]> git.proxmox.com Git - mirror_qemu.git/blame - bsd-user/x86_64/target_arch_cpu.h
bsd-user: Rename arg name for target_cpu_reset to env
[mirror_qemu.git] / bsd-user / x86_64 / target_arch_cpu.h
CommitLineData
031fe7af
WL
1/*
2 * x86_64 cpu init and loop
3 *
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19#ifndef _TARGET_ARCH_CPU_H_
20#define _TARGET_ARCH_CPU_H_
21
22#include "target_arch.h"
2bd010c4 23#include "signal-common.h"
031fe7af
WL
24
25#define TARGET_DEFAULT_CPU_MODEL "qemu64"
26
031fe7af
WL
27static inline void target_cpu_init(CPUX86State *env,
28 struct target_pt_regs *regs)
29{
30 uint64_t *gdt_table;
31
32 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
33 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
34 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
35 env->cr[4] |= CR4_OSFXSR_MASK;
36 env->hflags |= HF_OSFXSR_MASK;
37 }
38
39 /* enable 64 bit mode if possible */
40 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
41 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
42 exit(1);
43 }
44 env->cr[4] |= CR4_PAE_MASK;
45 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
46 env->hflags |= HF_LMA_MASK;
47
48 /* flags setup : we activate the IRQs by default as in user mode */
49 env->eflags |= IF_MASK;
50
51 /* register setup */
52 env->regs[R_EAX] = regs->rax;
53 env->regs[R_EBX] = regs->rbx;
54 env->regs[R_ECX] = regs->rcx;
55 env->regs[R_EDX] = regs->rdx;
56 env->regs[R_ESI] = regs->rsi;
57 env->regs[R_EDI] = regs->rdi;
58 env->regs[R_EBP] = regs->rbp;
59 env->regs[R_ESP] = regs->rsp;
60 env->eip = regs->rip;
61
62 /* interrupt setup */
63 env->idt.limit = 511;
64
65 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
66 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
67 bsd_x86_64_set_idt_base(env->idt.base);
68 bsd_x86_64_set_idt(0, 0);
69 bsd_x86_64_set_idt(1, 0);
70 bsd_x86_64_set_idt(2, 0);
71 bsd_x86_64_set_idt(3, 3);
72 bsd_x86_64_set_idt(4, 3);
73 bsd_x86_64_set_idt(5, 0);
74 bsd_x86_64_set_idt(6, 0);
75 bsd_x86_64_set_idt(7, 0);
76 bsd_x86_64_set_idt(8, 0);
77 bsd_x86_64_set_idt(9, 0);
78 bsd_x86_64_set_idt(10, 0);
79 bsd_x86_64_set_idt(11, 0);
80 bsd_x86_64_set_idt(12, 0);
81 bsd_x86_64_set_idt(13, 0);
82 bsd_x86_64_set_idt(14, 0);
83 bsd_x86_64_set_idt(15, 0);
84 bsd_x86_64_set_idt(16, 0);
85 bsd_x86_64_set_idt(17, 0);
86 bsd_x86_64_set_idt(18, 0);
87 bsd_x86_64_set_idt(19, 0);
88 bsd_x86_64_set_idt(0x80, 3);
89
90 /* segment setup */
91 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
92 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
93 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
94 gdt_table = g2h_untagged(env->gdt.base);
95
96 /* 64 bit code segment */
97 bsd_x86_64_write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
98 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK
99 | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
100
101 bsd_x86_64_write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
102 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
103 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
104
105 cpu_x86_load_seg(env, R_CS, __USER_CS);
106 cpu_x86_load_seg(env, R_SS, __USER_DS);
107 cpu_x86_load_seg(env, R_DS, 0);
108 cpu_x86_load_seg(env, R_ES, 0);
109 cpu_x86_load_seg(env, R_FS, 0);
110 cpu_x86_load_seg(env, R_GS, 0);
111}
112
113static inline void target_cpu_loop(CPUX86State *env)
