]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_codegen_ssa/src/back/write.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / compiler / rustc_codegen_ssa / src / back / write.rs
CommitLineData
6a06907d 1use super::link::{self, ensure_removed};
a1dfa0c6 2use super::lto::{self, SerializedModule};
dfeec247
XL
3use super::symbol_export::symbol_name_for_instance_in_crate;
4
5use crate::{
6 CachedModuleCodegen, CodegenResults, CompiledModule, CrateInfo, ModuleCodegen, ModuleKind,
dfeec247 7};
a1dfa0c6 8
9fa01778 9use crate::traits::*;
dfeec247 10use jobserver::{Acquired, Client};
dfeec247 11use rustc_data_structures::fx::FxHashMap;
cdc7bbd5 12use rustc_data_structures::memmap::Mmap;
60c5eb7d 13use rustc_data_structures::profiling::SelfProfilerRef;
74b04a01 14use rustc_data_structures::profiling::TimingGuard;
dfeec247 15use rustc_data_structures::profiling::VerboseTimingGuard;
e74abb32 16use rustc_data_structures::sync::Lrc;
dfeec247 17use rustc_errors::emitter::Emitter;
f2b60f7d 18use rustc_errors::{translation::Translate, DiagnosticId, FatalError, Handler, Level};
dfeec247
XL
19use rustc_fs_util::link_or_copy;
20use rustc_hir::def_id::{CrateNum, LOCAL_CRATE};
21use rustc_incremental::{
f9f354fc 22 copy_cgu_workproduct_to_incr_comp_cache_dir, in_incr_comp_dir, in_incr_comp_dir_sess,
dfeec247 23};
c295e0f8 24use rustc_metadata::EncodedMetadata;
f9f354fc 25use rustc_middle::dep_graph::{WorkProduct, WorkProductId};
04454e1e 26use rustc_middle::middle::exported_symbols::SymbolExportInfo;
ba9703b0 27use rustc_middle::ty::TyCtxt;
dfeec247 28use rustc_session::cgu_reuse_tracker::CguReuseTracker;
f9f354fc 29use rustc_session::config::{self, CrateType, Lto, OutputFilenames, OutputType};
cdc7bbd5 30use rustc_session::config::{Passes, SwitchWithOptPath};
ba9703b0 31use rustc_session::Session;
dfeec247 32use rustc_span::source_map::SourceMap;
17df50a5 33use rustc_span::symbol::sym;
f9f354fc 34use rustc_span::{BytePos, FileName, InnerSpan, Pos, Span};
5099ac24 35use rustc_target::spec::{MergeFunctions, SanitizerSet};
a1dfa0c6
XL
36
37use std::any::Any;
38use std::fs;
39use std::io;
064997fb 40use std::marker::PhantomData;
a1dfa0c6
XL
41use std::mem;
42use std::path::{Path, PathBuf};
43use std::str;
dfeec247 44use std::sync::mpsc::{channel, Receiver, Sender};
a1dfa0c6 45use std::sync::Arc;
a1dfa0c6
XL
46use std::thread;
47
9fa01778 48const PRE_LTO_BC_EXT: &str = "pre-lto.bc";
a1dfa0c6 49
ba9703b0
XL
50/// What kind of object file to emit.
51#[derive(Clone, Copy, PartialEq)]
52pub enum EmitObj {
53 // No object file.
54 None,
55
56 // Just uncompressed llvm bitcode. Provides easy compatibility with
57 // emscripten's ecc compiler, when used as the linker.
58 Bitcode,
59
60 // Object code, possibly augmented with a bitcode section.
61 ObjectCode(BitcodeSection),
62}
63
64/// What kind of llvm bitcode section to embed in an object file.
65#[derive(Clone, Copy, PartialEq)]
66pub enum BitcodeSection {
67 // No bitcode section.
68 None,
69
ba9703b0
XL
70 // A full, uncompressed bitcode section.
71 Full,
72}
73
a1dfa0c6
XL
74/// Module-specific configuration for `optimize_and_codegen`.
75pub struct ModuleConfig {
76 /// Names of additional optimization passes to run.
77 pub passes: Vec<String>,
78 /// Some(level) to optimize at a certain level, or None to run
79 /// absolutely no optimizations (used for the metadata module).
80 pub opt_level: Option<config::OptLevel>,
81
82 /// Some(level) to optimize binary size, or None to not affect program size.
83 pub opt_size: Option<config::OptLevel>,
84
dc9dc135
XL
85 pub pgo_gen: SwitchWithOptPath,
86 pub pgo_use: Option<PathBuf>,
c295e0f8
XL
87 pub pgo_sample_use: Option<PathBuf>,
88 pub debug_info_for_profiling: bool,
17df50a5
XL
89 pub instrument_coverage: bool,
90 pub instrument_gcov: bool,
a1dfa0c6 91
f035d41b
XL
92 pub sanitizer: SanitizerSet,
93 pub sanitizer_recover: SanitizerSet,
60c5eb7d
XL
94 pub sanitizer_memory_track_origins: usize,
95
a1dfa0c6 96 // Flags indicating which outputs to produce.
9fa01778 97 pub emit_pre_lto_bc: bool,
a1dfa0c6
XL
98 pub emit_no_opt_bc: bool,
99 pub emit_bc: bool,
a1dfa0c6
XL
100 pub emit_ir: bool,
101 pub emit_asm: bool,
ba9703b0 102 pub emit_obj: EmitObj,
064997fb 103 pub emit_thin_lto: bool,
f9f354fc 104 pub bc_cmdline: String,
ba9703b0 105
a1dfa0c6
XL
106 // Miscellaneous flags. These are mostly copied from command-line
107 // options.
108 pub verify_llvm_ir: bool,
109 pub no_prepopulate_passes: bool,
110 pub no_builtins: bool,
dfeec247 111 pub time_module: bool,
a1dfa0c6
XL
112 pub vectorize_loop: bool,
113 pub vectorize_slp: bool,
114 pub merge_functions: bool,
cdc7bbd5 115 pub inline_threshold: Option<u32>,
17df50a5 116 pub new_llvm_pass_manager: Option<bool>,
f9f354fc 117 pub emit_lifetime_markers: bool,
a2a8927a 118 pub llvm_plugins: Vec<String>,
a1dfa0c6
XL
119}
120
121impl ModuleConfig {
f9f354fc
XL
122 fn new(
123 kind: ModuleKind,
124 sess: &Session,
125 no_builtins: bool,
126 is_compiler_builtins: bool,
127 ) -> ModuleConfig {
ba9703b0
XL
128 // If it's a regular module, use `$regular`, otherwise use `$other`.
129 // `$regular` and `$other` are evaluated lazily.
130 macro_rules! if_regular {
131 ($regular: expr, $other: expr) => {
132 if let ModuleKind::Regular = kind { $regular } else { $other }
133 };
a1dfa0c6 134 }
a1dfa0c6 135
ba9703b0
XL
136 let opt_level_and_size = if_regular!(Some(sess.opts.optimize), None);
137
138 let save_temps = sess.opts.cg.save_temps;
139
140 let should_emit_obj = sess.opts.output_types.contains_key(&OutputType::Exe)
141 || match kind {
142 ModuleKind::Regular => sess.opts.output_types.contains_key(&OutputType::Object),
143 ModuleKind::Allocator => false,
144 ModuleKind::Metadata => sess.opts.output_types.contains_key(&OutputType::Metadata),
145 };
146
147 let emit_obj = if !should_emit_obj {
148 EmitObj::None
29967ef6 149 } else if sess.target.obj_is_bitcode
f9f354fc 150 || (sess.opts.cg.linker_plugin_lto.enabled() && !no_builtins)
ba9703b0 151 {
f9f354fc
XL
152 // This case is selected if the target uses objects as bitcode, or
153 // if linker plugin LTO is enabled. In the linker plugin LTO case
154 // the assumption is that the final link-step will read the bitcode
155 // and convert it to object code. This may be done by either the
156 // native linker or rustc itself.
157 //
158 // Note, however, that the linker-plugin-lto requested here is
159 // explicitly ignored for `#![no_builtins]` crates. These crates are
160 // specifically ignored by rustc's LTO passes and wouldn't work if
161 // loaded into the linker. These crates define symbols that LLVM
162 // lowers intrinsics to, and these symbol dependencies aren't known
163 // until after codegen. As a result any crate marked
164 // `#![no_builtins]` is assumed to not participate in LTO and
165 // instead goes on to generate object code.
ba9703b0 166 EmitObj::Bitcode
f9f354fc
XL
167 } else if need_bitcode_in_object(sess) {
168 EmitObj::ObjectCode(BitcodeSection::Full)
ba9703b0
XL
169 } else {
170 EmitObj::ObjectCode(BitcodeSection::None)
9fa01778 171 };
ba9703b0
XL
172
173 ModuleConfig {
17df50a5 174 passes: if_regular!(sess.opts.cg.passes.clone(), vec![]),
ba9703b0
XL
175
176 opt_level: opt_level_and_size,
177 opt_size: opt_level_and_size,
178
179 pgo_gen: if_regular!(
180 sess.opts.cg.profile_generate.clone(),
181 SwitchWithOptPath::Disabled
182 ),
183 pgo_use: if_regular!(sess.opts.cg.profile_use.clone(), None),
064997fb
FG
184 pgo_sample_use: if_regular!(sess.opts.unstable_opts.profile_sample_use.clone(), None),
185 debug_info_for_profiling: sess.opts.unstable_opts.debug_info_for_profiling,
17df50a5
XL
186 instrument_coverage: if_regular!(sess.instrument_coverage(), false),
187 instrument_gcov: if_regular!(
188 // compiler_builtins overrides the codegen-units settings,
189 // which is incompatible with -Zprofile which requires that
190 // only a single codegen unit is used per crate.
064997fb 191 sess.opts.unstable_opts.profile && !is_compiler_builtins,
17df50a5
XL
192 false
193 ),
ba9703b0 194
064997fb 195 sanitizer: if_regular!(sess.opts.unstable_opts.sanitizer, SanitizerSet::empty()),
ba9703b0 196 sanitizer_recover: if_regular!(
064997fb 197 sess.opts.unstable_opts.sanitizer_recover,
f035d41b 198 SanitizerSet::empty()
ba9703b0
XL
199 ),
200 sanitizer_memory_track_origins: if_regular!(
064997fb 201 sess.opts.unstable_opts.sanitizer_memory_track_origins,
ba9703b0
XL
202 0
203 ),
204
205 emit_pre_lto_bc: if_regular!(
206 save_temps || need_pre_lto_bitcode_for_incr_comp(sess),
207 false
208 ),
209 emit_no_opt_bc: if_regular!(save_temps, false),
210 emit_bc: if_regular!(
211 save_temps || sess.opts.output_types.contains_key(&OutputType::Bitcode),
212 save_temps
213 ),
ba9703b0
XL
214 emit_ir: if_regular!(
215 sess.opts.output_types.contains_key(&OutputType::LlvmAssembly),
216 false
217 ),
218 emit_asm: if_regular!(
219 sess.opts.output_types.contains_key(&OutputType::Assembly),
220 false
221 ),
222 emit_obj,
064997fb 223 emit_thin_lto: sess.opts.unstable_opts.emit_thin_lto,
5e7ed085 224 bc_cmdline: sess.target.bitcode_llvm_cmdline.to_string(),
ba9703b0
XL
225
226 verify_llvm_ir: sess.verify_llvm_ir(),
227 no_prepopulate_passes: sess.opts.cg.no_prepopulate_passes,
29967ef6 228 no_builtins: no_builtins || sess.target.no_builtins,
ba9703b0
XL
229
230 // Exclude metadata and allocator modules from time_passes output,
231 // since they throw off the "LLVM passes" measurement.
232 time_module: if_regular!(true, false),
233
234 // Copy what clang does by turning on loop vectorization at O2 and
235 // slp vectorization at O3.
