]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_codegen_ssa/src/mir/place.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / compiler / rustc_codegen_ssa / src / mir / place.rs
CommitLineData
60c5eb7d 1use super::operand::OperandValue;
dfeec247 2use super::{FunctionCx, LocalRef};
60c5eb7d 3
9fa01778
XL
4use crate::common::IntPredicate;
5use crate::glue;
9fa01778 6use crate::traits::*;
ff7c6d11 7
ba9703b0
XL
8use rustc_middle::mir;
9use rustc_middle::mir::tcx::PlaceTy;
c295e0f8 10use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, TyAndLayout};
ba9703b0 11use rustc_middle::ty::{self, Ty};
f035d41b 12use rustc_target::abi::{Abi, Align, FieldsShape, Int, TagEncoding};
c295e0f8 13use rustc_target::abi::{VariantIdx, Variants};
ff7c6d11
XL
14
15#[derive(Copy, Clone, Debug)]
a1dfa0c6 16pub struct PlaceRef<'tcx, V> {
60c5eb7d 17 /// A pointer to the contents of the place.
a1dfa0c6 18 pub llval: V,
ff7c6d11 19
60c5eb7d 20 /// This place's extra data if it is unsized, or `None` if null.
a1dfa0c6 21 pub llextra: Option<V>,
ff7c6d11 22
60c5eb7d 23 /// The monomorphized type of this place, including variant information.
ba9703b0 24 pub layout: TyAndLayout<'tcx>,
ff7c6d11 25
60c5eb7d 26 /// The alignment we know for this place.
ff7c6d11
XL
27 pub align: Align,
28}
29
dc9dc135 30impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
ba9703b0 31 pub fn new_sized(llval: V, layout: TyAndLayout<'tcx>) -> PlaceRef<'tcx, V> {
e1599b0c 32 assert!(!layout.is_unsized());
dfeec247 33 PlaceRef { llval, llextra: None, layout, align: layout.align.abi }
e1599b0c
XL
34 }
35
ba9703b0
XL
36 pub fn new_sized_aligned(
37 llval: V,
38 layout: TyAndLayout<'tcx>,
39 align: Align,
40 ) -> PlaceRef<'tcx, V> {
b7449926 41 assert!(!layout.is_unsized());
dfeec247 42 PlaceRef { llval, llextra: None, layout, align }
9fa01778
XL
43 }
44
e74abb32
XL
45 // FIXME(eddyb) pass something else for the name so no work is done
46 // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
a1dfa0c6
XL
47 pub fn alloca<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
48 bx: &mut Bx,
ba9703b0 49 layout: TyAndLayout<'tcx>,
a1dfa0c6 50 ) -> Self {
b7449926 51 assert!(!layout.is_unsized(), "tried to statically allocate unsized place");
e1599b0c
XL
52 let tmp = bx.alloca(bx.cx().backend_type(layout), layout.align.abi);
53 Self::new_sized(tmp, layout)
ff7c6d11
XL
54 }
55
b7449926 56 /// Returns a place for an indirect reference to an unsized place.
e74abb32
XL
57 // FIXME(eddyb) pass something else for the name so no work is done
58 // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
a1dfa0c6
XL
59 pub fn alloca_unsized_indirect<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
60 bx: &mut Bx,
ba9703b0 61 layout: TyAndLayout<'tcx>,
a1dfa0c6 62 ) -> Self {
b7449926 63 assert!(layout.is_unsized(), "tried to allocate indirect place for sized values");
a1dfa0c6
XL
64 let ptr_ty = bx.cx().tcx().mk_mut_ptr(layout.ty);
65 let ptr_layout = bx.cx().layout_of(ptr_ty);
e1599b0c 66 Self::alloca(bx, ptr_layout)
b7449926
XL
67 }
68
dfeec247 69 pub fn len<Cx: ConstMethods<'tcx, Value = V>>(&self, cx: &Cx) -> V {
ba9703b0 70 if let FieldsShape::Array { count, .. } = self.layout.fields {
ff7c6d11 71 if self.layout.is_unsized() {
ff7c6d11 72 assert_eq!(count, 0);
b7449926 73 self.llextra.unwrap()
ff7c6d11 74 } else {
a1dfa0c6 75 cx.const_usize(count)
ff7c6d11
XL
76 }
77 } else {
78 bug!("unexpected layout `{:#?}` in PlaceRef::len", self.layout)
79 }
80 }
a1dfa0c6 81}
ff7c6d11 82
dc9dc135 83impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
ff7c6d11 84 /// Access a field, at a point when the value's case is known.
