]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_const_eval/src/interpret/intrinsics.rs
New upstream version 1.59.0+dfsg1
[rustc.git] / compiler / rustc_const_eval / src / interpret / intrinsics.rs
CommitLineData
b7449926 1//! Intrinsics and other functions that the miri engine executes without
9fa01778 2//! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
b7449926
XL
3//! and miri.
4
ba9703b0
XL
5use std::convert::TryFrom;
6
7use rustc_hir::def_id::DefId;
8use rustc_middle::mir::{
dfeec247 9 self,
5869c6ff 10 interpret::{ConstValue, GlobalId, InterpResult, Scalar},
dfeec247
XL
11 BinOp,
12};
ba9703b0 13use rustc_middle::ty;
c295e0f8 14use rustc_middle::ty::layout::LayoutOf as _;
ba9703b0 15use rustc_middle::ty::subst::SubstsRef;
f9f354fc 16use rustc_middle::ty::{Ty, TyCtxt};
dfeec247 17use rustc_span::symbol::{sym, Symbol};
c295e0f8 18use rustc_target::abi::{Abi, Align, Primitive, Size};
b7449926 19
3dfed10e
XL
20use super::{
21 util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx, Machine, OpTy, PlaceTy,
136023e0 22 Pointer,
3dfed10e 23};
b7449926 24
e74abb32 25mod caller_location;
dc9dc135
XL
26mod type_name;
27
6a06907d 28fn numeric_intrinsic<Tag>(name: Symbol, bits: u128, kind: Primitive) -> Scalar<Tag> {
b7449926
XL
29 let size = match kind {
30 Primitive::Int(integer, _) => integer.size(),
31 _ => bug!("invalid `{}` argument: {:?}", name, bits),
32 };
ba9703b0 33 let extra = 128 - u128::from(size.bits());
b7449926 34 let bits_out = match name {
ba9703b0
XL
35 sym::ctpop => u128::from(bits.count_ones()),
36 sym::ctlz => u128::from(bits.leading_zeros()) - extra,
37 sym::cttz => u128::from((bits << extra).trailing_zeros()) - extra,
60c5eb7d
XL
38 sym::bswap => (bits << extra).swap_bytes(),
39 sym::bitreverse => (bits << extra).reverse_bits(),
b7449926
XL
40 _ => bug!("not a numeric intrinsic: {}", name),
41 };
6a06907d 42 Scalar::from_uint(bits_out, size)
b7449926
XL
43}
44
e1599b0c
XL
45/// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
46/// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
47crate fn eval_nullary_intrinsic<'tcx>(
48 tcx: TyCtxt<'tcx>,
49 param_env: ty::ParamEnv<'tcx>,
50 def_id: DefId,
51 substs: SubstsRef<'tcx>,
74b04a01 52) -> InterpResult<'tcx, ConstValue<'tcx>> {
e1599b0c 53 let tp_ty = substs.type_at(0);
60c5eb7d 54 let name = tcx.item_name(def_id);
e1599b0c 55 Ok(match name {
60c5eb7d 56 sym::type_name => {
3dfed10e 57 ensure_monomorphic_enough(tcx, tp_ty)?;
e1599b0c 58 let alloc = type_name::alloc_type_name(tcx, tp_ty);
74b04a01 59 ConstValue::Slice { data: alloc, start: 0, end: alloc.len() }
dfeec247 60 }
17df50a5
XL
61 sym::needs_drop => {
62 ensure_monomorphic_enough(tcx, tp_ty)?;
63 ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env))
64 }
c295e0f8 65 sym::pref_align_of => {
17df50a5 66 // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
e1599b0c 67 let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
c295e0f8 68 ConstValue::from_machine_usize(layout.align.pref.bytes(), &tcx)
dfeec247 69 }
3dfed10e
XL
70 sym::type_id => {
71 ensure_monomorphic_enough(tcx, tp_ty)?;
72 ConstValue::from_u64(tcx.type_id_hash(tp_ty))
73 }
fc512014 74 sym::variant_count => match tp_ty.kind() {
17df50a5 75 // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
fc512014
XL
76 ty::Adt(ref adt, _) => ConstValue::from_machine_usize(adt.variants.len() as u64, &tcx),
77 ty::Projection(_)
78 | ty::Opaque(_, _)
79 | ty::Param(_)
80 | ty::Bound(_, _)
81 | ty::Placeholder(_)
82 | ty::Infer(_) => throw_inval!(TooGeneric),
83 ty::Bool
84 | ty::Char
85 | ty::Int(_)
86 | ty::Uint(_)
87 | ty::Float(_)
88 | ty::Foreign(_)
89 | ty::Str
90 | ty::Array(_, _)
91 | ty::Slice(_)
92 | ty::RawPtr(_)
93 | ty::Ref(_, _, _)
94 | ty::FnDef(_, _)
95 | ty::FnPtr(_)
96 | ty::Dynamic(_, _)
97 | ty::Closure(_, _)
98 | ty::Generator(_, _, _)
99 | ty::GeneratorWitness(_)
100 | ty::Never
101 | ty::Tuple(_)
102 | ty::Error(_) => ConstValue::from_machine_usize(0u64, &tcx),
103 },
e1599b0c
XL
104 other => bug!("`{}` is not a zero arg intrinsic", other),
105 })
106}
107
ba9703b0 108impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
9fa01778 109 /// Returns `true` if emulation happened.