236 vectorize_loop: !sess.opts.cg.no_vectorize_loops
237 && (sess.opts.optimize == config::OptLevel::Default
238 || sess.opts.optimize == config::OptLevel::Aggressive),
239 vectorize_slp: !sess.opts.cg.no_vectorize_slp
240 && sess.opts.optimize == config::OptLevel::Aggressive,
241
242 // Some targets (namely, NVPTX) interact badly with the
243 // MergeFunctions pass. This is because MergeFunctions can generate
244 // new function calls which may interfere with the target calling
245 // convention; e.g. for the NVPTX target, PTX kernels should not
246 // call other PTX kernels. MergeFunctions can also be configured to
247 // generate aliases instead, but aliases are not supported by some
248 // backends (again, NVPTX). Therefore, allow targets to opt out of
249 // the MergeFunctions pass, but otherwise keep the pass enabled (at
250 // O2 and O3) since it can be useful for reducing code size.
251 merge_functions: match sess
252 .opts
064997fb 253 .unstable_opts
ba9703b0 254 .merge_functions
29967ef6 255 .unwrap_or(sess.target.merge_functions)
ba9703b0
XL
256 {
257 MergeFunctions::Disabled => false,
258 MergeFunctions::Trampolines | MergeFunctions::Aliases => {
f2b60f7d
FG
259 use config::OptLevel::*;
260 match sess.opts.optimize {
261 Aggressive | Default | SizeMin | Size => true,
262 Less | No => false,
263 }
ba9703b0
XL
264 }
265 },
266
267 inline_threshold: sess.opts.cg.inline_threshold,
064997fb 268 new_llvm_pass_manager: sess.opts.unstable_opts.new_llvm_pass_manager,
f9f354fc 269 emit_lifetime_markers: sess.emit_lifetime_markers(),
064997fb 270 llvm_plugins: if_regular!(sess.opts.unstable_opts.llvm_plugins.clone(), vec![]),
ba9703b0 271 }
a1dfa0c6
XL
272 }
273
274 pub fn bitcode_needed(&self) -> bool {
ba9703b0 275 self.emit_bc
ba9703b0
XL
276 || self.emit_obj == EmitObj::Bitcode
277 || self.emit_obj == EmitObj::ObjectCode(BitcodeSection::Full)
a1dfa0c6
XL
278 }
279}
280
fc512014
XL
281/// Configuration passed to the function returned by the `target_machine_factory`.
282pub struct TargetMachineFactoryConfig {
283 /// Split DWARF is enabled in LLVM by checking that `TM.MCOptions.SplitDwarfFile` isn't empty,
284 /// so the path to the dwarf object has to be provided when we create the target machine.
285 /// This can be ignored by backends which do not need it for their Split DWARF support.
286 pub split_dwarf_file: Option<PathBuf>,
a1dfa0c6
XL
287}
288
5869c6ff
XL
289impl TargetMachineFactoryConfig {
290 pub fn new(
291 cgcx: &CodegenContext<impl WriteBackendMethods>,
292 module_name: &str,
293 ) -> TargetMachineFactoryConfig {
294 let split_dwarf_file = if cgcx.target_can_use_split_dwarf {
a2a8927a
XL
295 cgcx.output_filenames.split_dwarf_path(
296 cgcx.split_debuginfo,
297 cgcx.split_dwarf_kind,
298 Some(module_name),
299 )
5869c6ff
XL
300 } else {
301 None
302 };
303 TargetMachineFactoryConfig { split_dwarf_file }
304 }
305}
306
fc512014
XL
307pub type TargetMachineFactoryFn<B> = Arc<
308 dyn Fn(TargetMachineFactoryConfig) -> Result<<B as WriteBackendMethods>::TargetMachine, String>
309 + Send
310 + Sync,
311>;
312
04454e1e 313pub type ExportedSymbols = FxHashMap<CrateNum, Arc<Vec<(String, SymbolExportInfo)>>>;
dfeec247 314
a1dfa0c6
XL
315/// Additional resources used by optimize_and_codegen (not module specific)
316#[derive(Clone)]
317pub struct CodegenContext<B: WriteBackendMethods> {
318 // Resources needed when running LTO
319 pub backend: B,
e74abb32 320 pub prof: SelfProfilerRef,
a1dfa0c6 321 pub lto: Lto,
a1dfa0c6
XL
322 pub save_temps: bool,
323 pub fewer_names: bool,
3c0e092e 324 pub time_trace: bool,
a1dfa0c6
XL
325 pub exported_symbols: Option<Arc<ExportedSymbols>>,
326 pub opts: Arc<config::Options>,
f9f354fc 327 pub crate_types: Vec<CrateType>,
a1dfa0c6
XL
328 pub each_linked_rlib_for_lto: Vec<(CrateNum, PathBuf)>,
329 pub output_filenames: Arc<OutputFilenames>,
330 pub regular_module_config: Arc<ModuleConfig>,
331 pub metadata_module_config: Arc<ModuleConfig>,
332 pub allocator_module_config: Arc<ModuleConfig>,
fc512014 333 pub tm_factory: TargetMachineFactoryFn<B>,
a1dfa0c6 334 pub msvc_imps_needed: bool,
fc512014 335 pub is_pe_coff: bool,
5869c6ff 336 pub target_can_use_split_dwarf: bool,
29967ef6 337 pub target_pointer_width: u32,
48663c56 338 pub target_arch: String,
a1dfa0c6 339 pub debuginfo: config::DebugInfo,
5869c6ff 340 pub split_debuginfo: rustc_target::spec::SplitDebuginfo,
a2a8927a 341 pub split_dwarf_kind: rustc_session::config::SplitDwarfKind,
a1dfa0c6
XL
342
343 // Number of cgus excluding the allocator/metadata modules
344 pub total_cgus: usize,
345 // Handler to use for diagnostics produced during codegen.
346 pub diag_emitter: SharedEmitter,
a1dfa0c6
XL
347 // LLVM optimizations for which we want to print remarks.
348 pub remark: Passes,
349 // Worker thread number
350 pub worker: usize,
351 // The incremental compilation session directory, or None if we are not
352 // compiling incrementally
353 pub incr_comp_session_dir: Option<PathBuf>,
354 // Used to update CGU re-use information during the thinlto phase.
355 pub cgu_reuse_tracker: CguReuseTracker,
356 // Channel back to the main control thread to send messages to
357 pub coordinator_send: Sender<Box<dyn Any + Send>>,
a1dfa0c6
XL
358}
359
360impl<B: WriteBackendMethods> CodegenContext<B> {
361 pub fn create_diag_handler(&self) -> Handler {
532ac7d7 362 Handler::with_emitter(true, None, Box::new(self.diag_emitter.clone()))
a1dfa0c6
XL
363 }
364
365 pub fn config(&self, kind: ModuleKind) -> &ModuleConfig {
366 match kind {
367 ModuleKind::Regular => &self.regular_module_config,
368 ModuleKind::Metadata => &self.metadata_module_config,
369 ModuleKind::Allocator => &self.allocator_module_config,
370 }
371 }
372}
373
374fn generate_lto_work<B: ExtraBackendMethods>(
375 cgcx: &CodegenContext<B>,
9fa01778 376 needs_fat_lto: Vec<FatLTOInput<B>>,
0731742a 377 needs_thin_lto: Vec<(String, B::ThinBuffer)>,
dfeec247 378 import_only_modules: Vec<(SerializedModule<B::ModuleBuffer>, WorkProduct)>,
a1dfa0c6 379) -> Vec<(WorkItem<B>, u64)> {
e74abb32 380 let _prof_timer = cgcx.prof.generic_activity("codegen_generate_lto_work");
a1dfa0c6 381
0731742a
XL
382 let (lto_modules, copy_jobs) = if !needs_fat_lto.is_empty() {
383 assert!(needs_thin_lto.is_empty());
dfeec247
XL
384 let lto_module =
385 B::run_fat_lto(cgcx, needs_fat_lto, import_only_modules).unwrap_or_else(|e| e.raise());
0731742a
XL
386 (vec![lto_module], vec![])
387 } else {
388 assert!(needs_fat_lto.is_empty());
dfeec247 389 B::run_thin_lto(cgcx, needs_thin_lto, import_only_modules).unwrap_or_else(|e| e.raise())
0731742a
XL
390 };
391
ba9703b0 392 lto_modules
dfeec247
XL
393 .into_iter()
394 .map(|module| {
395 let cost = module.cost();
396 (WorkItem::LTO(module), cost)
397 })
398 .chain(copy_jobs.into_iter().map(|wp| {
399 (
400 WorkItem::CopyPostLtoArtifacts(CachedModuleCodegen {
401 name: wp.cgu_name.clone(),
402 source: wp,
403 }),
404 0,
405 )
406 }))
ba9703b0 407 .collect()
a1dfa0c6
XL
408}
409
410pub struct CompiledModules {
411 pub modules: Vec<CompiledModule>,
a1dfa0c6
XL
412 pub allocator_module: Option<CompiledModule>,
413}
414
f9f354fc
XL
415fn need_bitcode_in_object(sess: &Session) -> bool {
416 let requested_for_rlib = sess.opts.cg.embed_bitcode
417 && sess.crate_types().contains(&CrateType::Rlib)
418 && sess.opts.output_types.contains_key(&OutputType::Exe);
29967ef6 419 let forced_by_target = sess.target.forces_embed_bitcode;
f9f354fc 420 requested_for_rlib || forced_by_target
a1dfa0c6
XL
421}
422
9fa01778 423fn need_pre_lto_bitcode_for_incr_comp(sess: &Session) -> bool {
a1dfa0c6 424 if sess.opts.incremental.is_none() {
dfeec247 425 return false;
a1dfa0c6
XL
426 }
427
428 match sess.lto() {
a1dfa0c6 429 Lto::No => false,
dfeec247 430 Lto::Fat | Lto::Thin | Lto::ThinLocal => true,
a1dfa0c6
XL
431 }
432}
433
434pub fn start_async_codegen<B: ExtraBackendMethods>(
435 backend: B,
dc9dc135 436 tcx: TyCtxt<'_>,
17df50a5 437 target_cpu: String,
a1dfa0c6 438 metadata: EncodedMetadata,
a2a8927a 439 metadata_module: Option<CompiledModule>,
dc9dc135 440 total_cgus: usize,
a1dfa0c6 441) -> OngoingCodegen<B> {
e74abb32 442 let (coordinator_send, coordinator_receive) = channel();
a1dfa0c6 443 let sess = tcx.sess;
e74abb32 444
6a06907d
XL
445 let crate_attrs = tcx.hir().attrs(rustc_hir::CRATE_HIR_ID);
446 let no_builtins = tcx.sess.contains_name(crate_attrs, sym::no_builtins);
447 let is_compiler_builtins = tcx.sess.contains_name(crate_attrs, sym::compiler_builtins);
a1dfa0c6 448
136023e0 449 let crate_info = CrateInfo::new(tcx, target_cpu);
a1dfa0c6 450
f9f354fc
XL
451 let regular_config =
452 ModuleConfig::new(ModuleKind::Regular, sess, no_builtins, is_compiler_builtins);
453 let metadata_config =
454 ModuleConfig::new(ModuleKind::Metadata, sess, no_builtins, is_compiler_builtins);
455 let allocator_config =
456 ModuleConfig::new(ModuleKind::Allocator, sess, no_builtins, is_compiler_builtins);
a1dfa0c6
XL
457
458 let (shared_emitter, shared_emitter_main) = SharedEmitter::new();
459 let (codegen_worker_send, codegen_worker_receive) = channel();
460
dfeec247
XL
461 let coordinator_thread = start_executing_work(
462 backend.clone(),
463 tcx,
464 &crate_info,
465 shared_emitter,
466 codegen_worker_send,
467 coordinator_receive,
468 total_cgus,
469 sess.jobserver.clone(),
ba9703b0 470 Arc::new(regular_config),
dfeec247
XL
471 Arc::new(metadata_config),
472 Arc::new(allocator_config),
473 coordinator_send.clone(),
474 );
a1dfa0c6
XL
475
476 OngoingCodegen {
477 backend,
a1dfa0c6 478 metadata,
a2a8927a 479 metadata_module,
a1dfa0c6
XL
480 crate_info,
481
a1dfa0c6
XL
482 codegen_worker_receive,
483 shared_emitter_main,
064997fb
FG
484 coordinator: Coordinator {
485 sender: coordinator_send,
486 future: Some(coordinator_thread),
487 phantom: PhantomData,
488 },
5099ac24 489 output_filenames: tcx.output_filenames(()).clone(),
a1dfa0c6
XL
490 }
491}
492
493fn copy_all_cgu_workproducts_to_incr_comp_cache_dir(
494 sess: &Session,
495 compiled_modules: &CompiledModules,
496) -> FxHashMap<WorkProductId, WorkProduct> {
497 let mut work_products = FxHashMap::default();
498
499 if sess.opts.incremental.is_none() {
500 return work_products;
501 }
502
f9f354fc 503 let _timer = sess.timer("copy_all_cgu_workproducts_to_incr_comp_cache_dir");
dfeec247 504
a1dfa0c6 505 for module in compiled_modules.modules.iter().filter(|m| m.kind == ModuleKind::Regular) {
064997fb
FG
506 let mut files = Vec::new();
507 if let Some(object_file_path) = &module.object {
508 files.push(("o", object_file_path.as_path()));
509 }
510 if let Some(dwarf_object_file_path) = &module.dwarf_object {
511 files.push(("dwo", dwarf_object_file_path.as_path()));
512 }
513
514 if let Some((id, product)) =
515 copy_cgu_workproduct_to_incr_comp_cache_dir(sess, &module.name, files.as_slice())
516 {
517 work_products.insert(id, product);
a1dfa0c6
XL
518 }
519 }
520
521 work_products
522}
523
dfeec247
XL
524fn produce_final_output_artifacts(
525 sess: &Session,
526 compiled_modules: &CompiledModules,
527 crate_output: &OutputFilenames,
528) {
a1dfa0c6
XL
529 let mut user_wants_bitcode = false;
530 let mut user_wants_objects = false;
531
532 // Produce final compile outputs.