a1dfa0c6 85 pub fn project_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
dfeec247
XL
86 self,
87 bx: &mut Bx,
a1dfa0c6
XL
88 ix: usize,
89 ) -> Self {
90 let field = self.layout.field(bx.cx(), ix);
ff7c6d11 91 let offset = self.layout.fields.offset(ix);
0bf4aa26 92 let effective_field_align = self.align.restrict_for_offset(offset);
ff7c6d11 93
a1dfa0c6 94 let mut simple = || {
1b1a35ee
XL
95 let llval = match self.layout.abi {
96 _ if offset.bytes() == 0 => {
97 // Unions and newtypes only use an offset of 0.
98 // Also handles the first field of Scalar, ScalarPair, and Vector layouts.
99 self.llval
100 }
c295e0f8 101 Abi::ScalarPair(a, b)
04454e1e 102 if offset == a.size(bx.cx()).align_to(b.align(bx.cx()).abi) =>
1b1a35ee
XL
103 {
104 // Offset matches second field.
94222f64
XL
105 let ty = bx.backend_type(self.layout);
106 bx.struct_gep(ty, self.llval, 1)
1b1a35ee
XL
107 }
108 Abi::Scalar(_) | Abi::ScalarPair(..) | Abi::Vector { .. } if field.is_zst() => {
109 // ZST fields are not included in Scalar, ScalarPair, and Vector layouts, so manually offset the pointer.
110 let byte_ptr = bx.pointercast(self.llval, bx.cx().type_i8p());
94222f64 111 bx.gep(bx.cx().type_i8(), byte_ptr, &[bx.const_usize(offset.bytes())])
1b1a35ee
XL
112 }
113 Abi::Scalar(_) | Abi::ScalarPair(..) => {
114 // All fields of Scalar and ScalarPair layouts must have been handled by this point.
115 // Vector layouts have additional fields for each element of the vector, so don't panic in that case.
116 bug!(
117 "offset of non-ZST field `{:?}` does not match layout `{:#?}`",
118 field,
119 self.layout
120 );
121 }
94222f64
XL
122 _ => {
123 let ty = bx.backend_type(self.layout);
124 bx.struct_gep(ty, self.llval, bx.cx().backend_field_index(self.layout, ix))
125 }
ff7c6d11
XL
126 };
127 PlaceRef {
dc9dc135 128 // HACK(eddyb): have to bitcast pointers until LLVM removes pointee types.
a1dfa0c6 129 llval: bx.pointercast(llval, bx.cx().type_ptr_to(bx.cx().backend_type(field))),
dfeec247 130 llextra: if bx.cx().type_has_metadata(field.ty) { self.llextra } else { None },
ff7c6d11 131 layout: field,
b7449926 132 align: effective_field_align,
ff7c6d11
XL
133 }
134 };
135
136 // Simple cases, which don't need DST adjustment:
137 // * no metadata available - just log the case
dc9dc135 138 // * known alignment - sized types, `[T]`, `str` or a foreign type
ff7c6d11 139 // * packed struct - there is no alignment padding
1b1a35ee 140 match field.ty.kind() {
b7449926 141 _ if self.llextra.is_none() => {
dfeec247
XL
142 debug!(
143 "unsized field `{}`, of `{:?}` has no metadata for adjustment",
144 ix, self.llval
145 );
ff7c6d11
XL
146 return simple();
147 }
148 _ if !field.is_unsized() => return simple(),
b7449926
XL
149 ty::Slice(..) | ty::Str | ty::Foreign(..) => return simple(),
150 ty::Adt(def, _) => {
5e7ed085 151 if def.repr().packed() {
ff7c6d11
XL
152 // FIXME(eddyb) generalize the adjustment when we
153 // start supporting packing to larger alignments.
a1dfa0c6 154 assert_eq!(self.layout.align.abi.bytes(), 1);
ff7c6d11
XL
155 return simple();
156 }
157 }
158 _ => {}
159 }
160
161 // We need to get the pointer manually now.
dc9dc135 162 // We do this by casting to a `*i8`, then offsetting it by the appropriate amount.
ff7c6d11
XL
163 // We do this instead of, say, simply adjusting the pointer from the result of a GEP
164 // because the field may have an arbitrary alignment in the LLVM representation
165 // anyway.
