]> git.proxmox.com Git - mirror_qemu.git/blame - bsd-user/signal.c
bsd-user/signal.c: process_pending_signals
[mirror_qemu.git] / bsd-user / signal.c
CommitLineData
84778508
BS
1/*
2 * Emulation of BSD signals
3 *
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
1366ef81 5 * Copyright (c) 2013 Stacey Son
84778508
BS
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
8167ee88 18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
84778508 19 */
84778508 20
5abfac27 21#include "qemu/osdep.h"
84778508 22#include "qemu.h"
0ef59989 23#include "signal-common.h"
6ddc1abe 24#include "trace.h"
fc9f9bdd 25#include "hw/core/tcg-cpu-ops.h"
85fc1b5d 26#include "host-signal.h"
84778508 27
835b04ed
WL
28/*
29 * Stubbed out routines until we merge signal support from bsd-user
30 * fork.
31 */
32
149076ad
WL
33static struct target_sigaction sigact_table[TARGET_NSIG];
34static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
c93cbac1
WL
35static void target_to_host_sigset_internal(sigset_t *d,
36 const target_sigset_t *s);
37
46f4f76d
WL
38static inline int on_sig_stack(TaskState *ts, unsigned long sp)
39{
40 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
41}
42
43static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
44{
45 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
46 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
47}
149076ad 48
1366ef81
WL
49/*
50 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
51 * (unlike Linux) these functions are just the identity mapping. This might not
52 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
53 */
54int host_to_target_signal(int sig)
55{
56 return sig;
57}
58
59int target_to_host_signal(int sig)
60{
61 return sig;
62}
63
c93cbac1
WL
64static inline void target_sigemptyset(target_sigset_t *set)
65{
66 memset(set, 0, sizeof(*set));
67}
68
69static inline void target_sigaddset(target_sigset_t *set, int signum)
70{
71 signum--;
72 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
73 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
74}
75
76static inline int target_sigismember(const target_sigset_t *set, int signum)
77{
78 signum--;
79 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
80 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
81}
82
aae57ac3
WL
83/* Adjust the signal context to rewind out of safe-syscall if we're in it */
84static inline void rewind_if_in_safe_syscall(void *puc)
85{
86 ucontext_t *uc = (ucontext_t *)puc;
87 uintptr_t pcreg = host_signal_pc(uc);
88
89 if (pcreg > (uintptr_t)safe_syscall_start
90 && pcreg < (uintptr_t)safe_syscall_end) {
91 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
92 }
93}
94
c93cbac1
WL
95/*
96 * Note: The following take advantage of the BSD signal property that all
97 * signals are available on all architectures.
98 */
99static void host_to_target_sigset_internal(target_sigset_t *d,
100 const sigset_t *s)
101{
102 int i;
103
104 target_sigemptyset(d);
105 for (i = 1; i <= NSIG; i++) {
106 if (sigismember(s, i)) {
107 target_sigaddset(d, host_to_target_signal(i));
108 }
109 }
110}
111
112void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
113{
114 target_sigset_t d1;
115 int i;
116
117 host_to_target_sigset_internal(&d1, s);
118 for (i = 0; i < _SIG_WORDS; i++) {
119 d->__bits[i] = tswap32(d1.__bits[i]);
120 }
121}
122
123static void target_to_host_sigset_internal(sigset_t *d,
124 const target_sigset_t *s)
125{
126 int i;
127
128 sigemptyset(d);
129 for (i = 1; i <= TARGET_NSIG; i++) {
130 if (target_sigismember(s, i)) {
131 sigaddset(d, target_to_host_signal(i));
132 }
133 }
134}
135
136void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
137{
138 target_sigset_t s1;
139 int i;
140
141 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
142 s1.__bits[i] = tswap32(s->__bits[i]);
143 }
144 target_to_host_sigset_internal(d, &s1);
145}
146
c34f2aaf
WL
147static bool has_trapno(int tsig)
148{
149 return tsig == TARGET_SIGILL ||
150 tsig == TARGET_SIGFPE ||
151 tsig == TARGET_SIGSEGV ||
152 tsig == TARGET_SIGBUS ||
153 tsig == TARGET_SIGTRAP;
154}
155
c34f2aaf
WL
156/* Siginfo conversion. */
157
158/*
159 * Populate tinfo w/o swapping based on guessing which fields are valid.
