]> git.proxmox.com Git - mirror_qemu.git/blame - block/qcow2-cluster.c
qcow2: Add subcluster support to handle_alloc_space()
[mirror_qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
80c71a24 25#include "qemu/osdep.h"
45aba42f
KW
26#include <zlib.h>
27
c9a442e4 28#include "qapi/error.h"
0d8c41da 29#include "qcow2.h"
58369e22 30#include "qemu/bswap.h"
3cce16f4 31#include "trace.h"
45aba42f 32
46b732cd
PB
33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34{
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size, i, ret;
37
38 if (exact_size >= s->l1_size) {
39 return 0;
40 }
41
42 new_l1_size = exact_size;
43
44#ifdef DEBUG_ALLOC2
45 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46#endif
47
48 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50 new_l1_size * sizeof(uint64_t),
51 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
52 if (ret < 0) {
53 goto fail;
54 }
55
56 ret = bdrv_flush(bs->file->bs);
57 if (ret < 0) {
58 goto fail;
59 }
60
61 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64 continue;
65 }
66 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67 s->cluster_size, QCOW2_DISCARD_ALWAYS);
68 s->l1_table[i] = 0;
69 }
70 return 0;
71
72fail:
73 /*
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
77 */
78 memset(s->l1_table + new_l1_size, 0,
79 (s->l1_size - new_l1_size) * sizeof(uint64_t));
80 return ret;
81}
82
2cf7cfa1
KW
83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84 bool exact_size)
45aba42f 85{
ff99129a 86 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 87 int new_l1_size2, ret, i;
45aba42f 88 uint64_t *new_l1_table;
fda74f82 89 int64_t old_l1_table_offset, old_l1_size;
2cf7cfa1 90 int64_t new_l1_table_offset, new_l1_size;
45aba42f
KW
91 uint8_t data[12];
92
72893756 93 if (min_size <= s->l1_size)
45aba42f 94 return 0;
72893756 95
b93f9950
HR
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
98 * new_l1_size) */
99 if (min_size > INT_MAX / sizeof(uint64_t)) {
100 return -EFBIG;
101 }
102
72893756
SH
103 if (exact_size) {
104 new_l1_size = min_size;
105 } else {
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size = s->l1_size;
108 if (new_l1_size == 0) {
109 new_l1_size = 1;
110 }
111 while (min_size > new_l1_size) {
21cf3e12 112 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
72893756 113 }
45aba42f 114 }
72893756 115
84c26520
HR
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2cf7cfa1
KW
118 return -EFBIG;
119 }
120
45aba42f 121#ifdef DEBUG_ALLOC2
2cf7cfa1
KW
122 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123 s->l1_size, new_l1_size);
45aba42f
KW
124#endif
125
126 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
ef97d608 127 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
de82815d
KW
128 if (new_l1_table == NULL) {
129 return -ENOMEM;
130 }
ef97d608 131 memset(new_l1_table, 0, new_l1_size2);
de82815d 132
0647d47c
SH
133 if (s->l1_size) {
134 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
135 }
45aba42f
KW
136
137 /* write new table (align to cluster) */
66f82cee 138 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 139 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 140 if (new_l1_table_offset < 0) {
de82815d 141 qemu_vfree(new_l1_table);
5d757b56
KW
142 return new_l1_table_offset;
143 }
29c1a730
KW
144
145 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
146 if (ret < 0) {
80fa3341 147 goto fail;
29c1a730 148 }
45aba42f 149
cf93980e
HR
150 /* the L1 position has not yet been updated, so these clusters must
151 * indeed be completely free */
231bb267 152 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
966b000f 153 new_l1_size2, false);
cf93980e
HR
154 if (ret < 0) {
155 goto fail;
156 }
157
66f82cee 158 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
159 for(i = 0; i < s->l1_size; i++)
160 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
d9ca2ea2 161 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
9a4f4c31 162 new_l1_table, new_l1_size2);
8b3b7206 163 if (ret < 0)
45aba42f
KW
164 goto fail;
165 for(i = 0; i < s->l1_size; i++)
166 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
167
168 /* set new table */
66f82cee 169 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
f1f7a1dd 170 stl_be_p(data, new_l1_size);
e4ef9f46 171 stq_be_p(data + 4, new_l1_table_offset);
d9ca2ea2 172 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
9a4f4c31 173 data, sizeof(data));
8b3b7206 174 if (ret < 0) {
45aba42f 175 goto fail;
fb8fa77c 176 }
de82815d 177 qemu_vfree(s->l1_table);
fda74f82 178 old_l1_table_offset = s->l1_table_offset;
45aba42f
KW
179 s->l1_table_offset = new_l1_table_offset;
180 s->l1_table = new_l1_table;
fda74f82 181 old_l1_size = s->l1_size;
45aba42f 182 s->l1_size = new_l1_size;
fda74f82
HR
183 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
184 QCOW2_DISCARD_OTHER);
45aba42f
KW
185 return 0;
186 fail:
de82815d 187 qemu_vfree(new_l1_table);
6cfcb9b8
KW
188 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
189 QCOW2_DISCARD_OTHER);
8b3b7206 190 return ret;
45aba42f
KW
191}
192
45aba42f
KW
193/*
194 * l2_load
195 *
e2b5713e
AG
196 * @bs: The BlockDriverState
197 * @offset: A guest offset, used to calculate what slice of the L2
198 * table to load.
199 * @l2_offset: Offset to the L2 table in the image file.
200 * @l2_slice: Location to store the pointer to the L2 slice.
45aba42f 201 *
e2b5713e
AG
202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203 * that are loaded by the qcow2 cache). If the slice is in the cache,
204 * the cache is used; otherwise the L2 slice is loaded from the image
205 * file.
45aba42f 206 */
e2b5713e
AG
207static int l2_load(BlockDriverState *bs, uint64_t offset,
208 uint64_t l2_offset, uint64_t **l2_slice)
45aba42f 209{
ff99129a 210 BDRVQcow2State *s = bs->opaque;
c8fd8554 211 int start_of_slice = l2_entry_size(s) *
e2b5713e 212 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
45aba42f 213
e2b5713e
AG
214 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
215 (void **)l2_slice);
45aba42f
KW
216}
217
6583e3c7 218/*
da86f8cb
AG
219 * Writes an L1 entry to disk (note that depending on the alignment
220 * requirements this function may write more that just one entry in
221 * order to prevent bdrv_pwrite from performing a read-modify-write)
6583e3c7 222 */
e23e400e 223int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 224{
ff99129a 225 BDRVQcow2State *s = bs->opaque;
6583e3c7 226 int l1_start_index;
f7defcb6 227 int i, ret;
da86f8cb
AG
228 int bufsize = MAX(sizeof(uint64_t),
229 MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
230 int nentries = bufsize / sizeof(uint64_t);
231 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
6583e3c7 232
da86f8cb
AG
233 if (buf == NULL) {
234 return -ENOMEM;
235 }
236
237 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
238 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
6583e3c7
KW
239 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240 }
241
231bb267 242 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
da86f8cb 243 s->l1_table_offset + 8 * l1_start_index, bufsize, false);
cf93980e
HR
244 if (ret < 0) {
245 return ret;
246 }
247
66f82cee 248 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
d9ca2ea2 249 ret = bdrv_pwrite_sync(bs->file,
9a4f4c31 250 s->l1_table_offset + 8 * l1_start_index,
da86f8cb 251 buf, bufsize);
f7defcb6
KW
252 if (ret < 0) {
253 return ret;
6583e3c7
KW
254 }
255
256 return 0;
257}
258
45aba42f
KW
259/*
260 * l2_allocate
261 *
262 * Allocate a new l2 entry in the file. If l1_index points to an already
263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264 * table) copy the contents of the old L2 table into the newly allocated one.
265 * Otherwise the new table is initialized with zeros.
266 *
267 */
268
3861946a 269static int l2_allocate(BlockDriverState *bs, int l1_index)
45aba42f 270{
ff99129a 271 BDRVQcow2State *s = bs->opaque;
6583e3c7 272 uint64_t old_l2_offset;
3861946a
AG
273 uint64_t *l2_slice = NULL;
274 unsigned slice, slice_size2, n_slices;
f4f0d391 275 int64_t l2_offset;
c46e1167 276 int ret;
45aba42f
KW
277
278 old_l2_offset = s->l1_table[l1_index];
279
3cce16f4
KW
280 trace_qcow2_l2_allocate(bs, l1_index);
281
45aba42f
KW
282 /* allocate a new l2 entry */
283
c8fd8554 284 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
5d757b56 285 if (l2_offset < 0) {
be0b742e
HR
286 ret = l2_offset;
287 goto fail;
5d757b56 288 }
29c1a730 289
c1c43990
AG
290 /* The offset must fit in the offset field of the L1 table entry */
291 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
292
98839750
AG
293 /* If we're allocating the table at offset 0 then something is wrong */
294 if (l2_offset == 0) {
295 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
296 "allocation of L2 table at offset 0");
297 ret = -EIO;
298 goto fail;
299 }
300
29c1a730
KW
301 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
302 if (ret < 0) {
303 goto fail;
304 }
45aba42f 305
45aba42f
KW
306 /* allocate a new entry in the l2 cache */
307
c8fd8554 308 slice_size2 = s->l2_slice_size * l2_entry_size(s);
3861946a
AG
309 n_slices = s->cluster_size / slice_size2;
310
3cce16f4 311 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
3861946a 312 for (slice = 0; slice < n_slices; slice++) {
6580bb09 313 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
3861946a
AG
314 l2_offset + slice * slice_size2,
315 (void **) &l2_slice);
6580bb09
AG
316 if (ret < 0) {
317 goto fail;
318 }
29c1a730 319
6580bb09 320 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
3861946a
AG
321 /* if there was no old l2 table, clear the new slice */
322 memset(l2_slice, 0, slice_size2);
6580bb09 323 } else {
3861946a
AG
324 uint64_t *old_slice;
325 uint64_t old_l2_slice_offset =
326 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
29c1a730 327
3861946a 328 /* if there was an old l2 table, read a slice from the disk */
6580bb09 329 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
3861946a
AG
330 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
331 (void **) &old_slice);
6580bb09
AG
332 if (ret < 0) {
333 goto fail;
334 }
335
3861946a 336 memcpy(l2_slice, old_slice, slice_size2);
6580bb09 337
3861946a 338 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
29c1a730
KW
339 }
340
3861946a 341 /* write the l2 slice to the file */
6580bb09 342 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 343
6580bb09 344 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
3861946a
AG
345 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
346 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 347 }
29c1a730 348
29c1a730 349 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 350 if (ret < 0) {
175e1152
KW
351 goto fail;
352 }
353
354 /* update the L1 entry */
3cce16f4 355 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152 356 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
e23e400e 357 ret = qcow2_write_l1_entry(bs, l1_index);
175e1152
KW
358 if (ret < 0) {
359 goto fail;
c46e1167 360 }
45aba42f 361
3cce16f4 362 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 363 return 0;
175e1152
KW
364
365fail:
3cce16f4 366 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
3861946a
AG
367 if (l2_slice != NULL) {
368 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
8585afd8 369 }
68dba0bf 370 s->l1_table[l1_index] = old_l2_offset;
e3b21ef9 371 if (l2_offset > 0) {
c8fd8554 372 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
e3b21ef9
HR
373 QCOW2_DISCARD_ALWAYS);
374 }
175e1152 375 return ret;
45aba42f
KW
376}
377
70d1cbae
AG
378/*
379 * For a given L2 entry, count the number of contiguous subclusters of
380 * the same type starting from @sc_from. Compressed clusters are
381 * treated as if they were divided into subclusters of size
382 * s->subcluster_size.