166 //
167 // To demonstrate:
ff7c6d11 168 //
dc9dc135
XL
169 // struct Foo<T: ?Sized> {
170 // x: u16,
171 // y: T
172 // }
173 //
174 // The type `Foo<Foo<Trait>>` is represented in LLVM as `{ u16, { u16, u8 }}`, meaning that
ff7c6d11
XL
175 // the `y` field has 16-bit alignment.
176
177 let meta = self.llextra;
178
a1dfa0c6 179 let unaligned_offset = bx.cx().const_usize(offset.bytes());
ff7c6d11
XL
180
181 // Get the alignment of the field
2c00a5a8 182 let (_, unsized_align) = glue::size_and_align_of_dst(bx, field.ty, meta);
ff7c6d11 183
5869c6ff
XL
184 // Bump the unaligned offset up to the appropriate alignment
185 let offset = round_up_const_value_to_alignment(bx, unaligned_offset, unsized_align);
ff7c6d11 186
b7449926 187 debug!("struct_field_ptr: DST field offset: {:?}", offset);
ff7c6d11 188
dc9dc135 189 // Cast and adjust pointer.
a1dfa0c6 190 let byte_ptr = bx.pointercast(self.llval, bx.cx().type_i8p());
94222f64 191 let byte_ptr = bx.gep(bx.cx().type_i8(), byte_ptr, &[offset]);
ff7c6d11 192
dc9dc135 193 // Finally, cast back to the type expected.
a1dfa0c6 194 let ll_fty = bx.cx().backend_type(field);
ff7c6d11
XL
195 debug!("struct_field_ptr: Field type is {:?}", ll_fty);
196
197 PlaceRef {
a1dfa0c6 198 llval: bx.pointercast(byte_ptr, bx.cx().type_ptr_to(ll_fty)),
ff7c6d11
XL
199 llextra: self.llextra,
200 layout: field,
b7449926 201 align: effective_field_align,
ff7c6d11
XL
202 }
203 }
204
205 /// Obtain the actual discriminant of a value.
064997fb 206 #[instrument(level = "trace", skip(bx))]
a1dfa0c6
XL
207 pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
208 self,
209 bx: &mut Bx,
dfeec247 210 cast_to: Ty<'tcx>,
a1dfa0c6
XL
211 ) -> V {
212 let cast_to = bx.cx().immediate_backend_type(bx.cx().layout_of(cast_to));
0bf4aa26 213 if self.layout.abi.is_uninhabited() {
a1dfa0c6 214 return bx.cx().const_undef(cast_to);
83c7162d 215 }
f035d41b 216 let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
ba9703b0 217 Variants::Single { index } => {
dfeec247
XL
218 let discr_val = self
219 .layout
220 .ty
221 .discriminant_for_variant(bx.cx().tcx(), index)
48663c56 222 .map_or(index.as_u32() as u128, |discr| discr.val);
a1dfa0c6 223 return bx.cx().const_uint_big(cast_to, discr_val);
ff7c6d11 224 }
c295e0f8 225 Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
f035d41b 226 (tag, tag_encoding, tag_field)
532ac7d7
XL
227 }
228 };
ff7c6d11 229
416331ca 230 // Read the tag/niche-encoded discriminant from memory.
f035d41b
XL
231 let tag = self.project_field(bx, tag_field);
232 let tag = bx.load_operand(tag);
416331ca
XL
233
234 // Decode the discriminant (specifically if it's niche-encoded).
f035d41b
XL
235 match *tag_encoding {
236 TagEncoding::Direct => {
04454e1e 237 let signed = match tag_scalar.primitive() {
94b46f34 238 // We use `i1` for bytes that are always `0` or `1`,
0731742a 239 // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
94b46f34 240 // let LLVM interpret the `i1` as signed, because
dc9dc135 241 // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
f035d41b 242 Int(_, signed) => !tag_scalar.is_bool() && signed,
dfeec247 243 _ => false,
ff7c6d11 244 };
f035d41b 245 bx.intcast(tag.immediate(), cast_to, signed)
ff7c6d11 246 }
f2b60f7d 247 TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
416331ca
XL
248 // Rebase from niche values to discriminants, and check
249 // whether the result is in range for the niche variants.
f035d41b
XL
250 let niche_llty = bx.cx().immediate_backend_type(tag.layout);
251 let tag = tag.immediate();
416331ca
XL
252
253 // We first compute the "relative discriminant" (wrt `niche_variants`),
254 // that is, if `n = niche_variants.end() - niche_variants.start()`,
255 // we remap `niche_start..=niche_start + n` (which may wrap around)
256 // to (non-wrap-around) `0..=n`, to be able to check whether the
257 // discriminant corresponds to a niche variant with one comparison.
