]> git.proxmox.com Git - mirror_qemu.git/blame - block/qcow2-refcount.c
qcow2: Check snapshot L1 table in qcow2_snapshot_delete()
[mirror_qemu.git] / block / qcow2-refcount.c
CommitLineData
f7d0fe02
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
80c71a24 25#include "qemu/osdep.h"
da34e65c 26#include "qapi/error.h"
f7d0fe02 27#include "qemu-common.h"
737e150e 28#include "block/block_int.h"
f7d0fe02 29#include "block/qcow2.h"
a40f1c2a 30#include "qemu/range.h"
58369e22 31#include "qemu/bswap.h"
46b732cd 32#include "qemu/cutils.h"
f7d0fe02 33
bb572aef 34static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
92dcb59f 35static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
0e06528e 36 int64_t offset, int64_t length, uint64_t addend,
2aabe7c7 37 bool decrease, enum qcow2_discard_type type);
f7d0fe02 38
59c0cb78
HR
39static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
7453c96b 43static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
59c0cb78
HR
44static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
7453c96b 46
59c0cb78
HR
47static void set_refcount_ro0(void *refcount_array, uint64_t index,
48 uint64_t value);
49static void set_refcount_ro1(void *refcount_array, uint64_t index,
50 uint64_t value);
51static void set_refcount_ro2(void *refcount_array, uint64_t index,
52 uint64_t value);
53static void set_refcount_ro3(void *refcount_array, uint64_t index,
54 uint64_t value);
7453c96b
HR
55static void set_refcount_ro4(void *refcount_array, uint64_t index,
56 uint64_t value);
59c0cb78
HR
57static void set_refcount_ro5(void *refcount_array, uint64_t index,
58 uint64_t value);
59static void set_refcount_ro6(void *refcount_array, uint64_t index,
60 uint64_t value);
61
62
63static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64 &get_refcount_ro0,
65 &get_refcount_ro1,
66 &get_refcount_ro2,
67 &get_refcount_ro3,
68 &get_refcount_ro4,
69 &get_refcount_ro5,
70 &get_refcount_ro6
71};
72
73static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74 &set_refcount_ro0,
75 &set_refcount_ro1,
76 &set_refcount_ro2,
77 &set_refcount_ro3,
78 &set_refcount_ro4,
79 &set_refcount_ro5,
80 &set_refcount_ro6
81};
7453c96b 82
3b88e52b 83
f7d0fe02
KW
84/*********************************************************/
85/* refcount handling */
86
7061a078
AG
87static void update_max_refcount_table_index(BDRVQcow2State *s)
88{
89 unsigned i = s->refcount_table_size - 1;
90 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91 i--;
92 }
93 /* Set s->max_refcount_table_index to the index of the last used entry */
94 s->max_refcount_table_index = i;
95}
96
ed6ccf0f 97int qcow2_refcount_init(BlockDriverState *bs)
f7d0fe02 98{
ff99129a 99 BDRVQcow2State *s = bs->opaque;
5dab2fad
KW
100 unsigned int refcount_table_size2, i;
101 int ret;
f7d0fe02 102
59c0cb78
HR
103 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104
105 s->get_refcount = get_refcount_funcs[s->refcount_order];
106 s->set_refcount = set_refcount_funcs[s->refcount_order];
7453c96b 107
5dab2fad 108 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
f7d0fe02 109 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
de82815d
KW
110 s->refcount_table = g_try_malloc(refcount_table_size2);
111
f7d0fe02 112 if (s->refcount_table_size > 0) {
de82815d 113 if (s->refcount_table == NULL) {
8fcffa98 114 ret = -ENOMEM;
de82815d
KW
115 goto fail;
116 }
66f82cee 117 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
cf2ab8fc 118 ret = bdrv_pread(bs->file, s->refcount_table_offset,
f7d0fe02 119 s->refcount_table, refcount_table_size2);
8fcffa98 120 if (ret < 0) {
f7d0fe02 121 goto fail;
8fcffa98 122 }
f7d0fe02
KW
123 for(i = 0; i < s->refcount_table_size; i++)
124 be64_to_cpus(&s->refcount_table[i]);
7061a078 125 update_max_refcount_table_index(s);
f7d0fe02
KW
126 }
127 return 0;
128 fail:
8fcffa98 129 return ret;
f7d0fe02
KW
130}
131
ed6ccf0f 132void qcow2_refcount_close(BlockDriverState *bs)
f7d0fe02 133{
ff99129a 134 BDRVQcow2State *s = bs->opaque;
7267c094 135 g_free(s->refcount_table);
f7d0fe02
KW
136}
137
138
59c0cb78
HR
139static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140{
141 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142}
143
144static void set_refcount_ro0(void *refcount_array, uint64_t index,
145 uint64_t value)
146{
147 assert(!(value >> 1));
148 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150}
151
152static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153{
154 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155 & 0x3;
156}
157
158static void set_refcount_ro1(void *refcount_array, uint64_t index,
159 uint64_t value)
160{
161 assert(!(value >> 2));
162 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164}
165
166static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167{
168 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169 & 0xf;
170}
171
172static void set_refcount_ro2(void *refcount_array, uint64_t index,
173 uint64_t value)
174{
175 assert(!(value >> 4));
176 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178}
179
180static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181{
182 return ((const uint8_t *)refcount_array)[index];
183}
184
185static void set_refcount_ro3(void *refcount_array, uint64_t index,
186 uint64_t value)
187{
188 assert(!(value >> 8));
189 ((uint8_t *)refcount_array)[index] = value;
190}
191
7453c96b
HR
192static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193{
194 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195}
196
197static void set_refcount_ro4(void *refcount_array, uint64_t index,
198 uint64_t value)
199{
200 assert(!(value >> 16));
201 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202}
203
59c0cb78
HR
204static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205{
206 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207}
208
209static void set_refcount_ro5(void *refcount_array, uint64_t index,
210 uint64_t value)
211{
212 assert(!(value >> 32));
213 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214}
215
216static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217{
218 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219}
220
221static void set_refcount_ro6(void *refcount_array, uint64_t index,
222 uint64_t value)
223{
224 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225}
226
7453c96b 227
f7d0fe02 228static int load_refcount_block(BlockDriverState *bs,
29c1a730
KW
229 int64_t refcount_block_offset,
230 void **refcount_block)
f7d0fe02 231{
ff99129a 232 BDRVQcow2State *s = bs->opaque;
3b88e52b 233
66f82cee 234 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
9be38598
EH
235 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236 refcount_block);
f7d0fe02
KW
237}
238
018faafd 239/*
7324c10f
HR
240 * Retrieves the refcount of the cluster given by its index and stores it in
241 * *refcount. Returns 0 on success and -errno on failure.
018faafd 242 */
7324c10f 243int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
0e06528e 244 uint64_t *refcount)
f7d0fe02 245{
ff99129a 246 BDRVQcow2State *s = bs->opaque;
db8a31d1 247 uint64_t refcount_table_index, block_index;
f7d0fe02 248 int64_t refcount_block_offset;
018faafd 249 int ret;
7453c96b 250 void *refcount_block;
f7d0fe02 251
17bd5f47 252 refcount_table_index = cluster_index >> s->refcount_block_bits;
7324c10f
HR
253 if (refcount_table_index >= s->refcount_table_size) {
254 *refcount = 0;
f7d0fe02 255 return 0;
7324c10f 256 }
26d49c46
HR
257 refcount_block_offset =
258 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
7324c10f
HR
259 if (!refcount_block_offset) {
260 *refcount = 0;
f7d0fe02 261 return 0;
7324c10f 262 }
29c1a730 263
a97c67ee
HR
264 if (offset_into_cluster(s, refcount_block_offset)) {
265 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266 " unaligned (reftable index: %#" PRIx64 ")",
267 refcount_block_offset, refcount_table_index);
268 return -EIO;
269 }
270
29c1a730 271 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
7453c96b 272 &refcount_block);
29c1a730
KW
273 if (ret < 0) {
274 return ret;
f7d0fe02 275 }
29c1a730 276
17bd5f47 277 block_index = cluster_index & (s->refcount_block_size - 1);
7453c96b 278 *refcount = s->get_refcount(refcount_block, block_index);
29c1a730 279
2013c3d4 280 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
29c1a730 281
7324c10f 282 return 0;
f7d0fe02
KW
283}
284
92dcb59f 285/* Checks if two offsets are described by the same refcount block */
ff99129a 286static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
92dcb59f
KW
287 uint64_t offset_b)
288{
17bd5f47
HR
289 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
92dcb59f
KW
291
292 return (block_a == block_b);
293}
294
295/*
296 * Loads a refcount block. If it doesn't exist yet, it is allocated first
297 * (including growing the refcount table if needed).
298 *
29c1a730 299 * Returns 0 on success or -errno in error case
92dcb59f 300 */
29c1a730 301static int alloc_refcount_block(BlockDriverState *bs,
7453c96b 302 int64_t cluster_index, void **refcount_block)
f7d0fe02 303{
ff99129a 304 BDRVQcow2State *s = bs->opaque;
92dcb59f 305 unsigned int refcount_table_index;
12cc30a8 306 int64_t ret;
92dcb59f 307
66f82cee 308 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
8252278a 309
92dcb59f 310 /* Find the refcount block for the given cluster */
17bd5f47 311 refcount_table_index = cluster_index >> s->refcount_block_bits;
92dcb59f
KW
312
313 if (refcount_table_index < s->refcount_table_size) {
314
315 uint64_t refcount_block_offset =
76dc9e0c 316 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
92dcb59f
KW
317
318 /* If it's already there, we're done */
319 if (refcount_block_offset) {
a97c67ee
HR
320 if (offset_into_cluster(s, refcount_block_offset)) {
321 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322 PRIx64 " unaligned (reftable index: "
323 "%#x)", refcount_block_offset,
324 refcount_table_index);
325 return -EIO;
326 }
327
29c1a730 328 return load_refcount_block(bs, refcount_block_offset,
7453c96b 329 refcount_block);
92dcb59f
KW
330 }
331 }
332
333 /*
334 * If we came here, we need to allocate something. Something is at least
335 * a cluster for the new refcount block. It may also include a new refcount
336 * table if the old refcount table is too small.
337 *
338 * Note that allocating clusters here needs some special care:
339 *
340 * - We can't use the normal qcow2_alloc_clusters(), it would try to
341 * increase the refcount and very likely we would end up with an endless
342 * recursion. Instead we must place the refcount blocks in a way that
343 * they can describe them themselves.
344 *
345 * - We need to consider that at this point we are inside update_refcounts
b106ad91
KW
346 * and potentially doing an initial refcount increase. This means that
347 * some clusters have already been allocated by the caller, but their
348 * refcount isn't accurate yet. If we allocate clusters for metadata, we
349 * need to return -EAGAIN to signal the caller that it needs to restart
350 * the search for free clusters.
92dcb59f
KW
351 *
352 * - alloc_clusters_noref and qcow2_free_clusters may load a different
353 * refcount block into the cache
354 */
355
29c1a730
KW
356 *refcount_block = NULL;
357
358 /* We write to the refcount table, so we might depend on L2 tables */
9991923b
SH
359 ret = qcow2_cache_flush(bs, s->l2_table_cache);
360 if (ret < 0) {
361 return ret;
362 }
92dcb59f
KW
363
364 /* Allocate the refcount block itself and mark it as used */
2eaa8f63
KW
365 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
366 if (new_block < 0) {
367 return new_block;
368 }
f7d0fe02 369
6bf45d59
AG
370 /* If we're allocating the block at offset 0 then something is wrong */
371 if (new_block == 0) {
372 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
373 "allocation of refcount block at offset 0");
374 return -EIO;
375 }
376
f7d0fe02 377#ifdef DEBUG_ALLOC2
92dcb59f
KW
378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379 " at %" PRIx64 "\n",
380 refcount_table_index, cluster_index << s->cluster_bits, new_block);
f7d0fe02 381#endif
92dcb59f
KW
382
383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
25408c09 384 /* Zero the new refcount block before updating it */
29c1a730 385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
7453c96b 386 refcount_block);
29c1a730 387 if (ret < 0) {
60c48a29 388 goto fail;
29c1a730
KW
389 }
390
391 memset(*refcount_block, 0, s->cluster_size);
25408c09 392
92dcb59f
KW
393 /* The block describes itself, need to update the cache */
394 int block_index = (new_block >> s->cluster_bits) &
17bd5f47 395 (s->refcount_block_size - 1);
7453c96b 396 s->set_refcount(*refcount_block, block_index, 1);
92dcb59f
KW
397 } else {
398 /* Described somewhere else. This can recurse at most twice before we
399 * arrive at a block that describes itself. */
2aabe7c7 400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
6cfcb9b8 401 QCOW2_DISCARD_NEVER);
92dcb59f 402 if (ret < 0) {
60c48a29 403 goto fail;
92dcb59f 404 }
25408c09 405
9991923b
SH
406 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407 if (ret < 0) {
60c48a29 408 goto fail;
9991923b 409 }
1c4c2814 410
25408c09
KW
411 /* Initialize the new refcount block only after updating its refcount,
412 * update_refcount uses the refcount cache itself */
29c1a730 413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
7453c96b 414 refcount_block);
29c1a730 415 if (ret < 0) {
60c48a29 416 goto fail;
29c1a730
KW
417 }
418
419 memset(*refcount_block, 0, s->cluster_size);
92dcb59f
KW
420 }
421
422 /* Now the new refcount block needs to be written to disk */
66f82cee 423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
2d135ee9 424 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
29c1a730 425 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
92dcb59f 426 if (ret < 0) {
60c48a29 427 goto fail;
92dcb59f
KW
428 }
429
430 /* If the refcount table is big enough, just hook the block up there */
431 if (refcount_table_index < s->refcount_table_size) {
432 uint64_t data64 = cpu_to_be64(new_block);
66f82cee 433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
d9ca2ea2 434 ret = bdrv_pwrite_sync(bs->file,
92dcb59f
KW
435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436 &data64, sizeof(data64));
437 if (ret < 0) {
60c48a29 438 goto fail;
92dcb59f
KW
439 }
440
441 s->refcount_table[refcount_table_index] = new_block;
7061a078
AG
442 /* If there's a hole in s->refcount_table then it can happen
443 * that refcount_table_index < s->max_refcount_table_index */
444 s->max_refcount_table_index =
445 MAX(s->max_refcount_table_index, refcount_table_index);
b106ad91
KW
446
447 /* The new refcount block may be where the caller intended to put its
448 * data, so let it restart the search. */
449 return -EAGAIN;
29c1a730
KW
450 }
451
2013c3d4 452 qcow2_cache_put(s->refcount_block_cache, refcount_block);
92dcb59f
KW
453
454 /*
455 * If we come here, we need to grow the refcount table. Again, a new
456 * refcount table needs some space and we can't simply allocate to avoid
457 * endless recursion.