383 *
384 * Return the number of contiguous subclusters and set @type to the
385 * subcluster type.
386 *
387 * If the L2 entry is invalid return -errno and set @type to
388 * QCOW2_SUBCLUSTER_INVALID.
389 */
70d1cbae
AG
390static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
391 uint64_t l2_entry,
392 uint64_t l2_bitmap,
393 unsigned sc_from,
394 QCow2SubclusterType *type)
395{
396 BDRVQcow2State *s = bs->opaque;
397 uint32_t val;
398
399 *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
400
401 if (*type == QCOW2_SUBCLUSTER_INVALID) {
402 return -EINVAL;
403 } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
404 return s->subclusters_per_cluster - sc_from;
405 }
406
407 switch (*type) {
408 case QCOW2_SUBCLUSTER_NORMAL:
409 val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
410 return cto32(val) - sc_from;
411
412 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
413 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
414 val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
415 return cto32(val) - sc_from;
416
417 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
418 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
419 val = ((l2_bitmap >> 32) | l2_bitmap)
420 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
421 return ctz32(val) - sc_from;
422
423 default:
424 g_assert_not_reached();
425 }
426}
427
2bfcc4a0 428/*
3f9c6b3b
AG
429 * Return the number of contiguous subclusters of the exact same type
430 * in a given L2 slice, starting from cluster @l2_index, subcluster
431 * @sc_index. Allocated subclusters are required to be contiguous in
432 * the image file.
433 * At most @nb_clusters are checked (note that this means clusters,
434 * not subclusters).
435 * Compressed clusters are always processed one by one but for the
436 * purpose of this count they are treated as if they were divided into
437 * subclusters of size s->subcluster_size.
438 * On failure return -errno and update @l2_index to point to the
439 * invalid entry.
2bfcc4a0 440 */
3f9c6b3b
AG
441static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
442 unsigned sc_index, uint64_t *l2_slice,
443 unsigned *l2_index)
45aba42f 444{
12c6aebe 445 BDRVQcow2State *s = bs->opaque;
3f9c6b3b
AG
446 int i, count = 0;
447 bool check_offset = false;
448 uint64_t expected_offset = 0;
449 QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
45aba42f 450
3f9c6b3b 451 assert(*l2_index + nb_clusters <= s->l2_slice_size);
15684a47 452
61653008 453 for (i = 0; i < nb_clusters; i++) {
3f9c6b3b
AG
454 unsigned first_sc = (i == 0) ? sc_index : 0;
455 uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
456 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
457 int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
458 first_sc, &type);
459 if (ret < 0) {
460 *l2_index += i; /* Point to the invalid entry */
461 return -EIO;
462 }
463 if (i == 0) {
464 if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
465 /* Compressed clusters are always processed one by one */
466 return ret;
467 }
468 expected_type = type;
469 expected_offset = l2_entry & L2E_OFFSET_MASK;
470 check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
471 type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
472 type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
473 } else if (type != expected_type) {
45aba42f 474 break;
3f9c6b3b
AG
475 } else if (check_offset) {
476 expected_offset += s->cluster_size;
477 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
478 break;
479 }
2bfcc4a0 480 }
3f9c6b3b
AG
481 count += ret;
482 /* Stop if there are type changes before the end of the cluster */
483 if (first_sc + ret < s->subclusters_per_cluster) {
2bfcc4a0
KW
484 break;
485 }
486 }
45aba42f 487
3f9c6b3b 488 return count;
45aba42f
KW
489}
490
672f0f2c
AG
491static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
492 uint64_t src_cluster_offset,
493 unsigned offset_in_cluster,
86b862c4 494 QEMUIOVector *qiov)
45aba42f 495{
aaa4d20b 496 int ret;
1b9f1491 497
86b862c4 498 if (qiov->size == 0) {
99450c6f
AG
499 return 0;
500 }
501
66f82cee 502 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6 503
dba28555 504 if (!bs->drv) {
672f0f2c 505 return -ENOMEDIUM;
dba28555
HR
506 }
507
aef4acb6
SH
508 /* Call .bdrv_co_readv() directly instead of using the public block-layer
509 * interface. This avoids double I/O throttling and request tracking,
510 * which can lead to deadlock when block layer copy-on-read is enabled.
511 */
df893d25
VSO
512 ret = bs->drv->bdrv_co_preadv_part(bs,
513 src_cluster_offset + offset_in_cluster,
514 qiov->size, qiov, 0, 0);
1b9f1491 515 if (ret < 0) {
672f0f2c 516 return ret;
1b9f1491
KW
517 }
518
672f0f2c
AG
519 return 0;
520}
521
672f0f2c
AG
522static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
523 uint64_t cluster_offset,
524 unsigned offset_in_cluster,
86b862c4 525 QEMUIOVector *qiov)
672f0f2c 526{
966b000f 527 BDRVQcow2State *s = bs->opaque;
672f0f2c
AG
528 int ret;
529
86b862c4 530 if (qiov->size == 0) {
672f0f2c
AG
531 return 0;
532 }
533
231bb267 534 ret = qcow2_pre_write_overlap_check(bs, 0,
966b000f 535 cluster_offset + offset_in_cluster, qiov->size, true);
cf93980e 536 if (ret < 0) {
672f0f2c 537 return ret;
cf93980e
HR
538 }
539
66f82cee 540 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
966b000f 541 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
86b862c4 542 qiov->size, qiov, 0);
1b9f1491 543 if (ret < 0) {
672f0f2c 544 return ret;
1b9f1491
KW
545 }
546
672f0f2c 547 return 0;
45aba42f
KW
548}
549
550
551/*
388e5816 552 * get_host_offset
45aba42f 553 *
388e5816
AG
554 * For a given offset of the virtual disk find the equivalent host
555 * offset in the qcow2 file and store it in *host_offset. Neither
556 * offset needs to be aligned to a cluster boundary.
557 *
558 * If the cluster is unallocated then *host_offset will be 0.
559 * If the cluster is compressed then *host_offset will contain the
560 * complete compressed cluster descriptor.
45aba42f 561 *
ecfe1863
KW
562 * On entry, *bytes is the maximum number of contiguous bytes starting at
563 * offset that we are interested in.
45aba42f 564 *
ecfe1863 565 * On exit, *bytes is the number of bytes starting at offset that have the same
10dabdc5
AG
566 * subcluster type and (if applicable) are stored contiguously in the image
567 * file. The subcluster type is stored in *subcluster_type.
568 * Compressed clusters are always processed one by one.
45aba42f 569 *
ca4a0bb8 570 * Returns 0 on success, -errno in error cases.