160 */
161static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
162 const siginfo_t *info)
163{
164 int sig = host_to_target_signal(info->si_signo);
165 int si_code = info->si_code;
166 int si_type;
167
168 /*
169 * Make sure we that the variable portion of the target siginfo is zeroed
170 * out so we don't leak anything into that.
171 */
172 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
173
174 /*
175 * This is awkward, because we have to use a combination of the si_code and
176 * si_signo to figure out which of the union's members are valid.o We
177 * therefore make our best guess.
178 *
179 * Once we have made our guess, we record it in the top 16 bits of
180 * the si_code, so that tswap_siginfo() later can use it.
181 * tswap_siginfo() will strip these top bits out before writing
182 * si_code to the guest (sign-extending the lower bits).
183 */
184 tinfo->si_signo = sig;
185 tinfo->si_errno = info->si_errno;
186 tinfo->si_code = info->si_code;
187 tinfo->si_pid = info->si_pid;
188 tinfo->si_uid = info->si_uid;
189 tinfo->si_status = info->si_status;
190 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
191 /*
192 * si_value is opaque to kernel. On all FreeBSD platforms,
193 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
194 * always will copy the larger element.
195 */
196 tinfo->si_value.sival_ptr =
197 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
198
199 switch (si_code) {
200 /*
201 * All the SI_xxx codes that are defined here are global to
202 * all the signals (they have values that none of the other,
203 * more specific signal info will set).
204 */
205 case SI_USER:
206 case SI_LWP:
207 case SI_KERNEL:
208 case SI_QUEUE:
209 case SI_ASYNCIO:
210 /*
211 * Only the fixed parts are valid (though FreeBSD doesn't always
212 * set all the fields to non-zero values.
213 */
214 si_type = QEMU_SI_NOINFO;
215 break;
216 case SI_TIMER:
217 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
218 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
219 si_type = QEMU_SI_TIMER;
220 break;
221 case SI_MESGQ:
222 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
223 si_type = QEMU_SI_MESGQ;
224 break;
225 default:
226 /*
227 * We have to go based on the signal number now to figure out
228 * what's valid.
229 */
230 if (has_trapno(sig)) {
231 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
232 si_type = QEMU_SI_FAULT;
233 }
234#ifdef TARGET_SIGPOLL
235 /*
236 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
237 * a chance it may popup in the future.
238 */
239 if (sig == TARGET_SIGPOLL) {
240 tinfo->_reason._poll._band = info->_reason._poll._band;
241 si_type = QEMU_SI_POLL;
242 }
243#endif
244 /*
245 * Unsure that this can actually be generated, and our support for
246 * capsicum is somewhere between weak and non-existant, but if we get
247 * one, then we know what to save.
248 */
249 if (sig == TARGET_SIGTRAP) {
250 tinfo->_reason._capsicum._syscall =
251 info->_reason._capsicum._syscall;
252 si_type = QEMU_SI_CAPSICUM;
253 }
254 break;
255 }
256 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257}
258
08eb66d5
WL
259static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260{
261 int si_type = extract32(info->si_code, 24, 8);
262 int si_code = sextract32(info->si_code, 0, 24);
263
264 __put_user(info->si_signo, &tinfo->si_signo);
265 __put_user(info->si_errno, &tinfo->si_errno);
266 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267 __put_user(info->si_pid, &tinfo->si_pid);
268 __put_user(info->si_uid, &tinfo->si_uid);
269 __put_user(info->si_status, &tinfo->si_status);
270 __put_user(info->si_addr, &tinfo->si_addr);
271 /*
272 * Unswapped, because we passed it through mostly untouched. si_value is
273 * opaque to the kernel, so we didn't bother with potentially wasting cycles
274 * to swap it into host byte order.
275 */
276 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277
278 /*
279 * We can use our internal marker of which fields in the structure
280 * are valid, rather than duplicating the guesswork of
281 * host_to_target_siginfo_noswap() here.
