]> git.proxmox.com Git - mirror_qemu.git/blame - block/qed.h
qed: Really remove unused field QEDAIOCB.finished
[mirror_qemu.git] / block / qed.h
CommitLineData
75411d23
SH
1/*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15#ifndef BLOCK_QED_H
16#define BLOCK_QED_H
17
737e150e 18#include "block/block_int.h"
75411d23
SH
19
20/* The layout of a QED file is as follows:
21 *
22 * +--------+----------+----------+----------+-----+
23 * | header | L1 table | cluster0 | cluster1 | ... |
24 * +--------+----------+----------+----------+-----+
25 *
26 * There is a 2-level pagetable for cluster allocation:
27 *
28 * +----------+
29 * | L1 table |
30 * +----------+
31 * ,------' | '------.
32 * +----------+ | +----------+
33 * | L2 table | ... | L2 table |
34 * +----------+ +----------+
35 * ,------' | '------.
36 * +----------+ | +----------+
37 * | Data | ... | Data |
38 * +----------+ +----------+
39 *
40 * The L1 table is fixed size and always present. L2 tables are allocated on
41 * demand. The L1 table size determines the maximum possible image size; it
42 * can be influenced using the cluster_size and table_size values.
43 *
44 * All fields are little-endian on disk.
45 */
7ab74849 46#define QED_DEFAULT_CLUSTER_SIZE 65536
75411d23
SH
47enum {
48 QED_MAGIC = 'Q' | 'E' << 8 | 'D' << 16 | '\0' << 24,
49
50 /* The image supports a backing file */
51 QED_F_BACKING_FILE = 0x01,
52
01979a98
SH
53 /* The image needs a consistency check before use */
54 QED_F_NEED_CHECK = 0x02,
55
75411d23
SH
56 /* The backing file format must not be probed, treat as raw image */
57 QED_F_BACKING_FORMAT_NO_PROBE = 0x04,
58
59 /* Feature bits must be used when the on-disk format changes */
60 QED_FEATURE_MASK = QED_F_BACKING_FILE | /* supported feature bits */
01979a98 61 QED_F_NEED_CHECK |
75411d23
SH
62 QED_F_BACKING_FORMAT_NO_PROBE,
63 QED_COMPAT_FEATURE_MASK = 0, /* supported compat feature bits */
64 QED_AUTOCLEAR_FEATURE_MASK = 0, /* supported autoclear feature bits */
65
66 /* Data is stored in groups of sectors called clusters. Cluster size must
67 * be large to avoid keeping too much metadata. I/O requests that have
68 * sub-cluster size will require read-modify-write.
69 */
70 QED_MIN_CLUSTER_SIZE = 4 * 1024, /* in bytes */
71 QED_MAX_CLUSTER_SIZE = 64 * 1024 * 1024,
75411d23
SH
72
73 /* Allocated clusters are tracked using a 2-level pagetable. Table size is
74 * a multiple of clusters so large maximum image sizes can be supported
75 * without jacking up the cluster size too much.
76 */
77 QED_MIN_TABLE_SIZE = 1, /* in clusters */
78 QED_MAX_TABLE_SIZE = 16,
79 QED_DEFAULT_TABLE_SIZE = 4,
6f321e93
SH
80
81 /* Delay to flush and clean image after last allocating write completes */
82 QED_NEED_CHECK_TIMEOUT = 5, /* in seconds */
75411d23
SH
83};
84
85typedef struct {
86 uint32_t magic; /* QED\0 */
87
88 uint32_t cluster_size; /* in bytes */
89 uint32_t table_size; /* for L1 and L2 tables, in clusters */
90 uint32_t header_size; /* in clusters */
91
92 uint64_t features; /* format feature bits */
93 uint64_t compat_features; /* compatible feature bits */
94 uint64_t autoclear_features; /* self-resetting feature bits */
95
96 uint64_t l1_table_offset; /* in bytes */
97 uint64_t image_size; /* total logical image size, in bytes */
98
99 /* if (features & QED_F_BACKING_FILE) */
100 uint32_t backing_filename_offset; /* in bytes from start of header */