458 *
459 * Therefore let's grab new refcount blocks at the end of the image, which
460 * will describe themselves and the new refcount table. This way we can
461 * reference them only in the new table and do the switch to the new
462 * refcount table at once without producing an inconsistent state in
463 * between.
464 */
66f82cee 465 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
8252278a 466
14a58a4e
HR
467 /* Calculate the number of refcount blocks needed so far; this will be the
468 * basis for calculating the index of the first cluster used for the
469 * self-describing refcount structures which we are about to create.
470 *
471 * Because we reached this point, there cannot be any refcount entries for
472 * cluster_index or higher indices yet. However, because new_block has been
473 * allocated to describe that cluster (and it will assume this role later
474 * on), we cannot use that index; also, new_block may actually have a higher
475 * cluster index than cluster_index, so it needs to be taken into account
476 * here (and 1 needs to be added to its value because that cluster is used).
477 */
478 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
479 (new_block >> s->cluster_bits) + 1),
480 s->refcount_block_size);
92dcb59f 481
12cc30a8
HR
482 /* Create the new refcount table and blocks */
483 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
484 s->cluster_size;
485
486 ret = qcow2_refcount_area(bs, meta_offset, 0, false,
487 refcount_table_index, new_block);
488 if (ret < 0) {
489 return ret;
2b5d5953
KW
490 }
491
12cc30a8
HR
492 ret = load_refcount_block(bs, new_block, refcount_block);
493 if (ret < 0) {
494 return ret;
495 }
92dcb59f 496
12cc30a8
HR
497 /* If we were trying to do the initial refcount update for some cluster
498 * allocation, we might have used the same clusters to store newly
499 * allocated metadata. Make the caller search some new space. */
500 return -EAGAIN;
92dcb59f 501
60c48a29 502fail:
12cc30a8 503 if (*refcount_block != NULL) {
2013c3d4 504 qcow2_cache_put(s->refcount_block_cache, refcount_block);
12cc30a8
HR
505 }
506 return ret;
507}
92dcb59f 508
12cc30a8
HR
509/*
510 * Starting at @start_offset, this function creates new self-covering refcount
511 * structures: A new refcount table and refcount blocks which cover all of
512 * themselves, and a number of @additional_clusters beyond their end.
513 * @start_offset must be at the end of the image file, that is, there must be
514 * only empty space beyond it.
515 * If @exact_size is false, the refcount table will have 50 % more entries than
516 * necessary so it will not need to grow again soon.
517 * If @new_refblock_offset is not zero, it contains the offset of a refcount
518 * block that should be entered into the new refcount table at index
519 * @new_refblock_index.
520 *
521 * Returns: The offset after the new refcount structures (i.e. where the
522 * @additional_clusters may be placed) on success, -errno on error.
523 */
772d1f97
HR
524int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
525 uint64_t additional_clusters, bool exact_size,
526 int new_refblock_index,
527 uint64_t new_refblock_offset)
12cc30a8
HR
528{
529 BDRVQcow2State *s = bs->opaque;
530 uint64_t total_refblock_count_u64, additional_refblock_count;
531 int total_refblock_count, table_size, area_reftable_index, table_clusters;
532 int i;
533 uint64_t table_offset, block_offset, end_offset;
534 int ret;
535 uint64_t *new_table;
92dcb59f 536
12cc30a8 537 assert(!(start_offset % s->cluster_size));
de82815d 538
12cc30a8
HR
539 qcow2_refcount_metadata_size(start_offset / s->cluster_size +
540 additional_clusters,
541 s->cluster_size, s->refcount_order,
542 !exact_size, &total_refblock_count_u64);
543 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
544 return -EFBIG;
545 }
546 total_refblock_count = total_refblock_count_u64;
547
548 /* Index in the refcount table of the first refcount block to cover the area
549 * of refcount structures we are about to create; we know that
550 * @total_refblock_count can cover @start_offset, so this will definitely
551 * fit into an int. */
552 area_reftable_index = (start_offset / s->cluster_size) /
553 s->refcount_block_size;
554
555 if (exact_size) {
556 table_size = total_refblock_count;
557 } else {
558 table_size = total_refblock_count +
559 DIV_ROUND_UP(total_refblock_count, 2);
560 }
561 /* The qcow2 file can only store the reftable size in number of clusters */
562 table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
563 table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
564
565 if (table_size > QCOW_MAX_REFTABLE_SIZE) {
566 return -EFBIG;
567 }
568
569 new_table = g_try_new0(uint64_t, table_size);
570
571 assert(table_size > 0);
572 if (new_table == NULL) {
de82815d 573 ret = -ENOMEM;
12cc30a8 574 goto fail;
de82815d 575 }
92dcb59f 576
92dcb59f 577 /* Fill the new refcount table */
12cc30a8
HR
578 if (table_size > s->max_refcount_table_index) {
579 /* We're actually growing the reftable */
580 memcpy(new_table, s->refcount_table,
581 (s->max_refcount_table_index + 1) * sizeof(uint64_t));
582 } else {
583 /* Improbable case: We're shrinking the reftable. However, the caller
584 * has assured us that there is only empty space beyond @start_offset,
585 * so we can simply drop all of the refblocks that won't fit into the
586 * new reftable. */
587 memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
588 }
92dcb59f 589
12cc30a8
HR
590 if (new_refblock_offset) {
591 assert(new_refblock_index < total_refblock_count);
592 new_table[new_refblock_index] = new_refblock_offset;
593 }
594
595 /* Count how many new refblocks we have to create */
596 additional_refblock_count = 0;
597 for (i = area_reftable_index; i < total_refblock_count; i++) {
598 if (!new_table[i]) {
599 additional_refblock_count++;
600 }
92dcb59f
KW
601 }
602
12cc30a8
HR
603 table_offset = start_offset + additional_refblock_count * s->cluster_size;
604 end_offset = table_offset + table_clusters * s->cluster_size;
605
606 /* Fill the refcount blocks, and create new ones, if necessary */
607 block_offset = start_offset;
608 for (i = area_reftable_index; i < total_refblock_count; i++) {
609 void *refblock_data;
610 uint64_t first_offset_covered;
611
612 /* Reuse an existing refblock if possible, create a new one otherwise */
613 if (new_table[i]) {
614 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
615 &refblock_data);
616 if (ret < 0) {
617 goto fail;
618 }
619 } else {
620 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
621 block_offset, &refblock_data);
622 if (ret < 0) {
623 goto fail;
624 }
625 memset(refblock_data, 0, s->cluster_size);
2d135ee9 626 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
12cc30a8
HR
627 refblock_data);
628
629 new_table[i] = block_offset;
630 block_offset += s->cluster_size;
631 }
632
633 /* First host offset covered by this refblock */
634 first_offset_covered = (uint64_t)i * s->refcount_block_size *
635 s->cluster_size;
636 if (first_offset_covered < end_offset) {
637 int j, end_index;
638
639 /* Set the refcount of all of the new refcount structures to 1 */
640
641 if (first_offset_covered < start_offset) {
642 assert(i == area_reftable_index);
643 j = (start_offset - first_offset_covered) / s->cluster_size;
644 assert(j < s->refcount_block_size);
645 } else {
646 j = 0;
647 }
648
649 end_index = MIN((end_offset - first_offset_covered) /
650 s->cluster_size,
651 s->refcount_block_size);
652
653 for (; j < end_index; j++) {
654 /* The caller guaranteed us this space would be empty */
655 assert(s->get_refcount(refblock_data, j) == 0);
656 s->set_refcount(refblock_data, j, 1);
657 }
658
2d135ee9 659 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
12cc30a8
HR
660 refblock_data);
661 }
662
2013c3d4 663 qcow2_cache_put(s->refcount_block_cache, &refblock_data);
92dcb59f
KW
664 }
665
12cc30a8
HR
666 assert(block_offset == table_offset);
667
92dcb59f 668 /* Write refcount blocks to disk */
66f82cee 669 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
12cc30a8 670 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
92dcb59f 671 if (ret < 0) {
12cc30a8 672 goto fail;
92dcb59f
KW
673 }
674
675 /* Write refcount table to disk */
12cc30a8 676 for (i = 0; i < total_refblock_count; i++) {
92dcb59f
KW
677 cpu_to_be64s(&new_table[i]);
678 }
679
66f82cee 680 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
d9ca2ea2 681 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
92dcb59f
KW
682 table_size * sizeof(uint64_t));
683 if (ret < 0) {
12cc30a8 684 goto fail;
92dcb59f
KW
685 }
686
12cc30a8 687 for (i = 0; i < total_refblock_count; i++) {
87267753 688 be64_to_cpus(&new_table[i]);
92dcb59f 689 }
f7d0fe02 690
92dcb59f 691 /* Hook up the new refcount table in the qcow2 header */
95334230
JS
692 struct QEMU_PACKED {
693 uint64_t d64;
694 uint32_t d32;
695 } data;
f1f7a1dd
PM
696 data.d64 = cpu_to_be64(table_offset);
697 data.d32 = cpu_to_be32(table_clusters);
66f82cee 698 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
d9ca2ea2 699 ret = bdrv_pwrite_sync(bs->file,
9a4f4c31 700 offsetof(QCowHeader, refcount_table_offset),
95334230 701 &data, sizeof(data));
92dcb59f 702 if (ret < 0) {
12cc30a8 703 goto fail;
f2b7c8b3
KW
704 }
705
92dcb59f
KW
706 /* And switch it in memory */
707 uint64_t old_table_offset = s->refcount_table_offset;
708 uint64_t old_table_size = s->refcount_table_size;
709
7267c094 710 g_free(s->refcount_table);
f7d0fe02 711 s->refcount_table = new_table;
92dcb59f 712 s->refcount_table_size = table_size;
f7d0fe02 713 s->refcount_table_offset = table_offset;
7061a078 714 update_max_refcount_table_index(s);
f7d0fe02 715
b106ad91 716 /* Free old table. */
6cfcb9b8
KW
717 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
718 QCOW2_DISCARD_OTHER);
f7d0fe02 719
12cc30a8 720 return end_offset;
f7d0fe02 721
12cc30a8 722fail:
7267c094 723 g_free(new_table);
29c1a730 724 return ret;
9923e05e
KW
725}
726
0b919fae
KW
727void qcow2_process_discards(BlockDriverState *bs, int ret)
728{
ff99129a 729 BDRVQcow2State *s = bs->opaque;
0b919fae
KW
730 Qcow2DiscardRegion *d, *next;
731
732 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
733 QTAILQ_REMOVE(&s->discards, d, next);
734
735 /* Discard is optional, ignore the return value */
736 if (ret >= 0) {
0c51a893 737 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
0b919fae
KW
738 }
739
740 g_free(d);
741 }
742}
743
744static void update_refcount_discard(BlockDriverState *bs,
745 uint64_t offset, uint64_t length)
746{
ff99129a 747 BDRVQcow2State *s = bs->opaque;
0b919fae
KW
748 Qcow2DiscardRegion *d, *p, *next;
749
750 QTAILQ_FOREACH(d, &s->discards, next) {
751 uint64_t new_start = MIN(offset, d->offset);
752 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
753
754 if (new_end - new_start <= length + d->bytes) {
755 /* There can't be any overlap, areas ending up here have no
756 * references any more and therefore shouldn't get freed another
757 * time. */
758 assert(d->bytes + length == new_end - new_start);
759 d->offset = new_start;
760 d->bytes = new_end - new_start;
761 goto found;
762 }
763 }
764
765 d = g_malloc(sizeof(*d));
766 *d = (Qcow2DiscardRegion) {
767 .bs = bs,
768 .offset = offset,
769 .bytes = length,
770 };
771 QTAILQ_INSERT_TAIL(&s->discards, d, next);
772
773found:
774 /* Merge discard requests if they are adjacent now */
775 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
776 if (p == d
777 || p->offset > d->offset + d->bytes
778 || d->offset > p->offset + p->bytes)
779 {
780 continue;
781 }
782
783 /* Still no overlap possible */
784 assert(p->offset == d->offset + d->bytes
785 || d->offset == p->offset + p->bytes);
786
787 QTAILQ_REMOVE(&s->discards, p, next);
788 d->offset = MIN(d->offset, p->offset);
789 d->bytes += p->bytes;
d8bb71b6 790 g_free(p);
0b919fae
KW
791 }
792}
793
f7d0fe02 794/* XXX: cache several refcount block clusters ? */
2aabe7c7
HR
795/* @addend is the absolute value of the addend; if @decrease is set, @addend
796 * will be subtracted from the current refcount, otherwise it will be added */
db3a964f 797static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
2aabe7c7
HR
798 int64_t offset,
799 int64_t length,
0e06528e 800 uint64_t addend,
2aabe7c7
HR
801 bool decrease,
802 enum qcow2_discard_type type)
f7d0fe02 803{
ff99129a 804 BDRVQcow2State *s = bs->opaque;
f7d0fe02 805 int64_t start, last, cluster_offset;
7453c96b 806 void *refcount_block = NULL;
29c1a730 807 int64_t old_table_index = -1;
09508d13 808 int ret;
f7d0fe02
KW
809
810#ifdef DEBUG_ALLOC2
2aabe7c7 811 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
0e06528e 812 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
2aabe7c7 813 addend);
f7d0fe02 814#endif
7322afe7 815 if (length < 0) {
f7d0fe02 816 return -EINVAL;
7322afe7
KW
817 } else if (length == 0) {
818 return 0;
819 }
820
2aabe7c7 821 if (decrease) {
29c1a730
KW
822 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
823 s->l2_table_cache);
824 }
825
ac95acdb
HT
826 start = start_of_cluster(s, offset);
827 last = start_of_cluster(s, offset + length - 1);
f7d0fe02
KW
828 for(cluster_offset = start; cluster_offset <= last;
829 cluster_offset += s->cluster_size)
830 {
2aabe7c7 831 int block_index;
0e06528e 832 uint64_t refcount;
f7d0fe02 833 int64_t cluster_index = cluster_offset >> s->cluster_bits;
17bd5f47 834 int64_t table_index = cluster_index >> s->refcount_block_bits;
f7d0fe02 835
29c1a730
KW
836 /* Load the refcount block and allocate it if needed */
837 if (table_index != old_table_index) {
838 if (refcount_block) {
2013c3d4 839 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
29c1a730 840 }
29c1a730 841 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
ed0df867 842 if (ret < 0) {
29c1a730 843 goto fail;
f7d0fe02 844 }
f7d0fe02 845 }
29c1a730 846 old_table_index = table_index;
f7d0fe02 847
2d135ee9 848 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
f7d0fe02
KW
849
850 /* we can update the count and save it */
17bd5f47 851 block_index = cluster_index & (s->refcount_block_size - 1);
f7d0fe02 852
7453c96b 853 refcount = s->get_refcount(refcount_block, block_index);
0e06528e
HR
854 if (decrease ? (refcount - addend > refcount)
855 : (refcount + addend < refcount ||
856 refcount + addend > s->refcount_max))
2aabe7c7 857 {
09508d13
KW
858 ret = -EINVAL;
859 goto fail;
860 }
2aabe7c7
HR
861 if (decrease) {
862 refcount -= addend;
863 } else {
864 refcount += addend;
865 }
f7d0fe02
KW
866 if (refcount == 0 && cluster_index < s->free_cluster_index) {
867 s->free_cluster_index = cluster_index;
868 }
7453c96b 869 s->set_refcount(refcount_block, block_index, refcount);
0b919fae 870
f71c08ea
PB
871 if (refcount == 0) {
872 void *table;
873
6e6fa760 874 table = qcow2_cache_is_table_offset(s->refcount_block_cache,
f71c08ea
PB
875 offset);
876 if (table != NULL) {
2013c3d4 877 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
77aadd7b 878 qcow2_cache_discard(s->refcount_block_cache, table);
f71c08ea
PB
879 }
880
6e6fa760 881 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
f71c08ea 882 if (table != NULL) {
77aadd7b 883 qcow2_cache_discard(s->l2_table_cache, table);
f71c08ea
PB
884 }
885
886 if (s->discard_passthrough[type]) {
887 update_refcount_discard(bs, cluster_offset, s->cluster_size);
888 }
67af674e 889 }
f7d0fe02
KW
890 }
891
09508d13
KW
892 ret = 0;
893fail:
0b919fae
KW
894 if (!s->cache_discards) {
895 qcow2_process_discards(bs, ret);
896 }
897
f7d0fe02 898 /* Write last changed block to disk */
29c1a730 899 if (refcount_block) {
2013c3d4 900 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
f7d0fe02
KW
901 }
902
09508d13
KW
903 /*
904 * Try do undo any updates if an error is returned (This may succeed in
905 * some cases like ENOSPC for allocating a new refcount block)
906 */
907 if (ret < 0) {
908 int dummy;
2aabe7c7
HR
909 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
910 !decrease, QCOW2_DISCARD_NEVER);
83e3f76c 911 (void)dummy;
09508d13
KW
912 }
913
914 return ret;
f7d0fe02
KW
915}
916
018faafd 917/*
44751917 918 * Increases or decreases the refcount of a given cluster.