114{
115 CPUState *cs = env_cpu(env);
116 int trapnr;
117 abi_ulong pc;
118 /* target_siginfo_t info; */
119
120 for (;;) {
121 cpu_exec_start(cs);
122 trapnr = cpu_exec(cs);
123 cpu_exec_end(cs);
124 process_queued_cpu_work(cs);
125
126 switch (trapnr) {
127 case 0x80:
128 /* syscall from int $0x80 */
129 if (bsd_type == target_freebsd) {
130 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
131 sizeof(int32_t);
132 int32_t syscall_nr = env->regs[R_EAX];
133 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
134
135 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
136 get_user_s32(syscall_nr, params);
137 params += sizeof(int32_t);
138 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
139 get_user_s32(syscall_nr, params);
140 params += sizeof(int64_t);
141 }
142 get_user_s32(arg1, params);
143 params += sizeof(int32_t);
144 get_user_s32(arg2, params);
145 params += sizeof(int32_t);
146 get_user_s32(arg3, params);
147 params += sizeof(int32_t);
148 get_user_s32(arg4, params);
149 params += sizeof(int32_t);
150 get_user_s32(arg5, params);
151 params += sizeof(int32_t);
152 get_user_s32(arg6, params);
153 params += sizeof(int32_t);
154 get_user_s32(arg7, params);
155 params += sizeof(int32_t);
156 get_user_s32(arg8, params);
157 env->regs[R_EAX] = do_freebsd_syscall(env,
158 syscall_nr,
159 arg1,
160 arg2,
161 arg3,
162 arg4,
163 arg5,
164 arg6,
165 arg7,
166 arg8);
167 } else { /* if (bsd_type == target_openbsd) */
168 env->regs[R_EAX] = do_openbsd_syscall(env,
169 env->regs[R_EAX],
170 env->regs[R_EBX],
171 env->regs[R_ECX],
172 env->regs[R_EDX],
173 env->regs[R_ESI],
174 env->regs[R_EDI],
175 env->regs[R_EBP]);
176 }
177 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
178 env->regs[R_EAX] = -env->regs[R_EAX];
179 env->eflags |= CC_C;
180 } else {
181 env->eflags &= ~CC_C;
182 }
183 break;
184
185 case EXCP_SYSCALL:
186 /* syscall from syscall instruction */
187 if (bsd_type == target_freebsd) {
188 env->regs[R_EAX] = do_freebsd_syscall(env,
189 env->regs[R_EAX],
190 env->regs[R_EDI],
191 env->regs[R_ESI],
192 env->regs[R_EDX],
193 env->regs[R_ECX],
194 env->regs[8],
195 env->regs[9], 0, 0);
196 } else { /* if (bsd_type == target_openbsd) */
197 env->regs[R_EAX] = do_openbsd_syscall(env,
198 env->regs[R_EAX],
199 env->regs[R_EDI],
200 env->regs[R_ESI],
201 env->regs[R_EDX],
202 env->regs[10],
203 env->regs[8],
204 env->regs[9]);
205 }
206 env->eip = env->exception_next_eip;
207 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
208 env->regs[R_EAX] = -env->regs[R_EAX];
209 env->eflags |= CC_C;
210 } else {
211 env->eflags &= ~CC_C;
212 }
213 break;
214
215 case EXCP_INTERRUPT:
216 /* just indicate that signals should be handled asap */
217 break;
218
219 case EXCP_ATOMIC:
220 cpu_exec_step_atomic(cs);
221 break;
222
223 default:
224 pc = env->segs[R_CS].base + env->eip;
225 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - "
226 "aborting\n", (long)pc, trapnr);
227 abort();
228 }
229 process_pending_signals(env);
230 }
231}
232
233static inline void target_cpu_clone_regs(CPUX86State *env, target_ulong newsp)
234{
235 if (newsp) {
236 env->regs[R_ESP] = newsp;
237 }
238 env->regs[R_EAX] = 0;
239}
240
bab6ccc5 241static inline void target_cpu_reset(CPUArchState *env)
031fe7af 242{
bab6ccc5 243 cpu_reset(env_cpu(env));
031fe7af
WL
244}
245
246#endif /* ! _TARGET_ARCH_CPU_H_ */