101 uint32_t backing_filename_size; /* in bytes */
687fb893 102} QEMU_PACKED QEDHeader;
75411d23 103
298800ca
SH
104typedef struct {
105 uint64_t offsets[0]; /* in bytes */
106} QEDTable;
107
108/* The L2 cache is a simple write-through cache for L2 structures */
109typedef struct CachedL2Table {
110 QEDTable *table;
111 uint64_t offset; /* offset=0 indicates an invalidate entry */
112 QTAILQ_ENTRY(CachedL2Table) node;
113 int ref;
114} CachedL2Table;
115
116typedef struct {
117 QTAILQ_HEAD(, CachedL2Table) entries;
118 unsigned int n_entries;
119} L2TableCache;
120
121typedef struct QEDRequest {
122 CachedL2Table *l2_table;
123} QEDRequest;
124
6e4f59bd
SH
125enum {
126 QED_AIOCB_WRITE = 0x0001, /* read or write? */
0e71be19 127 QED_AIOCB_ZERO = 0x0002, /* zero write, used with QED_AIOCB_WRITE */
6e4f59bd
SH
128};
129
eabba580 130typedef struct QEDAIOCB {
7c84b1b8 131 BlockAIOCB common;
eabba580
SH
132 QEMUBH *bh;
133 int bh_ret; /* final return status for completion bh */
134 QSIMPLEQ_ENTRY(QEDAIOCB) next; /* next request */
6e4f59bd 135 int flags; /* QED_AIOCB_* bits ORed together */
eabba580
SH
136 uint64_t end_pos; /* request end on block device, in bytes */
137
138 /* User scatter-gather list */
139 QEMUIOVector *qiov;
140 size_t qiov_offset; /* byte count already processed */
141
142 /* Current cluster scatter-gather list */
143 QEMUIOVector cur_qiov;
f06ee3d4 144 QEMUIOVector *backing_qiov;
eabba580
SH
145 uint64_t cur_pos; /* position on block device, in bytes */
146 uint64_t cur_cluster; /* cluster offset in image file */
147 unsigned int cur_nclusters; /* number of clusters being accessed */
148 int find_cluster_ret; /* used for L1/L2 update */
149
150 QEDRequest request;
151} QEDAIOCB;
152
75411d23
SH
153typedef struct {
154 BlockDriverState *bs; /* device */
155 uint64_t file_size; /* length of image file, in bytes */
156
157 QEDHeader header; /* always cpu-endian */
298800ca
SH
158 QEDTable *l1_table;
159 L2TableCache l2_cache; /* l2 table cache */
75411d23
SH
160 uint32_t table_nelems;
161 uint32_t l1_shift;
162 uint32_t l2_shift;
163 uint32_t l2_mask;
eabba580
SH
164
165 /* Allocating write request queue */
166 QSIMPLEQ_HEAD(, QEDAIOCB) allocating_write_reqs;
6f321e93
SH
167 bool allocating_write_reqs_plugged;
168
169 /* Periodic flush and clear need check flag */
170 QEMUTimer *need_check_timer;
75411d23
SH
171} BDRVQEDState;
172
298800ca
SH
173enum {
174 QED_CLUSTER_FOUND, /* cluster found */
21df65b6 175 QED_CLUSTER_ZERO, /* zero cluster found */
298800ca
SH
176 QED_CLUSTER_L2, /* cluster missing in L2 */
177 QED_CLUSTER_L1, /* cluster missing in L1 */
178};
179
180/**
181 * qed_find_cluster() completion callback
182 *
183 * @opaque: User data for completion callback
184 * @ret: QED_CLUSTER_FOUND Success
185 * QED_CLUSTER_L2 Data cluster unallocated in L2
186 * QED_CLUSTER_L1 L2 unallocated in L1
187 * -errno POSIX error occurred
188 * @offset: Data cluster offset
189 * @len: Contiguous bytes starting from cluster offset
190 *
191 * This function is invoked when qed_find_cluster() completes.
192 *
193 * On success ret is QED_CLUSTER_FOUND and offset/len are a contiguous range
194 * in the image file.
195 *
196 * On failure ret is QED_CLUSTER_L2 or QED_CLUSTER_L1 for missing L2 or L1
197 * table offset, respectively. len is number of contiguous unallocated bytes.