018faafd 919 *
2aabe7c7
HR
920 * @addend is the absolute value of the addend; if @decrease is set, @addend
921 * will be subtracted from the current refcount, otherwise it will be added.
922 *
c6e9d8ae 923 * On success 0 is returned; on failure -errno is returned.
018faafd 924 */
32b6444d
HR
925int qcow2_update_cluster_refcount(BlockDriverState *bs,
926 int64_t cluster_index,
0e06528e 927 uint64_t addend, bool decrease,
32b6444d 928 enum qcow2_discard_type type)
f7d0fe02 929{
ff99129a 930 BDRVQcow2State *s = bs->opaque;
f7d0fe02
KW
931 int ret;
932
6cfcb9b8 933 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
2aabe7c7 934 decrease, type);
f7d0fe02
KW
935 if (ret < 0) {
936 return ret;
937 }
938
c6e9d8ae 939 return 0;
f7d0fe02
KW
940}
941
942
943
944/*********************************************************/
945/* cluster allocation functions */
946
947
948
949/* return < 0 if error */
bb572aef 950static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
f7d0fe02 951{
ff99129a 952 BDRVQcow2State *s = bs->opaque;
0e06528e 953 uint64_t i, nb_clusters, refcount;
7324c10f 954 int ret;
f7d0fe02 955
ecbda7a2
KW
956 /* We can't allocate clusters if they may still be queued for discard. */
957 if (s->cache_discards) {
958 qcow2_process_discards(bs, 0);
959 }
960
f7d0fe02
KW
961 nb_clusters = size_to_clusters(s, size);
962retry:
963 for(i = 0; i < nb_clusters; i++) {
bb572aef 964 uint64_t next_cluster_index = s->free_cluster_index++;
7324c10f 965 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
2eaa8f63 966
7324c10f
HR
967 if (ret < 0) {
968 return ret;
2eaa8f63 969 } else if (refcount != 0) {
f7d0fe02 970 goto retry;
2eaa8f63 971 }
f7d0fe02 972 }
91f827dc
HR
973
974 /* Make sure that all offsets in the "allocated" range are representable
975 * in an int64_t */
65f33bc0
HR
976 if (s->free_cluster_index > 0 &&
977 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
978 {
91f827dc
HR
979 return -EFBIG;
980 }
981
f7d0fe02 982#ifdef DEBUG_ALLOC2
35ee5e39 983 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
f7d0fe02
KW
984 size,
985 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
986#endif
987 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
988}
989
bb572aef 990int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
f7d0fe02
KW
991{
992 int64_t offset;
db3a964f 993 int ret;
f7d0fe02 994
66f82cee 995 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
b106ad91
KW
996 do {
997 offset = alloc_clusters_noref(bs, size);
998 if (offset < 0) {
999 return offset;
1000 }
1001
2aabe7c7 1002 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
b106ad91 1003 } while (ret == -EAGAIN);
2eaa8f63 1004
db3a964f
KW
1005 if (ret < 0) {
1006 return ret;
1007 }
1c4c2814 1008
f7d0fe02
KW
1009 return offset;
1010}
1011
b6d36def
HR
1012int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1013 int64_t nb_clusters)
256900b1 1014{
ff99129a 1015 BDRVQcow2State *s = bs->opaque;
0e06528e 1016 uint64_t cluster_index, refcount;
33304ec9 1017 uint64_t i;
7324c10f 1018 int ret;
33304ec9
HT
1019
1020 assert(nb_clusters >= 0);
1021 if (nb_clusters == 0) {
1022 return 0;
1023 }
256900b1 1024
b106ad91
KW
1025 do {
1026 /* Check how many clusters there are free */
1027 cluster_index = offset >> s->cluster_bits;
1028 for(i = 0; i < nb_clusters; i++) {
7324c10f
HR
1029 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1030 if (ret < 0) {
1031 return ret;
b106ad91
KW
1032 } else if (refcount != 0) {
1033 break;
1034 }
256900b1 1035 }
256900b1 1036
b106ad91 1037 /* And then allocate them */
2aabe7c7 1038 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
b106ad91
KW
1039 QCOW2_DISCARD_NEVER);
1040 } while (ret == -EAGAIN);
f24423bd 1041
256900b1
KW
1042 if (ret < 0) {
1043 return ret;
1044 }
1045
1046 return i;
1047}
1048
f7d0fe02
KW
1049/* only used to allocate compressed sectors. We try to allocate
1050 contiguous sectors. size must be <= cluster_size */
ed6ccf0f 1051int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
f7d0fe02 1052{
ff99129a 1053 BDRVQcow2State *s = bs->opaque;
8c44dfbc
HR
1054 int64_t offset;
1055 size_t free_in_cluster;
1056 int ret;
f7d0fe02 1057
66f82cee 1058 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
f7d0fe02 1059 assert(size > 0 && size <= s->cluster_size);
8c44dfbc
HR
1060 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1061
1062 offset = s->free_byte_offset;
1063
1064 if (offset) {
0e06528e 1065 uint64_t refcount;
7324c10f
HR
1066 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1067 if (ret < 0) {
1068 return ret;
5d757b56 1069 }
8c44dfbc 1070
346a53df 1071 if (refcount == s->refcount_max) {
8c44dfbc 1072 offset = 0;
5d757b56 1073 }
8c44dfbc
HR
1074 }
1075
1076 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
3e5feb62
JM
1077 do {
1078 if (!offset || free_in_cluster < size) {
1079 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1080 if (new_cluster < 0) {
1081 return new_cluster;
1082 }
8c44dfbc 1083
8aa34834
AG
1084 if (new_cluster == 0) {
1085 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1086 "allocation of compressed cluster "
1087 "at offset 0");
1088 return -EIO;
1089 }
1090
3e5feb62
JM
1091 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1092 offset = new_cluster;
2ac01520
HR
1093 free_in_cluster = s->cluster_size;
1094 } else {
1095 free_in_cluster += s->cluster_size;
3e5feb62 1096 }
f7d0fe02 1097 }
29216ed1 1098
3e5feb62
JM
1099 assert(offset);
1100 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
2ac01520
HR
1101 if (ret < 0) {
1102 offset = 0;
1103 }
3e5feb62 1104 } while (ret == -EAGAIN);
8c44dfbc
HR
1105 if (ret < 0) {
1106 return ret;
1107 }
1108
1109 /* The cluster refcount was incremented; refcount blocks must be flushed
1110 * before the caller's L2 table updates. */
c1f5bafd 1111 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
8c44dfbc
HR
1112
1113 s->free_byte_offset = offset + size;
1114 if (!offset_into_cluster(s, s->free_byte_offset)) {
1115 s->free_byte_offset = 0;
1116 }
1117
f7d0fe02
KW
1118 return offset;
1119}
1120
ed6ccf0f 1121void qcow2_free_clusters(BlockDriverState *bs,
6cfcb9b8
KW
1122 int64_t offset, int64_t size,
1123 enum qcow2_discard_type type)
f7d0fe02 1124{
db3a964f
KW
1125 int ret;
1126
66f82cee 1127 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
2aabe7c7 1128 ret = update_refcount(bs, offset, size, 1, true, type);
db3a964f
KW
1129 if (ret < 0) {
1130 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
003fad6e 1131 /* TODO Remember the clusters to free them later and avoid leaking */
db3a964f 1132 }
f7d0fe02
KW
1133}
1134
45aba42f 1135/*
c7a4c37a
KW
1136 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1137 * normal cluster, compressed cluster, etc.)
45aba42f 1138 */
6cfcb9b8
KW
1139void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1140 int nb_clusters, enum qcow2_discard_type type)
45aba42f 1141{
ff99129a 1142 BDRVQcow2State *s = bs->opaque;
45aba42f 1143
c7a4c37a
KW
1144 switch (qcow2_get_cluster_type(l2_entry)) {
1145 case QCOW2_CLUSTER_COMPRESSED:
1146 {
1147 int nb_csectors;
1148 nb_csectors = ((l2_entry >> s->csize_shift) &
1149 s->csize_mask) + 1;
1150 qcow2_free_clusters(bs,
1151 (l2_entry & s->cluster_offset_mask) & ~511,
6cfcb9b8 1152 nb_csectors * 512, type);
c7a4c37a
KW
1153 }
1154 break;
1155 case QCOW2_CLUSTER_NORMAL:
fdfab37d
EB
1156 case QCOW2_CLUSTER_ZERO_ALLOC:
1157 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1158 qcow2_signal_corruption(bs, false, -1, -1,
1159 "Cannot free unaligned cluster %#llx",
1160 l2_entry & L2E_OFFSET_MASK);
1161 } else {
1162 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1163 nb_clusters << s->cluster_bits, type);
8f730dd2 1164 }
c7a4c37a 1165 break;
fdfab37d 1166 case QCOW2_CLUSTER_ZERO_PLAIN:
c7a4c37a
KW
1167 case QCOW2_CLUSTER_UNALLOCATED:
1168 break;
1169 default:
1170 abort();
45aba42f 1171 }
45aba42f
KW
1172}
1173
8b220eb7
PB
1174int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1175{
1176 BDRVQcow2State *s = bs->opaque;
1177 int ret;
f7d0fe02 1178
8b220eb7
PB
1179 ret = qcow2_cache_write(bs, s->l2_table_cache);
1180 if (ret < 0) {
1181 return ret;
1182 }
1183
1184 if (qcow2_need_accurate_refcounts(s)) {
1185 ret = qcow2_cache_write(bs, s->refcount_block_cache);
1186 if (ret < 0) {
1187 return ret;
1188 }
1189 }
1190
1191 return 0;
1192}
1193
1194int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1195{
1196 int ret = qcow2_write_caches(bs);
1197 if (ret < 0) {
1198 return ret;
1199 }
1200
1201 return bdrv_flush(bs->file->bs);
1202}
f7d0fe02
KW
1203
1204/*********************************************************/
1205/* snapshots and image creation */
1206
1207
1208
f7d0fe02 1209/* update the refcounts of snapshots and the copied flag */
ed6ccf0f
KW
1210int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1211 int64_t l1_table_offset, int l1_size, int addend)
f7d0fe02 1212{
ff99129a 1213 BDRVQcow2State *s = bs->opaque;
83ad165b 1214 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
de82815d 1215 bool l1_allocated = false;
b32cbae1 1216 int64_t old_entry, old_l2_offset;
83ad165b 1217 unsigned slice, slice_size2, n_slices;
7324c10f 1218 int i, j, l1_modified = 0, nb_csectors;
29c1a730 1219 int ret;
f7d0fe02 1220
2aabe7c7
HR
1221 assert(addend >= -1 && addend <= 1);
1222
83ad165b 1223 l2_slice = NULL;
f7d0fe02
KW
1224 l1_table = NULL;
1225 l1_size2 = l1_size * sizeof(uint64_t);
83ad165b
AG
1226 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1227 n_slices = s->cluster_size / slice_size2;
43a0cac4 1228
0b919fae
KW
1229 s->cache_discards = true;
1230
43a0cac4
KW
1231 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1232 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1233 * when changing this! */
f7d0fe02 1234 if (l1_table_offset != s->l1_table_offset) {
9e029689 1235 l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
de82815d
KW
1236 if (l1_size2 && l1_table == NULL) {
1237 ret = -ENOMEM;
1238 goto fail;
1239 }
1240 l1_allocated = true;
c2bc78b6 1241
cf2ab8fc 1242 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
c2bc78b6 1243 if (ret < 0) {
f7d0fe02 1244 goto fail;
93913dfd
KW
1245 }
1246
b32cbae1 1247 for (i = 0; i < l1_size; i++) {
f7d0fe02 1248 be64_to_cpus(&l1_table[i]);
b32cbae1 1249 }
f7d0fe02
KW
1250 } else {
1251 assert(l1_size == s->l1_size);
1252 l1_table = s->l1_table;
de82815d 1253 l1_allocated = false;
f7d0fe02
KW
1254 }
1255
b32cbae1 1256 for (i = 0; i < l1_size; i++) {
f7d0fe02
KW
1257 l2_offset = l1_table[i];
1258 if (l2_offset) {
1259 old_l2_offset = l2_offset;
8e37f681 1260 l2_offset &= L1E_OFFSET_MASK;
29c1a730 1261
a97c67ee
HR
1262 if (offset_into_cluster(s, l2_offset)) {
1263 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1264 PRIx64 " unaligned (L1 index: %#x)",
1265 l2_offset, i);
1266 ret = -EIO;
1267 goto fail;
1268 }
1269
83ad165b 1270 for (slice = 0; slice < n_slices; slice++) {
ca62dd5c 1271 ret = qcow2_cache_get(bs, s->l2_table_cache,
