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
8e37f681
KW
239 ret = qcow2_cache_get(bs, s->l2_table_cache,
240 old_l2_offset & L1E_OFFSET_MASK,
29c1a730
KW
241 (void**) &old_table);
242 if (ret < 0) {
243 goto fail;
244 }
245
246 memcpy(l2_table, old_table, s->cluster_size);
247
248 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
c46e1167 249 if (ret < 0) {
175e1152 250 goto fail;
c46e1167 251 }
45aba42f 252 }
29c1a730 253
45aba42f 254 /* write the l2 table to the file */
66f82cee 255 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 256
3cce16f4 257 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
29c1a730
KW
258 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
259 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 260 if (ret < 0) {
175e1152
KW
261 goto fail;
262 }
263
264 /* update the L1 entry */
3cce16f4 265 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152 266 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
e23e400e 267 ret = qcow2_write_l1_entry(bs, l1_index);
175e1152
KW
268 if (ret < 0) {
269 goto fail;
c46e1167 270 }
45aba42f 271
c46e1167 272 *table = l2_table;
3cce16f4 273 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 274 return 0;
175e1152
KW
275
276fail:
3cce16f4 277 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
8585afd8
HR
278 if (l2_table != NULL) {
279 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
280 }
68dba0bf 281 s->l1_table[l1_index] = old_l2_offset;
e3b21ef9
HR
282 if (l2_offset > 0) {
283 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
284 QCOW2_DISCARD_ALWAYS);
285 }
175e1152 286 return ret;
45aba42f
KW
287}
288
2bfcc4a0
KW
289/*
290 * Checks how many clusters in a given L2 table are contiguous in the image
291 * file. As soon as one of the flags in the bitmask stop_flags changes compared
292 * to the first cluster, the search is stopped and the cluster is not counted
293 * as contiguous. (This allows it, for example, to stop at the first compressed
294 * cluster which may require a different handling)
295 */
45aba42f 296static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
61653008 297 uint64_t *l2_table, uint64_t stop_flags)
45aba42f
KW
298{
299 int i;
78a52ad5 300 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
15684a47
HR
301 uint64_t first_entry = be64_to_cpu(l2_table[0]);
302 uint64_t offset = first_entry & mask;
45aba42f
KW
303
304 if (!offset)
305 return 0;
306
15684a47
HR
307 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
308
61653008 309 for (i = 0; i < nb_clusters; i++) {
2bfcc4a0
KW
310 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
311 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 312 break;
2bfcc4a0
KW
313 }
314 }
45aba42f 315
61653008 316 return i;
45aba42f
KW
317}
318
319static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
320{
2bfcc4a0
KW
321 int i;
322
323 for (i = 0; i < nb_clusters; i++) {
324 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
45aba42f 325
2bfcc4a0
KW
326 if (type != QCOW2_CLUSTER_UNALLOCATED) {
327 break;
328 }
329 }
45aba42f
KW
330
331 return i;
332}
333
334/* The crypt function is compatible with the linux cryptoloop
335 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
336 supported */
ed6ccf0f
KW
337void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
338 uint8_t *out_buf, const uint8_t *in_buf,
339 int nb_sectors, int enc,
340 const AES_KEY *key)
45aba42f
KW
341{
342 union {
343 uint64_t ll[2];
344 uint8_t b[16];
345 } ivec;
346 int i;
347
348 for(i = 0; i < nb_sectors; i++) {
349 ivec.ll[0] = cpu_to_le64(sector_num);
350 ivec.ll[1] = 0;
351 AES_cbc_encrypt(in_buf, out_buf, 512, key,
352 ivec.b, enc);
353 sector_num++;
354 in_buf += 512;
355 out_buf += 512;
356 }
357}
358
aef4acb6
SH
359static int coroutine_fn copy_sectors(BlockDriverState *bs,
360 uint64_t start_sect,
361 uint64_t cluster_offset,
362 int n_start, int n_end)
45aba42f
KW
363{
364 BDRVQcowState *s = bs->opaque;
aef4acb6
SH
365 QEMUIOVector qiov;
366 struct iovec iov;
45aba42f 367 int n, ret;
1b9f1491 368
45aba42f 369 n = n_end - n_start;
1b9f1491 370 if (n <= 0) {
45aba42f 371 return 0;
1b9f1491
KW
372 }
373
aef4acb6
SH
374 iov.iov_len = n * BDRV_SECTOR_SIZE;
375 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
376
377 qemu_iovec_init_external(&qiov, &iov, 1);
1b9f1491 378
66f82cee 379 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6 380
dba28555
HR
381 if (!bs->drv) {
382 return -ENOMEDIUM;
383 }
384
aef4acb6
SH
385 /* Call .bdrv_co_readv() directly instead of using the public block-layer
386 * interface. This avoids double I/O throttling and request tracking,
387 * which can lead to deadlock when block layer copy-on-read is enabled.
388 */
389 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
1b9f1491
KW
390 if (ret < 0) {
391 goto out;
392 }
393
45aba42f 394 if (s->crypt_method) {
ed6ccf0f 395 qcow2_encrypt_sectors(s, start_sect + n_start,
aef4acb6 396 iov.iov_base, iov.iov_base, n, 1,
45aba42f
KW
397 &s->aes_encrypt_key);
398 }
1b9f1491 399
231bb267 400 ret = qcow2_pre_write_overlap_check(bs, 0,
cf93980e
HR
401 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
402 if (ret < 0) {
403 goto out;
404 }
405
66f82cee 406 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
aef4acb6 407 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
1b9f1491
KW
408 if (ret < 0) {
409 goto out;
410 }
411
412 ret = 0;
413out:
aef4acb6 414 qemu_vfree(iov.iov_base);
1b9f1491 415 return ret;
45aba42f
KW
416}
417
418
419/*
420 * get_cluster_offset
421 *
1c46efaa
KW
422 * For a given offset of the disk image, find the cluster offset in
423 * qcow2 file. The offset is stored in *cluster_offset.
45aba42f 424 *
d57237f2 425 * on entry, *num is the number of contiguous sectors we'd like to
45aba42f
KW
426 * access following offset.
427 *
d57237f2 428 * on exit, *num is the number of contiguous sectors we can read.
45aba42f 429 *
68d000a3
KW
430 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
431 * cases.