533 let copy_gracefully = |from: &Path, to: &Path| {
534 if let Err(e) = fs::copy(from, to) {
535 sess.err(&format!("could not copy {:?} to {:?}: {}", from, to, e));
536 }
537 };
538
dfeec247 539 let copy_if_one_unit = |output_type: OutputType, keep_numbered: bool| {
a1dfa0c6
XL
540 if compiled_modules.modules.len() == 1 {
541 // 1) Only one codegen unit. In this case it's no difficulty
542 // to copy `foo.0.x` to `foo.x`.
543 let module_name = Some(&compiled_modules.modules[0].name[..]);
544 let path = crate_output.temp_path(output_type, module_name);
dfeec247 545 copy_gracefully(&path, &crate_output.path(output_type));
a1dfa0c6
XL
546 if !sess.opts.cg.save_temps && !keep_numbered {
547 // The user just wants `foo.x`, not `foo.#module-name#.x`.
6a06907d 548 ensure_removed(sess.diagnostic(), &path);
a1dfa0c6
XL
549 }
550 } else {
dfeec247
XL
551 let ext = crate_output
552 .temp_path(output_type, None)
553 .extension()
554 .unwrap()
555 .to_str()
556 .unwrap()
557 .to_owned();
a1dfa0c6
XL
558
559 if crate_output.outputs.contains_key(&output_type) {
560 // 2) Multiple codegen units, with `--emit foo=some_name`. We have
561 // no good solution for this case, so warn the user.
dfeec247
XL
562 sess.warn(&format!(
563 "ignoring emit path because multiple .{} files \
564 were produced",
565 ext
566 ));
a1dfa0c6
XL
567 } else if crate_output.single_output_file.is_some() {
568 // 3) Multiple codegen units, with `-o some_name`. We have
569 // no good solution for this case, so warn the user.
dfeec247
XL
570 sess.warn(&format!(
571 "ignoring -o because multiple .{} files \
572 were produced",
573 ext
574 ));
a1dfa0c6
XL
575 } else {
576 // 4) Multiple codegen units, but no explicit name. We
577 // just leave the `foo.0.x` files in place.
578 // (We don't have to do any work in this case.)
579 }
580 }
581 };
582
583 // Flag to indicate whether the user explicitly requested bitcode.
584 // Otherwise, we produced it only as a temporary output, and will need
585 // to get rid of it.
586 for output_type in crate_output.outputs.keys() {
587 match *output_type {
588 OutputType::Bitcode => {
589 user_wants_bitcode = true;
590 // Copy to .bc, but always keep the .0.bc. There is a later
591 // check to figure out if we should delete .0.bc files, or keep
592 // them for making an rlib.
593 copy_if_one_unit(OutputType::Bitcode, true);
594 }
595 OutputType::LlvmAssembly => {
596 copy_if_one_unit(OutputType::LlvmAssembly, false);
597 }
598 OutputType::Assembly => {
599 copy_if_one_unit(OutputType::Assembly, false);
600 }
601 OutputType::Object => {
602 user_wants_objects = true;
603 copy_if_one_unit(OutputType::Object, true);
604 }
dfeec247 605 OutputType::Mir | OutputType::Metadata | OutputType::Exe | OutputType::DepInfo => {}
a1dfa0c6
XL
606 }
607 }
608
609 // Clean up unwanted temporary files.
610
611 // We create the following files by default:
612 // - #crate#.#module-name#.bc
613 // - #crate#.#module-name#.o
614 // - #crate#.crate.metadata.bc
615 // - #crate#.crate.metadata.o
616 // - #crate#.o (linked from crate.##.o)
617 // - #crate#.bc (copied from crate.##.bc)
618 // We may create additional files if requested by the user (through
619 // `-C save-temps` or `--emit=` flags).
620
621 if !sess.opts.cg.save_temps {
622 // Remove the temporary .#module-name#.o objects. If the user didn't
623 // explicitly request bitcode (with --emit=bc), and the bitcode is not
624 // needed for building an rlib, then we must remove .#module-name#.bc as
625 // well.
626
627 // Specific rules for keeping .#module-name#.bc:
628 // - If the user requested bitcode (`user_wants_bitcode`), and
629 // codegen_units > 1, then keep it.
630 // - If the user requested bitcode but codegen_units == 1, then we
631 // can toss .#module-name#.bc because we copied it to .bc earlier.
632 // - If we're not building an rlib and the user didn't request
633 // bitcode, then delete .#module-name#.bc.
634 // If you change how this works, also update back::link::link_rlib,
635 // where .#module-name#.bc files are (maybe) deleted after making an
636 // rlib.
637 let needs_crate_object = crate_output.outputs.contains_key(&OutputType::Exe);
638
639 let keep_numbered_bitcode = user_wants_bitcode && sess.codegen_units() > 1;
640
dfeec247
XL
641 let keep_numbered_objects =
642 needs_crate_object || (user_wants_objects && sess.codegen_units() > 1);
a1dfa0c6
XL
643
644 for module in compiled_modules.modules.iter() {
645 if let Some(ref path) = module.object {
646 if !keep_numbered_objects {
6a06907d 647 ensure_removed(sess.diagnostic(), path);
a1dfa0c6
XL
648 }
649 }
650
fc512014
XL
651 if let Some(ref path) = module.dwarf_object {
652 if !keep_numbered_objects {
6a06907d 653 ensure_removed(sess.diagnostic(), path);
fc512014
XL
654 }
655 }
656
a1dfa0c6
XL
657 if let Some(ref path) = module.bytecode {
658 if !keep_numbered_bitcode {
6a06907d 659 ensure_removed(sess.diagnostic(), path);
a1dfa0c6
XL
660 }
661 }
662 }
663
664 if !user_wants_bitcode {
a1dfa0c6
XL
665 if let Some(ref allocator_module) = compiled_modules.allocator_module {
666 if let Some(ref path) = allocator_module.bytecode {
6a06907d 667 ensure_removed(sess.diagnostic(), path);
a1dfa0c6
XL
668 }
669 }
670 }
671 }
672
673 // We leave the following files around by default:
674 // - #crate#.o
675 // - #crate#.crate.metadata.o
676 // - #crate#.bc
677 // These are used in linking steps and will be cleaned up afterward.
678}
679
a1dfa0c6
XL
680pub enum WorkItem<B: WriteBackendMethods> {
681 /// Optimize a newly codegened, totally unoptimized module.
682 Optimize(ModuleCodegen<B::Module>),
683 /// Copy the post-LTO artifacts from the incremental cache to the output
684 /// directory.
685 CopyPostLtoArtifacts(CachedModuleCodegen),
9fa01778 686 /// Performs (Thin)LTO on the given module.
a1dfa0c6
XL
687 LTO(lto::LtoModuleCodegen<B>),
688}
689
690impl<B: WriteBackendMethods> WorkItem<B> {
691 pub fn module_kind(&self) -> ModuleKind {
692 match *self {
693 WorkItem::Optimize(ref m) => m.kind,
dfeec247 694 WorkItem::CopyPostLtoArtifacts(_) | WorkItem::LTO(_) => ModuleKind::Regular,
a1dfa0c6
XL
695 }
696 }
697
74b04a01 698 fn start_profiling<'a>(&self, cgcx: &'a CodegenContext<B>) -> TimingGuard<'a> {
a1dfa0c6 699 match *self {
74b04a01 700 WorkItem::Optimize(ref m) => {
a2a8927a 701 cgcx.prof.generic_activity_with_arg("codegen_module_optimize", &*m.name)
74b04a01
XL
702 }
703 WorkItem::CopyPostLtoArtifacts(ref m) => cgcx
704 .prof
a2a8927a 705 .generic_activity_with_arg("codegen_copy_artifacts_from_incr_cache", &*m.name),
74b04a01
XL
706 WorkItem::LTO(ref m) => {
707 cgcx.prof.generic_activity_with_arg("codegen_module_perform_lto", m.name())
708 }
a1dfa0c6
XL
709 }
710 }
6a06907d
XL
711
712 /// Generate a short description of this work item suitable for use as a thread name.
713 fn short_description(&self) -> String {
714 // `pthread_setname()` on *nix is limited to 15 characters and longer names are ignored.
715 // Use very short descriptions in this case to maximize the space available for the module name.
716 // Windows does not have that limitation so use slightly more descriptive names there.
717 match self {
718 WorkItem::Optimize(m) => {
719 #[cfg(windows)]
720 return format!("optimize module {}", m.name);
721 #[cfg(not(windows))]
722 return format!("opt {}", m.name);
723 }
724 WorkItem::CopyPostLtoArtifacts(m) => {
725 #[cfg(windows)]
726 return format!("copy LTO artifacts for {}", m.name);
727 #[cfg(not(windows))]
728 return format!("copy {}", m.name);
729 }
730 WorkItem::LTO(m) => {
731 #[cfg(windows)]
732 return format!("LTO module {}", m.name());
733 #[cfg(not(windows))]
734 return format!("LTO {}", m.name());
735 }
736 }
737 }
a1dfa0c6
XL
738}
739
0731742a 740enum WorkItemResult<B: WriteBackendMethods> {
a1dfa0c6 741 Compiled(CompiledModule),
1b1a35ee 742 NeedsLink(ModuleCodegen<B::Module>),
9fa01778 743 NeedsFatLTO(FatLTOInput<B>),
0731742a 744 NeedsThinLTO(String, B::ThinBuffer),
a1dfa0c6
XL
745}
746
9fa01778 747pub enum FatLTOInput<B: WriteBackendMethods> {
dfeec247 748 Serialized { name: String, buffer: B::ModuleBuffer },
9fa01778
XL
749 InMemory(ModuleCodegen<B::Module>),
750}
751
a1dfa0c6
XL
752fn execute_work_item<B: ExtraBackendMethods>(
753 cgcx: &CodegenContext<B>,
754 work_item: WorkItem<B>,
0731742a 755) -> Result<WorkItemResult<B>, FatalError> {
a1dfa0c6
XL
756 let module_config = cgcx.config(work_item.module_kind());
757
758 match work_item {
dfeec247 759 WorkItem::Optimize(module) => execute_optimize_work_item(cgcx, module, module_config),
a1dfa0c6 760 WorkItem::CopyPostLtoArtifacts(module) => {
6a06907d 761 Ok(execute_copy_from_cache_work_item(cgcx, module, module_config))
a1dfa0c6 762 }
dfeec247 763 WorkItem::LTO(module) => execute_lto_work_item(cgcx, module, module_config),
a1dfa0c6
XL
764 }
765}
766
74b04a01 767// Actual LTO type we end up choosing based on multiple factors.
f9f354fc 768pub enum ComputedLtoType {
0731742a
XL
769 No,
770 Thin,
771 Fat,
772}
773
f9f354fc
XL
774pub fn compute_per_cgu_lto_type(
775 sess_lto: &Lto,
776 opts: &config::Options,
777 sess_crate_types: &[CrateType],
778 module_kind: ModuleKind,
779) -> ComputedLtoType {
780 // Metadata modules never participate in LTO regardless of the lto
781 // settings.