83ad165b
AG
1272 l2_offset + slice * slice_size2,
1273 (void **) &l2_slice);
ca62dd5c
AG
1274 if (ret < 0) {
1275 goto fail;
1276 }
29c1a730 1277
83ad165b 1278 for (j = 0; j < s->l2_slice_size; j++) {
ca62dd5c
AG
1279 uint64_t cluster_index;
1280 uint64_t offset;
1281
83ad165b 1282 entry = be64_to_cpu(l2_slice[j]);
ca62dd5c
AG
1283 old_entry = entry;
1284 entry &= ~QCOW_OFLAG_COPIED;
1285 offset = entry & L2E_OFFSET_MASK;
1286
1287 switch (qcow2_get_cluster_type(entry)) {
1288 case QCOW2_CLUSTER_COMPRESSED:
1289 nb_csectors = ((entry >> s->csize_shift) &
1290 s->csize_mask) + 1;
1291 if (addend != 0) {
1292 ret = update_refcount(
1293 bs, (entry & s->cluster_offset_mask) & ~511,
2aabe7c7 1294 nb_csectors * 512, abs(addend), addend < 0,
6cfcb9b8 1295 QCOW2_DISCARD_SNAPSHOT);
ca62dd5c
AG
1296 if (ret < 0) {
1297 goto fail;
1298 }
1299 }
1300 /* compressed clusters are never modified */
1301 refcount = 2;
1302 break;
1303
1304 case QCOW2_CLUSTER_NORMAL:
1305 case QCOW2_CLUSTER_ZERO_ALLOC:
1306 if (offset_into_cluster(s, offset)) {
83ad165b
AG
1307 /* Here l2_index means table (not slice) index */
1308 int l2_index = slice * s->l2_slice_size + j;
ca62dd5c
AG
1309 qcow2_signal_corruption(
1310 bs, true, -1, -1, "Cluster "
1311 "allocation offset %#" PRIx64
1312 " unaligned (L2 offset: %#"
1313 PRIx64 ", L2 index: %#x)",
83ad165b 1314 offset, l2_offset, l2_index);
ca62dd5c 1315 ret = -EIO;
a97c67ee
HR
1316 goto fail;
1317 }
1318
ca62dd5c
AG
1319 cluster_index = offset >> s->cluster_bits;
1320 assert(cluster_index);
1321 if (addend != 0) {
1322 ret = qcow2_update_cluster_refcount(
1323 bs, cluster_index, abs(addend), addend < 0,
1324 QCOW2_DISCARD_SNAPSHOT);
1325 if (ret < 0) {
1326 goto fail;
1327 }
1328 }
1329
1330 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
7324c10f 1331 if (ret < 0) {
018faafd
KW
1332 goto fail;
1333 }
ca62dd5c 1334 break;
bbd995d8 1335
ca62dd5c
AG
1336 case QCOW2_CLUSTER_ZERO_PLAIN:
1337 case QCOW2_CLUSTER_UNALLOCATED:
1338 refcount = 0;
1339 break;
8b81a7b6 1340
ca62dd5c
AG
1341 default:
1342 abort();
1343 }
8b81a7b6 1344
ca62dd5c
AG
1345 if (refcount == 1) {
1346 entry |= QCOW_OFLAG_COPIED;
1347 }
1348 if (entry != old_entry) {
1349 if (addend > 0) {
1350 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1351 s->refcount_block_cache);
1352 }
83ad165b 1353 l2_slice[j] = cpu_to_be64(entry);
ca62dd5c 1354 qcow2_cache_entry_mark_dirty(s->l2_table_cache,
83ad165b 1355 l2_slice);
f7d0fe02
KW
1356 }
1357 }
29c1a730 1358
83ad165b 1359 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
ca62dd5c 1360 }
29c1a730 1361
f7d0fe02 1362 if (addend != 0) {
c6e9d8ae
HR
1363 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1364 s->cluster_bits,
2aabe7c7 1365 abs(addend), addend < 0,
c6e9d8ae
HR
1366 QCOW2_DISCARD_SNAPSHOT);
1367 if (ret < 0) {
1368 goto fail;
1369 }
f7d0fe02 1370 }
7324c10f
HR
1371 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1372 &refcount);
1373 if (ret < 0) {
018faafd
KW
1374 goto fail;
1375 } else if (refcount == 1) {
f7d0fe02
KW
1376 l2_offset |= QCOW_OFLAG_COPIED;
1377 }
1378 if (l2_offset != old_l2_offset) {
1379 l1_table[i] = l2_offset;
1380 l1_modified = 1;
1381 }
1382 }
1383 }
93913dfd 1384
2154f24e 1385 ret = bdrv_flush(bs);
93913dfd 1386fail:
83ad165b
AG
1387 if (l2_slice) {
1388 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
93913dfd
KW
1389 }
1390
0b919fae
KW
1391 s->cache_discards = false;
1392 qcow2_process_discards(bs, ret);
1393
43a0cac4 1394 /* Update L1 only if it isn't deleted anyway (addend = -1) */
c2b6ff51
KW
1395 if (ret == 0 && addend >= 0 && l1_modified) {
1396 for (i = 0; i < l1_size; i++) {
f7d0fe02 1397 cpu_to_be64s(&l1_table[i]);
c2b6ff51
KW
1398 }
1399
d9ca2ea2 1400 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
9a4f4c31 1401 l1_table, l1_size2);
c2b6ff51
KW
1402
1403 for (i = 0; i < l1_size; i++) {
f7d0fe02 1404 be64_to_cpus(&l1_table[i]);
c2b6ff51 1405 }
f7d0fe02
KW
1406 }
1407 if (l1_allocated)
7267c094 1408 g_free(l1_table);
93913dfd 1409 return ret;
f7d0fe02
KW
1410}
1411
1412
1413
1414
1415/*********************************************************/
1416/* refcount checking functions */
1417
1418
c2551b47 1419static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
5fee192e
HR
1420{
1421 /* This assertion holds because there is no way we can address more than
1422 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1423 * offsets have to be representable in bytes); due to every cluster
1424 * corresponding to one refcount entry, we are well below that limit */
1425 assert(entries < (UINT64_C(1) << (64 - 9)));
1426
1427 /* Thanks to the assertion this will not overflow, because
1428 * s->refcount_order < 7.
1429 * (note: x << s->refcount_order == x * s->refcount_bits) */
1430 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1431}
1432
1433/**
1434 * Reallocates *array so that it can hold new_size entries. *size must contain
1435 * the current number of entries in *array. If the reallocation fails, *array
1436 * and *size will not be modified and -errno will be returned. If the
1437 * reallocation is successful, *array will be set to the new buffer, *size
1438 * will be set to new_size and 0 will be returned. The size of the reallocated
1439 * refcount array buffer will be aligned to a cluster boundary, and the newly
1440 * allocated area will be zeroed.
1441 */
ff99129a 1442static int realloc_refcount_array(BDRVQcow2State *s, void **array,
5fee192e
HR
1443 int64_t *size, int64_t new_size)
1444{
b6d36def 1445 int64_t old_byte_size, new_byte_size;
7453c96b 1446 void *new_ptr;
5fee192e
HR
1447
1448 /* Round to clusters so the array can be directly written to disk */
1449 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1450 * s->cluster_size;
1451 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1452 * s->cluster_size;
1453
1454 if (new_byte_size == old_byte_size) {
1455 *size = new_size;
1456 return 0;
1457 }
1458
1459 assert(new_byte_size > 0);
1460
b6d36def
HR
1461 if (new_byte_size > SIZE_MAX) {
1462 return -ENOMEM;
1463 }
1464
5fee192e
HR
1465 new_ptr = g_try_realloc(*array, new_byte_size);
1466 if (!new_ptr) {
1467 return -ENOMEM;
1468 }
1469
1470 if (new_byte_size > old_byte_size) {
b6d36def 1471 memset((char *)new_ptr + old_byte_size, 0,
5fee192e
HR
1472 new_byte_size - old_byte_size);
1473 }
1474
1475 *array = new_ptr;
1476 *size = new_size;
1477
1478 return 0;
1479}
f7d0fe02
KW
1480
1481/*
1482 * Increases the refcount for a range of clusters in a given refcount table.
1483 * This is used to construct a temporary refcount table out of L1 and L2 tables
b6af0975 1484 * which can be compared to the refcount table saved in the image.
f7d0fe02 1485 *
9ac228e0 1486 * Modifies the number of errors in res.
f7d0fe02 1487 */
8a5bb1f1
VSO
1488int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1489 void **refcount_table,
1490 int64_t *refcount_table_size,
1491 int64_t offset, int64_t size)
f7d0fe02 1492{
ff99129a 1493 BDRVQcow2State *s = bs->opaque;
7453c96b 1494 uint64_t start, last, cluster_offset, k, refcount;
5fee192e 1495 int ret;
f7d0fe02 1496
fef4d3d5
HR
1497 if (size <= 0) {
1498 return 0;
1499 }
f7d0fe02 1500
ac95acdb
HT
1501 start = start_of_cluster(s, offset);
1502 last = start_of_cluster(s, offset + size - 1);
f7d0fe02
KW
1503 for(cluster_offset = start; cluster_offset <= last;
1504 cluster_offset += s->cluster_size) {
1505 k = cluster_offset >> s->cluster_bits;
641bb63c 1506 if (k >= *refcount_table_size) {
5fee192e
HR
1507 ret = realloc_refcount_array(s, refcount_table,
1508 refcount_table_size, k + 1);
1509 if (ret < 0) {
641bb63c 1510 res->check_errors++;
5fee192e 1511 return ret;
f7d0fe02 1512 }
641bb63c
HR
1513 }
1514
7453c96b
HR
1515 refcount = s->get_refcount(*refcount_table, k);
1516 if (refcount == s->refcount_max) {
641bb63c
HR
1517 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1518 "\n", cluster_offset);
03bb78ed
HR
1519 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1520 "width or qemu-img convert to create a clean copy if the "
1521 "image cannot be opened for writing\n");
641bb63c 1522 res->corruptions++;
7453c96b 1523 continue;
f7d0fe02 1524 }
7453c96b 1525 s->set_refcount(*refcount_table, k, refcount + 1);
f7d0fe02 1526 }
fef4d3d5
HR
1527
1528 return 0;
f7d0fe02
KW
1529}
1530
801f7044
SH
1531/* Flags for check_refcounts_l1() and check_refcounts_l2() */
1532enum {
fba31bae 1533 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
801f7044
SH
1534};
1535
f7d0fe02
KW
1536/*
1537 * Increases the refcount in the given refcount table for the all clusters
1538 * referenced in the L2 table. While doing so, performs some checks on L2
1539 * entries.
1540 *
1541 * Returns the number of errors found by the checks or -errno if an internal
1542 * error occurred.
1543 */
9ac228e0 1544static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
7453c96b
HR
1545 void **refcount_table,
1546 int64_t *refcount_table_size, int64_t l2_offset,
ac5b787a 1547 int flags, BdrvCheckMode fix)
f7d0fe02 1548{
ff99129a 1549 BDRVQcow2State *s = bs->opaque;
afdf0abe 1550 uint64_t *l2_table, l2_entry;
fba31bae 1551 uint64_t next_contiguous_offset = 0;
ad27390c 1552 int i, l2_size, nb_csectors, ret;
f7d0fe02
KW
1553
1554 /* Read L2 table from disk */
1555 l2_size = s->l2_size * sizeof(uint64_t);
7267c094 1556 l2_table = g_malloc(l2_size);
f7d0fe02 1557
cf2ab8fc 1558 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
ad27390c
HR
1559 if (ret < 0) {
1560 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1561 res->check_errors++;
f7d0fe02 1562 goto fail;
ad27390c 1563 }
f7d0fe02
KW
1564
1565 /* Do the actual checks */
1566 for(i = 0; i < s->l2_size; i++) {
afdf0abe
KW
1567 l2_entry = be64_to_cpu(l2_table[i]);
1568
1569 switch (qcow2_get_cluster_type(l2_entry)) {
1570 case QCOW2_CLUSTER_COMPRESSED:
1571 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1572 if (l2_entry & QCOW_OFLAG_COPIED) {
1573 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1574 "copied flag must never be set for compressed "
1575 "clusters\n", l2_entry >> s->cluster_bits);
1576 l2_entry &= ~QCOW_OFLAG_COPIED;
1577 res->corruptions++;
1578 }
f7d0fe02 1579
afdf0abe
KW
1580 /* Mark cluster as used */
1581 nb_csectors = ((l2_entry >> s->csize_shift) &
1582 s->csize_mask) + 1;
1583 l2_entry &= s->cluster_offset_mask;
8a5bb1f1
VSO
1584 ret = qcow2_inc_refcounts_imrt(bs, res,
1585 refcount_table, refcount_table_size,
1586 l2_entry & ~511, nb_csectors * 512);
fef4d3d5
HR
1587 if (ret < 0) {
1588 goto fail;
1589 }
fba31bae
SH
1590
1591 if (flags & CHECK_FRAG_INFO) {
1592 res->bfi.allocated_clusters++;
4db35162 1593 res->bfi.compressed_clusters++;
fba31bae
SH
1594
1595 /* Compressed clusters are fragmented by nature. Since they
1596 * take up sub-sector space but we only have sector granularity
1597 * I/O we need to re-read the same sectors even for adjacent
1598 * compressed clusters.