282 */
283 switch (si_type) {
284 case QEMU_SI_NOINFO: /* No additional info */
285 break;
286 case QEMU_SI_FAULT:
287 __put_user(info->_reason._fault._trapno,
288 &tinfo->_reason._fault._trapno);
289 break;
290 case QEMU_SI_TIMER:
291 __put_user(info->_reason._timer._timerid,
292 &tinfo->_reason._timer._timerid);
293 __put_user(info->_reason._timer._overrun,
294 &tinfo->_reason._timer._overrun);
295 break;
296 case QEMU_SI_MESGQ:
297 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298 break;
299 case QEMU_SI_POLL:
300 /* Note: Not generated on FreeBSD */
301 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302 break;
303 case QEMU_SI_CAPSICUM:
304 __put_user(info->_reason._capsicum._syscall,
305 &tinfo->_reason._capsicum._syscall);
306 break;
307 default:
308 g_assert_not_reached();
309 }
310}
311
37714547
WL
312/* Returns 1 if given signal should dump core if not handled. */
313static int core_dump_signal(int sig)
314{
315 switch (sig) {
316 case TARGET_SIGABRT:
317 case TARGET_SIGFPE:
318 case TARGET_SIGILL:
319 case TARGET_SIGQUIT:
320 case TARGET_SIGSEGV:
321 case TARGET_SIGTRAP:
322 case TARGET_SIGBUS:
323 return 1;
324 default:
325 return 0;
326 }
327}
328
329/* Abort execution with signal. */
330static void QEMU_NORETURN dump_core_and_abort(int target_sig)
331{
332 CPUArchState *env = thread_cpu->env_ptr;
333 CPUState *cpu = env_cpu(env);
334 TaskState *ts = cpu->opaque;
335 int core_dumped = 0;
336 int host_sig;
337 struct sigaction act;
338
339 host_sig = target_to_host_signal(target_sig);
340 gdb_signalled(env, target_sig);
341
342 /* Dump core if supported by target binary format */
343 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
344 stop_all_tasks();
345 core_dumped =
346 ((*ts->bprm->core_dump)(target_sig, env) == 0);
347 }
348 if (core_dumped) {
349 struct rlimit nodump;
350
351 /*
352 * We already dumped the core of target process, we don't want
353 * a coredump of qemu itself.
354 */
355 getrlimit(RLIMIT_CORE, &nodump);
356 nodump.rlim_cur = 0;
357 setrlimit(RLIMIT_CORE, &nodump);
358 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
359 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
360 }
361
362 /*
363 * The proper exit code for dying from an uncaught signal is
364 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
365 * a negative value. To get the proper exit code we need to
366 * actually die from an uncaught signal. Here the default signal
367 * handler is installed, we send ourself a signal and we wait for
368 * it to arrive.
369 */
370 memset(&act, 0, sizeof(act));
371 sigfillset(&act.sa_mask);
372 act.sa_handler = SIG_DFL;
373 sigaction(host_sig, &act, NULL);
374
375 kill(getpid(), host_sig);
376
377 /*
378 * Make sure the signal isn't masked (just reuse the mask inside
379 * of act).
380 */
381 sigdelset(&act.sa_mask, host_sig);
382 sigsuspend(&act.sa_mask);
383
384 /* unreachable */
385 abort();
386}
387
5abfac27
WL
388/*
389 * Queue a signal so that it will be send to the virtual CPU as soon as
390 * possible.
391 */
e32a6301
WL
392void queue_signal(CPUArchState *env, int sig, int si_type,
393 target_siginfo_t *info)
5abfac27 394{
38be620c
WL
395 CPUState *cpu = env_cpu(env);
396 TaskState *ts = cpu->opaque;
397
398 trace_user_queue_signal(env, sig);
399
400 info->si_code = deposit32(info->si_code, 24, 8, si_type);
401
402 ts->sync_signal.info = *info;
403 ts->sync_signal.pending = sig;
404 /* Signal that a new signal is pending. */
405 qatomic_set(&ts->signal_pending, 1);
406 return;
5abfac27
WL
407}
408
149076ad
WL
409static int fatal_signal(int sig)
410{
411
412 switch (sig) {
413 case TARGET_SIGCHLD:
414 case TARGET_SIGURG:
415 case TARGET_SIGWINCH:
416 case TARGET_SIGINFO:
417 /* Ignored by default. */
418 return 0;
419 case TARGET_SIGCONT:
420 case TARGET_SIGSTOP:
421 case TARGET_SIGTSTP:
422 case TARGET_SIGTTIN:
423 case TARGET_SIGTTOU:
424 /* Job control signals. */
425 return 0;
426 default:
427 return 1;
428 }
429}
430
0ef59989
WL
431/*
432 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
433 * 'force' part is handled in process_pending_signals().