782 if module_kind == ModuleKind::Metadata {
783 return ComputedLtoType::No;
a1dfa0c6
XL
784 }
785
0731742a
XL
786 // If the linker does LTO, we don't have to do it. Note that we
787 // keep doing full LTO, if it is requested, as not to break the
788 // assumption that the output will be a single module.
f9f354fc 789 let linker_does_lto = opts.cg.linker_plugin_lto.enabled();
a1dfa0c6 790
0731742a
XL
791 // When we're automatically doing ThinLTO for multi-codegen-unit
792 // builds we don't actually want to LTO the allocator modules if
793 // it shows up. This is due to various linker shenanigans that
794 // we'll encounter later.
f9f354fc 795 let is_allocator = module_kind == ModuleKind::Allocator;
a1dfa0c6 796
5e7ed085 797 // We ignore a request for full crate graph LTO if the crate type
0731742a
XL
798 // is only an rlib, as there is no full crate graph to process,
799 // that'll happen later.
800 //
801 // This use case currently comes up primarily for targets that
802 // require LTO so the request for LTO is always unconditionally
803 // passed down to the backend, but we don't actually want to do
804 // anything about it yet until we've got a final product.
f9f354fc 805 let is_rlib = sess_crate_types.len() == 1 && sess_crate_types[0] == CrateType::Rlib;
a1dfa0c6 806
f9f354fc
XL
807 match sess_lto {
808 Lto::ThinLocal if !linker_does_lto && !is_allocator => ComputedLtoType::Thin,
809 Lto::Thin if !linker_does_lto && !is_rlib => ComputedLtoType::Thin,
810 Lto::Fat if !is_rlib => ComputedLtoType::Fat,
811 _ => ComputedLtoType::No,
812 }
813}
814
815fn execute_optimize_work_item<B: ExtraBackendMethods>(
816 cgcx: &CodegenContext<B>,
817 module: ModuleCodegen<B::Module>,
818 module_config: &ModuleConfig,
819) -> Result<WorkItemResult<B>, FatalError> {
820 let diag_handler = cgcx.create_diag_handler();
821
822 unsafe {
823 B::optimize(cgcx, &diag_handler, &module, module_config)?;
824 }
825
826 // After we've done the initial round of optimizations we need to
827 // decide whether to synchronously codegen this module or ship it
828 // back to the coordinator thread for further LTO processing (which
829 // has to wait for all the initial modules to be optimized).
830
831 let lto_type = compute_per_cgu_lto_type(&cgcx.lto, &cgcx.opts, &cgcx.crate_types, module.kind);
0731742a 832
9fa01778
XL
833 // If we're doing some form of incremental LTO then we need to be sure to
834 // save our module to disk first.
835 let bitcode = if cgcx.config(module.kind).emit_pre_lto_bc {
836 let filename = pre_lto_bitcode_filename(&module.name);
837 cgcx.incr_comp_session_dir.as_ref().map(|path| path.join(&filename))
838 } else {
839 None
840 };
841
1b1a35ee
XL
842 match lto_type {
843 ComputedLtoType::No => finish_intra_module_work(cgcx, module, module_config),
0731742a 844 ComputedLtoType::Thin => {
9fa01778
XL
845 let (name, thin_buffer) = B::prepare_thin(module);
846 if let Some(path) = bitcode {
847 fs::write(&path, thin_buffer.data()).unwrap_or_else(|e| {
dfeec247 848 panic!("Error writing pre-lto-bitcode file `{}`: {}", path.display(), e);
9fa01778
XL
849 });
850 }
1b1a35ee 851 Ok(WorkItemResult::NeedsThinLTO(name, thin_buffer))
0731742a 852 }
dfeec247
XL
853 ComputedLtoType::Fat => match bitcode {
854 Some(path) => {
855 let (name, buffer) = B::serialize_module(module);
856 fs::write(&path, buffer.data()).unwrap_or_else(|e| {
857 panic!("Error writing pre-lto-bitcode file `{}`: {}", path.display(), e);
858 });
1b1a35ee 859 Ok(WorkItemResult::NeedsFatLTO(FatLTOInput::Serialized { name, buffer }))
9fa01778 860 }
1b1a35ee 861 None => Ok(WorkItemResult::NeedsFatLTO(FatLTOInput::InMemory(module))),
dfeec247 862 },
1b1a35ee 863 }
a1dfa0c6
XL
864}
865
866fn execute_copy_from_cache_work_item<B: ExtraBackendMethods>(
867 cgcx: &CodegenContext<B>,
868 module: CachedModuleCodegen,
869 module_config: &ModuleConfig,
6a06907d 870) -> WorkItemResult<B> {
923072b8
FG
871 assert!(module_config.emit_obj != EmitObj::None);
872
dfeec247 873 let incr_comp_session_dir = cgcx.incr_comp_session_dir.as_ref().unwrap();
064997fb
FG
874
875 let load_from_incr_comp_dir = |output_path: PathBuf, saved_path: &str| {
876 let source_file = in_incr_comp_dir(&incr_comp_session_dir, saved_path);
877 debug!(
878 "copying pre-existing module `{}` from {:?} to {}",
879 module.name,
880 source_file,
881 output_path.display()
882 );
883 match link_or_copy(&source_file, &output_path) {
884 Ok(_) => Some(output_path),
885 Err(err) => {
886 let diag_handler = cgcx.create_diag_handler();
887 diag_handler.err(&format!(
888 "unable to copy {} to {}: {}",
889 source_file.display(),
890 output_path.display(),
891 err
892 ));
893 None
894 }
895 }
896 };
897
898 let object = load_from_incr_comp_dir(
899 cgcx.output_filenames.temp_path(OutputType::Object, Some(&module.name)),
900 &module.source.saved_files.get("o").expect("no saved object file in work product"),
923072b8 901 );
064997fb
FG
902 let dwarf_object =
903 module.source.saved_files.get("dwo").as_ref().and_then(|saved_dwarf_object_file| {
904 let dwarf_obj_out = cgcx
905 .output_filenames
906 .split_dwarf_path(cgcx.split_debuginfo, cgcx.split_dwarf_kind, Some(&module.name))
907 .expect(
908 "saved dwarf object in work product but `split_dwarf_path` returned `None`",
909 );
910 load_from_incr_comp_dir(dwarf_obj_out, &saved_dwarf_object_file)
911 });
a1dfa0c6 912
6a06907d 913 WorkItemResult::Compiled(CompiledModule {
a1dfa0c6
XL
914 name: module.name,
915 kind: ModuleKind::Regular,
064997fb
FG
916 object,
917 dwarf_object,
f9f354fc 918 bytecode: None,
6a06907d 919 })
a1dfa0c6
XL
920}
921
922fn execute_lto_work_item<B: ExtraBackendMethods>(
923 cgcx: &CodegenContext<B>,
04454e1e 924 module: lto::LtoModuleCodegen<B>,
a1dfa0c6 925 module_config: &ModuleConfig,
1b1a35ee
XL
926) -> Result<WorkItemResult<B>, FatalError> {
927 let module = unsafe { module.optimize(cgcx)? };
928 finish_intra_module_work(cgcx, module, module_config)
929}
930
931fn finish_intra_module_work<B: ExtraBackendMethods>(
932 cgcx: &CodegenContext<B>,
933 module: ModuleCodegen<B::Module>,
934 module_config: &ModuleConfig,
0731742a 935) -> Result<WorkItemResult<B>, FatalError> {
a1dfa0c6
XL
936 let diag_handler = cgcx.create_diag_handler();
937
064997fb 938 if !cgcx.opts.unstable_opts.combine_cgu
1b1a35ee
XL
939 || module.kind == ModuleKind::Metadata
940 || module.kind == ModuleKind::Allocator
941 {
942 let module = unsafe { B::codegen(cgcx, &diag_handler, module, module_config)? };
a1dfa0c6 943 Ok(WorkItemResult::Compiled(module))
1b1a35ee
XL
944 } else {
945 Ok(WorkItemResult::NeedsLink(module))
a1dfa0c6
XL
946 }
947}
948
949pub enum Message<B: WriteBackendMethods> {
950 Token(io::Result<Acquired>),
0731742a 951 NeedsFatLTO {
9fa01778 952 result: FatLTOInput<B>,
a1dfa0c6
XL
953 worker_id: usize,
954 },
0731742a
XL
955 NeedsThinLTO {
956 name: String,
957 thin_buffer: B::ThinBuffer,
958 worker_id: usize,
959 },
1b1a35ee
XL
960 NeedsLink {
961 module: ModuleCodegen<B::Module>,
962 worker_id: usize,
963 },
a1dfa0c6 964 Done {
dfeec247 965 result: Result<CompiledModule, Option<WorkerFatalError>>,
a1dfa0c6
XL
966 worker_id: usize,
967 },
968 CodegenDone {
969 llvm_work_item: WorkItem<B>,
970 cost: u64,
971 },
972 AddImportOnlyModule {
973 module_data: SerializedModule<B::ModuleBuffer>,
974 work_product: WorkProduct,
975 },
976 CodegenComplete,
977 CodegenItem,
978 CodegenAborted,
979}
980
981struct Diagnostic {
982 msg: String,
983 code: Option<DiagnosticId>,
984 lvl: Level,
985}
986
987#[derive(PartialEq, Clone, Copy, Debug)]
988enum MainThreadWorkerState {
989 Idle,
990 Codegenning,
991 LLVMing,
992}
993
994fn start_executing_work<B: ExtraBackendMethods>(
995 backend: B,
dc9dc135 996 tcx: TyCtxt<'_>,
a1dfa0c6
XL
997 crate_info: &CrateInfo,
998 shared_emitter: SharedEmitter,
999 codegen_worker_send: Sender<Message<B>>,
1000 coordinator_receive: Receiver<Box<dyn Any + Send>>,
1001 total_cgus: usize,
1002 jobserver: Client,
ba9703b0 1003 regular_config: Arc<ModuleConfig>,
a1dfa0c6 1004 metadata_config: Arc<ModuleConfig>,
dc9dc135 1005 allocator_config: Arc<ModuleConfig>,
e74abb32 1006 tx_to_llvm_workers: Sender<Box<dyn Any + Send>>,
a1dfa0c6 1007) -> thread::JoinHandle<Result<CompiledModules, ()>> {
e74abb32 1008 let coordinator_send = tx_to_llvm_workers;
a1dfa0c6
XL
1009 let sess = tcx.sess;
1010
1011 // Compute the set of symbols we need to retain when doing LTO (if we need to)
1012 let exported_symbols = {
1013 let mut exported_symbols = FxHashMap::default();
1014
1015 let copy_symbols = |cnum| {
dfeec247
XL
1016 let symbols = tcx
1017 .exported_symbols(cnum)
1018 .iter()
1019 .map(|&(s, lvl)| (symbol_name_for_instance_in_crate(tcx, s, cnum), lvl))
1020 .collect();
a1dfa0c6
XL
1021 Arc::new(symbols)
1022 };
1023
1024 match sess.lto() {
1025 Lto::No => None,
1026 Lto::ThinLocal => {
1027 exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
1028 Some(Arc::new(exported_symbols))
1029 }
1030 Lto::Fat | Lto::Thin => {
1031 exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
136023e0 1032 for &cnum in tcx.crates(()).iter() {
a1dfa0c6
XL
1033 exported_symbols.insert(cnum, copy_symbols(cnum));
1034 }
1035 Some(Arc::new(exported_symbols))
1036 }
1037 }
1038 };
1039
1040 // First up, convert our jobserver into a helper thread so we can use normal
1041 // mpsc channels to manage our messages and such.