45aba42f 432 */
1c46efaa
KW
433int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
434 int *num, uint64_t *cluster_offset)
45aba42f
KW
435{
436 BDRVQcowState *s = bs->opaque;
2cf7cfa1
KW
437 unsigned int l2_index;
438 uint64_t l1_index, l2_offset, *l2_table;
45aba42f 439 int l1_bits, c;
80ee15a6
KW
440 unsigned int index_in_cluster, nb_clusters;
441 uint64_t nb_available, nb_needed;
55c17e98 442 int ret;
45aba42f
KW
443
444 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
445 nb_needed = *num + index_in_cluster;
446
447 l1_bits = s->l2_bits + s->cluster_bits;
448
449 /* compute how many bytes there are between the offset and
450 * the end of the l1 entry
451 */
452
80ee15a6 453 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
45aba42f
KW
454
455 /* compute the number of available sectors */
456
457 nb_available = (nb_available >> 9) + index_in_cluster;
458
459 if (nb_needed > nb_available) {
460 nb_needed = nb_available;
461 }
462
1c46efaa 463 *cluster_offset = 0;
45aba42f
KW
464
465 /* seek the the l2 offset in the l1 table */
466
467 l1_index = offset >> l1_bits;
68d000a3
KW
468 if (l1_index >= s->l1_size) {
469 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 470 goto out;
68d000a3 471 }
45aba42f 472
68d000a3
KW
473 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
474 if (!l2_offset) {
475 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 476 goto out;
68d000a3 477 }
45aba42f
KW
478
479 /* load the l2 table in memory */
480
55c17e98
KW
481 ret = l2_load(bs, l2_offset, &l2_table);
482 if (ret < 0) {
483 return ret;
1c46efaa 484 }
45aba42f
KW
485
486 /* find the cluster offset for the given disk offset */
487
488 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
1c46efaa 489 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
45aba42f
KW
490 nb_clusters = size_to_clusters(s, nb_needed << 9);
491
68d000a3
KW
492 ret = qcow2_get_cluster_type(*cluster_offset);
493 switch (ret) {
494 case QCOW2_CLUSTER_COMPRESSED:
495 /* Compressed clusters can only be processed one by one */
496 c = 1;
497 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
498 break;
6377af48 499 case QCOW2_CLUSTER_ZERO:
381b487d 500 if (s->qcow_version < 3) {
8885eade 501 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
381b487d
PB
502 return -EIO;
503 }
6377af48 504 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
61653008 505 &l2_table[l2_index], QCOW_OFLAG_ZERO);
6377af48
KW
506 *cluster_offset = 0;
507 break;
68d000a3 508 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f
KW
509 /* how many empty clusters ? */
510 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
68d000a3
KW
511 *cluster_offset = 0;
512 break;
513 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
514 /* how many allocated clusters ? */
515 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
61653008 516 &l2_table[l2_index], QCOW_OFLAG_ZERO);
68d000a3
KW
517 *cluster_offset &= L2E_OFFSET_MASK;
518 break;
1417d7e4
KW
519 default:
520 abort();
45aba42f
KW
521 }
522
29c1a730
KW
523 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
524
68d000a3
KW
525 nb_available = (c * s->cluster_sectors);
526
45aba42f
KW
527out:
528 if (nb_available > nb_needed)
529 nb_available = nb_needed;
530
531 *num = nb_available - index_in_cluster;
532
68d000a3 533 return ret;
45aba42f
KW
534}
535
536/*
537 * get_cluster_table
538 *
539 * for a given disk offset, load (and allocate if needed)
540 * the l2 table.
541 *
542 * the l2 table offset in the qcow2 file and the cluster index
543 * in the l2 table are given to the caller.
544 *
1e3e8f1a 545 * Returns 0 on success, -errno in failure case
45aba42f 546 */
45aba42f
KW
547static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
548 uint64_t **new_l2_table,
45aba42f
KW
549 int *new_l2_index)
550{
551 BDRVQcowState *s = bs->opaque;
2cf7cfa1
KW
552 unsigned int l2_index;
553 uint64_t l1_index, l2_offset;
c46e1167 554 uint64_t *l2_table = NULL;
80ee15a6 555 int ret;
45aba42f
KW
556
557 /* seek the the l2 offset in the l1 table */
558
559 l1_index = offset >> (s->l2_bits + s->cluster_bits);
560 if (l1_index >= s->l1_size) {
72893756 561 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
562 if (ret < 0) {
563 return ret;
564 }
45aba42f 565 }
8e37f681 566
2cf7cfa1 567 assert(l1_index < s->l1_size);
8e37f681 568 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
569
570 /* seek the l2 table of the given l2 offset */
571
8e37f681 572 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
45aba42f 573 /* load the l2 table in memory */
55c17e98
KW
574 ret = l2_load(bs, l2_offset, &l2_table);
575 if (ret < 0) {
576 return ret;
1e3e8f1a 577 }
45aba42f 578 } else {
16fde5f2 579 /* First allocate a new L2 table (and do COW if needed) */
c46e1167
KW
580 ret = l2_allocate(bs, l1_index, &l2_table);
581 if (ret < 0) {
582 return ret;
1e3e8f1a 583 }
16fde5f2
KW
584
585 /* Then decrease the refcount of the old table */
586 if (l2_offset) {
6cfcb9b8
KW
587 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
588 QCOW2_DISCARD_OTHER);
16fde5f2 589 }
45aba42f
KW
590 }
591
592 /* find the cluster offset for the given disk offset */
593
594 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
595
596 *new_l2_table = l2_table;
45aba42f
KW
597 *new_l2_index = l2_index;
598
1e3e8f1a 599 return 0;
45aba42f
KW
600}
601
602/*
603 * alloc_compressed_cluster_offset
604 *
605 * For a given offset of the disk image, return cluster offset in
606 * qcow2 file.
607 *
608 * If the offset is not found, allocate a new compressed cluster.
609 *
610 * Return the cluster offset if successful,
611 * Return 0, otherwise.