434 */
435void force_sig_fault(int sig, int code, abi_ulong addr)
436{
437 CPUState *cpu = thread_cpu;
438 CPUArchState *env = cpu->env_ptr;
439 target_siginfo_t info = {};
440
441 info.si_signo = sig;
442 info.si_errno = 0;
443 info.si_code = code;
444 info.si_addr = addr;
e32a6301 445 queue_signal(env, sig, QEMU_SI_FAULT, &info);
0ef59989
WL
446}
447
149076ad
WL
448static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
449{
e625c7ef
WL
450 CPUArchState *env = thread_cpu->env_ptr;
451 CPUState *cpu = env_cpu(env);
452 TaskState *ts = cpu->opaque;
453 target_siginfo_t tinfo;
454 ucontext_t *uc = puc;
455 struct emulated_sigtable *k;
456 int guest_sig;
457 uintptr_t pc = 0;
458 bool sync_sig = false;
459
460 /*
461 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
462 * handling wrt signal blocking and unwinding.
463 */
464 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
465 MMUAccessType access_type;
466 uintptr_t host_addr;
467 abi_ptr guest_addr;
468 bool is_write;
469
470 host_addr = (uintptr_t)info->si_addr;
471
472 /*
473 * Convert forcefully to guest address space: addresses outside
474 * reserved_va are still valid to report via SEGV_MAPERR.
475 */
476 guest_addr = h2g_nocheck(host_addr);
477
478 pc = host_signal_pc(uc);
479 is_write = host_signal_write(info, uc);
480 access_type = adjust_signal_pc(&pc, is_write);
481
482 if (host_sig == SIGSEGV) {
483 bool maperr = true;
484
485 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
486 /* If this was a write to a TB protected page, restart. */
487 if (is_write &&
488 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
489 pc, guest_addr)) {
490 return;
491 }
492
493 /*
494 * With reserved_va, the whole address space is PROT_NONE,
495 * which means that we may get ACCERR when we want MAPERR.
496 */
497 if (page_get_flags(guest_addr) & PAGE_VALID) {
498 maperr = false;
499 } else {
500 info->si_code = SEGV_MAPERR;
501 }
502 }
503
504 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
505 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
506 } else {
507 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
508 if (info->si_code == BUS_ADRALN) {
509 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
510 }
511 }
512
513 sync_sig = true;
514 }
515
516 /* Get the target signal number. */
517 guest_sig = host_to_target_signal(host_sig);
518 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
519 return;
520 }
521 trace_user_host_signal(cpu, host_sig, guest_sig);
522
523 host_to_target_siginfo_noswap(&tinfo, info);
524
525 k = &ts->sigtab[guest_sig - 1];
526 k->info = tinfo;
527 k->pending = guest_sig;
528 ts->signal_pending = 1;
529
530 /*
531 * For synchronous signals, unwind the cpu state to the faulting
532 * insn and then exit back to the main loop so that the signal
533 * is delivered immediately.
534 */
535 if (sync_sig) {
536 cpu->exception_index = EXCP_INTERRUPT;
537 cpu_loop_exit_restore(cpu, pc);
538 }
539
540 rewind_if_in_safe_syscall(puc);
541
542 /*
543 * Block host signals until target signal handler entered. We
544 * can't block SIGSEGV or SIGBUS while we're executing guest
545 * code in case the guest code provokes one in the window between
546 * now and it getting out to the main loop. Signals will be
547 * unblocked again in process_pending_signals().