45aba42f 571 */
388e5816 572int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
ca4a0bb8 573 unsigned int *bytes, uint64_t *host_offset,
10dabdc5 574 QCow2SubclusterType *subcluster_type)
45aba42f 575{
ff99129a 576 BDRVQcow2State *s = bs->opaque;
3f9c6b3b
AG
577 unsigned int l2_index, sc_index;
578 uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
579 int sc;
c834cba9
HR
580 unsigned int offset_in_cluster;
581 uint64_t bytes_available, bytes_needed, nb_clusters;
3f9c6b3b 582 QCow2SubclusterType type;
55c17e98 583 int ret;
45aba42f 584
b2f65d6b 585 offset_in_cluster = offset_into_cluster(s, offset);
ecfe1863 586 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
45aba42f 587
b2f65d6b 588 /* compute how many bytes there are between the start of the cluster
fd630039
AG
589 * containing offset and the end of the l2 slice that contains
590 * the entry pointing to it */
591 bytes_available =
592 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
593 << s->cluster_bits;
45aba42f 594
b2f65d6b
KW
595 if (bytes_needed > bytes_available) {
596 bytes_needed = bytes_available;
45aba42f
KW
597 }
598
388e5816 599 *host_offset = 0;
45aba42f 600
b6af0975 601 /* seek to the l2 offset in the l1 table */
45aba42f 602
05b5b6ee 603 l1_index = offset_to_l1_index(s, offset);
68d000a3 604 if (l1_index >= s->l1_size) {
3f9c6b3b 605 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
45aba42f 606 goto out;
68d000a3 607 }
45aba42f 608
68d000a3
KW
609 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
610 if (!l2_offset) {
3f9c6b3b 611 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
45aba42f 612 goto out;
68d000a3 613 }
45aba42f 614
a97c67ee
HR
615 if (offset_into_cluster(s, l2_offset)) {
616 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
617 " unaligned (L1 index: %#" PRIx64 ")",
618 l2_offset, l1_index);
619 return -EIO;
620 }
621
fd630039 622 /* load the l2 slice in memory */
45aba42f 623
fd630039 624 ret = l2_load(bs, offset, l2_offset, &l2_slice);
55c17e98
KW
625 if (ret < 0) {
626 return ret;
1c46efaa 627 }
45aba42f
KW
628
629 /* find the cluster offset for the given disk offset */
630
fd630039 631 l2_index = offset_to_l2_slice_index(s, offset);
3f9c6b3b 632 sc_index = offset_to_sc_index(s, offset);
12c6aebe 633 l2_entry = get_l2_entry(s, l2_slice, l2_index);
3f9c6b3b 634 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
b6d36def 635
b2f65d6b 636 nb_clusters = size_to_clusters(s, bytes_needed);
c834cba9
HR
637 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
638 * integers; the minimum cluster size is 512, so this assertion is always
639 * true */
640 assert(nb_clusters <= INT_MAX);
45aba42f 641
3f9c6b3b
AG
642 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
643 if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
644 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
fdfab37d
EB
645 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
646 " in pre-v3 image (L2 offset: %#" PRIx64
647 ", L2 index: %#x)", l2_offset, l2_index);
648 ret = -EIO;
649 goto fail;
650 }
3ef95218 651 switch (type) {
3f9c6b3b
AG
652 case QCOW2_SUBCLUSTER_INVALID:
653 break; /* This is handled by count_contiguous_subclusters() below */
654 case QCOW2_SUBCLUSTER_COMPRESSED:
966b000f
KW
655 if (has_data_file(bs)) {
656 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
657 "entry found in image with external data "
658 "file (L2 offset: %#" PRIx64 ", L2 index: "
659 "%#x)", l2_offset, l2_index);
660 ret = -EIO;
661 goto fail;
662 }
388e5816 663 *host_offset = l2_entry & L2E_COMPRESSED_OFFSET_SIZE_MASK;
68d000a3 664 break;
3f9c6b3b
AG
665 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
666 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
68d000a3 667 break;
3f9c6b3b
AG
668 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
669 case QCOW2_SUBCLUSTER_NORMAL:
670 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
388e5816
AG
671 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
672 *host_offset = host_cluster_offset + offset_in_cluster;
388e5816 673 if (offset_into_cluster(s, host_cluster_offset)) {
fdfab37d
EB
674 qcow2_signal_corruption(bs, true, -1, -1,
675 "Cluster allocation offset %#"
a97c67ee 676 PRIx64 " unaligned (L2 offset: %#" PRIx64
388e5816 677 ", L2 index: %#x)", host_cluster_offset,
a97c67ee
HR
678 l2_offset, l2_index);
679 ret = -EIO;
680 goto fail;
681 }
388e5816 682 if (has_data_file(bs) && *host_offset != offset) {
966b000f
KW
683 qcow2_signal_corruption(bs, true, -1, -1,
684 "External data file host cluster offset %#"
685 PRIx64 " does not match guest cluster "
686 "offset: %#" PRIx64
388e5816 687 ", L2 index: %#x)", host_cluster_offset,
966b000f
KW
688 offset - offset_in_cluster, l2_index);
689 ret = -EIO;
690 goto fail;
691 }
68d000a3 692 break;
388e5816 693 }
1417d7e4
KW
694 default:
695 abort();
45aba42f
KW
696 }
697
3f9c6b3b
AG
698 sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
699 l2_slice, &l2_index);
700 if (sc < 0) {
701 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
702 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
703 l2_offset, l2_index);
704 ret = -EIO;
705 goto fail;
706 }
fd630039 707 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
29c1a730 708
3f9c6b3b 709 bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
68d000a3 710
45aba42f 711out:
b2f65d6b
KW
712 if (bytes_available > bytes_needed) {
713 bytes_available = bytes_needed;
714 }
45aba42f 715
c834cba9
HR
716 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
717 * subtracting offset_in_cluster will therefore definitely yield something
718 * not exceeding UINT_MAX */
719 assert(bytes_available - offset_in_cluster <= UINT_MAX);
ecfe1863 720 *bytes = bytes_available - offset_in_cluster;
45aba42f 721
3f9c6b3b 722 *subcluster_type = type;
ca4a0bb8
AG
723
724 return 0;
a97c67ee
HR
725
726fail:
fd630039 727 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
a97c67ee 728 return ret;
45aba42f
KW
729}
730
731/*
732 * get_cluster_table
733 *
734 * for a given disk offset, load (and allocate if needed)
c03bfc5b 735 * the appropriate slice of its l2 table.
45aba42f 736 *
c03bfc5b 737 * the cluster index in the l2 slice is given to the caller.
45aba42f 738 *
1e3e8f1a 739 * Returns 0 on success, -errno in failure case
45aba42f 740 */
45aba42f 741static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
c03bfc5b 742 uint64_t **new_l2_slice,
45aba42f
KW
743 int *new_l2_index)
744{
ff99129a 745 BDRVQcow2State *s = bs->opaque;
2cf7cfa1
KW
746 unsigned int l2_index;
747 uint64_t l1_index, l2_offset;
c03bfc5b 748 uint64_t *l2_slice = NULL;
80ee15a6 749 int ret;
45aba42f 750
b6af0975 751 /* seek to the l2 offset in the l1 table */
45aba42f 752
05b5b6ee 753 l1_index = offset_to_l1_index(s, offset);
45aba42f 754 if (l1_index >= s->l1_size) {
72893756 755 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
756 if (ret < 0) {
757 return ret;
758 }
45aba42f 759 }
8e37f681 760
2cf7cfa1 761 assert(l1_index < s->l1_size);
8e37f681 762 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
a97c67ee
HR
763 if (offset_into_cluster(s, l2_offset)) {
764 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
765 " unaligned (L1 index: %#" PRIx64 ")",
766 l2_offset, l1_index);
767 return -EIO;
768 }
45aba42f 769
05f9ee46 770 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
16fde5f2 771 /* First allocate a new L2 table (and do COW if needed) */
3861946a 772 ret = l2_allocate(bs, l1_index);
c46e1167
KW
773 if (ret < 0) {
774 return ret;
1e3e8f1a 775 }
16fde5f2
KW
776
777 /* Then decrease the refcount of the old table */
778 if (l2_offset) {
c8fd8554 779 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
6cfcb9b8 780 QCOW2_DISCARD_OTHER);
16fde5f2 781 }
3861946a
AG
782
783 /* Get the offset of the newly-allocated l2 table */
784 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
785 assert(offset_into_cluster(s, l2_offset) == 0);
05f9ee46
AG
786 }
787
c03bfc5b
AG
788 /* load the l2 slice in memory */
789 ret = l2_load(bs, offset, l2_offset, &l2_slice);
05f9ee46
AG
790 if (ret < 0) {
791 return ret;
45aba42f
KW
792 }
793
794 /* find the cluster offset for the given disk offset */
795
c03bfc5b 796 l2_index = offset_to_l2_slice_index(s, offset);
45aba42f 797
c03bfc5b 798 *new_l2_slice = l2_slice;
45aba42f
KW
799 *new_l2_index = l2_index;
800
1e3e8f1a 801 return 0;
45aba42f
KW
802}
803
804/*
805 * alloc_compressed_cluster_offset
806 *
77e023ff
KW
807 * For a given offset on the virtual disk, allocate a new compressed cluster
808 * and put the host offset of the cluster into *host_offset. If a cluster is
809 * already allocated at the offset, return an error.
45aba42f 810 *
77e023ff 811 * Return 0 on success and -errno in error cases
45aba42f 812 */
77e023ff
KW
813int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
814 uint64_t offset,
815 int compressed_size,
816 uint64_t *host_offset)
45aba42f 817{
ff99129a 818 BDRVQcow2State *s = bs->opaque;
45aba42f 819 int l2_index, ret;
e4e72548 820 uint64_t *l2_slice;
f4f0d391 821 int64_t cluster_offset;
45aba42f
KW
822 int nb_csectors;
823
966b000f
KW
824 if (has_data_file(bs)) {
825 return 0;
826 }
827
e4e72548 828 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1e3e8f1a 829 if (ret < 0) {
77e023ff 830 return ret;
1e3e8f1a 831 }
45aba42f 832
b0b6862e
KW
833 /* Compression can't overwrite anything. Fail if the cluster was already
834 * allocated. */
12c6aebe 835 cluster_offset = get_l2_entry(s, l2_slice, l2_index);
b0b6862e 836 if (cluster_offset & L2E_OFFSET_MASK) {
e4e72548 837 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 838 return -EIO;
8f1efd00 839 }
45aba42f 840
ed6ccf0f 841 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 842 if (cluster_offset < 0) {
e4e72548 843 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 844 return cluster_offset;
5d757b56
KW
845 }
846
b6c24694
AG
847 nb_csectors =
848 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
849 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
45aba42f 850
3a75a870
AG
851 /* The offset and size must fit in their fields of the L2 table entry */
852 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
853 assert((nb_csectors & s->csize_mask) == nb_csectors);
854
45aba42f
KW
855 cluster_offset |= QCOW_OFLAG_COMPRESSED |
856 ((uint64_t)nb_csectors << s->csize_shift);
857
858 /* update L2 table */
859
860 /* compressed clusters never have the copied flag */
861
66f82cee 862 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
e4e72548 863 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
12c6aebe 864 set_l2_entry(s, l2_slice, l2_index, cluster_offset);
ff4cdec7
AG
865 if (has_subclusters(s)) {
866 set_l2_bitmap(s, l2_slice, l2_index, 0);
867 }
e4e72548 868 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
4c1612d9 869
77e023ff
KW
870 *host_offset = cluster_offset & s->cluster_offset_mask;
871 return 0;
4c1612d9
KW
872}
873
99450c6f 874static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
593fb83c 875{
ff99129a 876 BDRVQcow2State *s = bs->opaque;
99450c6f
AG
877 Qcow2COWRegion *start = &m->cow_start;
878 Qcow2COWRegion *end = &m->cow_end;
672f0f2c 879 unsigned buffer_size;
b3cf1c7c
AG
880 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
881 bool merge_reads;
672f0f2c 882 uint8_t *start_buffer, *end_buffer;
86b862c4 883 QEMUIOVector qiov;
593fb83c
KW
884 int ret;
885
672f0f2c 886 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
b3cf1c7c
AG
887 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
888 assert(start->offset + start->nb_bytes <= end->offset);
672f0f2c 889
c8bb23cb 890 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
593fb83c
KW
891 return 0;
892 }
893
b3cf1c7c
AG
894 /* If we have to read both the start and end COW regions and the
895 * middle region is not too large then perform just one read
896 * operation */
897 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
898 if (merge_reads) {
899 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
900 } else {
901 /* If we have to do two reads, add some padding in the middle
902 * if necessary to make sure that the end region is optimally
903 * aligned. */
904 size_t align = bdrv_opt_mem_align(bs);
905 assert(align > 0 && align <= UINT_MAX);
906 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
907 UINT_MAX - end->nb_bytes);
908 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
909 }
910
911 /* Reserve a buffer large enough to store all the data that we're
912 * going to read */
672f0f2c
AG
913 start_buffer = qemu_try_blockalign(bs, buffer_size);
914 if (start_buffer == NULL) {
915 return -ENOMEM;
916 }
917 /* The part of the buffer where the end region is located */
918 end_buffer = start_buffer + buffer_size - end->nb_bytes;
919
5396234b
VSO
920 qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
921 qemu_iovec_subvec_niov(m->data_qiov,
922 m->data_qiov_offset,
923 data_bytes)
924 : 0));
86b862c4 925
593fb83c 926 qemu_co_mutex_unlock(&s->lock);
b3cf1c7c
AG
927 /* First we read the existing data from both COW regions. We
928 * either read the whole region in one go, or the start and end
929 * regions separately. */
930 if (merge_reads) {
86b862c4
AG
931 qemu_iovec_add(&qiov, start_buffer, buffer_size);
932 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c 933 } else {
86b862c4
AG
934 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
935 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c
AG
936 if (ret < 0) {
937 goto fail;
938 }
672f0f2c 939
86b862c4
AG
940 qemu_iovec_reset(&qiov);
941 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
942 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
b3cf1c7c 943 }
593fb83c 944 if (ret < 0) {
99450c6f 945 goto fail;
593fb83c
KW
946 }
947
672f0f2c
AG
948 /* Encrypt the data if necessary before writing it */
949 if (bs->encrypted) {
603fbd07
ML
950 ret = qcow2_co_encrypt(bs,
951 m->alloc_offset + start->offset,
952 m->offset + start->offset,
953 start_buffer, start->nb_bytes);
954 if (ret < 0) {
955 goto fail;
956 }
957
958 ret = qcow2_co_encrypt(bs,
959 m->alloc_offset + end->offset,
960 m->offset + end->offset,
961 end_buffer, end->nb_bytes);
962 if (ret < 0) {
672f0f2c
AG
963 goto fail;
964 }
965 }
966
ee22a9d8
AG
967 /* And now we can write everything. If we have the guest data we
968 * can write everything in one single operation */
969 if (m->data_qiov) {
970 qemu_iovec_reset(&qiov);
971 if (start->nb_bytes) {
972 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
973 }
5396234b 974 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
ee22a9d8
AG
975 if (end->nb_bytes) {
976 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
977 }
978 /* NOTE: we have a write_aio blkdebug event here followed by
979 * a cow_write one in do_perform_cow_write(), but there's only
980 * one single I/O operation */
981 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
982 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
983 } else {
984 /* If there's no guest data then write both COW regions separately */
985 qemu_iovec_reset(&qiov);
986 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
987 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
988 if (ret < 0) {
989 goto fail;
990 }
991
992 qemu_iovec_reset(&qiov);
993 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
994 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
672f0f2c 995 }
99450c6f
AG
996
997fail:
998 qemu_co_mutex_lock(&s->lock);
999
593fb83c
KW
1000 /*
1001 * Before we update the L2 table to actually point to the new cluster, we
1002 * need to be sure that the refcounts have been increased and COW was
1003 * handled.