1042 // After we've requested tokens then we'll, when we can,
1043 // get tokens on `coordinator_receive` which will
1044 // get managed in the main loop below.
1045 let coordinator_send2 = coordinator_send.clone();
dfeec247
XL
1046 let helper = jobserver
1047 .into_helper_thread(move |token| {
1048 drop(coordinator_send2.send(Box::new(Message::Token::<B>(token))));
1049 })
1050 .expect("failed to spawn helper thread");
a1dfa0c6
XL
1051
1052 let mut each_linked_rlib_for_lto = Vec::new();
e74abb32 1053 drop(link::each_linked_rlib(crate_info, &mut |cnum, path| {
a1dfa0c6 1054 if link::ignored_for_lto(sess, crate_info, cnum) {
dfeec247 1055 return;
a1dfa0c6
XL
1056 }
1057 each_linked_rlib_for_lto.push((cnum, path.to_path_buf()));
1058 }));
1059
064997fb
FG
1060 let ol =
1061 if tcx.sess.opts.unstable_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
1062 // If we know that we won’t be doing codegen, create target machines without optimisation.
1063 config::OptLevel::No
1064 } else {
1065 tcx.backend_optimization_level(())
1066 };
5e7ed085 1067 let backend_features = tcx.global_backend_features(());
a1dfa0c6
XL
1068 let cgcx = CodegenContext::<B> {
1069 backend: backend.clone(),
f9f354fc 1070 crate_types: sess.crate_types().to_vec(),
a1dfa0c6
XL
1071 each_linked_rlib_for_lto,
1072 lto: sess.lto(),
a1dfa0c6
XL
1073 fewer_names: sess.fewer_names(),
1074 save_temps: sess.opts.cg.save_temps,
064997fb 1075 time_trace: sess.opts.unstable_opts.llvm_time_trace,
a1dfa0c6 1076 opts: Arc::new(sess.opts.clone()),
e74abb32 1077 prof: sess.prof.clone(),
a1dfa0c6 1078 exported_symbols,
a1dfa0c6
XL
1079 remark: sess.opts.cg.remark.clone(),
1080 worker: 0,
1081 incr_comp_session_dir: sess.incr_comp_session_dir_opt().map(|r| r.clone()),
1082 cgu_reuse_tracker: sess.cgu_reuse_tracker.clone(),
1083 coordinator_send,
1084 diag_emitter: shared_emitter.clone(),
5099ac24 1085 output_filenames: tcx.output_filenames(()).clone(),
ba9703b0 1086 regular_module_config: regular_config,
a1dfa0c6
XL
1087 metadata_module_config: metadata_config,
1088 allocator_module_config: allocator_config,
5e7ed085 1089 tm_factory: backend.target_machine_factory(tcx.sess, ol, backend_features),
a1dfa0c6
XL
1090 total_cgus,
1091 msvc_imps_needed: msvc_imps_needed(tcx),
fc512014 1092 is_pe_coff: tcx.sess.target.is_like_windows,
5869c6ff 1093 target_can_use_split_dwarf: tcx.sess.target_can_use_split_dwarf(),
29967ef6 1094 target_pointer_width: tcx.sess.target.pointer_width,
5e7ed085 1095 target_arch: tcx.sess.target.arch.to_string(),
a1dfa0c6 1096 debuginfo: tcx.sess.opts.debuginfo,
5869c6ff 1097 split_debuginfo: tcx.sess.split_debuginfo(),
064997fb 1098 split_dwarf_kind: tcx.sess.opts.unstable_opts.split_dwarf_kind,
a1dfa0c6
XL
1099 };
1100
1101 // This is the "main loop" of parallel work happening for parallel codegen.
1102 // It's here that we manage parallelism, schedule work, and work with
1103 // messages coming from clients.
1104 //
1105 // There are a few environmental pre-conditions that shape how the system
1106 // is set up:
1107 //
1108 // - Error reporting only can happen on the main thread because that's the
1109 // only place where we have access to the compiler `Session`.
1110 // - LLVM work can be done on any thread.
1111 // - Codegen can only happen on the main thread.
cdc7bbd5 1112 // - Each thread doing substantial work must be in possession of a `Token`
a1dfa0c6
XL
1113 // from the `Jobserver`.
1114 // - The compiler process always holds one `Token`. Any additional `Tokens`
1115 // have to be requested from the `Jobserver`.
1116 //
1117 // Error Reporting
1118 // ===============
1119 // The error reporting restriction is handled separately from the rest: We
1120 // set up a `SharedEmitter` the holds an open channel to the main thread.
1121 // When an error occurs on any thread, the shared emitter will send the
1122 // error message to the receiver main thread (`SharedEmitterMain`). The
1123 // main thread will periodically query this error message queue and emit
1124 // any error messages it has received. It might even abort compilation if
1125 // has received a fatal error. In this case we rely on all other threads
1126 // being torn down automatically with the main thread.
1127 // Since the main thread will often be busy doing codegen work, error
1128 // reporting will be somewhat delayed, since the message queue can only be
1129 // checked in between to work packages.
1130 //
1131 // Work Processing Infrastructure
1132 // ==============================
1133 // The work processing infrastructure knows three major actors:
1134 //
1135 // - the coordinator thread,
1136 // - the main thread, and
1137 // - LLVM worker threads
1138 //
1139 // The coordinator thread is running a message loop. It instructs the main
1140 // thread about what work to do when, and it will spawn off LLVM worker
1141 // threads as open LLVM WorkItems become available.
1142 //
1143 // The job of the main thread is to codegen CGUs into LLVM work package
1144 // (since the main thread is the only thread that can do this). The main
1145 // thread will block until it receives a message from the coordinator, upon
1146 // which it will codegen one CGU, send it to the coordinator and block
1147 // again. This way the coordinator can control what the main thread is
1148 // doing.
1149 //
1150 // The coordinator keeps a queue of LLVM WorkItems, and when a `Token` is
1151 // available, it will spawn off a new LLVM worker thread and let it process
1152 // that a WorkItem. When a LLVM worker thread is done with its WorkItem,
1153 // it will just shut down, which also frees all resources associated with
1154 // the given LLVM module, and sends a message to the coordinator that the
1155 // has been completed.
1156 //
1157 // Work Scheduling
1158 // ===============
1159 // The scheduler's goal is to minimize the time it takes to complete all
1160 // work there is, however, we also want to keep memory consumption low
1161 // if possible. These two goals are at odds with each other: If memory
1162 // consumption were not an issue, we could just let the main thread produce
1163 // LLVM WorkItems at full speed, assuring maximal utilization of
cdc7bbd5 1164 // Tokens/LLVM worker threads. However, since codegen is usually faster
a1dfa0c6
XL
1165 // than LLVM processing, the queue of LLVM WorkItems would fill up and each
1166 // WorkItem potentially holds on to a substantial amount of memory.
1167 //
1168 // So the actual goal is to always produce just enough LLVM WorkItems as
1169 // not to starve our LLVM worker threads. That means, once we have enough
1170 // WorkItems in our queue, we can block the main thread, so it does not
1171 // produce more until we need them.
1172 //
1173 // Doing LLVM Work on the Main Thread
1174 // ----------------------------------
1175 // Since the main thread owns the compiler processes implicit `Token`, it is
1176 // wasteful to keep it blocked without doing any work. Therefore, what we do
1177 // in this case is: We spawn off an additional LLVM worker thread that helps
1178 // reduce the queue. The work it is doing corresponds to the implicit
1179 // `Token`. The coordinator will mark the main thread as being busy with
1180 // LLVM work. (The actual work happens on another OS thread but we just care
1181 // about `Tokens`, not actual threads).
1182 //
1183 // When any LLVM worker thread finishes while the main thread is marked as
1184 // "busy with LLVM work", we can do a little switcheroo: We give the Token
1185 // of the just finished thread to the LLVM worker thread that is working on
1186 // behalf of the main thread's implicit Token, thus freeing up the main
1187 // thread again. The coordinator can then again decide what the main thread
1188 // should do. This allows the coordinator to make decisions at more points
1189 // in time.
1190 //
1191 // Striking a Balance between Throughput and Memory Consumption
1192 // ------------------------------------------------------------
1193 // Since our two goals, (1) use as many Tokens as possible and (2) keep
1194 // memory consumption as low as possible, are in conflict with each other,
1195 // we have to find a trade off between them. Right now, the goal is to keep
1196 // all workers busy, which means that no worker should find the queue empty
1197 // when it is ready to start.
1198 // How do we do achieve this? Good question :) We actually never know how
1199 // many `Tokens` are potentially available so it's hard to say how much to
1200 // fill up the queue before switching the main thread to LLVM work. Also we
1201 // currently don't have a means to estimate how long a running LLVM worker
1202 // will still be busy with it's current WorkItem. However, we know the
1203 // maximal count of available Tokens that makes sense (=the number of CPU
1204 // cores), so we can take a conservative guess. The heuristic we use here
1205 // is implemented in the `queue_full_enough()` function.
1206 //
1207 // Some Background on Jobservers
1208 // -----------------------------
1209 // It's worth also touching on the management of parallelism here. We don't
1210 // want to just spawn a thread per work item because while that's optimal
1211 // parallelism it may overload a system with too many threads or violate our
1212 // configuration for the maximum amount of cpu to use for this process. To
1213 // manage this we use the `jobserver` crate.
1214 //
1215 // Job servers are an artifact of GNU make and are used to manage
1216 // parallelism between processes. A jobserver is a glorified IPC semaphore
1217 // basically. Whenever we want to run some work we acquire the semaphore,
1218 // and whenever we're done with that work we release the semaphore. In this
1219 // manner we can ensure that the maximum number of parallel workers is
1220 // capped at any one point in time.
1221 //
1222 // LTO and the coordinator thread
1223 // ------------------------------
1224 //
1225 // The final job the coordinator thread is responsible for is managing LTO
1226 // and how that works. When LTO is requested what we'll to is collect all
1227 // optimized LLVM modules into a local vector on the coordinator. Once all
1228 // modules have been codegened and optimized we hand this to the `lto`
1229 // module for further optimization. The `lto` module will return back a list
1230 // of more modules to work on, which the coordinator will continue to spawn
1231 // work for.
1232 //
1233 // Each LLVM module is automatically sent back to the coordinator for LTO if
1234 // necessary. There's already optimizations in place to avoid sending work
1235 // back to the coordinator if LTO isn't requested.
3c0e092e 1236 return B::spawn_thread(cgcx.time_trace, move || {
a1dfa0c6
XL
1237 let mut worker_id_counter = 0;
1238 let mut free_worker_ids = Vec::new();
1239 let mut get_worker_id = |free_worker_ids: &mut Vec<usize>| {
1240 if let Some(id) = free_worker_ids.pop() {
1241 id
1242 } else {
1243 let id = worker_id_counter;
1244 worker_id_counter += 1;
1245 id
1246 }
1247 };
1248
1249 // This is where we collect codegen units that have gone all the way
1250 // through codegen and LLVM.
1251 let mut compiled_modules = vec![];
a1dfa0c6 1252 let mut compiled_allocator_module = None;
1b1a35ee 1253 let mut needs_link = Vec::new();
0731742a
XL
1254 let mut needs_fat_lto = Vec::new();
1255 let mut needs_thin_lto = Vec::new();
a1dfa0c6
XL
1256 let mut lto_import_only_modules = Vec::new();
1257 let mut started_lto = false;
1258 let mut codegen_aborted = false;
1259
1260 // This flag tracks whether all items have gone through codegens
1261 let mut codegen_done = false;
1262
1263 // This is the queue of LLVM work items that still need processing.