548 */
549 sigfillset(&uc->uc_sigmask);
550 sigdelset(&uc->uc_sigmask, SIGSEGV);
551 sigdelset(&uc->uc_sigmask, SIGBUS);
552
553 /* Interrupt the virtual CPU as soon as possible. */
554 cpu_exit(thread_cpu);
149076ad
WL
555}
556
46f4f76d
WL
557static inline abi_ulong get_sigframe(struct target_sigaction *ka,
558 CPUArchState *env, size_t frame_size)
559{
560 TaskState *ts = (TaskState *)thread_cpu->opaque;
561 abi_ulong sp;
562
563 /* Use default user stack */
564 sp = get_sp_from_cpustate(env);
565
566 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
567 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
568 }
569
570/* TODO: make this a target_arch function / define */
571#if defined(TARGET_ARM)
572 return (sp - frame_size) & ~7;
573#elif defined(TARGET_AARCH64)
574 return (sp - frame_size) & ~15;
575#else
576 return sp - frame_size;
577#endif
578}
579
580/* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
581
582static void setup_frame(int sig, int code, struct target_sigaction *ka,
583 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
584{
585 struct target_sigframe *frame;
586 abi_ulong frame_addr;
587 int i;
588
589 frame_addr = get_sigframe(ka, env, sizeof(*frame));
590 trace_user_setup_frame(env, frame_addr);
591 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
592 unlock_user_struct(frame, frame_addr, 1);
593 dump_core_and_abort(TARGET_SIGILL);
594 return;
595 }
596
597 memset(frame, 0, sizeof(*frame));
598 setup_sigframe_arch(env, frame_addr, frame, 0);
599
600 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
601 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
602 }
603
604 if (tinfo) {
605 frame->sf_si.si_signo = tinfo->si_signo;
606 frame->sf_si.si_errno = tinfo->si_errno;
607 frame->sf_si.si_code = tinfo->si_code;
608 frame->sf_si.si_pid = tinfo->si_pid;
609 frame->sf_si.si_uid = tinfo->si_uid;
610 frame->sf_si.si_status = tinfo->si_status;
611 frame->sf_si.si_addr = tinfo->si_addr;
612 /* see host_to_target_siginfo_noswap() for more details */
613 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
614 /*
615 * At this point, whatever is in the _reason union is complete
616 * and in target order, so just copy the whole thing over, even
617 * if it's too large for this specific signal.
618 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
619 * that's so.
620 */
621 memcpy(&frame->sf_si._reason, &tinfo->_reason,
622 sizeof(tinfo->_reason));
623 }
624
625 set_sigtramp_args(env, sig, frame, frame_addr, ka);
626
627 unlock_user_struct(frame, frame_addr, 1);
628}
629
84778508
BS
630void signal_init(void)
631{
149076ad
WL
632 TaskState *ts = (TaskState *)thread_cpu->opaque;
633 struct sigaction act;
634 struct sigaction oact;
635 int i;
636 int host_sig;
637
638 /* Set the signal mask from the host mask. */
639 sigprocmask(0, 0, &ts->signal_mask);
640
641 sigfillset(&act.sa_mask);
642 act.sa_sigaction = host_signal_handler;
643 act.sa_flags = SA_SIGINFO;
644
645 for (i = 1; i <= TARGET_NSIG; i++) {
646#ifdef CONFIG_GPROF
647 if (i == TARGET_SIGPROF) {
648 continue;
649 }
650#endif
651 host_sig = target_to_host_signal(i);
652 sigaction(host_sig, NULL, &oact);
653 if (oact.sa_sigaction == (void *)SIG_IGN) {
654 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
655 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
656 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
657 }
658 /*
659 * If there's already a handler installed then something has
660 * gone horribly wrong, so don't even try to handle that case.
661 * Install some handlers for our own use. We need at least
662 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
663 * trap all signals because it affects syscall interrupt
664 * behavior. But do trap all default-fatal signals.
665 */
666 if (fatal_signal(i)) {
667 sigaction(host_sig, &act, NULL);
668 }
669 }
84778508
BS
670}
671
6c6d4b56
WL
672static void handle_pending_signal(CPUArchState *env, int sig,
673 struct emulated_sigtable *k)
674{
675 CPUState *cpu = env_cpu(env);
676 TaskState *ts = cpu->opaque;
677 struct target_sigaction *sa;
678 int code;
679 sigset_t set;
680 abi_ulong handler;
681 target_siginfo_t tinfo;
682 target_sigset_t target_old_set;
683
684 trace_user_handle_signal(env, sig);
685
686 k->pending = 0;
687
688 sig = gdb_handlesig(cpu, sig);
689 if (!sig) {
690 sa = NULL;
691 handler = TARGET_SIG_IGN;
692 } else {
693 sa = &sigact_table[sig - 1];
694 handler = sa->_sa_handler;
695 }
696
697 if (do_strace) {
698 print_taken_signal(sig, &k->info);
699 }
700
701 if (handler == TARGET_SIG_DFL) {
702 /*
703 * default handler : ignore some signal. The other are job
704 * control or fatal.