1004 */
99450c6f
AG
1005 if (ret == 0) {
1006 qcow2_cache_depends_on_flush(s->l2_table_cache);
1007 }
593fb83c 1008
672f0f2c 1009 qemu_vfree(start_buffer);
86b862c4 1010 qemu_iovec_destroy(&qiov);
99450c6f 1011 return ret;
593fb83c
KW
1012}
1013
148da7ea 1014int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f 1015{
ff99129a 1016 BDRVQcow2State *s = bs->opaque;
45aba42f 1017 int i, j = 0, l2_index, ret;
a002c0b0 1018 uint64_t *old_cluster, *l2_slice;
250196f1 1019 uint64_t cluster_offset = m->alloc_offset;
45aba42f 1020
3cce16f4 1021 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 1022 assert(m->nb_clusters > 0);
45aba42f 1023
5839e53b 1024 old_cluster = g_try_new(uint64_t, m->nb_clusters);
de82815d
KW
1025 if (old_cluster == NULL) {
1026 ret = -ENOMEM;
1027 goto err;
1028 }
45aba42f
KW
1029
1030 /* copy content of unmodified sectors */
99450c6f 1031 ret = perform_cow(bs, m);
593fb83c
KW
1032 if (ret < 0) {
1033 goto err;
29c1a730
KW
1034 }
1035
593fb83c 1036 /* Update L2 table. */
74c4510a 1037 if (s->use_lazy_refcounts) {
280d3735
KW
1038 qcow2_mark_dirty(bs);
1039 }
bfe8043e
SH
1040 if (qcow2_need_accurate_refcounts(s)) {
1041 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1042 s->refcount_block_cache);
1043 }
280d3735 1044
a002c0b0 1045 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1e3e8f1a 1046 if (ret < 0) {
45aba42f 1047 goto err;
1e3e8f1a 1048 }
a002c0b0 1049 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
45aba42f 1050
a002c0b0 1051 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
45aba42f 1052 for (i = 0; i < m->nb_clusters; i++) {
348fcc4f 1053 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
45aba42f 1054 /* if two concurrent writes happen to the same unallocated cluster
aaa4d20b
KW
1055 * each write allocates separate cluster and writes data concurrently.
1056 * The first one to complete updates l2 table with pointer to its
1057 * cluster the second one has to do RMW (which is done above by
1058 * perform_cow()), update l2 table with its cluster pointer and free
1059 * old cluster. This is what this loop does */
12c6aebe
AG
1060 if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1061 old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
aaa4d20b 1062 }
45aba42f 1063
3a75a870
AG
1064 /* The offset must fit in the offset field of the L2 table entry */
1065 assert((offset & L2E_OFFSET_MASK) == offset);
1066
12c6aebe 1067 set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
aca00cd9
AG
1068
1069 /* Update bitmap with the subclusters that were just written */
1070 if (has_subclusters(s)) {
1071 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1072 unsigned written_from = m->cow_start.offset;
1073 unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes ?:
1074 m->nb_clusters << s->cluster_bits;
1075 int first_sc, last_sc;
1076 /* Narrow written_from and written_to down to the current cluster */
1077 written_from = MAX(written_from, i << s->cluster_bits);
1078 written_to = MIN(written_to, (i + 1) << s->cluster_bits);
1079 assert(written_from < written_to);
1080 first_sc = offset_to_sc_index(s, written_from);
1081 last_sc = offset_to_sc_index(s, written_to - 1);
1082 l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1083 l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1084 set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1085 }
45aba42f
KW
1086 }
1087
9f8e668e 1088
a002c0b0 1089 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 1090
7ec5e6a4
KW
1091 /*
1092 * If this was a COW, we need to decrease the refcount of the old cluster.
6cfcb9b8
KW
1093 *
1094 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1095 * clusters), the next write will reuse them anyway.
7ec5e6a4 1096 */
564a6b69 1097 if (!m->keep_old_clusters && j != 0) {
7ec5e6a4 1098 for (i = 0; i < j; i++) {
12c6aebe 1099 qcow2_free_any_clusters(bs, old_cluster[i], 1, QCOW2_DISCARD_NEVER);
7ec5e6a4
KW
1100 }
1101 }
45aba42f
KW
1102
1103 ret = 0;
1104err:
7267c094 1105 g_free(old_cluster);
45aba42f
KW
1106 return ret;
1107 }
1108
8b24cd14
KW
1109/**
1110 * Frees the allocated clusters because the request failed and they won't
1111 * actually be linked.
1112 */
1113void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1114{
1115 BDRVQcow2State *s = bs->opaque;
3ede935f 1116 if (!has_data_file(bs) && !m->keep_old_clusters) {
c3b6658c
KW
1117 qcow2_free_clusters(bs, m->alloc_offset,
1118 m->nb_clusters << s->cluster_bits,
1119 QCOW2_DISCARD_NEVER);
1120 }
8b24cd14
KW
1121}
1122
8f91d690
AG
1123/*
1124 * For a given write request, create a new QCowL2Meta structure, add
57538c86
AG
1125 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1126 * request does not need copy-on-write or changes to the L2 metadata
1127 * then this function does nothing.
8f91d690
AG
1128 *
1129 * @host_cluster_offset points to the beginning of the first cluster.
1130 *
1131 * @guest_offset and @bytes indicate the offset and length of the
1132 * request.
1133 *
57538c86
AG
1134 * @l2_slice contains the L2 entries of all clusters involved in this
1135 * write request.
1136 *
8f91d690
AG
1137 * If @keep_old is true it means that the clusters were already
1138 * allocated and will be overwritten. If false then the clusters are
1139 * new and we have to decrease the reference count of the old ones.
d53ec3d8
AG
1140 *
1141 * Returns 0 on success, -errno on failure.