1264 let mut work_items = Vec::<(WorkItem<B>, u64)>::new();
1265
1266 // This are the Jobserver Tokens we currently hold. Does not include
1267 // the implicit Token the compiler process owns no matter what.
1268 let mut tokens = Vec::new();
1269
1270 let mut main_thread_worker_state = MainThreadWorkerState::Idle;
1271 let mut running = 0;
1272
dfeec247
XL
1273 let prof = &cgcx.prof;
1274 let mut llvm_start_time: Option<VerboseTimingGuard<'_>> = None;
a1dfa0c6
XL
1275
1276 // Run the message loop while there's still anything that needs message
1277 // processing. Note that as soon as codegen is aborted we simply want to
1278 // wait for all existing work to finish, so many of the conditions here
1279 // only apply if codegen hasn't been aborted as they represent pending
1280 // work to be done.
dfeec247
XL
1281 while !codegen_done
1282 || running > 0
064997fb 1283 || main_thread_worker_state == MainThreadWorkerState::LLVMing
dfeec247 1284 || (!codegen_aborted
74b04a01
XL
1285 && !(work_items.is_empty()
1286 && needs_fat_lto.is_empty()
1287 && needs_thin_lto.is_empty()
1288 && lto_import_only_modules.is_empty()
1289 && main_thread_worker_state == MainThreadWorkerState::Idle))
a1dfa0c6 1290 {
a1dfa0c6
XL
1291 // While there are still CGUs to be codegened, the coordinator has
1292 // to decide how to utilize the compiler processes implicit Token:
1293 // For codegenning more CGU or for running them through LLVM.
1294 if !codegen_done {
1295 if main_thread_worker_state == MainThreadWorkerState::Idle {
6a06907d
XL
1296 // Compute the number of workers that will be running once we've taken as many
1297 // items from the work queue as we can, plus one for the main thread. It's not
1298 // critically important that we use this instead of just `running`, but it
1299 // prevents the `queue_full_enough` heuristic from fluctuating just because a
1300 // worker finished up and we decreased the `running` count, even though we're
1301 // just going to increase it right after this when we put a new worker to work.
1302 let extra_tokens = tokens.len().checked_sub(running).unwrap();
1303 let additional_running = std::cmp::min(extra_tokens, work_items.len());
1304 let anticipated_running = running + additional_running + 1;
1305
1306 if !queue_full_enough(work_items.len(), anticipated_running) {
a1dfa0c6 1307 // The queue is not full enough, codegen more items:
74b04a01 1308 if codegen_worker_send.send(Message::CodegenItem).is_err() {
a1dfa0c6
XL
1309 panic!("Could not send Message::CodegenItem to main thread")
1310 }
1311 main_thread_worker_state = MainThreadWorkerState::Codegenning;
1312 } else {
1313 // The queue is full enough to not let the worker
1314 // threads starve. Use the implicit Token to do some
1315 // LLVM work too.
dfeec247
XL
1316 let (item, _) =
1317 work_items.pop().expect("queue empty - queue_full_enough() broken?");
a1dfa0c6
XL
1318 let cgcx = CodegenContext {
1319 worker: get_worker_id(&mut free_worker_ids),
dfeec247 1320 ..cgcx.clone()
a1dfa0c6 1321 };
dfeec247
XL
1322 maybe_start_llvm_timer(
1323 prof,
1324 cgcx.config(item.module_kind()),
1325 &mut llvm_start_time,
1326 );
a1dfa0c6
XL
1327 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1328 spawn_work(cgcx, item);
1329 }
1330 }
1331 } else if codegen_aborted {
1332 // don't queue up any more work if codegen was aborted, we're
1333 // just waiting for our existing children to finish
1334 } else {
1335 // If we've finished everything related to normal codegen
1336 // then it must be the case that we've got some LTO work to do.
1337 // Perform the serial work here of figuring out what we're
1338 // going to LTO and then push a bunch of work items onto our
1339 // queue to do LTO
74b04a01 1340 if work_items.is_empty()
dfeec247
XL
1341 && running == 0
1342 && main_thread_worker_state == MainThreadWorkerState::Idle
1343 {
a1dfa0c6 1344 assert!(!started_lto);
a1dfa0c6 1345 started_lto = true;
0731742a 1346
416331ca
XL
1347 let needs_fat_lto = mem::take(&mut needs_fat_lto);
1348 let needs_thin_lto = mem::take(&mut needs_thin_lto);
1349 let import_only_modules = mem::take(&mut lto_import_only_modules);
0731742a 1350
dfeec247
XL
1351 for (work, cost) in
1352 generate_lto_work(&cgcx, needs_fat_lto, needs_thin_lto, import_only_modules)
1353 {
a1dfa0c6
XL
1354 let insertion_index = work_items
1355 .binary_search_by_key(&cost, |&(_, cost)| cost)
1356 .unwrap_or_else(|e| e);
1357 work_items.insert(insertion_index, (work, cost));
064997fb 1358 if !cgcx.opts.unstable_opts.no_parallel_llvm {
a1dfa0c6
XL
1359 helper.request_token();
1360 }
1361 }
1362 }
1363
1364 // In this branch, we know that everything has been codegened,
1365 // so it's just a matter of determining whether the implicit
1366 // Token is free to use for LLVM work.
1367 match main_thread_worker_state {
1368 MainThreadWorkerState::Idle => {
1369 if let Some((item, _)) = work_items.pop() {
1370 let cgcx = CodegenContext {
1371 worker: get_worker_id(&mut free_worker_ids),
dfeec247 1372 ..cgcx.clone()
a1dfa0c6 1373 };
dfeec247
XL
1374 maybe_start_llvm_timer(
1375 prof,
1376 cgcx.config(item.module_kind()),
1377 &mut llvm_start_time,
1378 );
a1dfa0c6
XL
1379 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1380 spawn_work(cgcx, item);
1381 } else {
1382 // There is no unstarted work, so let the main thread
1383 // take over for a running worker. Otherwise the
1384 // implicit token would just go to waste.
1385 // We reduce the `running` counter by one. The
1386 // `tokens.truncate()` below will take care of
1387 // giving the Token back.
1388 debug_assert!(running > 0);
1389 running -= 1;
1390 main_thread_worker_state = MainThreadWorkerState::LLVMing;
1391 }
1392 }
dfeec247
XL
1393 MainThreadWorkerState::Codegenning => bug!(
1394 "codegen worker should not be codegenning after \
1395 codegen was already completed"
1396 ),
a1dfa0c6
XL
1397 MainThreadWorkerState::LLVMing => {
1398 // Already making good use of that token
1399 }
1400 }
1401 }
1402
1403 // Spin up what work we can, only doing this while we've got available
1404 // parallelism slots and work left to spawn.
74b04a01 1405 while !codegen_aborted && !work_items.is_empty() && running < tokens.len() {
a1dfa0c6
XL
1406 let (item, _) = work_items.pop().unwrap();
1407
dfeec247 1408 maybe_start_llvm_timer(prof, cgcx.config(item.module_kind()), &mut llvm_start_time);
a1dfa0c6 1409
dfeec247
XL
1410 let cgcx =
1411 CodegenContext { worker: get_worker_id(&mut free_worker_ids), ..cgcx.clone() };
a1dfa0c6
XL
1412
1413 spawn_work(cgcx, item);
1414 running += 1;
1415 }
1416
1417 // Relinquish accidentally acquired extra tokens
1418 tokens.truncate(running);
1419
0731742a
XL
1420 // If a thread exits successfully then we drop a token associated
1421 // with that worker and update our `running` count. We may later
1422 // re-acquire a token to continue running more work. We may also not
1423 // actually drop a token here if the worker was running with an
1424 // "ephemeral token"
1425 let mut free_worker = |worker_id| {
1426 if main_thread_worker_state == MainThreadWorkerState::LLVMing {
1427 main_thread_worker_state = MainThreadWorkerState::Idle;
1428 } else {
1429 running -= 1;
1430 }
1431
1432 free_worker_ids.push(worker_id);
1433 };
1434
a1dfa0c6
XL
1435 let msg = coordinator_receive.recv().unwrap();
1436 match *msg.downcast::<Message<B>>().ok().unwrap() {
1437 // Save the token locally and the next turn of the loop will use
1438 // this to spawn a new unit of work, or it may get dropped
1439 // immediately if we have no more work to spawn.
1440 Message::Token(token) => {
1441 match token {
1442 Ok(token) => {
1443 tokens.push(token);
1444
1445 if main_thread_worker_state == MainThreadWorkerState::LLVMing {
1446 // If the main thread token is used for LLVM work
1447 // at the moment, we turn that thread into a regular
1448 // LLVM worker thread, so the main thread is free
1449 // to react to codegen demand.
1450 main_thread_worker_state = MainThreadWorkerState::Idle;
1451 running += 1;
1452 }
1453 }
1454 Err(e) => {
1455 let msg = &format!("failed to acquire jobserver token: {}", e);
1456 shared_emitter.fatal(msg);
1457 // Exit the coordinator thread
1458 panic!("{}", msg)
1459 }
1460 }
1461 }
1462
1463 Message::CodegenDone { llvm_work_item, cost } => {
1464 // We keep the queue sorted by estimated processing cost,
1465 // so that more expensive items are processed earlier. This
1466 // is good for throughput as it gives the main thread more
1467 // time to fill up the queue and it avoids scheduling
1468 // expensive items to the end.
1469 // Note, however, that this is not ideal for memory
1470 // consumption, as LLVM module sizes are not evenly
1471 // distributed.
dfeec247 1472 let insertion_index = work_items.binary_search_by_key(&cost, |&(_, cost)| cost);
a1dfa0c6 1473 let insertion_index = match insertion_index {
dfeec247 1474 Ok(idx) | Err(idx) => idx,
a1dfa0c6
XL
1475 };
1476 work_items.insert(insertion_index, (llvm_work_item, cost));
1477
064997fb 1478 if !cgcx.opts.unstable_opts.no_parallel_llvm {
a1dfa0c6
XL
1479 helper.request_token();
1480 }
dfeec247 1481 assert_eq!(main_thread_worker_state, MainThreadWorkerState::Codegenning);
a1dfa0c6
XL
1482 main_thread_worker_state = MainThreadWorkerState::Idle;
1483 }
1484
1485 Message::CodegenComplete => {
1486 codegen_done = true;
dfeec247 1487 assert_eq!(main_thread_worker_state, MainThreadWorkerState::Codegenning);
a1dfa0c6
XL
1488 main_thread_worker_state = MainThreadWorkerState::Idle;
1489 }
1490
1491 // If codegen is aborted that means translation was aborted due
1492 // to some normal-ish compiler error. In this situation we want
1493 // to exit as soon as possible, but we want to make sure all
1494 // existing work has finished. Flag codegen as being done, and
1495 // then conditions above will ensure no more work is spawned but
1496 // we'll keep executing this loop until `running` hits 0.
1497 Message::CodegenAborted => {
a1dfa0c6
XL
1498 codegen_done = true;
1499 codegen_aborted = true;
a1dfa0c6 1500 }
a1dfa0c6 1501 Message::Done { result: Ok(compiled_module), worker_id } => {
0731742a 1502 free_worker(worker_id);
a1dfa0c6
XL
1503 match compiled_module.kind {
1504 ModuleKind::Regular => {
1505 compiled_modules.push(compiled_module);
1506 }
a1dfa0c6
XL
1507 ModuleKind::Allocator => {
1508 assert!(compiled_allocator_module.is_none());
1509 compiled_allocator_module = Some(compiled_module);
1510 }
a2a8927a 1511 ModuleKind::Metadata => bug!("Should be handled separately"),
a1dfa0c6
XL
1512 }
1513 }
1b1a35ee
XL
1514 Message::NeedsLink { module, worker_id } => {
1515 free_worker(worker_id);
1516 needs_link.push(module);
1517 }
0731742a 1518 Message::NeedsFatLTO { result, worker_id } => {
a1dfa0c6 1519 assert!(!started_lto);
0731742a
XL
1520 free_worker(worker_id);
1521 needs_fat_lto.push(result);
1522 }
1523 Message::NeedsThinLTO { name, thin_buffer, worker_id } => {
1524 assert!(!started_lto);
1525 free_worker(worker_id);
1526 needs_thin_lto.push((name, thin_buffer));
a1dfa0c6
XL
1527 }
1528 Message::AddImportOnlyModule { module_data, work_product } => {
1529 assert!(!started_lto);
1530 assert!(!codegen_done);
dfeec247 1531 assert_eq!(main_thread_worker_state, MainThreadWorkerState::Codegenning);
a1dfa0c6
XL
1532 lto_import_only_modules.push((module_data, work_product));
1533 main_thread_worker_state = MainThreadWorkerState::Idle;
1534 }
0731742a 1535 // If the thread failed that means it panicked, so we abort immediately.
dfeec247 1536 Message::Done { result: Err(None), worker_id: _ } => {
a1dfa0c6
XL
1537 bug!("worker thread panicked");
1538 }
064997fb
FG
1539 Message::Done { result: Err(Some(WorkerFatalError)), worker_id } => {
1540 // Similar to CodegenAborted, wait for remaining work to finish.