705 */
706 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
707 sig == TARGET_SIGTTOU) {
708 kill(getpid(), SIGSTOP);
709 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
710 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
711 sig != TARGET_SIGCONT) {
712 dump_core_and_abort(sig);
713 }
714 } else if (handler == TARGET_SIG_IGN) {
715 /* ignore sig */
716 } else if (handler == TARGET_SIG_ERR) {
717 dump_core_and_abort(sig);
718 } else {
719 /* compute the blocked signals during the handler execution */
720 sigset_t *blocked_set;
721
722 target_to_host_sigset(&set, &sa->sa_mask);
723 /*
724 * SA_NODEFER indicates that the current signal should not be
725 * blocked during the handler.
726 */
727 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
728 sigaddset(&set, target_to_host_signal(sig));
729 }
730
731 /*
732 * Save the previous blocked signal state to restore it at the
733 * end of the signal execution (see do_sigreturn).
734 */
735 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
736
737 blocked_set = ts->in_sigsuspend ?
738 &ts->sigsuspend_mask : &ts->signal_mask;
739 sigorset(&ts->signal_mask, blocked_set, &set);
740 ts->in_sigsuspend = false;
741 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
742
743 /* XXX VM86 on x86 ??? */
744
745 code = k->info.si_code; /* From host, so no si_type */
746 /* prepare the stack frame of the virtual CPU */
747 if (sa->sa_flags & TARGET_SA_SIGINFO) {
748 tswap_siginfo(&tinfo, &k->info);
749 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
750 } else {
751 setup_frame(sig, code, sa, &target_old_set, NULL, env);
752 }
753 if (sa->sa_flags & TARGET_SA_RESETHAND) {
754 sa->_sa_handler = TARGET_SIG_DFL;
755 }
756 }
757}
758
d7acd317 759void process_pending_signals(CPUArchState *env)
84778508 760{
d7acd317
WL
761 CPUState *cpu = env_cpu(env);
762 int sig;
763 sigset_t *blocked_set, set;
764 struct emulated_sigtable *k;
765 TaskState *ts = cpu->opaque;
766
767 while (qatomic_read(&ts->signal_pending)) {
768 sigfillset(&set);
769 sigprocmask(SIG_SETMASK, &set, 0);
770
771 restart_scan:
772 sig = ts->sync_signal.pending;
773 if (sig) {
774 /*
775 * Synchronous signals are forced by the emulated CPU in some way.
776 * If they are set to ignore, restore the default handler (see
777 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
778 * though maybe this is done only when forcing exit for non SIGCHLD.
779 */
780 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
781 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
782 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
783 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
784 }
785 handle_pending_signal(env, sig, &ts->sync_signal);
786 }
787
788 k = ts->sigtab;
789 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
790 blocked_set = ts->in_sigsuspend ?
791 &ts->sigsuspend_mask : &ts->signal_mask;
792 if (k->pending &&
793 !sigismember(blocked_set, target_to_host_signal(sig))) {
794 handle_pending_signal(env, sig, k);
795 /*
796 * Restart scan from the beginning, as handle_pending_signal
797 * might have resulted in a new synchronous signal (eg SIGSEGV).
798 */
799 goto restart_scan;
800 }
801 }
802
803 /*
804 * Unblock signals and check one more time. Unblocking signals may cause
805 * us to take another host signal, which will set signal_pending again.
806 */
807 qatomic_set(&ts->signal_pending, 0);
808 ts->in_sigsuspend = false;
809 set = ts->signal_mask;
810 sigdelset(&set, SIGSEGV);
811 sigdelset(&set, SIGBUS);
812 sigprocmask(SIG_SETMASK, &set, 0);
813 }
814 ts->in_sigsuspend = false;
84778508 815}
835b04ed
WL
816
817void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
818 MMUAccessType access_type, bool maperr, uintptr_t ra)
819{
fc9f9bdd
WL
820 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
821
822 if (tcg_ops->record_sigsegv) {
823 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
824 }
825
826 force_sig_fault(TARGET_SIGSEGV,
827 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
828 addr);
829 cpu->exception_index = EXCP_INTERRUPT;
830 cpu_loop_exit_restore(cpu, ra);
835b04ed
WL
831}
832
833void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
834 MMUAccessType access_type, uintptr_t ra)
835{
cfdee273
WL
836 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
837
838 if (tcg_ops->record_sigbus) {
839 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
840 }
841
842 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
843 cpu->exception_index = EXCP_INTERRUPT;
844 cpu_loop_exit_restore(cpu, ra);
835b04ed 845}