8f91d690 1142 */
d53ec3d8
AG
1143static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1144 uint64_t guest_offset, unsigned bytes,
1145 uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
8f91d690
AG
1146{
1147 BDRVQcow2State *s = bs->opaque;
d53ec3d8
AG
1148 int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1149 uint64_t l2_entry, l2_bitmap;
57538c86 1150 unsigned cow_start_from, cow_end_to;
8f91d690
AG
1151 unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1152 unsigned cow_end_from = cow_start_to + bytes;
8f91d690
AG
1153 unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1154 QCowL2Meta *old_m = *m;
d53ec3d8
AG
1155 QCow2SubclusterType type;
1156 int i;
1157 bool skip_cow = keep_old;
57538c86
AG
1158
1159 assert(nb_clusters <= s->l2_slice_size - l2_index);
1160
d53ec3d8
AG
1161 /* Check the type of all affected subclusters */
1162 for (i = 0; i < nb_clusters; i++) {
1163 l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1164 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1165 if (skip_cow) {
1166 unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1167 unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1168 int first_sc = offset_to_sc_index(s, write_from);
1169 int last_sc = offset_to_sc_index(s, write_to - 1);
1170 int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1171 first_sc, &type);
1172 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1173 if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1174 skip_cow = false;
57538c86 1175 }
d53ec3d8
AG
1176 } else {
1177 /* If we can't skip the cow we can still look for invalid entries */
1178 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
57538c86 1179 }
d53ec3d8
AG
1180 if (type == QCOW2_SUBCLUSTER_INVALID) {
1181 int l1_index = offset_to_l1_index(s, guest_offset);
1182 uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1183 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1184 "entry found (L2 offset: %#" PRIx64
1185 ", L2 index: %#x)",
1186 l2_offset, l2_index + i);
1187 return -EIO;
57538c86
AG
1188 }
1189 }
1190
d53ec3d8
AG
1191 if (skip_cow) {
1192 return 0;
1193 }
1194
57538c86 1195 /* Get the L2 entry of the first cluster */
12c6aebe 1196 l2_entry = get_l2_entry(s, l2_slice, l2_index);
d53ec3d8
AG
1197 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1198 sc_index = offset_to_sc_index(s, guest_offset);
1199 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1200
1201 if (!keep_old) {
1202 switch (type) {
1203 case QCOW2_SUBCLUSTER_COMPRESSED:
1204 cow_start_from = 0;
1205 break;
1206 case QCOW2_SUBCLUSTER_NORMAL:
1207 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1208 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1209 if (has_subclusters(s)) {
1210 /* Skip all leading zero and unallocated subclusters */
1211 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1212 cow_start_from =
1213 MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1214 } else {
1215 cow_start_from = 0;
1216 }
1217 break;
1218 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1219 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1220 cow_start_from = sc_index << s->subcluster_bits;
1221 break;
1222 default:
1223 g_assert_not_reached();
1224 }
57538c86 1225 } else {
d53ec3d8
AG
1226 switch (type) {
1227 case QCOW2_SUBCLUSTER_NORMAL:
1228 cow_start_from = cow_start_to;
1229 break;
1230 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1231 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1232 cow_start_from = sc_index << s->subcluster_bits;
1233 break;
1234 default:
1235 g_assert_not_reached();
1236 }
57538c86
AG
1237 }
1238
1239 /* Get the L2 entry of the last cluster */
d53ec3d8
AG
1240 l2_index += nb_clusters - 1;
1241 l2_entry = get_l2_entry(s, l2_slice, l2_index);
1242 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1243 sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1244 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1245
1246 if (!keep_old) {
1247 switch (type) {
1248 case QCOW2_SUBCLUSTER_COMPRESSED:
1249 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1250 break;
1251 case QCOW2_SUBCLUSTER_NORMAL:
1252 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1253 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1254 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1255 if (has_subclusters(s)) {
1256 /* Skip all trailing zero and unallocated subclusters */
1257 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1258 cow_end_to -=
1259 MIN(s->subclusters_per_cluster - sc_index - 1,
1260 clz32(alloc_bitmap)) << s->subcluster_bits;
1261 }
1262 break;
1263 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1264 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1265 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1266 break;
1267 default:
1268 g_assert_not_reached();
1269 }
57538c86 1270 } else {
d53ec3d8
AG
1271 switch (type) {
1272 case QCOW2_SUBCLUSTER_NORMAL:
1273 cow_end_to = cow_end_from;
1274 break;
1275 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1276 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1277 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1278 break;
1279 default:
1280 g_assert_not_reached();
1281 }
57538c86 1282 }
8f91d690
AG
1283
1284 *m = g_malloc0(sizeof(**m));
1285 **m = (QCowL2Meta) {
1286 .next = old_m,
1287
1288 .alloc_offset = host_cluster_offset,
1289 .offset = start_of_cluster(s, guest_offset),
1290 .nb_clusters = nb_clusters,
1291
1292 .keep_old_clusters = keep_old,
1293
1294 .cow_start = {
1295 .offset = cow_start_from,
1296 .nb_bytes = cow_start_to - cow_start_from,
1297 },
1298 .cow_end = {
1299 .offset = cow_end_from,
1300 .nb_bytes = cow_end_to - cow_end_from,
1301 },
1302 };
1303
1304 qemu_co_queue_init(&(*m)->dependent_requests);
1305 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
d53ec3d8
AG
1306
1307 return 0;
8f91d690
AG
1308}
1309
57538c86
AG
1310/*
1311 * Returns true if writing to the cluster pointed to by @l2_entry
1312 * requires a new allocation (that is, if the cluster is unallocated
1313 * or has refcount > 1 and therefore cannot be written in-place).
1314 */
1315static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
c1587d87
AG
1316{
1317 switch (qcow2_get_cluster_type(bs, l2_entry)) {
1318 case QCOW2_CLUSTER_NORMAL:
57538c86 1319 case QCOW2_CLUSTER_ZERO_ALLOC:
c1587d87
AG
1320 if (l2_entry & QCOW_OFLAG_COPIED) {
1321 return false;
1322 }
1323 case QCOW2_CLUSTER_UNALLOCATED:
1324 case QCOW2_CLUSTER_COMPRESSED:
1325 case QCOW2_CLUSTER_ZERO_PLAIN:
c1587d87
AG
1326 return true;
1327 default:
1328 abort();
1329 }
1330}
1331
bf319ece 1332/*
57538c86
AG
1333 * Returns the number of contiguous clusters that can be written to
1334 * using one single write request, starting from @l2_index.
1335 * At most @nb_clusters are checked.
1336 *
1337 * If @new_alloc is true this counts clusters that are either
1338 * unallocated, or allocated but with refcount > 1 (so they need to be
1339 * newly allocated and COWed).
1340 *
1341 * If @new_alloc is false this counts clusters that are already
1342 * allocated and can be overwritten in-place (this includes clusters
1343 * of type QCOW2_CLUSTER_ZERO_ALLOC).
bf319ece 1344 */
57538c86
AG
1345static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1346 uint64_t *l2_slice, int l2_index,
1347 bool new_alloc)
bf319ece 1348{
57538c86 1349 BDRVQcow2State *s = bs->opaque;
12c6aebe 1350 uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
57538c86 1351 uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
143550a8 1352 int i;
bf319ece 1353
143550a8 1354 for (i = 0; i < nb_clusters; i++) {
12c6aebe 1355 l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
57538c86 1356 if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
bf319ece 1357 break;
143550a8 1358 }
57538c86
AG
1359 if (!new_alloc) {
1360 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1361 break;
1362 }
1363 expected_offset += s->cluster_size;
1364 }
bf319ece
KW
1365 }
1366
1367 assert(i <= nb_clusters);
1368 return i;
1369}
1370
250196f1 1371/*
226c3c26
KW
1372 * Check if there already is an AIO write request in flight which allocates
1373 * the same cluster. In this case we need to wait until the previous
1374 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
1375 *
1376 * Returns:
1377 * 0 if there was no dependency. *cur_bytes indicates the number of
1378 * bytes from guest_offset that can be read before the next
1379 * dependency must be processed (or the request is complete)
1380 *
1381 * -EAGAIN if we had to wait for another request, previously gathered
1382 * information on cluster allocation may be invalid now. The caller
1383 * must start over anyway, so consider *cur_bytes undefined.
250196f1 1384 */
226c3c26 1385static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
ecdd5333 1386 uint64_t *cur_bytes, QCowL2Meta **m)
250196f1 1387{
ff99129a 1388 BDRVQcow2State *s = bs->opaque;
250196f1 1389 QCowL2Meta *old_alloc;
65eb2e35 1390 uint64_t bytes = *cur_bytes;
250196f1 1391
250196f1
KW
1392 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1393
65eb2e35
KW
1394 uint64_t start = guest_offset;
1395 uint64_t end = start + bytes;
d53ec3d8
AG
1396 uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1397 uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
250196f1 1398
d9d74f41 1399 if (end <= old_start || start >= old_end) {
250196f1
KW
1400 /* No intersection */
1401 } else {
1402 if (start < old_start) {
1403 /* Stop at the start of a running allocation */
65eb2e35 1404 bytes = old_start - start;
250196f1 1405 } else {
65eb2e35 1406 bytes = 0;
250196f1
KW
1407 }
1408
ecdd5333
KW
1409 /* Stop if already an l2meta exists. After yielding, it wouldn't
1410 * be valid any more, so we'd have to clean up the old L2Metas
1411 * and deal with requests depending on them before starting to
1412 * gather new ones. Not worth the trouble. */
1413 if (bytes == 0 && *m) {
1414 *cur_bytes = 0;
1415 return 0;
1416 }
1417
65eb2e35 1418 if (bytes == 0) {
250196f1
KW
1419 /* Wait for the dependency to complete. We need to recheck
1420 * the free/allocated clusters when we continue. */
1ace7cea 1421 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
250196f1
KW
1422 return -EAGAIN;
1423 }
1424 }
1425 }
1426
65eb2e35
KW
1427 /* Make sure that existing clusters and new allocations are only used up to
1428 * the next dependency if we shortened the request above */
1429 *cur_bytes = bytes;
250196f1 1430
226c3c26
KW
1431 return 0;
1432}
1433
0af729ec 1434/*
57538c86
AG
1435 * Checks how many already allocated clusters that don't require a new
1436 * allocation there are at the given guest_offset (up to *bytes).
1437 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1438 * beginning at this host offset are counted.
0af729ec 1439 *
411d62b0
KW
1440 * Note that guest_offset may not be cluster aligned. In this case, the
1441 * returned *host_offset points to exact byte referenced by guest_offset and
1442 * therefore isn't cluster aligned as well.
0af729ec
KW
1443 *
1444 * Returns:
1445 * 0: if no allocated clusters are available at the given offset.
1446 * *bytes is normally unchanged. It is set to 0 if the cluster
57538c86
AG
1447 * is allocated and can be overwritten in-place but doesn't have
1448 * the right physical offset.
0af729ec 1449 *
57538c86
AG
1450 * 1: if allocated clusters that can be overwritten in place are
1451 * available at the requested offset. *bytes may have decreased
1452 * and describes the length of the area that can be written to.
0af729ec
KW
1453 *
1454 * -errno: in error cases
0af729ec
KW
1455 */
1456static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 1457 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec 1458{
ff99129a 1459 BDRVQcow2State *s = bs->opaque;
0af729ec 1460 int l2_index;
57538c86 1461 uint64_t l2_entry, cluster_offset;
cde91766 1462 uint64_t *l2_slice;
b6d36def 1463 uint64_t nb_clusters;
c53ede9f 1464 unsigned int keep_clusters;
a3f1afb4 1465 int ret;
0af729ec
KW
1466
1467 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1468 *bytes);
0af729ec 1469
c6d619cc
KW
1470 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1471 == offset_into_cluster(s, *host_offset));
411d62b0 1472
acb0467f 1473 /*
cde91766 1474 * Calculate the number of clusters to look for. We stop at L2 slice
acb0467f
KW
1475 * boundaries to keep things simple.