1599 */
1600 res->bfi.fragmented_clusters++;
1601 }
afdf0abe 1602 break;
f7d0fe02 1603
fdfab37d 1604 case QCOW2_CLUSTER_ZERO_ALLOC:
afdf0abe
KW
1605 case QCOW2_CLUSTER_NORMAL:
1606 {
afdf0abe 1607 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
f7d0fe02 1608
fba31bae
SH
1609 if (flags & CHECK_FRAG_INFO) {
1610 res->bfi.allocated_clusters++;
1611 if (next_contiguous_offset &&
1612 offset != next_contiguous_offset) {
1613 res->bfi.fragmented_clusters++;
1614 }
1615 next_contiguous_offset = offset + s->cluster_size;
1616 }
1617
ac5b787a
HR
1618 /* Correct offsets are cluster aligned */
1619 if (offset_into_cluster(s, offset)) {
1620 if (qcow2_get_cluster_type(l2_entry) ==
1621 QCOW2_CLUSTER_ZERO_ALLOC)
1622 {
1623 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1624 "cluster is not properly aligned; L2 entry "
1625 "corrupted.\n",
1626 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1627 offset);
1628 if (fix & BDRV_FIX_ERRORS) {
1629 uint64_t l2e_offset =
1630 l2_offset + (uint64_t)i * sizeof(uint64_t);
1631
1632 l2_entry = QCOW_OFLAG_ZERO;
1633 l2_table[i] = cpu_to_be64(l2_entry);
1634 ret = qcow2_pre_write_overlap_check(bs,
1635 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2,
1636 l2e_offset, sizeof(uint64_t));
1637 if (ret < 0) {
1638 fprintf(stderr, "ERROR: Overlap check failed\n");
1639 res->check_errors++;
1640 /* Something is seriously wrong, so abort checking
1641 * this L2 table */
1642 goto fail;
1643 }
1644
1645 ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1646 &l2_table[i], sizeof(uint64_t));
1647 if (ret < 0) {
1648 fprintf(stderr, "ERROR: Failed to overwrite L2 "
1649 "table entry: %s\n", strerror(-ret));
1650 res->check_errors++;
1651 /* Do not abort, continue checking the rest of this
1652 * L2 table's entries */
1653 } else {
1654 res->corruptions_fixed++;
1655 /* Skip marking the cluster as used
1656 * (it is unused now) */
1657 continue;
1658 }
1659 } else {
1660 res->corruptions++;
1661 }
1662 } else {
1663 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1664 "not properly aligned; L2 entry corrupted.\n", offset);
1665 res->corruptions++;
1666 }
1667 }
1668
afdf0abe 1669 /* Mark cluster as used */
8a5bb1f1
VSO
1670 ret = qcow2_inc_refcounts_imrt(bs, res,
1671 refcount_table, refcount_table_size,
1672 offset, s->cluster_size);
fef4d3d5
HR
1673 if (ret < 0) {
1674 goto fail;
1675 }
afdf0abe
KW
1676 break;
1677 }
1678
fdfab37d 1679 case QCOW2_CLUSTER_ZERO_PLAIN:
afdf0abe
KW
1680 case QCOW2_CLUSTER_UNALLOCATED:
1681 break;
1682
1683 default:
1684 abort();
f7d0fe02
KW
1685 }
1686 }
1687
7267c094 1688 g_free(l2_table);
9ac228e0 1689 return 0;
f7d0fe02
KW
1690
1691fail:
7267c094 1692 g_free(l2_table);
ad27390c 1693 return ret;
f7d0fe02
KW
1694}
1695
1696/*
1697 * Increases the refcount for the L1 table, its L2 tables and all referenced
1698 * clusters in the given refcount table. While doing so, performs some checks
1699 * on L1 and L2 entries.
1700 *
1701 * Returns the number of errors found by the checks or -errno if an internal
1702 * error occurred.
1703 */
1704static int check_refcounts_l1(BlockDriverState *bs,
9ac228e0 1705 BdrvCheckResult *res,
7453c96b 1706 void **refcount_table,
641bb63c 1707 int64_t *refcount_table_size,
f7d0fe02 1708 int64_t l1_table_offset, int l1_size,
ac5b787a 1709 int flags, BdrvCheckMode fix)
f7d0fe02 1710{
ff99129a 1711 BDRVQcow2State *s = bs->opaque;
fef4d3d5 1712 uint64_t *l1_table = NULL, l2_offset, l1_size2;
4f6ed88c 1713 int i, ret;
f7d0fe02
KW
1714
1715 l1_size2 = l1_size * sizeof(uint64_t);
1716
1717 /* Mark L1 table as used */
8a5bb1f1
VSO
1718 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1719 l1_table_offset, l1_size2);
fef4d3d5
HR
1720 if (ret < 0) {
1721 goto fail;
1722 }
f7d0fe02
KW
1723
1724 /* Read L1 table entries from disk */
fef4d3d5 1725 if (l1_size2 > 0) {
de82815d
KW
1726 l1_table = g_try_malloc(l1_size2);
1727 if (l1_table == NULL) {
1728 ret = -ENOMEM;
ad27390c 1729 res->check_errors++;
de82815d
KW
1730 goto fail;
1731 }
cf2ab8fc 1732 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
ad27390c
HR
1733 if (ret < 0) {
1734 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1735 res->check_errors++;
702ef63f 1736 goto fail;
ad27390c 1737 }
702ef63f
KW
1738 for(i = 0;i < l1_size; i++)
1739 be64_to_cpus(&l1_table[i]);
1740 }
f7d0fe02
KW
1741
1742 /* Do the actual checks */
1743 for(i = 0; i < l1_size; i++) {
1744 l2_offset = l1_table[i];
1745 if (l2_offset) {
f7d0fe02 1746 /* Mark L2 table as used */
afdf0abe 1747 l2_offset &= L1E_OFFSET_MASK;
8a5bb1f1
VSO
1748 ret = qcow2_inc_refcounts_imrt(bs, res,
1749 refcount_table, refcount_table_size,
1750 l2_offset, s->cluster_size);
fef4d3d5
HR
1751 if (ret < 0) {
1752 goto fail;
1753 }
f7d0fe02
KW
1754
1755 /* L2 tables are cluster aligned */
ac95acdb 1756 if (offset_into_cluster(s, l2_offset)) {
f7d0fe02
KW
1757 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1758 "cluster aligned; L1 entry corrupted\n", l2_offset);
9ac228e0 1759 res->corruptions++;
f7d0fe02
KW
1760 }
1761
1762 /* Process and check L2 entries */
9ac228e0 1763 ret = check_refcounts_l2(bs, res, refcount_table,
ac5b787a
HR
1764 refcount_table_size, l2_offset, flags,
1765 fix);
f7d0fe02
KW
1766 if (ret < 0) {
1767 goto fail;
1768 }
f7d0fe02
KW
1769 }
1770 }
7267c094 1771 g_free(l1_table);
9ac228e0 1772 return 0;
f7d0fe02
KW
1773
1774fail:
7267c094 1775 g_free(l1_table);
ad27390c 1776 return ret;
f7d0fe02
KW
1777}
1778
4f6ed88c
HR
1779/*
1780 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1781 *
1782 * This function does not print an error message nor does it increment
44751917
HR
1783 * check_errors if qcow2_get_refcount fails (this is because such an error will
1784 * have been already detected and sufficiently signaled by the calling function
4f6ed88c
HR
1785 * (qcow2_check_refcounts) by the time this function is called).
1786 */
e23e400e
HR
1787static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1788 BdrvCheckMode fix)
4f6ed88c 1789{
ff99129a 1790 BDRVQcow2State *s = bs->opaque;
4f6ed88c
HR
1791 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1792 int ret;
0e06528e 1793 uint64_t refcount;
4f6ed88c
HR
1794 int i, j;
1795
1796 for (i = 0; i < s->l1_size; i++) {
1797 uint64_t l1_entry = s->l1_table[i];
1798 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
e23e400e 1799 bool l2_dirty = false;
4f6ed88c
HR
1800
1801 if (!l2_offset) {
1802 continue;
1803 }
1804
7324c10f
HR
1805 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1806 &refcount);
1807 if (ret < 0) {
4f6ed88c
HR
1808 /* don't print message nor increment check_errors */
1809 continue;
1810 }
1811 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
e23e400e 1812 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
0e06528e 1813 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
e23e400e
HR
1814 fix & BDRV_FIX_ERRORS ? "Repairing" :
1815 "ERROR",
4f6ed88c 1816 i, l1_entry, refcount);
e23e400e
HR
1817 if (fix & BDRV_FIX_ERRORS) {
1818 s->l1_table[i] = refcount == 1
1819 ? l1_entry | QCOW_OFLAG_COPIED
1820 : l1_entry & ~QCOW_OFLAG_COPIED;
1821 ret = qcow2_write_l1_entry(bs, i);
1822 if (ret < 0) {
1823 res->check_errors++;
1824 goto fail;
1825 }
1826 res->corruptions_fixed++;
1827 } else {
1828 res->corruptions++;
1829 }
4f6ed88c
HR
1830 }
1831
cf2ab8fc 1832 ret = bdrv_pread(bs->file, l2_offset, l2_table,
4f6ed88c
HR
1833 s->l2_size * sizeof(uint64_t));
1834 if (ret < 0) {
1835 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1836 strerror(-ret));
1837 res->check_errors++;
1838 goto fail;
1839 }
1840
1841 for (j = 0; j < s->l2_size; j++) {
1842 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1843 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
3ef95218 1844 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
4f6ed88c 1845
fdfab37d
EB
1846 if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1847 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
7324c10f
HR
1848 ret = qcow2_get_refcount(bs,
1849 data_offset >> s->cluster_bits,
1850 &refcount);
1851 if (ret < 0) {
4f6ed88c
HR
1852 /* don't print message nor increment check_errors */
1853 continue;
1854 }
1855 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
e23e400e 1856 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
0e06528e 1857 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
e23e400e
HR
1858 fix & BDRV_FIX_ERRORS ? "Repairing" :
1859 "ERROR",
4f6ed88c 1860 l2_entry, refcount);
e23e400e
HR
1861 if (fix & BDRV_FIX_ERRORS) {
1862 l2_table[j] = cpu_to_be64(refcount == 1
1863 ? l2_entry | QCOW_OFLAG_COPIED
1864 : l2_entry & ~QCOW_OFLAG_COPIED);
1865 l2_dirty = true;
1866 res->corruptions_fixed++;
1867 } else {
1868 res->corruptions++;
1869 }
4f6ed88c
HR
1870 }
1871 }
1872 }
e23e400e
HR
1873
1874 if (l2_dirty) {
231bb267
HR
1875 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1876 l2_offset, s->cluster_size);
e23e400e
HR
1877 if (ret < 0) {
1878 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1879 "overlap check failed: %s\n", strerror(-ret));
1880 res->check_errors++;
1881 goto fail;
1882 }
1883
d9ca2ea2 1884 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
9a4f4c31 1885 s->cluster_size);
e23e400e
HR
1886 if (ret < 0) {
1887 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1888 strerror(-ret));
1889 res->check_errors++;
1890 goto fail;
1891 }
1892 }
4f6ed88c
HR
1893 }
1894
1895 ret = 0;
1896
1897fail:
1898 qemu_vfree(l2_table);
1899 return ret;
1900}
1901
6ca56bf5
HR
1902/*
1903 * Checks consistency of refblocks and accounts for each refblock in
1904 * *refcount_table.
1905 */
1906static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
f307b255 1907 BdrvCheckMode fix, bool *rebuild,
7453c96b 1908 void **refcount_table, int64_t *nb_clusters)
6ca56bf5 1909{
ff99129a 1910 BDRVQcow2State *s = bs->opaque;
001c158d 1911 int64_t i, size;
fef4d3d5 1912 int ret;
6ca56bf5 1913
f7d0fe02 1914 for(i = 0; i < s->refcount_table_size; i++) {
6882c8fa 1915 uint64_t offset, cluster;
f7d0fe02 1916 offset = s->refcount_table[i];
6882c8fa 1917 cluster = offset >> s->cluster_bits;
746c3cb5
KW
1918
1919 /* Refcount blocks are cluster aligned */
ac95acdb 1920 if (offset_into_cluster(s, offset)) {
166acf54 1921 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
746c3cb5 1922 "cluster aligned; refcount table entry corrupted\n", i);
9ac228e0 1923 res->corruptions++;
f307b255 1924 *rebuild = true;
6882c8fa
KW
1925 continue;
1926 }
1927
6ca56bf5 1928 if (cluster >= *nb_clusters) {
001c158d
HR
1929 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1930 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1931
1932 if (fix & BDRV_FIX_ERRORS) {
5fee192e 1933 int64_t new_nb_clusters;
ed3d2ec9 1934 Error *local_err = NULL;
001c158d
HR
1935
1936 if (offset > INT64_MAX - s->cluster_size) {
1937 ret = -EINVAL;
1938 goto resize_fail;
1939 }
1940
ed3d2ec9 1941 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
7ea37c30 1942 PREALLOC_MODE_OFF, &local_err);
001c158d 1943 if (ret < 0) {
ed3d2ec9 1944 error_report_err(local_err);
001c158d
HR
1945 goto resize_fail;
1946 }
9a4f4c31 1947 size = bdrv_getlength(bs->file->bs);
001c158d
HR
1948 if (size < 0) {
1949 ret = size;
1950 goto resize_fail;
1951 }
1952
5fee192e
HR
1953 new_nb_clusters = size_to_clusters(s, size);
1954 assert(new_nb_clusters >= *nb_clusters);
001c158d 1955
5fee192e
HR
1956 ret = realloc_refcount_array(s, refcount_table,
1957 nb_clusters, new_nb_clusters);
1958 if (ret < 0) {
001c158d 1959 res->check_errors++;
5fee192e 1960 return ret;
001c158d 1961 }
001c158d
HR
1962
1963 if (cluster >= *nb_clusters) {
1964 ret = -EINVAL;
1965 goto resize_fail;
1966 }
1967
1968 res->corruptions_fixed++;
8a5bb1f1
VSO
1969 ret = qcow2_inc_refcounts_imrt(bs, res,
1970 refcount_table, nb_clusters,
1971 offset, s->cluster_size);
001c158d
HR
1972 if (ret < 0) {
1973 return ret;
1974 }
1975 /* No need to check whether the refcount is now greater than 1:
1976 * This area was just allocated and zeroed, so it can only be
8a5bb1f1 1977 * exactly 1 after qcow2_inc_refcounts_imrt() */
001c158d
HR
1978 continue;
1979
1980resize_fail:
1981 res->corruptions++;
f307b255 1982 *rebuild = true;
001c158d
HR
1983 fprintf(stderr, "ERROR could not resize image: %s\n",
1984 strerror(-ret));
1985 } else {
1986 res->corruptions++;
1987 }
6882c8fa 1988 continue;
746c3cb5
KW
1989 }
1990
f7d0fe02 1991 if (offset != 0) {
8a5bb1f1
VSO
1992 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1993 offset, s->cluster_size);
fef4d3d5
HR
1994 if (ret < 0) {
1995 return ret;
1996 }
7453c96b 1997 if (s->get_refcount(*refcount_table, cluster) != 1) {
f307b255 1998 fprintf(stderr, "ERROR refcount block %" PRId64
7453c96b
HR
1999 " refcount=%" PRIu64 "\n", i,
2000 s->get_refcount(*refcount_table, cluster));
f307b255
HR
2001 res->corruptions++;
2002 *rebuild = true;
746c3cb5 2003 }
f7d0fe02
KW
2004 }
2005 }
2006
6ca56bf5
HR
2007 return 0;
2008}
2009
057a3fe5
HR
2010/*
2011 * Calculates an in-memory refcount table.