198 */
199typedef void QEDFindClusterFunc(void *opaque, int ret, uint64_t offset, size_t len);
200
201/**
202 * Generic callback for chaining async callbacks
203 */
204typedef struct {
097310b5 205 BlockCompletionFunc *cb;
298800ca
SH
206 void *opaque;
207} GenericCB;
208
097310b5 209void *gencb_alloc(size_t len, BlockCompletionFunc *cb, void *opaque);
298800ca
SH
210void gencb_complete(void *opaque, int ret);
211
b10170ac
SH
212/**
213 * Header functions
214 */
215int qed_write_header_sync(BDRVQEDState *s);
216
298800ca
SH
217/**
218 * L2 cache functions
219 */
220void qed_init_l2_cache(L2TableCache *l2_cache);
221void qed_free_l2_cache(L2TableCache *l2_cache);
222CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache);
223void qed_unref_l2_cache_entry(CachedL2Table *entry);
224CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset);
225void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table);
226
227/**
228 * Table I/O functions
229 */
230int qed_read_l1_table_sync(BDRVQEDState *s);
231void qed_write_l1_table(BDRVQEDState *s, unsigned int index, unsigned int n,
097310b5 232 BlockCompletionFunc *cb, void *opaque);
298800ca
SH
233int qed_write_l1_table_sync(BDRVQEDState *s, unsigned int index,
234 unsigned int n);
235int qed_read_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
236 uint64_t offset);
237void qed_read_l2_table(BDRVQEDState *s, QEDRequest *request, uint64_t offset,
097310b5 238 BlockCompletionFunc *cb, void *opaque);
298800ca
SH
239void qed_write_l2_table(BDRVQEDState *s, QEDRequest *request,
240 unsigned int index, unsigned int n, bool flush,
097310b5 241 BlockCompletionFunc *cb, void *opaque);
298800ca
SH
242int qed_write_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
243 unsigned int index, unsigned int n, bool flush);
244
245/**
246 * Cluster functions
247 */
248void qed_find_cluster(BDRVQEDState *s, QEDRequest *request, uint64_t pos,
249 size_t len, QEDFindClusterFunc *cb, void *opaque);
250
251/**
252 * Consistency check
253 */
254int qed_check(BDRVQEDState *s, BdrvCheckResult *result, bool fix);
255
256QEDTable *qed_alloc_table(BDRVQEDState *s);
257
75411d23
SH
258/**
259 * Round down to the start of a cluster
260 */
261static inline uint64_t qed_start_of_cluster(BDRVQEDState *s, uint64_t offset)
262{
263 return offset & ~(uint64_t)(s->header.cluster_size - 1);
264}
265
298800ca
SH
266static inline uint64_t qed_offset_into_cluster(BDRVQEDState *s, uint64_t offset)
267{
268 return offset & (s->header.cluster_size - 1);
269}
270
19dfc44a 271static inline uint64_t qed_bytes_to_clusters(BDRVQEDState *s, uint64_t bytes)
298800ca
SH
272{
273 return qed_start_of_cluster(s, bytes + (s->header.cluster_size - 1)) /
274 (s->header.cluster_size - 1);
275}
276
277static inline unsigned int qed_l1_index(BDRVQEDState *s, uint64_t pos)
278{
279 return pos >> s->l1_shift;
280}
281
282static inline unsigned int qed_l2_index(BDRVQEDState *s, uint64_t pos)
283{
284 return (pos >> s->l2_shift) & s->l2_mask;
285}
286
75411d23
SH
287/**
288 * Test if a cluster offset is valid
289 */
290static inline bool qed_check_cluster_offset(BDRVQEDState *s, uint64_t offset)
291{
292 uint64_t header_size = (uint64_t)s->header.header_size *
293 s->header.cluster_size;
294
295 if (offset & (s->header.cluster_size - 1)) {
296 return false;
297 }
298 return offset >= header_size && offset < s->file_size;
299}
300
301/**
302 * Test if a table offset is valid
303 */
304static inline bool qed_check_table_offset(BDRVQEDState *s, uint64_t offset)
305{
306 uint64_t end_offset = offset + (s->header.table_size - 1) *
307 s->header.cluster_size;
308
309 /* Overflow check */
310 if (end_offset <= offset) {
311 return false;
312 }
313
314 return qed_check_cluster_offset(s, offset) &&
315 qed_check_cluster_offset(s, end_offset);
316}
317
21df65b6
AL
318static inline bool qed_offset_is_cluster_aligned(BDRVQEDState *s,
319 uint64_t offset)
320{
321 if (qed_offset_into_cluster(s, offset)) {
322 return false;
323 }
324 return true;
325}
326
327static inline bool qed_offset_is_unalloc_cluster(uint64_t offset)
328{
329 if (offset == 0) {
330 return true;
331 }
332 return false;
333}
334
335static inline bool qed_offset_is_zero_cluster(uint64_t offset)
336{
337 if (offset == 1) {
338 return true;
339 }
340 return false;
341}
342
75411d23 343#endif /* BLOCK_QED_H */