612 *
613 */
614
ed6ccf0f
KW
615uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
616 uint64_t offset,
617 int compressed_size)
45aba42f
KW
618{
619 BDRVQcowState *s = bs->opaque;
620 int l2_index, ret;
3948d1d4 621 uint64_t *l2_table;
f4f0d391 622 int64_t cluster_offset;
45aba42f
KW
623 int nb_csectors;
624
3948d1d4 625 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 626 if (ret < 0) {
45aba42f 627 return 0;
1e3e8f1a 628 }
45aba42f 629
b0b6862e
KW
630 /* Compression can't overwrite anything. Fail if the cluster was already
631 * allocated. */
45aba42f 632 cluster_offset = be64_to_cpu(l2_table[l2_index]);
b0b6862e 633 if (cluster_offset & L2E_OFFSET_MASK) {
8f1efd00
KW
634 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
635 return 0;
636 }
45aba42f 637
ed6ccf0f 638 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 639 if (cluster_offset < 0) {
29c1a730 640 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
5d757b56
KW
641 return 0;
642 }
643
45aba42f
KW
644 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
645 (cluster_offset >> 9);
646
647 cluster_offset |= QCOW_OFLAG_COMPRESSED |
648 ((uint64_t)nb_csectors << s->csize_shift);
649
650 /* update L2 table */
651
652 /* compressed clusters never have the copied flag */
653
66f82cee 654 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
29c1a730 655 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 656 l2_table[l2_index] = cpu_to_be64(cluster_offset);
29c1a730 657 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
79a31189 658 if (ret < 0) {
29c1a730 659 return 0;
4c1612d9
KW
660 }
661
29c1a730 662 return cluster_offset;
4c1612d9
KW
663}
664
593fb83c
KW
665static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
666{
667 BDRVQcowState *s = bs->opaque;
668 int ret;
669
670 if (r->nb_sectors == 0) {
671 return 0;
672 }
673
674 qemu_co_mutex_unlock(&s->lock);
675 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
676 r->offset / BDRV_SECTOR_SIZE,
677 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
678 qemu_co_mutex_lock(&s->lock);
679
680 if (ret < 0) {
681 return ret;
682 }
683
684 /*
685 * Before we update the L2 table to actually point to the new cluster, we
686 * need to be sure that the refcounts have been increased and COW was
687 * handled.
688 */
689 qcow2_cache_depends_on_flush(s->l2_table_cache);
690
691 return 0;
692}
693
148da7ea 694int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f
KW
695{
696 BDRVQcowState *s = bs->opaque;
697 int i, j = 0, l2_index, ret;
593fb83c 698 uint64_t *old_cluster, *l2_table;
250196f1 699 uint64_t cluster_offset = m->alloc_offset;
45aba42f 700
3cce16f4 701 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 702 assert(m->nb_clusters > 0);
45aba42f 703
7267c094 704 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
45aba42f
KW
705
706 /* copy content of unmodified sectors */
593fb83c
KW
707 ret = perform_cow(bs, m, &m->cow_start);
708 if (ret < 0) {
709 goto err;
45aba42f
KW
710 }
711
593fb83c
KW
712 ret = perform_cow(bs, m, &m->cow_end);
713 if (ret < 0) {
714 goto err;
29c1a730
KW
715 }
716
593fb83c 717 /* Update L2 table. */
74c4510a 718 if (s->use_lazy_refcounts) {
280d3735
KW
719 qcow2_mark_dirty(bs);
720 }
bfe8043e
SH
721 if (qcow2_need_accurate_refcounts(s)) {
722 qcow2_cache_set_dependency(bs, s->l2_table_cache,
723 s->refcount_block_cache);
724 }
280d3735 725
3948d1d4 726 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
1e3e8f1a 727 if (ret < 0) {
45aba42f 728 goto err;
1e3e8f1a 729 }
29c1a730 730 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 731
c01dbccb 732 assert(l2_index + m->nb_clusters <= s->l2_size);
45aba42f
KW
733 for (i = 0; i < m->nb_clusters; i++) {
734 /* if two concurrent writes happen to the same unallocated cluster
735 * each write allocates separate cluster and writes data concurrently.
736 * The first one to complete updates l2 table with pointer to its
737 * cluster the second one has to do RMW (which is done above by
738 * copy_sectors()), update l2 table with its cluster pointer and free
739 * old cluster. This is what this loop does */
740 if(l2_table[l2_index + i] != 0)
741 old_cluster[j++] = l2_table[l2_index + i];
742
743 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
744 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
745 }
746
9f8e668e 747
29c1a730 748 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
c835d00f 749 if (ret < 0) {
45aba42f 750 goto err;
4c1612d9 751 }
45aba42f 752
7ec5e6a4
KW
753 /*
754 * If this was a COW, we need to decrease the refcount of the old cluster.
755 * Also flush bs->file to get the right order for L2 and refcount update.
6cfcb9b8
KW
756 *
757 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
758 * clusters), the next write will reuse them anyway.
7ec5e6a4
KW
759 */
760 if (j != 0) {
7ec5e6a4 761 for (i = 0; i < j; i++) {
6cfcb9b8
KW
762 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
763 QCOW2_DISCARD_NEVER);
7ec5e6a4
KW
764 }
765 }
45aba42f
KW
766
767 ret = 0;
768err:
7267c094 769 g_free(old_cluster);
45aba42f
KW
770 return ret;
771 }
772
bf319ece
KW
773/*
774 * Returns the number of contiguous clusters that can be used for an allocating
775 * write, but require COW to be performed (this includes yet unallocated space,
776 * which must copy from the backing file)
777 */
778static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
779 uint64_t *l2_table, int l2_index)
780{
143550a8 781 int i;
bf319ece 782
143550a8
KW
783 for (i = 0; i < nb_clusters; i++) {
784 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
785 int cluster_type = qcow2_get_cluster_type(l2_entry);
786
787 switch(cluster_type) {
788 case QCOW2_CLUSTER_NORMAL:
789 if (l2_entry & QCOW_OFLAG_COPIED) {
790 goto out;
791 }
bf319ece 792 break;
143550a8
KW
793 case QCOW2_CLUSTER_UNALLOCATED:
794 case QCOW2_CLUSTER_COMPRESSED:
6377af48 795 case QCOW2_CLUSTER_ZERO:
bf319ece 796 break;
143550a8
KW
797 default:
798 abort();
799 }
bf319ece
KW
800 }
801
143550a8 802out:
bf319ece
KW
803 assert(i <= nb_clusters);
804 return i;
805}
806
250196f1 807/*
226c3c26
KW
808 * Check if there already is an AIO write request in flight which allocates
809 * the same cluster. In this case we need to wait until the previous
810 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
811 *
812 * Returns:
813 * 0 if there was no dependency. *cur_bytes indicates the number of
814 * bytes from guest_offset that can be read before the next
815 * dependency must be processed (or the request is complete)
816 *
817 * -EAGAIN if we had to wait for another request, previously gathered
818 * information on cluster allocation may be invalid now. The caller
819 * must start over anyway, so consider *cur_bytes undefined.