2012 */
2013static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
f307b255 2014 BdrvCheckMode fix, bool *rebuild,
7453c96b 2015 void **refcount_table, int64_t *nb_clusters)
057a3fe5 2016{
ff99129a 2017 BDRVQcow2State *s = bs->opaque;
057a3fe5
HR
2018 int64_t i;
2019 QCowSnapshot *sn;
2020 int ret;
2021
9696df21 2022 if (!*refcount_table) {
5fee192e
HR
2023 int64_t old_size = 0;
2024 ret = realloc_refcount_array(s, refcount_table,
2025 &old_size, *nb_clusters);
2026 if (ret < 0) {
9696df21 2027 res->check_errors++;
5fee192e 2028 return ret;
9696df21 2029 }
057a3fe5
HR
2030 }
2031
2032 /* header */
8a5bb1f1
VSO
2033 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2034 0, s->cluster_size);
fef4d3d5
HR
2035 if (ret < 0) {
2036 return ret;
2037 }
057a3fe5
HR
2038
2039 /* current L1 table */
641bb63c 2040 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
ac5b787a
HR
2041 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2042 fix);
057a3fe5
HR
2043 if (ret < 0) {
2044 return ret;
2045 }
2046
2047 /* snapshots */
2048 for (i = 0; i < s->nb_snapshots; i++) {
2049 sn = s->snapshots + i;
641bb63c 2050 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
ac5b787a 2051 sn->l1_table_offset, sn->l1_size, 0, fix);
057a3fe5
HR
2052 if (ret < 0) {
2053 return ret;
2054 }
2055 }
8a5bb1f1
VSO
2056 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2057 s->snapshots_offset, s->snapshots_size);
fef4d3d5
HR
2058 if (ret < 0) {
2059 return ret;
2060 }
057a3fe5
HR
2061
2062 /* refcount data */
8a5bb1f1
VSO
2063 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2064 s->refcount_table_offset,
2065 s->refcount_table_size * sizeof(uint64_t));
fef4d3d5
HR
2066 if (ret < 0) {
2067 return ret;
2068 }
057a3fe5 2069
4652b8f3
DB
2070 /* encryption */
2071 if (s->crypto_header.length) {
8a5bb1f1
VSO
2072 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2073 s->crypto_header.offset,
2074 s->crypto_header.length);
4652b8f3
DB
2075 if (ret < 0) {
2076 return ret;
2077 }
2078 }
2079
88ddffae
VSO
2080 /* bitmaps */
2081 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2082 if (ret < 0) {
2083 return ret;
2084 }
2085
f307b255 2086 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
057a3fe5
HR
2087}
2088
6ca56bf5
HR
2089/*
2090 * Compares the actual reference count for each cluster in the image against the
2091 * refcount as reported by the refcount structures on-disk.
2092 */
2093static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
f307b255
HR
2094 BdrvCheckMode fix, bool *rebuild,
2095 int64_t *highest_cluster,
7453c96b 2096 void *refcount_table, int64_t nb_clusters)
6ca56bf5 2097{
ff99129a 2098 BDRVQcow2State *s = bs->opaque;
6ca56bf5 2099 int64_t i;
0e06528e 2100 uint64_t refcount1, refcount2;
7324c10f 2101 int ret;
6ca56bf5
HR
2102
2103 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
7324c10f
HR
2104 ret = qcow2_get_refcount(bs, i, &refcount1);
2105 if (ret < 0) {
166acf54 2106 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
7324c10f 2107 i, strerror(-ret));
9ac228e0 2108 res->check_errors++;
f74550fd 2109 continue;
018faafd
KW
2110 }
2111
7453c96b 2112 refcount2 = s->get_refcount(refcount_table, i);
c6bb9ad1
FS
2113
2114 if (refcount1 > 0 || refcount2 > 0) {
6ca56bf5 2115 *highest_cluster = i;
c6bb9ad1
FS
2116 }
2117
f7d0fe02 2118 if (refcount1 != refcount2) {
166acf54
KW
2119 /* Check if we're allowed to fix the mismatch */
2120 int *num_fixed = NULL;
f307b255
HR
2121 if (refcount1 == 0) {
2122 *rebuild = true;
2123 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
166acf54
KW
2124 num_fixed = &res->leaks_fixed;
2125 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2126 num_fixed = &res->corruptions_fixed;
2127 }
2128
0e06528e
HR
2129 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2130 " reference=%" PRIu64 "\n",
166acf54
KW
2131 num_fixed != NULL ? "Repairing" :
2132 refcount1 < refcount2 ? "ERROR" :
2133 "Leaked",
f7d0fe02 2134 i, refcount1, refcount2);
166acf54
KW
2135
2136 if (num_fixed) {
2137 ret = update_refcount(bs, i << s->cluster_bits, 1,
2aabe7c7
HR
2138 refcount_diff(refcount1, refcount2),
2139 refcount1 > refcount2,
6cfcb9b8 2140 QCOW2_DISCARD_ALWAYS);
166acf54
KW
2141 if (ret >= 0) {
2142 (*num_fixed)++;
2143 continue;
2144 }
2145 }
2146
2147 /* And if we couldn't, print an error */
9ac228e0
KW
2148 if (refcount1 < refcount2) {
2149 res->corruptions++;
2150 } else {
2151 res->leaks++;
2152 }
f7d0fe02
KW
2153 }
2154 }
6ca56bf5
HR
2155}
2156
c7c0681b
HR
2157/*
2158 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2159 * the on-disk refcount structures.
2160 *
2161 * On input, *first_free_cluster tells where to start looking, and need not
2162 * actually be a free cluster; the returned offset will not be before that
2163 * cluster. On output, *first_free_cluster points to the first gap found, even
2164 * if that gap was too small to be used as the returned offset.
2165 *
2166 * Note that *first_free_cluster is a cluster index whereas the return value is
2167 * an offset.
2168 */
2169static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2170 int cluster_count,
7453c96b 2171 void **refcount_table,
c7c0681b
HR
2172 int64_t *imrt_nb_clusters,
2173 int64_t *first_free_cluster)
2174{
ff99129a 2175 BDRVQcow2State *s = bs->opaque;
c7c0681b
HR
2176 int64_t cluster = *first_free_cluster, i;
2177 bool first_gap = true;
2178 int contiguous_free_clusters;
5fee192e 2179 int ret;
c7c0681b
HR
2180
2181 /* Starting at *first_free_cluster, find a range of at least cluster_count
2182 * continuously free clusters */
2183 for (contiguous_free_clusters = 0;
2184 cluster < *imrt_nb_clusters &&
2185 contiguous_free_clusters < cluster_count;
2186 cluster++)
2187 {
7453c96b 2188 if (!s->get_refcount(*refcount_table, cluster)) {
c7c0681b
HR
2189 contiguous_free_clusters++;
2190 if (first_gap) {
2191 /* If this is the first free cluster found, update
2192 * *first_free_cluster accordingly */
2193 *first_free_cluster = cluster;
2194 first_gap = false;
2195 }
2196 } else if (contiguous_free_clusters) {
2197 contiguous_free_clusters = 0;
2198 }
2199 }
2200
2201 /* If contiguous_free_clusters is greater than zero, it contains the number
2202 * of continuously free clusters until the current cluster; the first free
2203 * cluster in the current "gap" is therefore
2204 * cluster - contiguous_free_clusters */
2205
2206 /* If no such range could be found, grow the in-memory refcount table
2207 * accordingly to append free clusters at the end of the image */
2208 if (contiguous_free_clusters < cluster_count) {
c7c0681b
HR
2209 /* contiguous_free_clusters clusters are already empty at the image end;
2210 * we need cluster_count clusters; therefore, we have to allocate
2211 * cluster_count - contiguous_free_clusters new clusters at the end of
2212 * the image (which is the current value of cluster; note that cluster
2213 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2214 * the image end) */
5fee192e
HR
2215 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2216 cluster + cluster_count
2217 - contiguous_free_clusters);
2218 if (ret < 0) {
2219 return ret;
c7c0681b 2220 }
c7c0681b
HR
2221 }
2222
2223 /* Go back to the first free cluster */
2224 cluster -= contiguous_free_clusters;
2225 for (i = 0; i < cluster_count; i++) {
7453c96b 2226 s->set_refcount(*refcount_table, cluster + i, 1);
c7c0681b
HR
2227 }
2228
2229 return cluster << s->cluster_bits;
2230}
2231
2232/*
2233 * Creates a new refcount structure based solely on the in-memory information
2234 * given through *refcount_table. All necessary allocations will be reflected
2235 * in that array.
2236 *
2237 * On success, the old refcount structure is leaked (it will be covered by the
2238 * new refcount structure).
2239 */
2240static int rebuild_refcount_structure(BlockDriverState *bs,
2241 BdrvCheckResult *res,
7453c96b 2242 void **refcount_table,
c7c0681b
HR
2243 int64_t *nb_clusters)
2244{
ff99129a 2245 BDRVQcow2State *s = bs->opaque;
c7c0681b
HR
2246 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2247 int64_t refblock_offset, refblock_start, refblock_index;
2248 uint32_t reftable_size = 0;
2249 uint64_t *on_disk_reftable = NULL;
7453c96b
HR
2250 void *on_disk_refblock;
2251 int ret = 0;
c7c0681b
HR
2252 struct {
2253 uint64_t reftable_offset;
2254 uint32_t reftable_clusters;
2255 } QEMU_PACKED reftable_offset_and_clusters;
2256
2257 qcow2_cache_empty(bs, s->refcount_block_cache);
2258
2259write_refblocks:
2260 for (; cluster < *nb_clusters; cluster++) {
7453c96b 2261 if (!s->get_refcount(*refcount_table, cluster)) {
c7c0681b
HR
2262 continue;
2263 }
2264
2265 refblock_index = cluster >> s->refcount_block_bits;
2266 refblock_start = refblock_index << s->refcount_block_bits;
2267
2268 /* Don't allocate a cluster in a refblock already written to disk */
2269 if (first_free_cluster < refblock_start) {
2270 first_free_cluster = refblock_start;
2271 }
2272 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2273 nb_clusters, &first_free_cluster);
2274 if (refblock_offset < 0) {
2275 fprintf(stderr, "ERROR allocating refblock: %s\n",
2276 strerror(-refblock_offset));
2277 res->check_errors++;
2278 ret = refblock_offset;
2279 goto fail;
2280 }
2281
2282 if (reftable_size <= refblock_index) {
2283 uint32_t old_reftable_size = reftable_size;
2284 uint64_t *new_on_disk_reftable;
2285
2286 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2287 s->cluster_size) / sizeof(uint64_t);
2288 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2289 reftable_size *
2290 sizeof(uint64_t));
2291 if (!new_on_disk_reftable) {
2292 res->check_errors++;
2293 ret = -ENOMEM;
2294 goto fail;
2295 }
2296 on_disk_reftable = new_on_disk_reftable;
2297
2298 memset(on_disk_reftable + old_reftable_size, 0,
2299 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2300
2301 /* The offset we have for the reftable is now no longer valid;
2302 * this will leak that range, but we can easily fix that by running
2303 * a leak-fixing check after this rebuild operation */
2304 reftable_offset = -1;
f80ac75d
PMD
2305 } else {
2306 assert(on_disk_reftable);
c7c0681b
HR
2307 }
2308 on_disk_reftable[refblock_index] = refblock_offset;
2309
2310 /* If this is apparently the last refblock (for now), try to squeeze the
2311 * reftable in */
2312 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2313 reftable_offset < 0)
2314 {
2315 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2316 sizeof(uint64_t));
2317 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2318 refcount_table, nb_clusters,
2319 &first_free_cluster);
2320 if (reftable_offset < 0) {
2321 fprintf(stderr, "ERROR allocating reftable: %s\n",
2322 strerror(-reftable_offset));
2323 res->check_errors++;
2324 ret = reftable_offset;
2325 goto fail;
2326 }
2327 }
2328
2329 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2330 s->cluster_size);
2331 if (ret < 0) {
2332 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2333 goto fail;
2334 }
2335
7453c96b
HR
2336 /* The size of *refcount_table is always cluster-aligned, therefore the
2337 * write operation will not overflow */
2338 on_disk_refblock = (void *)((char *) *refcount_table +
2339 refblock_index * s->cluster_size);
c7c0681b 2340
18d51c4b 2341 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
7453c96b 2342 on_disk_refblock, s->cluster_sectors);
c7c0681b
HR
2343 if (ret < 0) {
2344 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2345 goto fail;
2346 }
2347
2348 /* Go to the end of this refblock */
2349 cluster = refblock_start + s->refcount_block_size - 1;
2350 }
2351
2352 if (reftable_offset < 0) {
2353 uint64_t post_refblock_start, reftable_clusters;
2354
2355 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2356 reftable_clusters = size_to_clusters(s,
2357 reftable_size * sizeof(uint64_t));
2358 /* Not pretty but simple */
2359 if (first_free_cluster < post_refblock_start) {
2360 first_free_cluster = post_refblock_start;
2361 }
2362 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2363 refcount_table, nb_clusters,
2364 &first_free_cluster);
2365 if (reftable_offset < 0) {
2366 fprintf(stderr, "ERROR allocating reftable: %s\n",
2367 strerror(-reftable_offset));
2368 res->check_errors++;
2369 ret = reftable_offset;
2370 goto fail;
2371 }
2372
2373 goto write_refblocks;
2374 }
2375
c7c0681b
HR
2376 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2377 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2378 }
2379
2380 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2381 reftable_size * sizeof(uint64_t));
2382 if (ret < 0) {
2383 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2384 goto fail;
2385 }
2386
2387 assert(reftable_size < INT_MAX / sizeof(uint64_t));
d9ca2ea2 2388 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
c7c0681b
HR
2389 reftable_size * sizeof(uint64_t));
2390 if (ret < 0) {
2391 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2392 goto fail;
2393 }
2394
2395 /* Enter new reftable into the image header */
f1f7a1dd
PM
2396 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2397 reftable_offset_and_clusters.reftable_clusters =
2398 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
d9ca2ea2
KW
2399 ret = bdrv_pwrite_sync(bs->file,
2400 offsetof(QCowHeader, refcount_table_offset),
c7c0681b
HR
2401 &reftable_offset_and_clusters,
2402 sizeof(reftable_offset_and_clusters));
2403 if (ret < 0) {
2404 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2405 goto fail;
2406 }
2407
2408 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2409 be64_to_cpus(&on_disk_reftable[refblock_index]);
2410 }
2411 s->refcount_table = on_disk_reftable;
2412 s->refcount_table_offset = reftable_offset;
2413 s->refcount_table_size = reftable_size;
7061a078 2414 update_max_refcount_table_index(s);
c7c0681b
HR
2415
2416 return 0;
2417
2418fail:
2419 g_free(on_disk_reftable);
2420 return ret;
2421}
2422
6ca56bf5
HR
2423/*
2424 * Checks an image for refcount consistency.