258 // We also can't go directly to the (variant index) discriminant
259 // and check that it is in the range `niche_variants`, because
260 // that might not fit in the same type, on top of needing an extra
261 // comparison (see also the comment on `let niche_discr`).
262 let relative_discr = if niche_start == 0 {
263 // Avoid subtracting `0`, which wouldn't work for pointers.
264 // FIXME(eddyb) check the actual primitive type here.
f035d41b 265 tag
416331ca 266 } else {
f035d41b 267 bx.sub(tag, bx.cx().const_uint_big(niche_llty, niche_start))
416331ca
XL
268 };
269 let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
3dfed10e
XL
270 let is_niche = if relative_max == 0 {
271 // Avoid calling `const_uint`, which wouldn't work for pointers.
272 // Also use canonical == 0 instead of non-canonical u<= 0.
273 // FIXME(eddyb) check the actual primitive type here.
274 bx.icmp(IntPredicate::IntEQ, relative_discr, bx.cx().const_null(niche_llty))
275 } else {
276 let relative_max = bx.cx().const_uint(niche_llty, relative_max as u64);
416331ca
XL
277 bx.icmp(IntPredicate::IntULE, relative_discr, relative_max)
278 };
279
280 // NOTE(eddyb) this addition needs to be performed on the final
281 // type, in case the niche itself can't represent all variant
282 // indices (e.g. `u8` niche with more than `256` variants,
283 // but enough uninhabited variants so that the remaining variants
284 // fit in the niche).
285 // In other words, `niche_variants.end - niche_variants.start`
286 // is representable in the niche, but `niche_variants.end`
287 // might not be, in extreme cases.
288 let niche_discr = {
289 let relative_discr = if relative_max == 0 {
290 // HACK(eddyb) since we have only one niche, we know which
291 // one it is, and we can avoid having a dynamic value here.
292 bx.cx().const_uint(cast_to, 0)
293 } else {
294 bx.intcast(relative_discr, cast_to, false)
295 };
296 bx.add(
297 relative_discr,
a1dfa0c6 298 bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64),
416331ca
XL
299 )
300 };
301
302 bx.select(
303 is_niche,
304 niche_discr,
f2b60f7d 305 bx.cx().const_uint(cast_to, untagged_variant.as_u32() as u64),
416331ca 306 )
ff7c6d11
XL
307 }
308 }
309 }
310
9fa01778 311 /// Sets the discriminant for a new value of the given case of the given
ff7c6d11 312 /// representation.
a1dfa0c6
XL
313 pub fn codegen_set_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
314 &self,
315 bx: &mut Bx,
dfeec247 316 variant_index: VariantIdx,
a1dfa0c6
XL
317 ) {
318 if self.layout.for_variant(bx.cx(), variant_index).abi.is_uninhabited() {
60c5eb7d
XL
319 // We play it safe by using a well-defined `abort`, but we could go for immediate UB
320 // if that turns out to be helpful.
321 bx.abort();
ff7c6d11
XL
322 return;
323 }
324 match self.layout.variants {
ba9703b0 325 Variants::Single { index } => {
ff7c6d11
XL
326 assert_eq!(index, variant_index);
327 }
f035d41b
XL
328 Variants::Multiple { tag_encoding: TagEncoding::Direct, tag_field, .. } => {
329 let ptr = self.project_field(bx, tag_field);
48663c56
XL
330 let to =
331 self.layout.ty.discriminant_for_variant(bx.tcx(), variant_index).unwrap().val;
83c7162d 332 bx.store(
a1dfa0c6 333 bx.cx().const_uint_big(bx.cx().backend_type(ptr.layout), to),
83c7162d 334 ptr.llval,
dfeec247
XL
335 ptr.align,
336 );
ff7c6d11 337 }
ba9703b0 338 Variants::Multiple {
f035d41b 339 tag_encoding:
f2b60f7d 340 TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start },
f035d41b 341 tag_field,
ff7c6d11
XL
342 ..