250196f1 820 */
226c3c26 821static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
ecdd5333 822 uint64_t *cur_bytes, QCowL2Meta **m)
250196f1
KW
823{
824 BDRVQcowState *s = bs->opaque;
250196f1 825 QCowL2Meta *old_alloc;
65eb2e35 826 uint64_t bytes = *cur_bytes;
250196f1 827
250196f1
KW
828 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
829
65eb2e35
KW
830 uint64_t start = guest_offset;
831 uint64_t end = start + bytes;
832 uint64_t old_start = l2meta_cow_start(old_alloc);
833 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 834
d9d74f41 835 if (end <= old_start || start >= old_end) {
250196f1
KW
836 /* No intersection */
837 } else {
838 if (start < old_start) {
839 /* Stop at the start of a running allocation */
65eb2e35 840 bytes = old_start - start;
250196f1 841 } else {
65eb2e35 842 bytes = 0;
250196f1
KW
843 }
844
ecdd5333
KW
845 /* Stop if already an l2meta exists. After yielding, it wouldn't
846 * be valid any more, so we'd have to clean up the old L2Metas
847 * and deal with requests depending on them before starting to
848 * gather new ones. Not worth the trouble. */
849 if (bytes == 0 && *m) {
850 *cur_bytes = 0;
851 return 0;
852 }
853
65eb2e35 854 if (bytes == 0) {
250196f1
KW
855 /* Wait for the dependency to complete. We need to recheck
856 * the free/allocated clusters when we continue. */
857 qemu_co_mutex_unlock(&s->lock);
858 qemu_co_queue_wait(&old_alloc->dependent_requests);
859 qemu_co_mutex_lock(&s->lock);
860 return -EAGAIN;
861 }
862 }
863 }
864
65eb2e35
KW
865 /* Make sure that existing clusters and new allocations are only used up to
866 * the next dependency if we shortened the request above */
867 *cur_bytes = bytes;
250196f1 868
226c3c26
KW
869 return 0;
870}
871
0af729ec
KW
872/*
873 * Checks how many already allocated clusters that don't require a copy on
874 * write there are at the given guest_offset (up to *bytes). If
875 * *host_offset is not zero, only physically contiguous clusters beginning at
876 * this host offset are counted.
877 *
411d62b0
KW
878 * Note that guest_offset may not be cluster aligned. In this case, the
879 * returned *host_offset points to exact byte referenced by guest_offset and
880 * therefore isn't cluster aligned as well.
0af729ec
KW
881 *
882 * Returns:
883 * 0: if no allocated clusters are available at the given offset.
884 * *bytes is normally unchanged. It is set to 0 if the cluster
885 * is allocated and doesn't need COW, but doesn't have the right
886 * physical offset.
887 *
888 * 1: if allocated clusters that don't require a COW are available at
889 * the requested offset. *bytes may have decreased and describes
890 * the length of the area that can be written to.
891 *
892 * -errno: in error cases
0af729ec
KW
893 */
894static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 895 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec
KW
896{
897 BDRVQcowState *s = bs->opaque;
898 int l2_index;
899 uint64_t cluster_offset;
900 uint64_t *l2_table;
acb0467f 901 unsigned int nb_clusters;
c53ede9f 902 unsigned int keep_clusters;
0af729ec
KW
903 int ret, pret;
904
905 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
906 *bytes);
0af729ec 907
411d62b0
KW
908 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
909 == offset_into_cluster(s, *host_offset));
910
acb0467f
KW
911 /*
912 * Calculate the number of clusters to look for. We stop at L2 table
913 * boundaries to keep things simple.
914 */
915 nb_clusters =
916 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
917
918 l2_index = offset_to_l2_index(s, guest_offset);
919 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
920
0af729ec
KW
921 /* Find L2 entry for the first involved cluster */
922 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
923 if (ret < 0) {
924 return ret;
925 }
926
927 cluster_offset = be64_to_cpu(l2_table[l2_index]);
928
929 /* Check how many clusters are already allocated and don't need COW */
930 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
931 && (cluster_offset & QCOW_OFLAG_COPIED))
932 {
e62daaf6
KW
933 /* If a specific host_offset is required, check it */
934 bool offset_matches =
935 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
936
937 if (*host_offset != 0 && !offset_matches) {
938 *bytes = 0;
939 ret = 0;
940 goto out;
941 }
942
0af729ec 943 /* We keep all QCOW_OFLAG_COPIED clusters */
c53ede9f 944 keep_clusters =
acb0467f 945 count_contiguous_clusters(nb_clusters, s->cluster_size,
61653008 946 &l2_table[l2_index],
0af729ec 947 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
c53ede9f
KW
948 assert(keep_clusters <= nb_clusters);
949
950 *bytes = MIN(*bytes,
951 keep_clusters * s->cluster_size
952 - offset_into_cluster(s, guest_offset));
0af729ec
KW
953
954 ret = 1;
955 } else {
0af729ec
KW
956 ret = 0;
957 }
958
0af729ec 959 /* Cleanup */
e62daaf6 960out:
0af729ec
KW
961 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
962 if (pret < 0) {
963 return pret;
964 }
965
e62daaf6
KW
966 /* Only return a host offset if we actually made progress. Otherwise we
967 * would make requirements for handle_alloc() that it can't fulfill */
968 if (ret) {
411d62b0
KW
969 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
970 + offset_into_cluster(s, guest_offset);
e62daaf6
KW
971 }
972
0af729ec
KW
973 return ret;
974}
975
226c3c26
KW
976/*
977 * Allocates new clusters for the given guest_offset.
978 *
979 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
980 * contain the number of clusters that have been allocated and are contiguous
981 * in the image file.
982 *
983 * If *host_offset is non-zero, it specifies the offset in the image file at
984 * which the new clusters must start. *nb_clusters can be 0 on return in this
985 * case if the cluster at host_offset is already in use. If *host_offset is
986 * zero, the clusters can be allocated anywhere in the image file.
987 *
988 * *host_offset is updated to contain the offset into the image file at which
989 * the first allocated cluster starts.
990 *
991 * Return 0 on success and -errno in error cases. -EAGAIN means that the
992 * function has been waiting for another request and the allocation must be
993 * restarted, but the whole request should not be failed.