2425 *
2426 * Returns 0 if no errors are found, the number of errors in case the image is
2427 * detected as corrupted, and -errno when an internal error occurred.
2428 */
2429int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2430 BdrvCheckMode fix)
2431{
ff99129a 2432 BDRVQcow2State *s = bs->opaque;
c7c0681b 2433 BdrvCheckResult pre_compare_res;
6ca56bf5 2434 int64_t size, highest_cluster, nb_clusters;
7453c96b 2435 void *refcount_table = NULL;
f307b255 2436 bool rebuild = false;
6ca56bf5
HR
2437 int ret;
2438
9a4f4c31 2439 size = bdrv_getlength(bs->file->bs);
6ca56bf5
HR
2440 if (size < 0) {
2441 res->check_errors++;
2442 return size;
2443 }
2444
2445 nb_clusters = size_to_clusters(s, size);
2446 if (nb_clusters > INT_MAX) {
2447 res->check_errors++;
2448 return -EFBIG;
2449 }
2450
2451 res->bfi.total_clusters =
2452 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2453
f307b255
HR
2454 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2455 &nb_clusters);
6ca56bf5
HR
2456 if (ret < 0) {
2457 goto fail;
2458 }
2459
c7c0681b
HR
2460 /* In case we don't need to rebuild the refcount structure (but want to fix
2461 * something), this function is immediately called again, in which case the
2462 * result should be ignored */
2463 pre_compare_res = *res;
2464 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
6ca56bf5 2465 nb_clusters);
f7d0fe02 2466
c7c0681b 2467 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
791230d8
HR
2468 BdrvCheckResult old_res = *res;
2469 int fresh_leaks = 0;
2470
c7c0681b
HR
2471 fprintf(stderr, "Rebuilding refcount structure\n");
2472 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2473 &nb_clusters);
2474 if (ret < 0) {
2475 goto fail;
2476 }
791230d8
HR
2477
2478 res->corruptions = 0;
2479 res->leaks = 0;
2480
2481 /* Because the old reftable has been exchanged for a new one the
2482 * references have to be recalculated */
2483 rebuild = false;
7453c96b 2484 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
791230d8
HR
2485 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2486 &nb_clusters);
2487 if (ret < 0) {
2488 goto fail;
2489 }
2490
2491 if (fix & BDRV_FIX_LEAKS) {
2492 /* The old refcount structures are now leaked, fix it; the result
2493 * can be ignored, aside from leaks which were introduced by
2494 * rebuild_refcount_structure() that could not be fixed */
2495 BdrvCheckResult saved_res = *res;
2496 *res = (BdrvCheckResult){ 0 };
2497
2498 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2499 &highest_cluster, refcount_table, nb_clusters);
2500 if (rebuild) {
2501 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2502 "broken\n");
2503 }
2504
2505 /* Any leaks accounted for here were introduced by
2506 * rebuild_refcount_structure() because that function has created a
2507 * new refcount structure from scratch */
2508 fresh_leaks = res->leaks;
2509 *res = saved_res;
2510 }
2511
2512 if (res->corruptions < old_res.corruptions) {
2513 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2514 }
2515 if (res->leaks < old_res.leaks) {
2516 res->leaks_fixed += old_res.leaks - res->leaks;
2517 }
2518 res->leaks += fresh_leaks;
c7c0681b
HR
2519 } else if (fix) {
2520 if (rebuild) {
2521 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2522 res->check_errors++;
2523 ret = -EIO;
2524 goto fail;
2525 }
2526
2527 if (res->leaks || res->corruptions) {
2528 *res = pre_compare_res;
2529 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2530 refcount_table, nb_clusters);
2531 }
f307b255
HR
2532 }
2533
4f6ed88c 2534 /* check OFLAG_COPIED */
e23e400e 2535 ret = check_oflag_copied(bs, res, fix);
4f6ed88c
HR
2536 if (ret < 0) {
2537 goto fail;
2538 }
2539
c6bb9ad1 2540 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
80fa3341
KW
2541 ret = 0;
2542
2543fail:
7267c094 2544 g_free(refcount_table);
f7d0fe02 2545
80fa3341 2546 return ret;
f7d0fe02
KW
2547}
2548
a40f1c2a
HR
2549#define overlaps_with(ofs, sz) \
2550 ranges_overlap(offset, size, ofs, sz)
2551
2552/*
2553 * Checks if the given offset into the image file is actually free to use by
2554 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2555 * i.e. a sanity check without relying on the refcount tables.
2556 *
231bb267
HR
2557 * The ign parameter specifies what checks not to perform (being a bitmask of
2558 * QCow2MetadataOverlap values), i.e., what sections to ignore.
a40f1c2a
HR
2559 *
2560 * Returns:
2561 * - 0 if writing to this offset will not affect the mentioned metadata
2562 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2563 * - a negative value (-errno) indicating an error while performing a check,
2564 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2565 */
231bb267 2566int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
a40f1c2a
HR
2567 int64_t size)
2568{
ff99129a 2569 BDRVQcow2State *s = bs->opaque;
3e355390 2570 int chk = s->overlap_check & ~ign;
a40f1c2a
HR
2571 int i, j;
2572
2573 if (!size) {
2574 return 0;
2575 }
2576
2577 if (chk & QCOW2_OL_MAIN_HEADER) {
2578 if (offset < s->cluster_size) {
2579 return QCOW2_OL_MAIN_HEADER;
2580 }
2581 }
2582
2583 /* align range to test to cluster boundaries */
9e029689 2584 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
a40f1c2a
HR
2585 offset = start_of_cluster(s, offset);
2586
2587 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2588 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2589 return QCOW2_OL_ACTIVE_L1;
2590 }
2591 }
2592
2593 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2594 if (overlaps_with(s->refcount_table_offset,
2595 s->refcount_table_size * sizeof(uint64_t))) {
2596 return QCOW2_OL_REFCOUNT_TABLE;
2597 }
2598 }
2599
2600 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2601 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2602 return QCOW2_OL_SNAPSHOT_TABLE;
2603 }
2604 }
2605
2606 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2607 for (i = 0; i < s->nb_snapshots; i++) {
2608 if (s->snapshots[i].l1_size &&
2609 overlaps_with(s->snapshots[i].l1_table_offset,
2610 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2611 return QCOW2_OL_INACTIVE_L1;
2612 }
2613 }
2614 }
2615
2616 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2617 for (i = 0; i < s->l1_size; i++) {
2618 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2619 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2620 s->cluster_size)) {
2621 return QCOW2_OL_ACTIVE_L2;
2622 }
2623 }
2624 }
2625
2626 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
7061a078
AG
2627 unsigned last_entry = s->max_refcount_table_index;
2628 assert(last_entry < s->refcount_table_size);
2629 assert(last_entry + 1 == s->refcount_table_size ||
2630 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2631 for (i = 0; i <= last_entry; i++) {
a40f1c2a
HR
2632 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2633 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2634 s->cluster_size)) {
2635 return QCOW2_OL_REFCOUNT_BLOCK;
2636 }
2637 }
2638 }
2639
2640 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2641 for (i = 0; i < s->nb_snapshots; i++) {
2642 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2643 uint32_t l1_sz = s->snapshots[i].l1_size;
998b959c 2644 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
c7a9d81d 2645 uint64_t *l1;
a40f1c2a
HR
2646 int ret;
2647
c7a9d81d
AG
2648 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2649 QCOW_MAX_L1_SIZE, "", NULL);
2650 if (ret < 0) {
2651 return ret;
2652 }
2653
2654 l1 = g_try_malloc(l1_sz2);
2655
de82815d
KW
2656 if (l1_sz2 && l1 == NULL) {
2657 return -ENOMEM;
2658 }
2659
cf2ab8fc 2660 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
a40f1c2a
HR
2661 if (ret < 0) {
2662 g_free(l1);
2663 return ret;
2664 }
2665
2666 for (j = 0; j < l1_sz; j++) {
1e242b55
HR
2667 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2668 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
a40f1c2a
HR
2669 g_free(l1);
2670 return QCOW2_OL_INACTIVE_L2;
2671 }
2672 }
2673
2674 g_free(l1);
2675 }
2676 }
2677
2678 return 0;
2679}
2680
2681static const char *metadata_ol_names[] = {
2682 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2683 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2684 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2685 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2686 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2687 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2688 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2689 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2690};
2691
2692/*
2693 * First performs a check for metadata overlaps (through
2694 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2695 * while performing a check), that value is returned. If an impending overlap
2696 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2697 * and -EIO returned.
2698 *
2699 * Returns 0 if there were neither overlaps nor errors while checking for
2700 * overlaps; or a negative value (-errno) on error.
2701 */
231bb267 2702int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
a40f1c2a
HR
2703 int64_t size)
2704{
231bb267 2705 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
a40f1c2a
HR
2706
2707 if (ret < 0) {
2708 return ret;
2709 } else if (ret > 0) {
786a4ea8 2710 int metadata_ol_bitnr = ctz32(ret);
a40f1c2a
HR
2711 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2712
adb43552
HR
2713 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2714 "write on metadata (overlaps with %s)",
2715 metadata_ol_names[metadata_ol_bitnr]);
a40f1c2a
HR
2716 return -EIO;
2717 }
2718
2719 return 0;
2720}
791c9a00
HR
2721
2722/* A pointer to a function of this type is given to walk_over_reftable(). That
2723 * function will create refblocks and pass them to a RefblockFinishOp once they
2724 * are completed (@refblock). @refblock_empty is set if the refblock is
2725 * completely empty.
2726 *
2727 * Along with the refblock, a corresponding reftable entry is passed, in the
2728 * reftable @reftable (which may be reallocated) at @reftable_index.
2729 *
2730 * @allocated should be set to true if a new cluster has been allocated.
2731 */
2732typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2733 uint64_t reftable_index, uint64_t *reftable_size,
2734 void *refblock, bool refblock_empty,
2735 bool *allocated, Error **errp);
2736
2737/**
2738 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2739 * it is not empty) and inserts its offset into the new reftable. The size of
2740 * this new reftable is increased as required.
2741 */
2742static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2743 uint64_t reftable_index, uint64_t *reftable_size,
2744 void *refblock, bool refblock_empty, bool *allocated,
2745 Error **errp)
2746{
2747 BDRVQcow2State *s = bs->opaque;
2748 int64_t offset;
2749
2750 if (!refblock_empty && reftable_index >= *reftable_size) {
2751 uint64_t *new_reftable;
2752 uint64_t new_reftable_size;
2753
2754 new_reftable_size = ROUND_UP(reftable_index + 1,
2755 s->cluster_size / sizeof(uint64_t));
2756 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2757 error_setg(errp,
2758 "This operation would make the refcount table grow "
2759 "beyond the maximum size supported by QEMU, aborting");
2760 return -ENOTSUP;
2761 }
2762
2763 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2764 sizeof(uint64_t));
2765 if (!new_reftable) {
2766 error_setg(errp, "Failed to increase reftable buffer size");
2767 return -ENOMEM;
2768 }
2769
2770 memset(new_reftable + *reftable_size, 0,
2771 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2772
2773 *reftable = new_reftable;
2774 *reftable_size = new_reftable_size;
2775 }
2776
2777 if (!refblock_empty && !(*reftable)[reftable_index]) {
2778 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2779 if (offset < 0) {
2780 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2781 return offset;
2782 }
2783 (*reftable)[reftable_index] = offset;
2784 *allocated = true;
2785 }
2786
2787 return 0;
2788}
2789
2790/**
2791 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2792 * offset specified by the new reftable's entry. It does not modify the new
2793 * reftable or change any refcounts.
2794 */
2795static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2796 uint64_t reftable_index, uint64_t *reftable_size,
2797 void *refblock, bool refblock_empty, bool *allocated,
2798 Error **errp)
2799{
2800 BDRVQcow2State *s = bs->opaque;
2801 int64_t offset;
2802 int ret;
2803
2804 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2805 offset = (*reftable)[reftable_index];
2806
2807 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2808 if (ret < 0) {
2809 error_setg_errno(errp, -ret, "Overlap check failed");
2810 return ret;
2811 }
2812
d9ca2ea2 2813 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
791c9a00
HR
2814 if (ret < 0) {
2815 error_setg_errno(errp, -ret, "Failed to write refblock");
2816 return ret;
2817 }
2818 } else {
2819 assert(refblock_empty);
2820 }
2821
2822 return 0;
2823}
2824
2825/**
2826 * This function walks over the existing reftable and every referenced refblock;
2827 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2828 * create an equal new entry in the passed @new_refblock. Once that
2829 * @new_refblock is completely filled, @operation will be called.
2830 *
2831 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2832 * @index is the index of the walk_over_reftable() calls and @total is the total
2833 * number of walk_over_reftable() calls per amend operation. Both are used for
2834 * calculating the parameters for the status callback.
2835 *
2836 * @allocated is set to true if a new cluster has been allocated.