343 } => {
f2b60f7d 344 if variant_index != untagged_variant {
f035d41b 345 let niche = self.project_field(bx, tag_field);
a1dfa0c6
XL
346 let niche_llty = bx.cx().immediate_backend_type(niche.layout);
347 let niche_value = variant_index.as_u32() - niche_variants.start().as_u32();
dfeec247 348 let niche_value = (niche_value as u128).wrapping_add(niche_start);
dc9dc135 349 // FIXME(eddyb): check the actual primitive type here.
ff7c6d11 350 let niche_llval = if niche_value == 0 {
dc9dc135 351 // HACK(eddyb): using `c_null` as it works on all types.
a1dfa0c6 352 bx.cx().const_null(niche_llty)
ff7c6d11 353 } else {
a1dfa0c6 354 bx.cx().const_uint_big(niche_llty, niche_value)
ff7c6d11 355 };
2c00a5a8 356 OperandValue::Immediate(niche_llval).store(bx, niche);
ff7c6d11
XL
357 }
358 }
359 }
360 }
361
a1dfa0c6
XL
362 pub fn project_index<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
363 &self,
364 bx: &mut Bx,
dfeec247 365 llindex: V,
a1dfa0c6 366 ) -> Self {
69743fb6
XL
367 // Statically compute the offset if we can, otherwise just use the element size,
368 // as this will yield the lowest alignment.
369 let layout = self.layout.field(bx, 0);
e74abb32
XL
370 let offset = if let Some(llindex) = bx.const_to_opt_uint(llindex) {
371 layout.size.checked_mul(llindex, bx).unwrap_or(layout.size)
69743fb6
XL
372 } else {
373 layout.size
374 };
375
ff7c6d11 376 PlaceRef {
94222f64
XL
377 llval: bx.inbounds_gep(
378 bx.cx().backend_type(self.layout),
379 self.llval,
380 &[bx.cx().const_usize(0), llindex],
381 ),
b7449926 382 llextra: None,
69743fb6
XL
383 layout,
384 align: self.align.restrict_for_offset(offset),
ff7c6d11
XL
385 }
386 }
387
a1dfa0c6
XL
388 pub fn project_downcast<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
389 &self,
390 bx: &mut Bx,
dfeec247 391 variant_index: VariantIdx,
a1dfa0c6 392 ) -> Self {
ff7c6d11 393 let mut downcast = *self;
a1dfa0c6 394 downcast.layout = self.layout.for_variant(bx.cx(), variant_index);
ff7c6d11
XL
395
396 // Cast to the appropriate variant struct type.
a1dfa0c6
XL
397 let variant_ty = bx.cx().backend_type(downcast.layout);
398 downcast.llval = bx.pointercast(downcast.llval, bx.cx().type_ptr_to(variant_ty));
ff7c6d11
XL
399
400 downcast
401 }
402
a1dfa0c6 403 pub fn storage_live<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
2c00a5a8 404 bx.lifetime_start(self.llval, self.layout.size);
ff7c6d11
XL
405 }
406
a1dfa0c6 407 pub fn storage_dead<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
2c00a5a8 408 bx.lifetime_end(self.llval, self.layout.size);
ff7c6d11
XL
409 }
410}
411
dc9dc135 412impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
064997fb 413 #[instrument(level = "trace", skip(self, bx))]
a1dfa0c6
XL
414 pub fn codegen_place(
415 &mut self,
416 bx: &mut Bx,
74b04a01 417 place_ref: mir::PlaceRef<'tcx>,
a1dfa0c6 418 ) -> PlaceRef<'tcx, Bx::Value> {
a1dfa0c6
XL
419 let cx = self.cx;
420 let tcx = self.cx.tcx();
ff7c6d11 421
5099ac24
FG
422 let mut base = 0;
423 let mut cg_base = match self.locals[place_ref.local] {
424 LocalRef::Place(place) => place,
425 LocalRef::UnsizedPlace(place) => bx.load_operand(place).deref(cx),
426 LocalRef::Operand(..) => {
064997fb
FG
427 if place_ref.has_deref() {
428 base = 1;
5e7ed085 429 let cg_base = self.codegen_consume(
5099ac24 430 bx,
064997fb 431 mir::PlaceRef { projection: &place_ref.projection[..0], ..place_ref },
5e7ed085 432 );
923072b8 433 cg_base.deref(bx.cx())
5099ac24 434 } else {
dfeec247 435 bug!("using operand local {:?} as place", place_ref);
8faf50e0 436 }
ff7c6d11 437 }
5099ac24
FG
438 };
439 for elem in place_ref.projection[base..].iter() {
923072b8
FG
440 cg_base = match *elem {