994 */
995static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
996 uint64_t *host_offset, unsigned int *nb_clusters)
997{
998 BDRVQcowState *s = bs->opaque;
226c3c26
KW
999
1000 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1001 *host_offset, *nb_clusters);
1002
250196f1
KW
1003 /* Allocate new clusters */
1004 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1005 if (*host_offset == 0) {
df021791
KW
1006 int64_t cluster_offset =
1007 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1008 if (cluster_offset < 0) {
1009 return cluster_offset;
1010 }
1011 *host_offset = cluster_offset;
1012 return 0;
250196f1 1013 } else {
17a71e58 1014 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
1015 if (ret < 0) {
1016 return ret;
1017 }
1018 *nb_clusters = ret;
1019 return 0;
250196f1 1020 }
250196f1
KW
1021}
1022
10f0ed8b
KW
1023/*
1024 * Allocates new clusters for an area that either is yet unallocated or needs a
1025 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1026 * the new allocation can match the specified host offset.
1027 *
411d62b0
KW
1028 * Note that guest_offset may not be cluster aligned. In this case, the
1029 * returned *host_offset points to exact byte referenced by guest_offset and
1030 * therefore isn't cluster aligned as well.
10f0ed8b
KW
1031 *
1032 * Returns:
1033 * 0: if no clusters could be allocated. *bytes is set to 0,
1034 * *host_offset is left unchanged.
1035 *
1036 * 1: if new clusters were allocated. *bytes may be decreased if the
1037 * new allocation doesn't cover all of the requested area.
1038 * *host_offset is updated to contain the host offset of the first
1039 * newly allocated cluster.
1040 *
1041 * -errno: in error cases
10f0ed8b
KW
1042 */
1043static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 1044 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b
KW
1045{
1046 BDRVQcowState *s = bs->opaque;
1047 int l2_index;
1048 uint64_t *l2_table;
1049 uint64_t entry;
f5bc6350 1050 unsigned int nb_clusters;
10f0ed8b
KW
1051 int ret;
1052
10f0ed8b 1053 uint64_t alloc_cluster_offset;
10f0ed8b
KW
1054
1055 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1056 *bytes);
1057 assert(*bytes > 0);
1058
f5bc6350
KW
1059 /*
1060 * Calculate the number of clusters to look for. We stop at L2 table
1061 * boundaries to keep things simple.
1062 */
c37f4cd7
KW
1063 nb_clusters =
1064 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1065
f5bc6350 1066 l2_index = offset_to_l2_index(s, guest_offset);
c37f4cd7 1067 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
f5bc6350 1068
10f0ed8b
KW
1069 /* Find L2 entry for the first involved cluster */
1070 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1071 if (ret < 0) {
1072 return ret;
1073 }
1074
3b8e2e26 1075 entry = be64_to_cpu(l2_table[l2_index]);
10f0ed8b
KW
1076
1077 /* For the moment, overwrite compressed clusters one by one */
1078 if (entry & QCOW_OFLAG_COMPRESSED) {
1079 nb_clusters = 1;
1080 } else {
3b8e2e26 1081 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
10f0ed8b
KW
1082 }
1083
ecdd5333
KW
1084 /* This function is only called when there were no non-COW clusters, so if
1085 * we can't find any unallocated or COW clusters either, something is
1086 * wrong with our code. */
1087 assert(nb_clusters > 0);
1088
10f0ed8b
KW
1089 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1090 if (ret < 0) {
1091 return ret;
1092 }
1093
10f0ed8b 1094 /* Allocate, if necessary at a given offset in the image file */
411d62b0 1095 alloc_cluster_offset = start_of_cluster(s, *host_offset);
83baa9a4 1096 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
10f0ed8b
KW
1097 &nb_clusters);
1098 if (ret < 0) {
1099 goto fail;
1100 }
1101
83baa9a4
KW
1102 /* Can't extend contiguous allocation */
1103 if (nb_clusters == 0) {
10f0ed8b
KW
1104 *bytes = 0;
1105 return 0;
1106 }
1107
83baa9a4
KW
1108 /*
1109 * Save info needed for meta data update.
1110 *
1111 * requested_sectors: Number of sectors from the start of the first
1112 * newly allocated cluster to the end of the (possibly shortened
1113 * before) write request.
1114 *
1115 * avail_sectors: Number of sectors from the start of the first
1116 * newly allocated to the end of the last newly allocated cluster.
1117 *
1118 * nb_sectors: The number of sectors from the start of the first
1119 * newly allocated cluster to the end of the area that the write
1120 * request actually writes to (excluding COW at the end)
1121 */
1122 int requested_sectors =
1123 (*bytes + offset_into_cluster(s, guest_offset))
1124 >> BDRV_SECTOR_BITS;
1125 int avail_sectors = nb_clusters
1126 << (s->cluster_bits - BDRV_SECTOR_BITS);
1127 int alloc_n_start = offset_into_cluster(s, guest_offset)
1128 >> BDRV_SECTOR_BITS;
1129 int nb_sectors = MIN(requested_sectors, avail_sectors);
88c6588c 1130 QCowL2Meta *old_m = *m;
83baa9a4 1131
83baa9a4
KW
1132 *m = g_malloc0(sizeof(**m));
1133
1134 **m = (QCowL2Meta) {
88c6588c
KW
1135 .next = old_m,
1136
411d62b0 1137 .alloc_offset = alloc_cluster_offset,
83baa9a4
KW
1138 .offset = start_of_cluster(s, guest_offset),
1139 .nb_clusters = nb_clusters,
1140 .nb_available = nb_sectors,
1141
1142 .cow_start = {
1143 .offset = 0,
1144 .nb_sectors = alloc_n_start,
1145 },
1146 .cow_end = {
1147 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1148 .nb_sectors = avail_sectors - nb_sectors,
1149 },
1150 };
1151 qemu_co_queue_init(&(*m)->dependent_requests);
1152 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1153
411d62b0 1154 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
83baa9a4
KW
1155 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1156 - offset_into_cluster(s, guest_offset));
1157 assert(*bytes != 0);
1158
10f0ed8b
KW
1159 return 1;
1160
1161fail:
1162 if (*m && (*m)->nb_clusters > 0) {
1163 QLIST_REMOVE(*m, next_in_flight);
1164 }
1165 return ret;
1166}
1167
45aba42f
KW
1168/*
1169 * alloc_cluster_offset
1170 *
250196f1
KW
1171 * For a given offset on the virtual disk, find the cluster offset in qcow2
1172 * file. If the offset is not found, allocate a new cluster.
45aba42f 1173 *
250196f1 1174 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1175 * other fields in m are meaningless.
148da7ea
KW
1176 *
1177 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1178 * contiguous clusters that have been allocated. In this case, the other
1179 * fields of m are valid and contain information about the first allocated
1180 * cluster.