2837 */
2838static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2839 uint64_t *new_reftable_index,
2840 uint64_t *new_reftable_size,
2841 void *new_refblock, int new_refblock_size,
2842 int new_refcount_bits,
2843 RefblockFinishOp *operation, bool *allocated,
2844 Qcow2SetRefcountFunc *new_set_refcount,
2845 BlockDriverAmendStatusCB *status_cb,
2846 void *cb_opaque, int index, int total,
2847 Error **errp)
2848{
2849 BDRVQcow2State *s = bs->opaque;
2850 uint64_t reftable_index;
2851 bool new_refblock_empty = true;
2852 int refblock_index;
2853 int new_refblock_index = 0;
2854 int ret;
2855
2856 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2857 reftable_index++)
2858 {
2859 uint64_t refblock_offset = s->refcount_table[reftable_index]
2860 & REFT_OFFSET_MASK;
2861
2862 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2863 (uint64_t)total * s->refcount_table_size, cb_opaque);
2864
2865 if (refblock_offset) {
2866 void *refblock;
2867
2868 if (offset_into_cluster(s, refblock_offset)) {
2869 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2870 PRIx64 " unaligned (reftable index: %#"
2871 PRIx64 ")", refblock_offset,
2872 reftable_index);
2873 error_setg(errp,
2874 "Image is corrupt (unaligned refblock offset)");
2875 return -EIO;
2876 }
2877
2878 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2879 &refblock);
2880 if (ret < 0) {
2881 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2882 return ret;
2883 }
2884
2885 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2886 refblock_index++)
2887 {
2888 uint64_t refcount;
2889
2890 if (new_refblock_index >= new_refblock_size) {
2891 /* new_refblock is now complete */
2892 ret = operation(bs, new_reftable, *new_reftable_index,
2893 new_reftable_size, new_refblock,
2894 new_refblock_empty, allocated, errp);
2895 if (ret < 0) {
2013c3d4 2896 qcow2_cache_put(s->refcount_block_cache, &refblock);
791c9a00
HR
2897 return ret;
2898 }
2899
2900 (*new_reftable_index)++;
2901 new_refblock_index = 0;
2902 new_refblock_empty = true;
2903 }
2904
2905 refcount = s->get_refcount(refblock, refblock_index);
2906 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2907 uint64_t offset;
2908
2013c3d4 2909 qcow2_cache_put(s->refcount_block_cache, &refblock);
791c9a00
HR
2910
2911 offset = ((reftable_index << s->refcount_block_bits)
2912 + refblock_index) << s->cluster_bits;
2913
2914 error_setg(errp, "Cannot decrease refcount entry width to "
2915 "%i bits: Cluster at offset %#" PRIx64 " has a "
2916 "refcount of %" PRIu64, new_refcount_bits,
2917 offset, refcount);
2918 return -EINVAL;
2919 }
2920
2921 if (new_set_refcount) {
2922 new_set_refcount(new_refblock, new_refblock_index++,
2923 refcount);
2924 } else {
2925 new_refblock_index++;
2926 }
2927 new_refblock_empty = new_refblock_empty && refcount == 0;
2928 }
2929
2013c3d4 2930 qcow2_cache_put(s->refcount_block_cache, &refblock);
791c9a00
HR
2931 } else {
2932 /* No refblock means every refcount is 0 */
2933 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2934 refblock_index++)
2935 {
2936 if (new_refblock_index >= new_refblock_size) {
2937 /* new_refblock is now complete */
2938 ret = operation(bs, new_reftable, *new_reftable_index,
2939 new_reftable_size, new_refblock,
2940 new_refblock_empty, allocated, errp);
2941 if (ret < 0) {
2942 return ret;
2943 }
2944
2945 (*new_reftable_index)++;
2946 new_refblock_index = 0;
2947 new_refblock_empty = true;
2948 }
2949
2950 if (new_set_refcount) {
2951 new_set_refcount(new_refblock, new_refblock_index++, 0);
2952 } else {
2953 new_refblock_index++;
2954 }
2955 }
2956 }
2957 }
2958
2959 if (new_refblock_index > 0) {
2960 /* Complete the potentially existing partially filled final refblock */
2961 if (new_set_refcount) {
2962 for (; new_refblock_index < new_refblock_size;
2963 new_refblock_index++)
2964 {
2965 new_set_refcount(new_refblock, new_refblock_index, 0);
2966 }
2967 }
2968
2969 ret = operation(bs, new_reftable, *new_reftable_index,
2970 new_reftable_size, new_refblock, new_refblock_empty,
2971 allocated, errp);
2972 if (ret < 0) {
2973 return ret;
2974 }
2975
2976 (*new_reftable_index)++;
2977 }
2978
2979 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2980 (uint64_t)total * s->refcount_table_size, cb_opaque);
2981
2982 return 0;
2983}
2984
2985int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2986 BlockDriverAmendStatusCB *status_cb,
2987 void *cb_opaque, Error **errp)
2988{
2989 BDRVQcow2State *s = bs->opaque;
2990 Qcow2GetRefcountFunc *new_get_refcount;
2991 Qcow2SetRefcountFunc *new_set_refcount;
2992 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2993 uint64_t *new_reftable = NULL, new_reftable_size = 0;
2994 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2995 uint64_t new_reftable_index = 0;
2996 uint64_t i;
2997 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2998 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2999 int old_refcount_order;
3000 int walk_index = 0;
3001 int ret;
3002 bool new_allocation;
3003
3004 assert(s->qcow_version >= 3);
3005 assert(refcount_order >= 0 && refcount_order <= 6);
3006
3007 /* see qcow2_open() */
3008 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3009
3010 new_get_refcount = get_refcount_funcs[refcount_order];
3011 new_set_refcount = set_refcount_funcs[refcount_order];
3012
3013
3014 do {
3015 int total_walks;
3016
3017 new_allocation = false;
3018
3019 /* At least we have to do this walk and the one which writes the
3020 * refblocks; also, at least we have to do this loop here at least
3021 * twice (normally), first to do the allocations, and second to
3022 * determine that everything is correctly allocated, this then makes
3023 * three walks in total */
3024 total_walks = MAX(walk_index + 2, 3);
3025
3026 /* First, allocate the structures so they are present in the refcount
3027 * structures */
3028 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3029 &new_reftable_size, NULL, new_refblock_size,
3030 new_refcount_bits, &alloc_refblock,
3031 &new_allocation, NULL, status_cb, cb_opaque,
3032 walk_index++, total_walks, errp);
3033 if (ret < 0) {
3034 goto done;
3035 }
3036
3037 new_reftable_index = 0;
3038
3039 if (new_allocation) {
3040 if (new_reftable_offset) {
3041 qcow2_free_clusters(bs, new_reftable_offset,
3042 allocated_reftable_size * sizeof(uint64_t),
3043 QCOW2_DISCARD_NEVER);
3044 }
3045
3046 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3047 sizeof(uint64_t));
3048 if (new_reftable_offset < 0) {
3049 error_setg_errno(errp, -new_reftable_offset,
3050 "Failed to allocate the new reftable");
3051 ret = new_reftable_offset;
3052 goto done;
3053 }
3054 allocated_reftable_size = new_reftable_size;
3055 }
3056 } while (new_allocation);
3057
3058 /* Second, write the new refblocks */
3059 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3060 &new_reftable_size, new_refblock,
3061 new_refblock_size, new_refcount_bits,
3062 &flush_refblock, &new_allocation, new_set_refcount,
3063 status_cb, cb_opaque, walk_index, walk_index + 1,
3064 errp);
3065 if (ret < 0) {
3066 goto done;
3067 }
3068 assert(!new_allocation);
3069
3070
3071 /* Write the new reftable */
3072 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3073 new_reftable_size * sizeof(uint64_t));
3074 if (ret < 0) {
3075 error_setg_errno(errp, -ret, "Overlap check failed");
3076 goto done;
3077 }
3078
3079 for (i = 0; i < new_reftable_size; i++) {
3080 cpu_to_be64s(&new_reftable[i]);
3081 }
3082
d9ca2ea2 3083 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
791c9a00
HR
3084 new_reftable_size * sizeof(uint64_t));
3085
3086 for (i = 0; i < new_reftable_size; i++) {
3087 be64_to_cpus(&new_reftable[i]);
3088 }
3089
3090 if (ret < 0) {
3091 error_setg_errno(errp, -ret, "Failed to write the new reftable");
3092 goto done;
3093 }
3094
3095
3096 /* Empty the refcount cache */
3097 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3098 if (ret < 0) {
3099 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3100 goto done;
3101 }
3102
3103 /* Update the image header to point to the new reftable; this only updates
3104 * the fields which are relevant to qcow2_update_header(); other fields
3105 * such as s->refcount_table or s->refcount_bits stay stale for now
3106 * (because we have to restore everything if qcow2_update_header() fails) */
3107 old_refcount_order = s->refcount_order;
3108 old_reftable_size = s->refcount_table_size;
3109 old_reftable_offset = s->refcount_table_offset;
3110
3111 s->refcount_order = refcount_order;
3112 s->refcount_table_size = new_reftable_size;
3113 s->refcount_table_offset = new_reftable_offset;
3114
3115 ret = qcow2_update_header(bs);
3116 if (ret < 0) {
3117 s->refcount_order = old_refcount_order;
3118 s->refcount_table_size = old_reftable_size;
3119 s->refcount_table_offset = old_reftable_offset;
3120 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3121 goto done;
3122 }
3123
3124 /* Now update the rest of the in-memory information */
3125 old_reftable = s->refcount_table;
3126 s->refcount_table = new_reftable;
7061a078 3127 update_max_refcount_table_index(s);
791c9a00
HR
3128
3129 s->refcount_bits = 1 << refcount_order;
3130 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3131 s->refcount_max += s->refcount_max - 1;
3132
3133 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3134 s->refcount_block_size = 1 << s->refcount_block_bits;
3135
3136 s->get_refcount = new_get_refcount;
3137 s->set_refcount = new_set_refcount;
3138
3139 /* For cleaning up all old refblocks and the old reftable below the "done"
3140 * label */
3141 new_reftable = old_reftable;
3142 new_reftable_size = old_reftable_size;
3143 new_reftable_offset = old_reftable_offset;
3144
3145done:
3146 if (new_reftable) {
3147 /* On success, new_reftable actually points to the old reftable (and
3148 * new_reftable_size is the old reftable's size); but that is just
3149 * fine */
3150 for (i = 0; i < new_reftable_size; i++) {
3151 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3152 if (offset) {
3153 qcow2_free_clusters(bs, offset, s->cluster_size,
3154 QCOW2_DISCARD_OTHER);
3155 }
3156 }
3157 g_free(new_reftable);
3158
3159 if (new_reftable_offset > 0) {
3160 qcow2_free_clusters(bs, new_reftable_offset,
3161 new_reftable_size * sizeof(uint64_t),
3162 QCOW2_DISCARD_OTHER);
3163 }
3164 }
3165
3166 qemu_vfree(new_refblock);
3167 return ret;
3168}
46b732cd 3169
23482f8a
HR
3170static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3171{
3172 BDRVQcow2State *s = bs->opaque;
3173 uint32_t index = offset_to_reftable_index(s, offset);
3174 int64_t covering_refblock_offset = 0;
3175
3176 if (index < s->refcount_table_size) {
3177 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3178 }
3179 if (!covering_refblock_offset) {
3180 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3181 "not covered by the refcount structures",
3182 offset);
3183 return -EIO;
3184 }
3185
3186 return covering_refblock_offset;
3187}
3188
46b732cd
PB
3189static int qcow2_discard_refcount_block(BlockDriverState *bs,
3190 uint64_t discard_block_offs)
3191{
3192 BDRVQcow2State *s = bs->opaque;
23482f8a 3193 int64_t refblock_offs;
46b732cd
PB
3194 uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3195 uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3196 void *refblock;
3197 int ret;
3198
23482f8a
HR
3199 refblock_offs = get_refblock_offset(bs, discard_block_offs);
3200 if (refblock_offs < 0) {
3201 return refblock_offs;
3202 }
3203
46b732cd
PB
3204 assert(discard_block_offs != 0);
3205
3206 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3207 &refblock);
3208 if (ret < 0) {
3209 return ret;
3210 }
3211
3212 if (s->get_refcount(refblock, block_index) != 1) {
3213 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3214 " refblock offset %#" PRIx64
3215 ", reftable index %u"
3216 ", block offset %#" PRIx64
3217 ", refcount %#" PRIx64,
3218 refblock_offs,
3219 offset_to_reftable_index(s, discard_block_offs),
3220 discard_block_offs,
3221 s->get_refcount(refblock, block_index));
2013c3d4 3222 qcow2_cache_put(s->refcount_block_cache, &refblock);
46b732cd
PB
3223 return -EINVAL;
3224 }
3225 s->set_refcount(refblock, block_index, 0);
3226
2d135ee9 3227 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
46b732cd 3228
2013c3d4 3229 qcow2_cache_put(s->refcount_block_cache, &refblock);
46b732cd
PB
3230
3231 if (cluster_index < s->free_cluster_index) {
3232 s->free_cluster_index = cluster_index;
3233 }
3234
6e6fa760 3235 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
46b732cd
PB
3236 discard_block_offs);
3237 if (refblock) {
3238 /* discard refblock from the cache if refblock is cached */
77aadd7b 3239 qcow2_cache_discard(s->refcount_block_cache, refblock);
46b732cd
PB
3240 }
3241 update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3242
3243 return 0;
3244}
3245
3246int qcow2_shrink_reftable(BlockDriverState *bs)
3247{
3248 BDRVQcow2State *s = bs->opaque;
3249 uint64_t *reftable_tmp =
3250 g_malloc(s->refcount_table_size * sizeof(uint64_t));
3251 int i, ret;
3252
3253 for (i = 0; i < s->refcount_table_size; i++) {
3254 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3255 void *refblock;
3256 bool unused_block;
3257
3258 if (refblock_offs == 0) {
3259 reftable_tmp[i] = 0;
3260 continue;
3261 }
3262 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3263 &refblock);
3264 if (ret < 0) {
3265 goto out;
3266 }
3267
3268 /* the refblock has own reference */
3269 if (i == offset_to_reftable_index(s, refblock_offs)) {
3270 uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3271 (s->refcount_block_size - 1);
3272 uint64_t refcount = s->get_refcount(refblock, block_index);
3273
3274 s->set_refcount(refblock, block_index, 0);
3275
3276 unused_block = buffer_is_zero(refblock, s->cluster_size);
3277
3278 s->set_refcount(refblock, block_index, refcount);
3279 } else {
3280 unused_block = buffer_is_zero(refblock, s->cluster_size);
3281 }
2013c3d4 3282 qcow2_cache_put(s->refcount_block_cache, &refblock);
46b732cd
PB
3283
3284 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3285 }
3286
3287 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3288 s->refcount_table_size * sizeof(uint64_t));
3289 /*
3290 * If the write in the reftable failed the image may contain a partially
3291 * overwritten reftable. In this case it would be better to clear the
3292 * reftable in memory to avoid possible image corruption.
3293 */
3294 for (i = 0; i < s->refcount_table_size; i++) {
3295 if (s->refcount_table[i] && !reftable_tmp[i]) {
3296 if (ret == 0) {
3297 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3298 REFT_OFFSET_MASK);
3299 }
3300 s->refcount_table[i] = 0;
3301 }
3302 }
3303
3304 if (!s->cache_discards) {
3305 qcow2_process_discards(bs, ret);
3306 }
3307
3308out:
3309 g_free(reftable_tmp);
3310 return ret;
3311}
163bc39d
PB
3312
3313int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3314{
3315 BDRVQcow2State *s = bs->opaque;
3316 int64_t i;
3317
3318 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3319 uint64_t refcount;
3320 int ret = qcow2_get_refcount(bs, i, &refcount);
3321 if (ret < 0) {
3322 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3323 i, strerror(-ret));
3324 return ret;
3325 }
3326 if (refcount > 0) {
3327 return i;
3328 }
3329 }
3330 qcow2_signal_corruption(bs, true, -1, -1,
3331 "There are no references in the refcount table.");
3332 return -EIO;
3333}