1476 */
1477 nb_clusters =
1478 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1479
cde91766
AG
1480 l2_index = offset_to_l2_slice_index(s, guest_offset);
1481 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
57538c86
AG
1482 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1483 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
acb0467f 1484
0af729ec 1485 /* Find L2 entry for the first involved cluster */
cde91766 1486 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
0af729ec
KW
1487 if (ret < 0) {
1488 return ret;
1489 }
1490
12c6aebe 1491 l2_entry = get_l2_entry(s, l2_slice, l2_index);
57538c86
AG
1492 cluster_offset = l2_entry & L2E_OFFSET_MASK;
1493
1494 if (!cluster_needs_new_alloc(bs, l2_entry)) {
1495 if (offset_into_cluster(s, cluster_offset)) {
1496 qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1497 "%#" PRIx64 " unaligned (guest offset: %#"
1498 PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1499 "Preallocated zero" : "Data",
1500 cluster_offset, guest_offset);
a97c67ee
HR
1501 ret = -EIO;
1502 goto out;
1503 }
1504
57538c86
AG
1505 /* If a specific host_offset is required, check it */
1506 if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
e62daaf6
KW
1507 *bytes = 0;
1508 ret = 0;
1509 goto out;
1510 }
1511
0af729ec 1512 /* We keep all QCOW_OFLAG_COPIED clusters */
57538c86
AG
1513 keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1514 l2_index, false);
c53ede9f
KW
1515 assert(keep_clusters <= nb_clusters);
1516
1517 *bytes = MIN(*bytes,
1518 keep_clusters * s->cluster_size
1519 - offset_into_cluster(s, guest_offset));
57538c86
AG
1520 assert(*bytes != 0);
1521
d53ec3d8
AG
1522 ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1523 *bytes, l2_slice, m, true);
1524 if (ret < 0) {
1525 goto out;
1526 }
0af729ec
KW
1527
1528 ret = 1;
1529 } else {
0af729ec
KW
1530 ret = 0;
1531 }
1532
0af729ec 1533 /* Cleanup */
e62daaf6 1534out:
cde91766 1535 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
0af729ec 1536
e62daaf6
KW
1537 /* Only return a host offset if we actually made progress. Otherwise we
1538 * would make requirements for handle_alloc() that it can't fulfill */
a97c67ee 1539 if (ret > 0) {
57538c86 1540 *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
e62daaf6
KW
1541 }
1542
0af729ec
KW
1543 return ret;
1544}
1545
226c3c26
KW
1546/*
1547 * Allocates new clusters for the given guest_offset.
1548 *
1549 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1550 * contain the number of clusters that have been allocated and are contiguous
1551 * in the image file.
1552 *
c6d619cc
KW
1553 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1554 * at which the new clusters must start. *nb_clusters can be 0 on return in
1555 * this case if the cluster at host_offset is already in use. If *host_offset
1556 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
226c3c26
KW
1557 *
1558 * *host_offset is updated to contain the offset into the image file at which
1559 * the first allocated cluster starts.
1560 *
1561 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1562 * function has been waiting for another request and the allocation must be
1563 * restarted, but the whole request should not be failed.
1564 */
1565static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
b6d36def 1566 uint64_t *host_offset, uint64_t *nb_clusters)
226c3c26 1567{
ff99129a 1568 BDRVQcow2State *s = bs->opaque;
226c3c26
KW
1569
1570 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1571 *host_offset, *nb_clusters);
1572
966b000f
KW
1573 if (has_data_file(bs)) {
1574 assert(*host_offset == INV_OFFSET ||
1575 *host_offset == start_of_cluster(s, guest_offset));
1576 *host_offset = start_of_cluster(s, guest_offset);
1577 return 0;
1578 }
1579
250196f1
KW
1580 /* Allocate new clusters */
1581 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
c6d619cc 1582 if (*host_offset == INV_OFFSET) {
df021791
KW
1583 int64_t cluster_offset =
1584 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1585 if (cluster_offset < 0) {
1586 return cluster_offset;
1587 }
1588 *host_offset = cluster_offset;
1589 return 0;
250196f1 1590 } else {
b6d36def 1591 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
1592 if (ret < 0) {
1593 return ret;
1594 }
1595 *nb_clusters = ret;
1596 return 0;
250196f1 1597 }
250196f1
KW
1598}
1599
10f0ed8b 1600/*
57538c86
AG
1601 * Allocates new clusters for an area that is either still unallocated or
1602 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1603 * clusters are only allocated if the new allocation can match the specified
1604 * host offset.
10f0ed8b 1605 *
411d62b0
KW
1606 * Note that guest_offset may not be cluster aligned. In this case, the
1607 * returned *host_offset points to exact byte referenced by guest_offset and
1608 * therefore isn't cluster aligned as well.
10f0ed8b
KW
1609 *
1610 * Returns:
1611 * 0: if no clusters could be allocated. *bytes is set to 0,
1612 * *host_offset is left unchanged.
1613 *
1614 * 1: if new clusters were allocated. *bytes may be decreased if the
1615 * new allocation doesn't cover all of the requested area.
1616 * *host_offset is updated to contain the host offset of the first
1617 * newly allocated cluster.
1618 *
1619 * -errno: in error cases
10f0ed8b
KW
1620 */
1621static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 1622 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b 1623{
ff99129a 1624 BDRVQcow2State *s = bs->opaque;
10f0ed8b 1625 int l2_index;
6d99a344 1626 uint64_t *l2_slice;
b6d36def 1627 uint64_t nb_clusters;
10f0ed8b
KW
1628 int ret;
1629
57538c86 1630 uint64_t alloc_cluster_offset;
10f0ed8b
KW
1631
1632 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1633 *bytes);
1634 assert(*bytes > 0);
1635
f5bc6350 1636 /*
6d99a344 1637 * Calculate the number of clusters to look for. We stop at L2 slice
f5bc6350
KW
1638 * boundaries to keep things simple.
1639 */
c37f4cd7
KW
1640 nb_clusters =
1641 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1642
6d99a344
AG
1643 l2_index = offset_to_l2_slice_index(s, guest_offset);
1644 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
57538c86
AG
1645 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1646 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
d1b9d19f 1647
10f0ed8b 1648 /* Find L2 entry for the first involved cluster */
6d99a344 1649 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
10f0ed8b
KW
1650 if (ret < 0) {
1651 return ret;
1652 }
1653
57538c86
AG
1654 nb_clusters = count_single_write_clusters(bs, nb_clusters,
1655 l2_slice, l2_index, true);
10f0ed8b 1656
ecdd5333
KW
1657 /* This function is only called when there were no non-COW clusters, so if
1658 * we can't find any unallocated or COW clusters either, something is
1659 * wrong with our code. */
1660 assert(nb_clusters > 0);
1661
57538c86
AG
1662 /* Allocate at a given offset in the image file */
1663 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1664 start_of_cluster(s, *host_offset);
1665 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1666 &nb_clusters);
1667 if (ret < 0) {
1668 goto out;
10f0ed8b
KW
1669 }
1670
57538c86
AG
1671 /* Can't extend contiguous allocation */
1672 if (nb_clusters == 0) {
1673 *bytes = 0;
1674 ret = 0;
1675 goto out;
ff52aab2
HR
1676 }
1677
57538c86
AG
1678 assert(alloc_cluster_offset != INV_OFFSET);
1679
83baa9a4
KW
1680 /*
1681 * Save info needed for meta data update.
1682 *
85567393 1683 * requested_bytes: Number of bytes from the start of the first
83baa9a4
KW
1684 * newly allocated cluster to the end of the (possibly shortened
1685 * before) write request.
1686 *
85567393 1687 * avail_bytes: Number of bytes from the start of the first
83baa9a4
KW
1688 * newly allocated to the end of the last newly allocated cluster.
1689 *
85567393 1690 * nb_bytes: The number of bytes from the start of the first
83baa9a4
KW
1691 * newly allocated cluster to the end of the area that the write
1692 * request actually writes to (excluding COW at the end)
1693 */
85567393 1694 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
d1b9d19f 1695 int avail_bytes = nb_clusters << s->cluster_bits;
85567393 1696 int nb_bytes = MIN(requested_bytes, avail_bytes);
83baa9a4 1697
411d62b0 1698 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
85567393 1699 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
83baa9a4
KW
1700 assert(*bytes != 0);
1701
d53ec3d8
AG
1702 ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1703 l2_slice, m, false);
1704 if (ret < 0) {
1705 goto out;
1706 }
8f91d690 1707
57538c86 1708 ret = 1;
10f0ed8b 1709
57538c86
AG
1710out:
1711 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1712 if (ret < 0 && *m && (*m)->nb_clusters > 0) {
10f0ed8b
KW
1713 QLIST_REMOVE(*m, next_in_flight);
1714 }
1715 return ret;
1716}
1717
45aba42f
KW
1718/*
1719 * alloc_cluster_offset
1720 *
250196f1
KW
1721 * For a given offset on the virtual disk, find the cluster offset in qcow2
1722 * file. If the offset is not found, allocate a new cluster.
45aba42f 1723 *
250196f1 1724 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1725 * other fields in m are meaningless.
148da7ea
KW
1726 *
1727 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1728 * contiguous clusters that have been allocated. In this case, the other
1729 * fields of m are valid and contain information about the first allocated
1730 * cluster.
45aba42f 1731 *
68d100e9
KW
1732 * If the request conflicts with another write request in flight, the coroutine
1733 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1734 *
1735 * Return 0 on success and -errno in error cases
45aba42f 1736 */
f4f0d391 1737int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
d46a0bb2
KW
1738 unsigned int *bytes, uint64_t *host_offset,
1739 QCowL2Meta **m)
45aba42f 1740{
ff99129a 1741 BDRVQcow2State *s = bs->opaque;
710c2496 1742 uint64_t start, remaining;
250196f1 1743 uint64_t cluster_offset;
65eb2e35 1744 uint64_t cur_bytes;
710c2496 1745 int ret;
45aba42f 1746
d46a0bb2 1747 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
710c2496 1748
72424114 1749again:
16f0587e 1750 start = offset;
d46a0bb2 1751 remaining = *bytes;
c6d619cc
KW
1752 cluster_offset = INV_OFFSET;
1753 *host_offset = INV_OFFSET;
ecdd5333
KW
1754 cur_bytes = 0;
1755 *m = NULL;
0af729ec 1756
2c3b32d2 1757 while (true) {
ecdd5333 1758
c6d619cc 1759 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
ecdd5333
KW
1760 *host_offset = start_of_cluster(s, cluster_offset);
1761 }
1762
1763 assert(remaining >= cur_bytes);
1764
1765 start += cur_bytes;
1766 remaining -= cur_bytes;
c6d619cc
KW
1767
1768 if (cluster_offset != INV_OFFSET) {
1769 cluster_offset += cur_bytes;
1770 }
ecdd5333
KW
1771
1772 if (remaining == 0) {
1773 break;
1774 }
1775
1776 cur_bytes = remaining;
1777
2c3b32d2
KW
1778 /*
1779 * Now start gathering as many contiguous clusters as possible:
1780 *
1781 * 1. Check for overlaps with in-flight allocations
1782 *
1783 * a) Overlap not in the first cluster -> shorten this request and
1784 * let the caller handle the rest in its next loop iteration.
1785 *
1786 * b) Real overlaps of two requests. Yield and restart the search
1787 * for contiguous clusters (the situation could have changed
1788 * while we were sleeping)
1789 *
1790 * c) TODO: Request starts in the same cluster as the in-flight
1791 * allocation ends. Shorten the COW of the in-fight allocation,
1792 * set cluster_offset to write to the same cluster and set up
1793 * the right synchronisation between the in-flight request and
1794 * the new one.