45aba42f 1181 *
68d100e9
KW
1182 * If the request conflicts with another write request in flight, the coroutine
1183 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1184 *
1185 * Return 0 on success and -errno in error cases
45aba42f 1186 */
f4f0d391 1187int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
16f0587e 1188 int *num, uint64_t *host_offset, QCowL2Meta **m)
45aba42f
KW
1189{
1190 BDRVQcowState *s = bs->opaque;
710c2496 1191 uint64_t start, remaining;
250196f1 1192 uint64_t cluster_offset;
65eb2e35 1193 uint64_t cur_bytes;
710c2496 1194 int ret;
45aba42f 1195
16f0587e 1196 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
3cce16f4 1197
16f0587e 1198 assert((offset & ~BDRV_SECTOR_MASK) == 0);
710c2496 1199
72424114 1200again:
16f0587e
HT
1201 start = offset;
1202 remaining = *num << BDRV_SECTOR_BITS;
0af729ec
KW
1203 cluster_offset = 0;
1204 *host_offset = 0;
ecdd5333
KW
1205 cur_bytes = 0;
1206 *m = NULL;
0af729ec 1207
2c3b32d2 1208 while (true) {
ecdd5333
KW
1209
1210 if (!*host_offset) {
1211 *host_offset = start_of_cluster(s, cluster_offset);
1212 }
1213
1214 assert(remaining >= cur_bytes);
1215
1216 start += cur_bytes;
1217 remaining -= cur_bytes;
1218 cluster_offset += cur_bytes;
1219
1220 if (remaining == 0) {
1221 break;
1222 }
1223
1224 cur_bytes = remaining;
1225
2c3b32d2
KW
1226 /*
1227 * Now start gathering as many contiguous clusters as possible:
1228 *
1229 * 1. Check for overlaps with in-flight allocations
1230 *
1231 * a) Overlap not in the first cluster -> shorten this request and
1232 * let the caller handle the rest in its next loop iteration.
1233 *
1234 * b) Real overlaps of two requests. Yield and restart the search
1235 * for contiguous clusters (the situation could have changed
1236 * while we were sleeping)
1237 *
1238 * c) TODO: Request starts in the same cluster as the in-flight
1239 * allocation ends. Shorten the COW of the in-fight allocation,
1240 * set cluster_offset to write to the same cluster and set up
1241 * the right synchronisation between the in-flight request and
1242 * the new one.
1243 */
ecdd5333 1244 ret = handle_dependencies(bs, start, &cur_bytes, m);
2c3b32d2 1245 if (ret == -EAGAIN) {
ecdd5333
KW
1246 /* Currently handle_dependencies() doesn't yield if we already had
1247 * an allocation. If it did, we would have to clean up the L2Meta
1248 * structs before starting over. */
1249 assert(*m == NULL);
2c3b32d2
KW
1250 goto again;
1251 } else if (ret < 0) {
1252 return ret;
ecdd5333
KW
1253 } else if (cur_bytes == 0) {
1254 break;
2c3b32d2
KW
1255 } else {
1256 /* handle_dependencies() may have decreased cur_bytes (shortened
1257 * the allocations below) so that the next dependency is processed
1258 * correctly during the next loop iteration. */
0af729ec 1259 }
710c2496 1260
2c3b32d2
KW
1261 /*
1262 * 2. Count contiguous COPIED clusters.
1263 */
1264 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1265 if (ret < 0) {
1266 return ret;
1267 } else if (ret) {
ecdd5333 1268 continue;
2c3b32d2
KW
1269 } else if (cur_bytes == 0) {
1270 break;
1271 }
060bee89 1272
2c3b32d2
KW
1273 /*
1274 * 3. If the request still hasn't completed, allocate new clusters,
1275 * considering any cluster_offset of steps 1c or 2.
1276 */
1277 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1278 if (ret < 0) {
1279 return ret;
1280 } else if (ret) {
ecdd5333 1281 continue;
2c3b32d2
KW
1282 } else {
1283 assert(cur_bytes == 0);
1284 break;
1285 }
f5bc6350 1286 }
10f0ed8b 1287
16f0587e 1288 *num -= remaining >> BDRV_SECTOR_BITS;
710c2496
KW
1289 assert(*num > 0);
1290 assert(*host_offset != 0);
45aba42f 1291
148da7ea 1292 return 0;
45aba42f
KW
1293}
1294
1295static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1296 const uint8_t *buf, int buf_size)
1297{
1298 z_stream strm1, *strm = &strm1;
1299 int ret, out_len;
1300
1301 memset(strm, 0, sizeof(*strm));
1302
1303 strm->next_in = (uint8_t *)buf;
1304 strm->avail_in = buf_size;
1305 strm->next_out = out_buf;
1306 strm->avail_out = out_buf_size;
1307
1308 ret = inflateInit2(strm, -12);
1309 if (ret != Z_OK)
1310 return -1;
1311 ret = inflate(strm, Z_FINISH);
1312 out_len = strm->next_out - out_buf;
1313 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1314 out_len != out_buf_size) {
1315 inflateEnd(strm);
1316 return -1;
1317 }
1318 inflateEnd(strm);
1319 return 0;
1320}
1321
66f82cee 1322int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 1323{
66f82cee 1324 BDRVQcowState *s = bs->opaque;
45aba42f
KW
1325 int ret, csize, nb_csectors, sector_offset;
1326 uint64_t coffset;
1327
1328 coffset = cluster_offset & s->cluster_offset_mask;
1329 if (s->cluster_cache_offset != coffset) {
1330 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1331 sector_offset = coffset & 511;
1332 csize = nb_csectors * 512 - sector_offset;
66f82cee
KW
1333 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1334 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
45aba42f 1335 if (ret < 0) {
8af36488 1336 return ret;
45aba42f
KW
1337 }
1338 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1339 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1340 return -EIO;
45aba42f
KW
1341 }
1342 s->cluster_cache_offset = coffset;
1343 }
1344 return 0;
1345}
5ea929e3
KW
1346
1347/*
1348 * This discards as many clusters of nb_clusters as possible at once (i.e.
1349 * all clusters in the same L2 table) and returns the number of discarded
1350 * clusters.