1b1a35ee
XL
110 /// Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own
111 /// intrinsic handling.
b7449926
XL
112 pub fn emulate_intrinsic(
113 &mut self,
114 instance: ty::Instance<'tcx>,
0bf4aa26 115 args: &[OpTy<'tcx, M::PointerTag>],
6a06907d 116 ret: Option<(&PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
dc9dc135 117 ) -> InterpResult<'tcx, bool> {
b7449926 118 let substs = instance.substs;
60c5eb7d
XL
119 let intrinsic_name = self.tcx.item_name(instance.def_id());
120
ba9703b0 121 // First handle intrinsics without return place.
60c5eb7d 122 let (dest, ret) = match ret {
60c5eb7d 123 None => match intrinsic_name {
ba9703b0 124 sym::transmute => throw_ub_format!("transmuting to uninhabited type"),
fc512014 125 sym::abort => M::abort(self, "the program aborted execution".to_owned())?,
ba9703b0 126 // Unsupported diverging intrinsic.
60c5eb7d 127 _ => return Ok(false),
dfeec247 128 },
ba9703b0 129 Some(p) => p,
60c5eb7d 130 };
b7449926 131
60c5eb7d 132 // Keep the patterns in this match ordered the same as the list in
ba9703b0 133 // `src/librustc_middle/ty/constness.rs`
b7449926 134 match intrinsic_name {
60c5eb7d 135 sym::caller_location => {
ba9703b0 136 let span = self.find_closest_untracked_caller_location();
60c5eb7d 137 let location = self.alloc_caller_location_for_span(span);
136023e0 138 self.write_immediate(location.to_ref(self), dest)?;
e74abb32
XL
139 }
140
3dfed10e 141 sym::min_align_of_val | sym::size_of_val => {
5869c6ff 142 // Avoid `deref_operand` -- this is not a deref, the ptr does not have to be
a2a8927a 143 // dereferenceable!
6a06907d 144 let place = self.ref_to_mplace(&self.read_immediate(&args[0])?)?;
3dfed10e 145 let (size, align) = self
6a06907d 146 .size_and_align_of_mplace(&place)?
3dfed10e
XL
147 .ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?;
148
149 let result = match intrinsic_name {
150 sym::min_align_of_val => align.bytes(),
151 sym::size_of_val => size.bytes(),
152 _ => bug!(),
153 };
154
155 self.write_scalar(Scalar::from_machine_usize(result, self), dest)?;
156 }
157
c295e0f8 158 sym::pref_align_of
dfeec247 159 | sym::needs_drop
dfeec247 160 | sym::type_id
f035d41b
XL
161 | sym::type_name
162 | sym::variant_count => {
dfeec247 163 let gid = GlobalId { instance, promoted: None };
74b04a01 164 let ty = match intrinsic_name {
c295e0f8 165 sym::pref_align_of | sym::variant_count => self.tcx.types.usize,
74b04a01
XL
166 sym::needs_drop => self.tcx.types.bool,
167 sym::type_id => self.tcx.types.u64,
168 sym::type_name => self.tcx.mk_static_str(),
ba9703b0 169 _ => bug!("already checked for nullary intrinsics"),
74b04a01 170 };
1b1a35ee
XL
171 let val =
172 self.tcx.const_eval_global_id(self.param_env, gid, Some(self.tcx.span))?;
cdc7bbd5 173 let val = self.const_val_to_op(val, ty, Some(dest.layout))?;
6a06907d 174 self.copy_op(&val, dest)?;
dc9dc135
XL
175 }
176
dfeec247 177 sym::ctpop
60c5eb7d
XL
178 | sym::cttz
179 | sym::cttz_nonzero
180 | sym::ctlz
181 | sym::ctlz_nonzero
182 | sym::bswap
183 | sym::bitreverse => {
b7449926
XL
184 let ty = substs.type_at(0);
185 let layout_of = self.layout_of(ty)?;
6a06907d 186 let val = self.read_scalar(&args[0])?.check_init()?;
136023e0 187 let bits = val.to_bits(layout_of.size)?;
b7449926 188 let kind = match layout_of.abi {
c295e0f8 189 Abi::Scalar(scalar) => scalar.value,
f035d41b
XL
190 _ => span_bug!(
191 self.cur_span(),
192 "{} called on invalid type {:?}",
193 intrinsic_name,
194 ty
195 ),
b7449926 196 };
60c5eb7d
XL
197 let (nonzero, intrinsic_name) = match intrinsic_name {
198 sym::cttz_nonzero => (true, sym::cttz),
199 sym::ctlz_nonzero => (true, sym::ctlz),
200 other => (false, other),
b7449926 201 };
60c5eb7d