1795 */
ecdd5333 1796 ret = handle_dependencies(bs, start, &cur_bytes, m);
2c3b32d2 1797 if (ret == -EAGAIN) {
ecdd5333
KW
1798 /* Currently handle_dependencies() doesn't yield if we already had
1799 * an allocation. If it did, we would have to clean up the L2Meta
1800 * structs before starting over. */
1801 assert(*m == NULL);
2c3b32d2
KW
1802 goto again;
1803 } else if (ret < 0) {
1804 return ret;
ecdd5333
KW
1805 } else if (cur_bytes == 0) {
1806 break;
2c3b32d2
KW
1807 } else {
1808 /* handle_dependencies() may have decreased cur_bytes (shortened
1809 * the allocations below) so that the next dependency is processed
1810 * correctly during the next loop iteration. */
0af729ec 1811 }
710c2496 1812
2c3b32d2
KW
1813 /*
1814 * 2. Count contiguous COPIED clusters.
1815 */
1816 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1817 if (ret < 0) {
1818 return ret;
1819 } else if (ret) {
ecdd5333 1820 continue;
2c3b32d2
KW
1821 } else if (cur_bytes == 0) {
1822 break;
1823 }
060bee89 1824
2c3b32d2
KW
1825 /*
1826 * 3. If the request still hasn't completed, allocate new clusters,
1827 * considering any cluster_offset of steps 1c or 2.
1828 */
1829 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1830 if (ret < 0) {
1831 return ret;
1832 } else if (ret) {
ecdd5333 1833 continue;
2c3b32d2
KW
1834 } else {
1835 assert(cur_bytes == 0);
1836 break;
1837 }
f5bc6350 1838 }
10f0ed8b 1839
d46a0bb2
KW
1840 *bytes -= remaining;
1841 assert(*bytes > 0);
c6d619cc 1842 assert(*host_offset != INV_OFFSET);
45aba42f 1843
148da7ea 1844 return 0;
45aba42f
KW
1845}
1846
5ea929e3
KW
1847/*
1848 * This discards as many clusters of nb_clusters as possible at once (i.e.
21ab3add 1849 * all clusters in the same L2 slice) and returns the number of discarded
5ea929e3
KW
1850 * clusters.
1851 */
21ab3add
AG
1852static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1853 uint64_t nb_clusters,
1854 enum qcow2_discard_type type, bool full_discard)
5ea929e3 1855{
ff99129a 1856 BDRVQcow2State *s = bs->opaque;
21ab3add 1857 uint64_t *l2_slice;
5ea929e3
KW
1858 int l2_index;
1859 int ret;
1860 int i;
1861
21ab3add 1862 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
5ea929e3
KW
1863 if (ret < 0) {
1864 return ret;
1865 }
1866
21ab3add
AG
1867 /* Limit nb_clusters to one L2 slice */
1868 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1869 assert(nb_clusters <= INT_MAX);
5ea929e3
KW
1870
1871 for (i = 0; i < nb_clusters; i++) {
a68cd703
AG
1872 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1873 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1874 uint64_t new_l2_entry = old_l2_entry;
1875 uint64_t new_l2_bitmap = old_l2_bitmap;
1876 QCow2ClusterType cluster_type =
1877 qcow2_get_cluster_type(bs, old_l2_entry);
a71835a0
KW
1878
1879 /*
a68cd703
AG
1880 * If full_discard is true, the cluster should not read back as zeroes,
1881 * but rather fall through to the backing file.
1882 *
808c4b6f
HR
1883 * If full_discard is false, make sure that a discarded area reads back
1884 * as zeroes for v3 images (we cannot do it for v2 without actually
1885 * writing a zero-filled buffer). We can skip the operation if the
1886 * cluster is already marked as zero, or if it's unallocated and we
1887 * don't have a backing file.
a71835a0 1888 *
237d78f8 1889 * TODO We might want to use bdrv_block_status(bs) here, but we're
a71835a0
KW
1890 * holding s->lock, so that doesn't work today.
1891 */
a68cd703
AG
1892 if (full_discard) {
1893 new_l2_entry = new_l2_bitmap = 0;
1894 } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1895 if (has_subclusters(s)) {
1896 new_l2_entry = 0;
1897 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1898 } else {
1899 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
bbd995d8 1900 }
a68cd703 1901 }
bbd995d8 1902
a68cd703
AG
1903 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1904 continue;
5ea929e3
KW
1905 }
1906
1907 /* First remove L2 entries */
21ab3add 1908 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
a68cd703
AG
1909 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1910 if (has_subclusters(s)) {
1911 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
a71835a0 1912 }
5ea929e3 1913 /* Then decrease the refcount */
c883db0d 1914 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
5ea929e3
KW
1915 }
1916
21ab3add 1917 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
5ea929e3
KW
1918
1919 return nb_clusters;
1920}
1921
d2cb36af
EB
1922int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1923 uint64_t bytes, enum qcow2_discard_type type,
1924 bool full_discard)
5ea929e3 1925{
ff99129a 1926 BDRVQcow2State *s = bs->opaque;
d2cb36af 1927 uint64_t end_offset = offset + bytes;
b6d36def 1928 uint64_t nb_clusters;
d2cb36af 1929 int64_t cleared;
5ea929e3
KW
1930 int ret;
1931
f10ee139 1932 /* Caller must pass aligned values, except at image end */
0c1bd469 1933 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
f10ee139
EB
1934 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1935 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
5ea929e3 1936
d2cb36af 1937 nb_clusters = size_to_clusters(s, bytes);
5ea929e3 1938
0b919fae
KW
1939 s->cache_discards = true;
1940
21ab3add 1941 /* Each L2 slice is handled by its own loop iteration */
5ea929e3 1942 while (nb_clusters > 0) {
21ab3add
AG
1943 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1944 full_discard);
d2cb36af
EB
1945 if (cleared < 0) {
1946 ret = cleared;
0b919fae 1947 goto fail;
5ea929e3
KW
1948 }
1949
d2cb36af
EB
1950 nb_clusters -= cleared;
1951 offset += (cleared * s->cluster_size);
5ea929e3
KW
1952 }
1953
0b919fae
KW
1954 ret = 0;
1955fail:
1956 s->cache_discards = false;
1957 qcow2_process_discards(bs, ret);
1958
1959 return ret;
5ea929e3 1960}
621f0589
KW
1961
1962/*
1963 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
a9a9f8f0 1964 * all clusters in the same L2 slice) and returns the number of zeroed
621f0589
KW
1965 * clusters.
1966 */
a9a9f8f0
AG
1967static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1968 uint64_t nb_clusters, int flags)
621f0589 1969{
ff99129a 1970 BDRVQcow2State *s = bs->opaque;
a9a9f8f0 1971 uint64_t *l2_slice;
621f0589
KW
1972 int l2_index;
1973 int ret;
1974 int i;
1975
a9a9f8f0 1976 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
621f0589
KW
1977 if (ret < 0) {
1978 return ret;
1979 }
1980
a9a9f8f0
AG
1981 /* Limit nb_clusters to one L2 slice */
1982 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1983 assert(nb_clusters <= INT_MAX);
621f0589
KW
1984
1985 for (i = 0; i < nb_clusters; i++) {
205fa507
AG
1986 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1987 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1988 QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
1989 bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
1990 ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
1991 uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
1992 uint64_t new_l2_bitmap = old_l2_bitmap;
1993
1994 if (has_subclusters(s)) {
1995 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1996 } else {
1997 new_l2_entry |= QCOW_OFLAG_ZERO;
1998 }
621f0589 1999
205fa507 2000 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
06cc5e2b
EB
2001 continue;
2002 }
2003
a9a9f8f0 2004 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
205fa507
AG
2005 if (unmap) {
2006 qcow2_free_any_clusters(bs, old_l2_entry, 1, QCOW2_DISCARD_REQUEST);
2007 }
2008 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2009 if (has_subclusters(s)) {
2010 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
621f0589
KW
2011 }
2012 }
2013
a9a9f8f0 2014 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
621f0589
KW
2015
2016 return nb_clusters;
2017}
2018
d2cb36af
EB
2019int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
2020 uint64_t bytes, int flags)
621f0589 2021{
ff99129a 2022 BDRVQcow2State *s = bs->opaque;
d2cb36af 2023 uint64_t end_offset = offset + bytes;
b6d36def 2024 uint64_t nb_clusters;
d2cb36af 2025 int64_t cleared;
621f0589
KW
2026 int ret;
2027
6c3944dc
KW
2028 /* If we have to stay in sync with an external data file, zero out
2029 * s->data_file first. */
2030 if (data_file_is_raw(bs)) {
2031 assert(has_data_file(bs));
2032 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2033 if (ret < 0) {
2034 return ret;
2035 }
2036 }
2037
f10ee139
EB
2038 /* Caller must pass aligned values, except at image end */
2039 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
2040 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
f01643fb 2041 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
f10ee139 2042
61b30439
KW
2043 /*
2044 * The zero flag is only supported by version 3 and newer. However, if we
2045 * have no backing file, we can resort to discard in version 2.
2046 */
621f0589 2047 if (s->qcow_version < 3) {
61b30439
KW
2048 if (!bs->backing) {
2049 return qcow2_cluster_discard(bs, offset, bytes,
2050 QCOW2_DISCARD_REQUEST, false);
2051 }
621f0589
KW
2052 return -ENOTSUP;
2053 }
2054
a9a9f8f0 2055 /* Each L2 slice is handled by its own loop iteration */
d2cb36af 2056 nb_clusters = size_to_clusters(s, bytes);
621f0589 2057
0b919fae
KW
2058 s->cache_discards = true;
2059
621f0589 2060 while (nb_clusters > 0) {
a9a9f8f0 2061 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
d2cb36af
EB
2062 if (cleared < 0) {
2063 ret = cleared;
0b919fae 2064 goto fail;
621f0589
KW
2065 }
2066
d2cb36af
EB
2067 nb_clusters -= cleared;
2068 offset += (cleared * s->cluster_size);
621f0589
KW
2069 }
2070
0b919fae
KW
2071 ret = 0;
2072fail:
2073 s->cache_discards = false;
2074 qcow2_process_discards(bs, ret);
2075
2076 return ret;
621f0589 2077}
32b6444d
HR
2078
2079/*
2080 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2081 * non-backed non-pre-allocated zero clusters).
2082 *
4057a2b2
HR
2083 * l1_entries and *visited_l1_entries are used to keep track of progress for
2084 * status_cb(). l1_entries contains the total number of L1 entries and
2085 * *visited_l1_entries counts all visited L1 entries.