1351 */
1352static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
670df5e3 1353 unsigned int nb_clusters, enum qcow2_discard_type type)
5ea929e3
KW
1354{
1355 BDRVQcowState *s = bs->opaque;
3948d1d4 1356 uint64_t *l2_table;
5ea929e3
KW
1357 int l2_index;
1358 int ret;
1359 int i;
1360
3948d1d4 1361 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
5ea929e3
KW
1362 if (ret < 0) {
1363 return ret;
1364 }
1365
1366 /* Limit nb_clusters to one L2 table */
1367 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1368
1369 for (i = 0; i < nb_clusters; i++) {
c883db0d 1370 uint64_t old_l2_entry;
5ea929e3 1371
c883db0d 1372 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
a71835a0
KW
1373
1374 /*
1375 * Make sure that a discarded area reads back as zeroes for v3 images
1376 * (we cannot do it for v2 without actually writing a zero-filled
1377 * buffer). We can skip the operation if the cluster is already marked
1378 * as zero, or if it's unallocated and we don't have a backing file.
1379 *
1380 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1381 * holding s->lock, so that doesn't work today.
1382 */
c883db0d
HR
1383 switch (qcow2_get_cluster_type(old_l2_entry)) {
1384 case QCOW2_CLUSTER_UNALLOCATED:
1385 if (!bs->backing_hd) {
1386 continue;
1387 }
1388 break;
1389
1390 case QCOW2_CLUSTER_ZERO:
1391 continue;
1392
1393 case QCOW2_CLUSTER_NORMAL:
1394 case QCOW2_CLUSTER_COMPRESSED:
1395 break;
1396
1397 default:
1398 abort();
5ea929e3
KW
1399 }
1400
1401 /* First remove L2 entries */
1402 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
a71835a0
KW
1403 if (s->qcow_version >= 3) {
1404 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1405 } else {
1406 l2_table[l2_index + i] = cpu_to_be64(0);
1407 }
5ea929e3
KW
1408
1409 /* Then decrease the refcount */
c883db0d 1410 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
5ea929e3
KW
1411 }
1412
1413 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1414 if (ret < 0) {
1415 return ret;
1416 }
1417
1418 return nb_clusters;
1419}
1420
1421int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
670df5e3 1422 int nb_sectors, enum qcow2_discard_type type)
5ea929e3
KW
1423{
1424 BDRVQcowState *s = bs->opaque;
1425 uint64_t end_offset;
1426 unsigned int nb_clusters;
1427 int ret;
1428
1429 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1430
1431 /* Round start up and end down */
1432 offset = align_offset(offset, s->cluster_size);
ac95acdb 1433 end_offset = start_of_cluster(s, end_offset);
5ea929e3
KW
1434
1435 if (offset > end_offset) {
1436 return 0;
1437 }
1438
1439 nb_clusters = size_to_clusters(s, end_offset - offset);
1440
0b919fae
KW
1441 s->cache_discards = true;
1442
5ea929e3
KW
1443 /* Each L2 table is handled by its own loop iteration */
1444 while (nb_clusters > 0) {
670df5e3 1445 ret = discard_single_l2(bs, offset, nb_clusters, type);
5ea929e3 1446 if (ret < 0) {
0b919fae 1447 goto fail;
5ea929e3
KW
1448 }
1449
1450 nb_clusters -= ret;
1451 offset += (ret * s->cluster_size);
1452 }
1453
0b919fae
KW
1454 ret = 0;
1455fail:
1456 s->cache_discards = false;
1457 qcow2_process_discards(bs, ret);
1458
1459 return ret;
5ea929e3 1460}
621f0589
KW
1461
1462/*
1463 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1464 * all clusters in the same L2 table) and returns the number of zeroed
1465 * clusters.
1466 */
1467static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1468 unsigned int nb_clusters)
1469{
1470 BDRVQcowState *s = bs->opaque;
1471 uint64_t *l2_table;
1472 int l2_index;
1473 int ret;
1474 int i;
1475
1476 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1477 if (ret < 0) {
1478 return ret;
1479 }
1480
1481 /* Limit nb_clusters to one L2 table */
1482 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1483
1484 for (i = 0; i < nb_clusters; i++) {
1485 uint64_t old_offset;
1486
1487 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1488
1489 /* Update L2 entries */
1490 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1491 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1492 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
6cfcb9b8 1493 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
621f0589
KW
1494 } else {
1495 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1496 }
1497 }
1498
1499 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1500 if (ret < 0) {
1501 return ret;
1502 }
1503
1504 return nb_clusters;
1505}
1506
1507int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1508{
1509 BDRVQcowState *s = bs->opaque;
1510 unsigned int nb_clusters;
1511 int ret;
1512
1513 /* The zero flag is only supported by version 3 and newer */
1514 if (s->qcow_version < 3) {
1515 return -ENOTSUP;
1516 }
1517
1518 /* Each L2 table is handled by its own loop iteration */
1519 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1520
0b919fae
KW
1521 s->cache_discards = true;
1522
621f0589
KW
1523 while (nb_clusters > 0) {
1524 ret = zero_single_l2(bs, offset, nb_clusters);
1525 if (ret < 0) {
0b919fae 1526 goto fail;
621f0589
KW
1527 }
1528
1529 nb_clusters -= ret;
1530 offset += (ret * s->cluster_size);
1531 }
1532
0b919fae
KW
1533 ret = 0;
1534fail:
1535 s->cache_discards = false;
1536 qcow2_process_discards(bs, ret);
1537
1538 return ret;
621f0589 1539}
32b6444d
HR
1540
1541/*
1542 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1543 * non-backed non-pre-allocated zero clusters).
1544 *
1545 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1546 * the image file; a bit gets set if the corresponding cluster has been used for
1547 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1548 * L2 table). nb_clusters contains the total cluster count of the image file,
1549 * i.e., the number of bits in expanded_clusters.