441 mir::ProjectionElem::Deref => bx.load_operand(cg_base).deref(bx.cx()),
5099ac24
FG
442 mir::ProjectionElem::Field(ref field, _) => {
443 cg_base.project_field(bx, field.index())
444 }
445 mir::ProjectionElem::Index(index) => {
446 let index = &mir::Operand::Copy(mir::Place::from(index));
447 let index = self.codegen_operand(bx, index);
448 let llindex = index.immediate();
449 cg_base.project_index(bx, llindex)
450 }
451 mir::ProjectionElem::ConstantIndex { offset, from_end: false, min_length: _ } => {
452 let lloffset = bx.cx().const_usize(offset as u64);
453 cg_base.project_index(bx, lloffset)
454 }
455 mir::ProjectionElem::ConstantIndex { offset, from_end: true, min_length: _ } => {
456 let lloffset = bx.cx().const_usize(offset as u64);
457 let lllen = cg_base.len(bx.cx());
458 let llindex = bx.sub(lllen, lloffset);
459 cg_base.project_index(bx, llindex)
460 }
461 mir::ProjectionElem::Subslice { from, to, from_end } => {
462 let mut subslice = cg_base.project_index(bx, bx.cx().const_usize(from as u64));
463 let projected_ty =
464 PlaceTy::from_ty(cg_base.layout.ty).projection_ty(tcx, *elem).ty;
465 subslice.layout = bx.cx().layout_of(self.monomorphize(projected_ty));
466
467 if subslice.layout.is_unsized() {
468 assert!(from_end, "slice subslices should be `from_end`");
469 subslice.llextra = Some(bx.sub(
470 cg_base.llextra.unwrap(),
471 bx.cx().const_usize((from as u64) + (to as u64)),
472 ));
ff7c6d11 473 }
5099ac24
FG
474
475 // Cast the place pointer type to the new
476 // array or slice type (`*[%_; new_len]`).
477 subslice.llval = bx.pointercast(
478 subslice.llval,
479 bx.cx().type_ptr_to(bx.cx().backend_type(subslice.layout)),
480 );
481
482 subslice
ff7c6d11 483 }
5099ac24
FG
484 mir::ProjectionElem::Downcast(_, v) => cg_base.project_downcast(bx, v),
485 };
486 }
487 debug!("codegen_place(place={:?}) => {:?}", place_ref, cg_base);
488 cg_base
ff7c6d11
XL
489 }
490
74b04a01 491 pub fn monomorphized_place_ty(&self, place_ref: mir::PlaceRef<'tcx>) -> Ty<'tcx> {
a1dfa0c6 492 let tcx = self.cx.tcx();
5869c6ff 493 let place_ty = place_ref.ty(self.mir, tcx);
fc512014 494 self.monomorphize(place_ty.ty)
ff7c6d11
XL
495 }
496}
5869c6ff
XL
497
498fn round_up_const_value_to_alignment<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
499 bx: &mut Bx,
500 value: Bx::Value,
501 align: Bx::Value,
502) -> Bx::Value {
503 // In pseudo code:
504 //
505 // if value & (align - 1) == 0 {
506 // value
507 // } else {
508 // (value & !(align - 1)) + align
509 // }
510 //
511 // Usually this is written without branches as
512 //
513 // (value + align - 1) & !(align - 1)
514 //
515 // But this formula cannot take advantage of constant `value`. E.g. if `value` is known
516 // at compile time to be `1`, this expression should be optimized to `align`. However,
517 // optimization only holds if `align` is a power of two. Since the optimizer doesn't know
518 // that `align` is a power of two, it cannot perform this optimization.
519 //
520 // Instead we use
521 //
522 // value + (-value & (align - 1))
523 //
524 // Since `align` is used only once, the expression can be optimized. For `value = 0`
525 // its optimized to `0` even in debug mode.
526 //
527 // NB: The previous version of this code used
528 //
529 // (value + align - 1) & -align
530 //
531 // Even though `-align == !(align - 1)`, LLVM failed to optimize this even for
532 // `value = 0`. Bug report: https://bugs.llvm.org/show_bug.cgi?id=48559
533 let one = bx.const_usize(1);
534 let align_minus_1 = bx.sub(align, one);
535 let neg_value = bx.neg(value);
536 let offset = bx.and(neg_value, align_minus_1);
537 bx.add(value, offset)
538}