32b6444d
HR
2086 */
2087static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
ecf58777 2088 int l1_size, int64_t *visited_l1_entries,
4057a2b2 2089 int64_t l1_entries,
8b13976d
HR
2090 BlockDriverAmendStatusCB *status_cb,
2091 void *cb_opaque)
32b6444d 2092{
ff99129a 2093 BDRVQcow2State *s = bs->opaque;
32b6444d 2094 bool is_active_l1 = (l1_table == s->l1_table);
415184f5
AG
2095 uint64_t *l2_slice = NULL;
2096 unsigned slice, slice_size2, n_slices;
32b6444d
HR
2097 int ret;
2098 int i, j;
2099
c8fd8554 2100 slice_size2 = s->l2_slice_size * l2_entry_size(s);
415184f5
AG
2101 n_slices = s->cluster_size / slice_size2;
2102
32b6444d
HR
2103 if (!is_active_l1) {
2104 /* inactive L2 tables require a buffer to be stored in when loading
2105 * them from disk */
415184f5
AG
2106 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2107 if (l2_slice == NULL) {
de82815d
KW
2108 return -ENOMEM;
2109 }
32b6444d
HR
2110 }
2111
2112 for (i = 0; i < l1_size; i++) {
2113 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
0e06528e 2114 uint64_t l2_refcount;
32b6444d
HR
2115
2116 if (!l2_offset) {
2117 /* unallocated */
4057a2b2
HR
2118 (*visited_l1_entries)++;
2119 if (status_cb) {
8b13976d 2120 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 2121 }
32b6444d
HR
2122 continue;
2123 }
2124
8dd93d93
HR
2125 if (offset_into_cluster(s, l2_offset)) {
2126 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2127 PRIx64 " unaligned (L1 index: %#x)",
2128 l2_offset, i);
2129 ret = -EIO;
2130 goto fail;
2131 }
2132
9b765486
AG
2133 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2134 &l2_refcount);
2135 if (ret < 0) {
2136 goto fail;
2137 }
2138
415184f5
AG
2139 for (slice = 0; slice < n_slices; slice++) {
2140 uint64_t slice_offset = l2_offset + slice * slice_size2;
2141 bool l2_dirty = false;
226494ff
AG
2142 if (is_active_l1) {
2143 /* get active L2 tables from cache */
415184f5
AG
2144 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2145 (void **)&l2_slice);
226494ff
AG
2146 } else {
2147 /* load inactive L2 tables from disk */
415184f5 2148 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
226494ff
AG
2149 }
2150 if (ret < 0) {
2151 goto fail;
32b6444d
HR
2152 }
2153
415184f5 2154 for (j = 0; j < s->l2_slice_size; j++) {
12c6aebe 2155 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
226494ff
AG
2156 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2157 QCow2ClusterType cluster_type =
808c2bb4 2158 qcow2_get_cluster_type(bs, l2_entry);
226494ff
AG
2159
2160 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2161 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
32b6444d
HR
2162 continue;
2163 }
2164
226494ff
AG
2165 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2166 if (!bs->backing) {
2167 /* not backed; therefore we can simply deallocate the
2168 * cluster */
12c6aebe 2169 set_l2_entry(s, l2_slice, j, 0);
226494ff
AG
2170 l2_dirty = true;
2171 continue;
2172 }
2173
2174 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2175 if (offset < 0) {
2176 ret = offset;
2177 goto fail;
2178 }
ecf58777 2179
3a75a870
AG
2180 /* The offset must fit in the offset field */
2181 assert((offset & L2E_OFFSET_MASK) == offset);
2182
226494ff
AG
2183 if (l2_refcount > 1) {
2184 /* For shared L2 tables, set the refcount accordingly
2185 * (it is already 1 and needs to be l2_refcount) */
2186 ret = qcow2_update_cluster_refcount(
2187 bs, offset >> s->cluster_bits,
2aabe7c7 2188 refcount_diff(1, l2_refcount), false,
ecf58777 2189 QCOW2_DISCARD_OTHER);
226494ff
AG
2190 if (ret < 0) {
2191 qcow2_free_clusters(bs, offset, s->cluster_size,
2192 QCOW2_DISCARD_OTHER);
2193 goto fail;
2194 }
ecf58777
HR
2195 }
2196 }
32b6444d 2197
226494ff 2198 if (offset_into_cluster(s, offset)) {
415184f5 2199 int l2_index = slice * s->l2_slice_size + j;
226494ff
AG
2200 qcow2_signal_corruption(
2201 bs, true, -1, -1,
2202 "Cluster allocation offset "
2203 "%#" PRIx64 " unaligned (L2 offset: %#"
2204 PRIx64 ", L2 index: %#x)", offset,
415184f5 2205 l2_offset, l2_index);
226494ff
AG
2206 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2207 qcow2_free_clusters(bs, offset, s->cluster_size,
2208 QCOW2_DISCARD_ALWAYS);
2209 }
2210 ret = -EIO;
2211 goto fail;
8dd93d93 2212 }
8dd93d93 2213
226494ff 2214 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
966b000f 2215 s->cluster_size, true);
226494ff
AG
2216 if (ret < 0) {
2217 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2218 qcow2_free_clusters(bs, offset, s->cluster_size,
2219 QCOW2_DISCARD_ALWAYS);
2220 }
2221 goto fail;
320c7066 2222 }
32b6444d 2223
966b000f
KW
2224 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2225 s->cluster_size, 0);
226494ff
AG
2226 if (ret < 0) {
2227 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2228 qcow2_free_clusters(bs, offset, s->cluster_size,
2229 QCOW2_DISCARD_ALWAYS);
2230 }
2231 goto fail;
320c7066 2232 }
32b6444d 2233
226494ff 2234 if (l2_refcount == 1) {
12c6aebe 2235 set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
226494ff 2236 } else {
12c6aebe 2237 set_l2_entry(s, l2_slice, j, offset);
226494ff
AG
2238 }
2239 l2_dirty = true;
e390cf5a 2240 }
32b6444d 2241
226494ff
AG
2242 if (is_active_l1) {
2243 if (l2_dirty) {
415184f5 2244 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
226494ff 2245 qcow2_cache_depends_on_flush(s->l2_table_cache);
32b6444d 2246 }
415184f5 2247 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
226494ff
AG
2248 } else {
2249 if (l2_dirty) {
2250 ret = qcow2_pre_write_overlap_check(
2251 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
966b000f 2252 slice_offset, slice_size2, false);
226494ff
AG
2253 if (ret < 0) {
2254 goto fail;
2255 }
32b6444d 2256
415184f5
AG
2257 ret = bdrv_pwrite(bs->file, slice_offset,
2258 l2_slice, slice_size2);
226494ff
AG
2259 if (ret < 0) {
2260 goto fail;
2261 }
32b6444d
HR
2262 }
2263 }
2264 }
4057a2b2
HR
2265
2266 (*visited_l1_entries)++;
2267 if (status_cb) {
8b13976d 2268 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 2269 }
32b6444d
HR
2270 }
2271
2272 ret = 0;
2273
2274fail:
415184f5 2275 if (l2_slice) {
32b6444d 2276 if (!is_active_l1) {
415184f5 2277 qemu_vfree(l2_slice);
32b6444d 2278 } else {
415184f5 2279 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
32b6444d
HR
2280 }
2281 }
2282 return ret;
2283}
2284
2285/*
2286 * For backed images, expands all zero clusters on the image. For non-backed
2287 * images, deallocates all non-pre-allocated zero clusters (and claims the
2288 * allocation for pre-allocated ones). This is important for downgrading to a
2289 * qcow2 version which doesn't yet support metadata zero clusters.
2290 */
4057a2b2 2291int qcow2_expand_zero_clusters(BlockDriverState *bs,
8b13976d
HR
2292 BlockDriverAmendStatusCB *status_cb,
2293 void *cb_opaque)
32b6444d 2294{
ff99129a 2295 BDRVQcow2State *s = bs->opaque;
32b6444d 2296 uint64_t *l1_table = NULL;
4057a2b2 2297 int64_t l1_entries = 0, visited_l1_entries = 0;
32b6444d
HR
2298 int ret;
2299 int i, j;
2300
4057a2b2
HR
2301 if (status_cb) {
2302 l1_entries = s->l1_size;
2303 for (i = 0; i < s->nb_snapshots; i++) {
2304 l1_entries += s->snapshots[i].l1_size;
2305 }
2306 }
2307
32b6444d 2308 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
4057a2b2 2309 &visited_l1_entries, l1_entries,
8b13976d 2310 status_cb, cb_opaque);
32b6444d
HR
2311 if (ret < 0) {
2312 goto fail;
2313 }
2314
2315 /* Inactive L1 tables may point to active L2 tables - therefore it is
2316 * necessary to flush the L2 table cache before trying to access the L2
2317 * tables pointed to by inactive L1 entries (else we might try to expand
2318 * zero clusters that have already been expanded); furthermore, it is also
2319 * necessary to empty the L2 table cache, since it may contain tables which
2320 * are now going to be modified directly on disk, bypassing the cache.
2321 * qcow2_cache_empty() does both for us. */
2322 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2323 if (ret < 0) {
2324 goto fail;
2325 }
2326
2327 for (i = 0; i < s->nb_snapshots; i++) {
c9a442e4
AG
2328 int l1_size2;
2329 uint64_t *new_l1_table;
2330 Error *local_err = NULL;
2331
2332 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2333 s->snapshots[i].l1_size, sizeof(uint64_t),
2334 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2335 &local_err);
2336 if (ret < 0) {
2337 error_report_err(local_err);
2338 goto fail;
2339 }
32b6444d 2340
c9a442e4
AG
2341 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2342 new_l1_table = g_try_realloc(l1_table, l1_size2);
de7269d2
AG
2343
2344 if (!new_l1_table) {
2345 ret = -ENOMEM;
2346 goto fail;
2347 }
2348
2349 l1_table = new_l1_table;
32b6444d 2350
c9a442e4
AG
2351 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2352 l1_table, l1_size2);
32b6444d
HR
2353 if (ret < 0) {
2354 goto fail;
2355 }
2356
2357 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2358 be64_to_cpus(&l1_table[j]);
2359 }
2360
2361 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
4057a2b2 2362 &visited_l1_entries, l1_entries,
8b13976d 2363 status_cb, cb_opaque);
32b6444d
HR
2364 if (ret < 0) {
2365 goto fail;
2366 }
2367 }
2368
2369 ret = 0;
2370
2371fail:
32b6444d
HR
2372 g_free(l1_table);
2373 return ret;
2374}