1541 free_worker(worker_id);
1542 codegen_done = true;
1543 codegen_aborted = true;
a1dfa0c6 1544 }
dfeec247 1545 Message::CodegenItem => bug!("the coordinator should not receive codegen requests"),
a1dfa0c6
XL
1546 }
1547 }
1548
064997fb
FG
1549 if codegen_aborted {
1550 return Err(());
1551 }
1552
1b1a35ee
XL
1553 let needs_link = mem::take(&mut needs_link);
1554 if !needs_link.is_empty() {
1555 assert!(compiled_modules.is_empty());
1556 let diag_handler = cgcx.create_diag_handler();
1557 let module = B::run_link(&cgcx, &diag_handler, needs_link).map_err(|_| ())?;
1558 let module = unsafe {
1559 B::codegen(&cgcx, &diag_handler, module, cgcx.config(ModuleKind::Regular))
1560 .map_err(|_| ())?
1561 };
1562 compiled_modules.push(module);
1563 }
1564
dfeec247
XL
1565 // Drop to print timings
1566 drop(llvm_start_time);
a1dfa0c6
XL
1567
1568 // Regardless of what order these modules completed in, report them to
1569 // the backend in the same order every time to ensure that we're handing
1570 // out deterministic results.
1571 compiled_modules.sort_by(|a, b| a.name.cmp(&b.name));
1572
a1dfa0c6
XL
1573 Ok(CompiledModules {
1574 modules: compiled_modules,
a1dfa0c6
XL
1575 allocator_module: compiled_allocator_module,
1576 })
1577 });
1578
1579 // A heuristic that determines if we have enough LLVM WorkItems in the
1580 // queue so that the main thread can do LLVM work instead of codegen
6a06907d
XL
1581 fn queue_full_enough(items_in_queue: usize, workers_running: usize) -> bool {
1582 // This heuristic scales ahead-of-time codegen according to available
1583 // concurrency, as measured by `workers_running`. The idea is that the
1584 // more concurrency we have available, the more demand there will be for
1585 // work items, and the fuller the queue should be kept to meet demand.
1586 // An important property of this approach is that we codegen ahead of
1587 // time only as much as necessary, so as to keep fewer LLVM modules in
1588 // memory at once, thereby reducing memory consumption.
1589 //
1590 // When the number of workers running is less than the max concurrency
1591 // available to us, this heuristic can cause us to instruct the main
1592 // thread to work on an LLVM item (that is, tell it to "LLVM") instead
1593 // of codegen, even though it seems like it *should* be codegenning so
1594 // that we can create more work items and spawn more LLVM workers.
1595 //
1596 // But this is not a problem. When the main thread is told to LLVM,
1597 // according to this heuristic and how work is scheduled, there is
1598 // always at least one item in the queue, and therefore at least one
1599 // pending jobserver token request. If there *is* more concurrency
1600 // available, we will immediately receive a token, which will upgrade
1601 // the main thread's LLVM worker to a real one (conceptually), and free
1602 // up the main thread to codegen if necessary. On the other hand, if
1603 // there isn't more concurrency, then the main thread working on an LLVM
1604 // item is appropriate, as long as the queue is full enough for demand.
1605 //
1606 // Speaking of which, how full should we keep the queue? Probably less
1607 // full than you'd think. A lot has to go wrong for the queue not to be
1608 // full enough and for that to have a negative effect on compile times.
1609 //
1610 // Workers are unlikely to finish at exactly the same time, so when one
1611 // finishes and takes another work item off the queue, we often have
1612 // ample time to codegen at that point before the next worker finishes.
1613 // But suppose that codegen takes so long that the workers exhaust the
1614 // queue, and we have one or more workers that have nothing to work on.
1615 // Well, it might not be so bad. Of all the LLVM modules we create and
1616 // optimize, one has to finish last. It's not necessarily the case that
1617 // by losing some concurrency for a moment, we delay the point at which
1618 // that last LLVM module is finished and the rest of compilation can
1619 // proceed. Also, when we can't take advantage of some concurrency, we
1620 // give tokens back to the job server. That enables some other rustc to
1621 // potentially make use of the available concurrency. That could even
1622 // *decrease* overall compile time if we're lucky. But yes, if no other
1623 // rustc can make use of the concurrency, then we've squandered it.
1624 //
1625 // However, keeping the queue full is also beneficial when we have a
1626 // surge in available concurrency. Then items can be taken from the
1627 // queue immediately, without having to wait for codegen.
1628 //
1629 // So, the heuristic below tries to keep one item in the queue for every
1630 // four running workers. Based on limited benchmarking, this appears to
1631 // be more than sufficient to avoid increasing compilation times.
1632 let quarter_of_workers = workers_running - 3 * workers_running / 4;
1633 items_in_queue > 0 && items_in_queue >= quarter_of_workers
a1dfa0c6
XL
1634 }
1635
dfeec247
XL
1636 fn maybe_start_llvm_timer<'a>(
1637 prof: &'a SelfProfilerRef,
1638 config: &ModuleConfig,
1639 llvm_start_time: &mut Option<VerboseTimingGuard<'a>>,
1640 ) {
1641 if config.time_module && llvm_start_time.is_none() {
74b04a01 1642 *llvm_start_time = Some(prof.extra_verbose_generic_activity("LLVM_passes", "crate"));
a1dfa0c6
XL
1643 }
1644 }
1645}
1646
dfeec247
XL
1647/// `FatalError` is explicitly not `Send`.
1648#[must_use]
1649pub struct WorkerFatalError;
a1dfa0c6 1650
dfeec247 1651fn spawn_work<B: ExtraBackendMethods>(cgcx: CodegenContext<B>, work: WorkItem<B>) {
3c0e092e
XL
1652 B::spawn_named_thread(cgcx.time_trace, work.short_description(), move || {
1653 // Set up a destructor which will fire off a message that we're done as
1654 // we exit.
1655 struct Bomb<B: ExtraBackendMethods> {
1656 coordinator_send: Sender<Box<dyn Any + Send>>,
1657 result: Option<Result<WorkItemResult<B>, FatalError>>,
1658 worker_id: usize,
1659 }
1660 impl<B: ExtraBackendMethods> Drop for Bomb<B> {
1661 fn drop(&mut self) {
1662 let worker_id = self.worker_id;
1663 let msg = match self.result.take() {
1664 Some(Ok(WorkItemResult::Compiled(m))) => {
1665 Message::Done::<B> { result: Ok(m), worker_id }
1666 }
1667 Some(Ok(WorkItemResult::NeedsLink(m))) => {
1668 Message::NeedsLink::<B> { module: m, worker_id }
1669 }
1670 Some(Ok(WorkItemResult::NeedsFatLTO(m))) => {
1671 Message::NeedsFatLTO::<B> { result: m, worker_id }
1672 }
1673 Some(Ok(WorkItemResult::NeedsThinLTO(name, thin_buffer))) => {
1674 Message::NeedsThinLTO::<B> { name, thin_buffer, worker_id }
1675 }
1676 Some(Err(FatalError)) => {
1677 Message::Done::<B> { result: Err(Some(WorkerFatalError)), worker_id }
1678 }
1679 None => Message::Done::<B> { result: Err(None), worker_id },
1680 };
1681 drop(self.coordinator_send.send(Box::new(msg)));
a1dfa0c6 1682 }
3c0e092e 1683 }
a1dfa0c6 1684
3c0e092e
XL
1685 let mut bomb = Bomb::<B> {
1686 coordinator_send: cgcx.coordinator_send.clone(),
1687 result: None,
1688 worker_id: cgcx.worker,
1689 };
a1dfa0c6 1690
3c0e092e
XL
1691 // Execute the work itself, and if it finishes successfully then flag
1692 // ourselves as a success as well.
1693 //
1694 // Note that we ignore any `FatalError` coming out of `execute_work_item`,
1695 // as a diagnostic was already sent off to the main thread - just
1696 // surface that there was an error in this worker.
1697 bomb.result = {
1698 let _prof_timer = work.start_profiling(&cgcx);
1699 Some(execute_work_item(&cgcx, work))
1700 };
1701 })
1702 .expect("failed to spawn thread");
a1dfa0c6
XL
1703}
1704
a1dfa0c6
XL
1705enum SharedEmitterMessage {
1706 Diagnostic(Diagnostic),
f035d41b 1707 InlineAsmError(u32, String, Level, Option<(String, Vec<InnerSpan>)>),
a1dfa0c6
XL
1708 AbortIfErrors,
1709 Fatal(String),
1710}
1711
1712#[derive(Clone)]
1713pub struct SharedEmitter {
1714 sender: Sender<SharedEmitterMessage>,
1715}
1716
1717pub struct SharedEmitterMain {
1718 receiver: Receiver<SharedEmitterMessage>,
1719}
1720
1721impl SharedEmitter {
1722 pub fn new() -> (SharedEmitter, SharedEmitterMain) {
1723 let (sender, receiver) = channel();
1724
1725 (SharedEmitter { sender }, SharedEmitterMain { receiver })
1726 }
1727
f9f354fc
XL
1728 pub fn inline_asm_error(
1729 &self,
1730 cookie: u32,
1731 msg: String,
f035d41b 1732 level: Level,
f9f354fc
XL
1733 source: Option<(String, Vec<InnerSpan>)>,
1734 ) {
f035d41b 1735 drop(self.sender.send(SharedEmitterMessage::InlineAsmError(cookie, msg, level, source)));
a1dfa0c6
XL
1736 }
1737
1738 pub fn fatal(&self, msg: &str) {
1739 drop(self.sender.send(SharedEmitterMessage::Fatal(msg.to_string())));
1740 }
1741}
1742
f2b60f7d
FG
1743impl Translate for SharedEmitter {
1744 fn fluent_bundle(&self) -> Option<&Lrc<rustc_errors::FluentBundle>> {
1745 None
1746 }
1747
1748 fn fallback_fluent_bundle(&self) -> &rustc_errors::FluentBundle {
1749 panic!("shared emitter attempted to translate a diagnostic");
1750 }
1751}
1752
a1dfa0c6 1753impl Emitter for SharedEmitter {
e74abb32 1754 fn emit_diagnostic(&mut self, diag: &rustc_errors::Diagnostic) {
04454e1e 1755 let fluent_args = self.to_fluent_args(diag.args());
a1dfa0c6 1756 drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
04454e1e 1757 msg: self.translate_messages(&diag.message, &fluent_args).to_string(),
e74abb32 1758 code: diag.code.clone(),
5e7ed085 1759 lvl: diag.level(),
a1dfa0c6 1760 })));
e74abb32 1761 for child in &diag.children {
a1dfa0c6 1762 drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
04454e1e 1763 msg: self.translate_messages(&child.message, &fluent_args).to_string(),
a1dfa0c6
XL
1764 code: None,
1765 lvl: child.level,
1766 })));
1767 }
1768 drop(self.sender.send(SharedEmitterMessage::AbortIfErrors));
1769 }
04454e1e 1770
60c5eb7d 1771 fn source_map(&self) -> Option<&Lrc<SourceMap>> {
e74abb32
XL
1772 None
1773 }
a1dfa0c6
XL
1774}
1775
1776impl SharedEmitterMain {
1777 pub fn check(&self, sess: &Session, blocking: bool) {
1778 loop {
1779 let message = if blocking {
1780 match self.receiver.recv() {
1781 Ok(message) => Ok(message),
1782 Err(_) => Err(()),
1783 }
1784 } else {
1785 match self.receiver.try_recv() {
1786 Ok(message) => Ok(message),
1787 Err(_) => Err(()),
1788 }
1789 };
1790
1791 match message {
1792 Ok(SharedEmitterMessage::Diagnostic(diag)) => {
1793 let handler = sess.diagnostic();
e1599b0c
XL
1794 let mut d = rustc_errors::Diagnostic::new(diag.lvl, &diag.msg);
1795 if let Some(code) = diag.code {
1796 d.code(code);
a1dfa0c6 1797 }
5e7ed085 1798 handler.emit_diagnostic(&mut d);
a1dfa0c6 1799 }
f035d41b 1800 Ok(SharedEmitterMessage::InlineAsmError(cookie, msg, level, source)) => {
f9f354fc
XL
1801 let msg = msg.strip_prefix("error: ").unwrap_or(&msg);
1802
f035d41b 1803 let mut err = match level {
04454e1e 1804 Level::Error { lint: false } => sess.struct_err(msg).forget_guarantee(),
923072b8 1805 Level::Warning(_) => sess.struct_warn(msg),
04454e1e 1806 Level::Note => sess.struct_note_without_error(msg),
f035d41b
XL
1807 _ => bug!("Invalid inline asm diagnostic level"),
1808 };
1809
f9f354fc 1810 // If the cookie is 0 then we don't have span information.