XL
202 if nonzero && bits == 0 {
203 throw_ub_format!("`{}_nonzero` called on 0", intrinsic_name);
204 }
6a06907d 205 let out_val = numeric_intrinsic(intrinsic_name, bits, kind);
b7449926
XL
206 self.write_scalar(out_val, dest)?;
207 }
fc512014 208 sym::add_with_overflow | sym::sub_with_overflow | sym::mul_with_overflow => {
6a06907d
XL
209 let lhs = self.read_immediate(&args[0])?;
210 let rhs = self.read_immediate(&args[1])?;
fc512014
XL
211 let bin_op = match intrinsic_name {
212 sym::add_with_overflow => BinOp::Add,
213 sym::sub_with_overflow => BinOp::Sub,
214 sym::mul_with_overflow => BinOp::Mul,
dfeec247 215 _ => bug!("Already checked for int ops"),
b7449926 216 };
6a06907d 217 self.binop_with_overflow(bin_op, &lhs, &rhs, dest)?;
b7449926 218 }
60c5eb7d 219 sym::saturating_add | sym::saturating_sub => {
6a06907d
XL
220 let l = self.read_immediate(&args[0])?;
221 let r = self.read_immediate(&args[1])?;
60c5eb7d 222 let is_add = intrinsic_name == sym::saturating_add;
6a06907d
XL
223 let (val, overflowed, _ty) = self.overflowing_binary_op(
224 if is_add { BinOp::Add } else { BinOp::Sub },
225 &l,
226 &r,
227 )?;
9fa01778 228 let val = if overflowed {
c295e0f8
XL
229 let size = l.layout.size;
230 let num_bits = size.bits();
9fa01778
XL
231 if l.layout.abi.is_signed() {
232 // For signed ints the saturated value depends on the sign of the first
233 // term since the sign of the second term can be inferred from this and
234 // the fact that the operation has overflowed (if either is 0 no
235 // overflow can occur)
136023e0 236 let first_term: u128 = l.to_scalar()?.to_bits(l.layout.size)?;
dfeec247 237 let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
9fa01778
XL
238 if first_term_positive {
239 // Negative overflow not possible since the positive first term
240 // can only increase an (in range) negative term for addition
241 // or corresponding negated positive term for subtraction
dfeec247
XL
242 Scalar::from_uint(
243 (1u128 << (num_bits - 1)) - 1, // max positive
244 Size::from_bits(num_bits),
245 )
9fa01778
XL
246 } else {
247 // Positive overflow not possible for similar reason
248 // max negative
249 Scalar::from_uint(1u128 << (num_bits - 1), Size::from_bits(num_bits))
250 }
dfeec247
XL
251 } else {
252 // unsigned
9fa01778
XL
253 if is_add {
254 // max unsigned
c295e0f8 255 Scalar::from_uint(size.unsigned_int_max(), Size::from_bits(num_bits))
dfeec247
XL
256 } else {
257 // underflow to 0
9fa01778
XL
258 Scalar::from_uint(0u128, Size::from_bits(num_bits))
259 }
260 }
261 } else {
262 val
263 };
264 self.write_scalar(val, dest)?;
265 }
ba9703b0 266 sym::discriminant_value => {
6a06907d
XL
267 let place = self.deref_operand(&args[0])?;
268 let discr_val = self.read_discriminant(&place.into())?.0;
f9f354fc 269 self.write_scalar(discr_val, dest)?;
ba9703b0 270 }
74b04a01
XL
271 sym::unchecked_shl
272 | sym::unchecked_shr
273 | sym::unchecked_add
274 | sym::unchecked_sub
275 | sym::unchecked_mul
276 | sym::unchecked_div
277 | sym::unchecked_rem => {
6a06907d
XL
278 let l = self.read_immediate(&args[0])?;
279 let r = self.read_immediate(&args[1])?;
b7449926 280 let bin_op = match intrinsic_name {
60c5eb7d
XL
281 sym::unchecked_shl => BinOp::Shl,
282 sym::unchecked_shr => BinOp::Shr,
74b04a01
XL
283 sym::unchecked_add => BinOp::Add,
284 sym::unchecked_sub => BinOp::Sub,
285 sym::unchecked_mul => BinOp::Mul,
286 sym::unchecked_div => BinOp::Div,
287 sym::unchecked_rem => BinOp::Rem,
dfeec247 288 _ => bug!("Already checked for int ops"),
b7449926 289 };
6a06907d 290 let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, &l, &r)?;
b7449926
XL
291 if overflowed {
292 let layout = self.layout_of(substs.type_at(0))?;