1550 */
1551static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
e390cf5a
HR
1552 int l1_size, uint8_t **expanded_clusters,
1553 uint64_t *nb_clusters)
32b6444d
HR
1554{
1555 BDRVQcowState *s = bs->opaque;
1556 bool is_active_l1 = (l1_table == s->l1_table);
1557 uint64_t *l2_table = NULL;
1558 int ret;
1559 int i, j;
1560
1561 if (!is_active_l1) {
1562 /* inactive L2 tables require a buffer to be stored in when loading
1563 * them from disk */
1564 l2_table = qemu_blockalign(bs, s->cluster_size);
1565 }
1566
1567 for (i = 0; i < l1_size; i++) {
1568 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1569 bool l2_dirty = false;
1570
1571 if (!l2_offset) {
1572 /* unallocated */
1573 continue;
1574 }
1575
1576 if (is_active_l1) {
1577 /* get active L2 tables from cache */
1578 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1579 (void **)&l2_table);
1580 } else {
1581 /* load inactive L2 tables from disk */
1582 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1583 (void *)l2_table, s->cluster_sectors);
1584 }
1585 if (ret < 0) {
1586 goto fail;
1587 }
1588
1589 for (j = 0; j < s->l2_size; j++) {
1590 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1591 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1592 int cluster_type = qcow2_get_cluster_type(l2_entry);
320c7066 1593 bool preallocated = offset != 0;
32b6444d
HR
1594
1595 if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1596 cluster_index = offset >> s->cluster_bits;
e390cf5a
HR
1597 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1598 if ((*expanded_clusters)[cluster_index / 8] &
32b6444d
HR
1599 (1 << (cluster_index % 8))) {
1600 /* Probably a shared L2 table; this cluster was a zero
1601 * cluster which has been expanded, its refcount
1602 * therefore most likely requires an update. */
1603 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1604 QCOW2_DISCARD_NEVER);
1605 if (ret < 0) {
1606 goto fail;
1607 }
1608 /* Since we just increased the refcount, the COPIED flag may
1609 * no longer be set. */
1610 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1611 l2_dirty = true;
1612 }
1613 continue;
1614 }
1615 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1616 continue;
1617 }
1618
320c7066 1619 if (!preallocated) {
32b6444d
HR
1620 if (!bs->backing_hd) {
1621 /* not backed; therefore we can simply deallocate the
1622 * cluster */
1623 l2_table[j] = 0;
1624 l2_dirty = true;
1625 continue;
1626 }
1627
1628 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1629 if (offset < 0) {
1630 ret = offset;
1631 goto fail;
1632 }
1633 }
1634
231bb267 1635 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
32b6444d 1636 if (ret < 0) {
320c7066
HR
1637 if (!preallocated) {
1638 qcow2_free_clusters(bs, offset, s->cluster_size,
1639 QCOW2_DISCARD_ALWAYS);
1640 }
32b6444d
HR
1641 goto fail;
1642 }
1643
1644 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
aa7bfbff 1645 s->cluster_sectors, 0);
32b6444d 1646 if (ret < 0) {
320c7066
HR
1647 if (!preallocated) {
1648 qcow2_free_clusters(bs, offset, s->cluster_size,
1649 QCOW2_DISCARD_ALWAYS);
1650 }
32b6444d
HR
1651 goto fail;
1652 }
1653
1654 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1655 l2_dirty = true;
1656
1657 cluster_index = offset >> s->cluster_bits;
e390cf5a
HR
1658
1659 if (cluster_index >= *nb_clusters) {
1660 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1661 uint64_t new_bitmap_size;
1662 /* The offset may lie beyond the old end of the underlying image
1663 * file for growable files only */
1664 assert(bs->file->growable);
1665 *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1666 BDRV_SECTOR_SIZE);
1667 new_bitmap_size = (*nb_clusters + 7) / 8;
1668 *expanded_clusters = g_realloc(*expanded_clusters,
1669 new_bitmap_size);
1670 /* clear the newly allocated space */
1671 memset(&(*expanded_clusters)[old_bitmap_size], 0,
1672 new_bitmap_size - old_bitmap_size);
1673 }
1674
1675 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1676 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
32b6444d
HR
1677 }
1678
1679 if (is_active_l1) {
1680 if (l2_dirty) {
1681 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1682 qcow2_cache_depends_on_flush(s->l2_table_cache);
1683 }
1684 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1685 if (ret < 0) {
1686 l2_table = NULL;
1687 goto fail;
1688 }
1689 } else {
1690 if (l2_dirty) {
231bb267
HR
1691 ret = qcow2_pre_write_overlap_check(bs,
1692 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
32b6444d
HR
1693 s->cluster_size);
1694 if (ret < 0) {
1695 goto fail;
1696 }
1697
1698 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1699 (void *)l2_table, s->cluster_sectors);
1700 if (ret < 0) {
1701 goto fail;
1702 }
1703 }
1704 }
1705 }
1706
1707 ret = 0;
1708
1709fail:
1710 if (l2_table) {
1711 if (!is_active_l1) {
1712 qemu_vfree(l2_table);
1713 } else {
1714 if (ret < 0) {
1715 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1716 } else {
1717 ret = qcow2_cache_put(bs, s->l2_table_cache,
1718 (void **)&l2_table);
1719 }
1720 }
1721 }
1722 return ret;
1723}
1724
1725/*
1726 * For backed images, expands all zero clusters on the image. For non-backed
1727 * images, deallocates all non-pre-allocated zero clusters (and claims the
1728 * allocation for pre-allocated ones). This is important for downgrading to a
1729 * qcow2 version which doesn't yet support metadata zero clusters.
1730 */
1731int qcow2_expand_zero_clusters(BlockDriverState *bs)
1732{
1733 BDRVQcowState *s = bs->opaque;
1734 uint64_t *l1_table = NULL;
32b6444d
HR
1735 uint64_t nb_clusters;
1736 uint8_t *expanded_clusters;
1737 int ret;
1738 int i, j;
1739
e390cf5a
HR
1740 nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1741 BDRV_SECTOR_SIZE);
32b6444d
HR
1742 expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
1743
1744 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
e390cf5a 1745 &expanded_clusters, &nb_clusters);
32b6444d
HR
1746 if (ret < 0) {
1747 goto fail;
1748 }
1749
1750 /* Inactive L1 tables may point to active L2 tables - therefore it is
1751 * necessary to flush the L2 table cache before trying to access the L2
1752 * tables pointed to by inactive L1 entries (else we might try to expand
1753 * zero clusters that have already been expanded); furthermore, it is also
1754 * necessary to empty the L2 table cache, since it may contain tables which
1755 * are now going to be modified directly on disk, bypassing the cache.
1756 * qcow2_cache_empty() does both for us. */
1757 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1758 if (ret < 0) {
1759 goto fail;
1760 }
1761
1762 for (i = 0; i < s->nb_snapshots; i++) {
1763 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1764 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1765
1766 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1767
1768 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1769 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1770 if (ret < 0) {
1771 goto fail;
1772 }
1773
1774 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1775 be64_to_cpus(&l1_table[j]);
1776 }
1777
1778 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
e390cf5a 1779 &expanded_clusters, &nb_clusters);
32b6444d
HR
1780 if (ret < 0) {
1781 goto fail;
1782 }
1783 }
1784
1785 ret = 0;
1786
1787fail:
1788 g_free(expanded_clusters);
1789 g_free(l1_table);
1790 return ret;
1791}