f035d41b 1811 if cookie != 0 {
f9f354fc
XL
1812 let pos = BytePos::from_u32(cookie);
1813 let span = Span::with_root_ctxt(pos, pos);
f035d41b 1814 err.set_span(span);
f9f354fc
XL
1815 };
1816
1817 // Point to the generated assembly if it is available.
1818 if let Some((buffer, spans)) = source {
1819 let source = sess
1820 .source_map()
1821 .new_source_file(FileName::inline_asm_source_code(&buffer), buffer);
1822 let source_span = Span::with_root_ctxt(source.start_pos, source.end_pos);
1823 let spans: Vec<_> =
1824 spans.iter().map(|sp| source_span.from_inner(*sp)).collect();
1825 err.span_note(spans, "instantiated into assembly here");
1826 }
1827
1828 err.emit();
a1dfa0c6
XL
1829 }
1830 Ok(SharedEmitterMessage::AbortIfErrors) => {
1831 sess.abort_if_errors();
1832 }
1833 Ok(SharedEmitterMessage::Fatal(msg)) => {
1834 sess.fatal(&msg);
1835 }
1836 Err(_) => {
1837 break;
1838 }
1839 }
a1dfa0c6
XL
1840 }
1841 }
1842}
1843
064997fb
FG
1844pub struct Coordinator<B: ExtraBackendMethods> {
1845 pub sender: Sender<Box<dyn Any + Send>>,
1846 future: Option<thread::JoinHandle<Result<CompiledModules, ()>>>,
1847 // Only used for the Message type.
1848 phantom: PhantomData<B>,
1849}
1850
1851impl<B: ExtraBackendMethods> Coordinator<B> {
1852 fn join(mut self) -> std::thread::Result<Result<CompiledModules, ()>> {
1853 self.future.take().unwrap().join()
1854 }
1855}
1856
1857impl<B: ExtraBackendMethods> Drop for Coordinator<B> {
1858 fn drop(&mut self) {
1859 if let Some(future) = self.future.take() {
1860 // If we haven't joined yet, signal to the coordinator that it should spawn no more
1861 // work, and wait for worker threads to finish.
1862 drop(self.sender.send(Box::new(Message::CodegenAborted::<B>)));
1863 drop(future.join());
1864 }
1865 }
1866}
1867
a1dfa0c6
XL
1868pub struct OngoingCodegen<B: ExtraBackendMethods> {
1869 pub backend: B,
a1dfa0c6 1870 pub metadata: EncodedMetadata,
a2a8927a 1871 pub metadata_module: Option<CompiledModule>,
a1dfa0c6 1872 pub crate_info: CrateInfo,
a1dfa0c6
XL
1873 pub codegen_worker_receive: Receiver<Message<B>>,
1874 pub shared_emitter_main: SharedEmitterMain,
a1dfa0c6 1875 pub output_filenames: Arc<OutputFilenames>,
064997fb 1876 pub coordinator: Coordinator<B>,
a1dfa0c6
XL
1877}
1878
1879impl<B: ExtraBackendMethods> OngoingCodegen<B> {
dfeec247
XL
1880 pub fn join(self, sess: &Session) -> (CodegenResults, FxHashMap<WorkProductId, WorkProduct>) {
1881 let _timer = sess.timer("finish_ongoing_codegen");
1882
a1dfa0c6 1883 self.shared_emitter_main.check(sess, true);
064997fb 1884 let compiled_modules = sess.time("join_worker_thread", || match self.coordinator.join() {
a1dfa0c6
XL
1885 Ok(Ok(compiled_modules)) => compiled_modules,
1886 Ok(Err(())) => {
1887 sess.abort_if_errors();
1888 panic!("expected abort due to worker thread errors")
dfeec247 1889 }
a1dfa0c6
XL
1890 Err(_) => {
1891 bug!("panic during codegen/LLVM phase");
1892 }
dfeec247 1893 });
a1dfa0c6 1894
f2b60f7d 1895 sess.cgu_reuse_tracker.check_expected_reuse(sess);
a1dfa0c6
XL
1896
1897 sess.abort_if_errors();
1898
a1dfa0c6 1899 let work_products =
dfeec247
XL
1900 copy_all_cgu_workproducts_to_incr_comp_cache_dir(sess, &compiled_modules);
1901 produce_final_output_artifacts(sess, &compiled_modules, &self.output_filenames);
a1dfa0c6
XL
1902
1903 // FIXME: time_llvm_passes support - does this use a global context or
1904 // something?
1905 if sess.codegen_units() == 1 && sess.time_llvm_passes() {
1906 self.backend.print_pass_timings()
1907 }
1908
dfeec247
XL
1909 (
1910 CodegenResults {
dfeec247 1911 metadata: self.metadata,
dfeec247
XL
1912 crate_info: self.crate_info,
1913
1914 modules: compiled_modules.modules,
1915 allocator_module: compiled_modules.allocator_module,
a2a8927a 1916 metadata_module: self.metadata_module,
dfeec247
XL
1917 },
1918 work_products,
1919 )
a1dfa0c6
XL
1920 }
1921
dc9dc135
XL
1922 pub fn submit_pre_codegened_module_to_llvm(
1923 &self,
1924 tcx: TyCtxt<'_>,
1925 module: ModuleCodegen<B::Module>,
1926 ) {
a1dfa0c6
XL
1927 self.wait_for_signal_to_codegen_item();
1928 self.check_for_errors(tcx.sess);
1929
48663c56 1930 // These are generally cheap and won't throw off scheduling.
a1dfa0c6 1931 let cost = 0;
064997fb 1932 submit_codegened_module_to_llvm(&self.backend, &self.coordinator.sender, module, cost);
a1dfa0c6
XL
1933 }
1934
dc9dc135 1935 pub fn codegen_finished(&self, tcx: TyCtxt<'_>) {
a1dfa0c6
XL
1936 self.wait_for_signal_to_codegen_item();
1937 self.check_for_errors(tcx.sess);
064997fb 1938 drop(self.coordinator.sender.send(Box::new(Message::CodegenComplete::<B>)));
a1dfa0c6
XL
1939 }
1940
1941 pub fn check_for_errors(&self, sess: &Session) {
1942 self.shared_emitter_main.check(sess, false);
1943 }
1944
1945 pub fn wait_for_signal_to_codegen_item(&self) {
1946 match self.codegen_worker_receive.recv() {
1947 Ok(Message::CodegenItem) => {
1948 // Nothing to do
1949 }
1950 Ok(_) => panic!("unexpected message"),
1951 Err(_) => {
1952 // One of the LLVM threads must have panicked, fall through so
1953 // error handling can be reached.
1954 }
1955 }
1956 }
1957}
1958
1959pub fn submit_codegened_module_to_llvm<B: ExtraBackendMethods>(
1960 _backend: &B,
e74abb32 1961 tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
a1dfa0c6 1962 module: ModuleCodegen<B::Module>,
dc9dc135 1963 cost: u64,
a1dfa0c6
XL
1964) {
1965 let llvm_work_item = WorkItem::Optimize(module);
dfeec247 1966 drop(tx_to_llvm_workers.send(Box::new(Message::CodegenDone::<B> { llvm_work_item, cost })));
a1dfa0c6
XL
1967}
1968
1969pub fn submit_post_lto_module_to_llvm<B: ExtraBackendMethods>(
1970 _backend: &B,
e74abb32 1971 tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
dc9dc135 1972 module: CachedModuleCodegen,
a1dfa0c6
XL
1973) {
1974 let llvm_work_item = WorkItem::CopyPostLtoArtifacts(module);
dfeec247 1975 drop(tx_to_llvm_workers.send(Box::new(Message::CodegenDone::<B> { llvm_work_item, cost: 0 })));
a1dfa0c6
XL
1976}
1977
1978pub fn submit_pre_lto_module_to_llvm<B: ExtraBackendMethods>(
1979 _backend: &B,
dc9dc135 1980 tcx: TyCtxt<'_>,
e74abb32 1981 tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
dc9dc135 1982 module: CachedModuleCodegen,
a1dfa0c6
XL
1983) {
1984 let filename = pre_lto_bitcode_filename(&module.name);
1985 let bc_path = in_incr_comp_dir_sess(tcx.sess, &filename);
dfeec247
XL
1986 let file = fs::File::open(&bc_path)
1987 .unwrap_or_else(|e| panic!("failed to open bitcode file `{}`: {}", bc_path.display(), e));
a1dfa0c6
XL
1988
1989 let mmap = unsafe {
cdc7bbd5 1990 Mmap::map(file).unwrap_or_else(|e| {
a1dfa0c6
XL
1991 panic!("failed to mmap bitcode file `{}`: {}", bc_path.display(), e)
1992 })
1993 };
1994 // Schedule the module to be loaded
e74abb32 1995 drop(tx_to_llvm_workers.send(Box::new(Message::AddImportOnlyModule::<B> {
a1dfa0c6
XL
1996 module_data: SerializedModule::FromUncompressedFile(mmap),
1997 work_product: module.source,
1998 })));
1999}
2000
2001pub fn pre_lto_bitcode_filename(module_name: &str) -> String {
9fa01778 2002 format!("{}.{}", module_name, PRE_LTO_BC_EXT)
a1dfa0c6
XL
2003}
2004
dc9dc135 2005fn msvc_imps_needed(tcx: TyCtxt<'_>) -> bool {
a1dfa0c6
XL
2006 // This should never be true (because it's not supported). If it is true,
2007 // something is wrong with commandline arg validation.
dfeec247
XL
2008 assert!(
2009 !(tcx.sess.opts.cg.linker_plugin_lto.enabled()
29967ef6 2010 && tcx.sess.target.is_like_windows
dfeec247
XL
2011 && tcx.sess.opts.cg.prefer_dynamic)
2012 );
a1dfa0c6 2013
29967ef6 2014 tcx.sess.target.is_like_windows &&
f9f354fc 2015 tcx.sess.crate_types().iter().any(|ct| *ct == CrateType::Rlib) &&
a1dfa0c6
XL
2016 // ThinLTO can't handle this workaround in all cases, so we don't
2017 // emit the `__imp_` symbols. Instead we make them unnecessary by disallowing
9fa01778
XL
2018 // dynamic linking when linker plugin LTO is enabled.
2019 !tcx.sess.opts.cg.linker_plugin_lto.enabled()
a1dfa0c6 2020}