136023e0 293 let r_val = r.to_scalar()?.to_bits(layout.size)?;
74b04a01 294 if let sym::unchecked_shl | sym::unchecked_shr = intrinsic_name {
ba9703b0 295 throw_ub_format!("overflowing shift by {} in `{}`", r_val, intrinsic_name);
74b04a01 296 } else {
ba9703b0 297 throw_ub_format!("overflow executing `{}`", intrinsic_name);
74b04a01 298 }
b7449926
XL
299 }
300 self.write_scalar(val, dest)?;
301 }
60c5eb7d 302 sym::rotate_left | sym::rotate_right => {
a1dfa0c6
XL
303 // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
304 // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
305 let layout = self.layout_of(substs.type_at(0))?;
6a06907d 306 let val = self.read_scalar(&args[0])?.check_init()?;
136023e0 307 let val_bits = val.to_bits(layout.size)?;
6a06907d 308 let raw_shift = self.read_scalar(&args[1])?.check_init()?;
136023e0 309 let raw_shift_bits = raw_shift.to_bits(layout.size)?;
ba9703b0 310 let width_bits = u128::from(layout.size.bits());
a1dfa0c6 311 let shift_bits = raw_shift_bits % width_bits;
dc9dc135 312 let inv_shift_bits = (width_bits - shift_bits) % width_bits;
60c5eb7d 313 let result_bits = if intrinsic_name == sym::rotate_left {
a1dfa0c6
XL
314 (val_bits << shift_bits) | (val_bits >> inv_shift_bits)
315 } else {
316 (val_bits >> shift_bits) | (val_bits << inv_shift_bits)
317 };
318 let truncated_bits = self.truncate(result_bits, layout);
319 let result = Scalar::from_uint(truncated_bits, layout.size);
320 self.write_scalar(result, dest)?;
321 }
6a06907d 322 sym::copy => {
17df50a5 323 self.copy_intrinsic(&args[0], &args[1], &args[2], /*nonoverlapping*/ false)?;
5869c6ff 324 }
a2a8927a
XL
325 sym::write_bytes => {
326 self.write_bytes_intrinsic(&args[0], &args[1], &args[2])?;
327 }
f9f354fc 328 sym::offset => {
136023e0 329 let ptr = self.read_pointer(&args[0])?;
6a06907d 330 let offset_count = self.read_scalar(&args[1])?.to_machine_isize(self)?;
f9f354fc 331 let pointee_ty = substs.type_at(0);
e74abb32 332
f9f354fc 333 let offset_ptr = self.ptr_offset_inbounds(ptr, pointee_ty, offset_count)?;
136023e0 334 self.write_pointer(offset_ptr, dest)?;
f9f354fc
XL
335 }
336 sym::arith_offset => {
136023e0 337 let ptr = self.read_pointer(&args[0])?;
6a06907d 338 let offset_count = self.read_scalar(&args[1])?.to_machine_isize(self)?;
f9f354fc
XL
339 let pointee_ty = substs.type_at(0);
340
341 let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
342 let offset_bytes = offset_count.wrapping_mul(pointee_size);
136023e0
XL
343 let offset_ptr = ptr.wrapping_signed_offset(offset_bytes, self);
344 self.write_pointer(offset_ptr, dest)?;
f9f354fc 345 }
60c5eb7d 346 sym::ptr_offset_from => {
6a06907d
XL
347 let a = self.read_immediate(&args[0])?.to_scalar()?;
348 let b = self.read_immediate(&args[1])?.to_scalar()?;
60c5eb7d
XL
349
350 // Special case: if both scalars are *equal integers*
17df50a5
XL
351 // and not null, we pretend there is an allocation of size 0 right there,
352 // and their offset is 0. (There's never a valid object at null, making it an
60c5eb7d
XL
353 // exception from the exception.)
354 // This is the dual to the special exception for offset-by-0
355 // in the inbounds pointer offset operation (see the Miri code, `src/operator.rs`).
356 //
357 // Control flow is weird because we cannot early-return (to reach the
358 // `go_to_block` at the end).
136023e0
XL
359 let done = if let (Ok(a), Ok(b)) = (a.try_to_int(), b.try_to_int()) {
360 let a = a.try_to_machine_usize(*self.tcx).unwrap();
361 let b = b.try_to_machine_usize(*self.tcx).unwrap();
60c5eb7d 362 if a == b && a != 0 {
ba9703b0 363 self.write_scalar(Scalar::from_machine_isize(0, self), dest)?;
60c5eb7d 364 true
dfeec247
XL
365 } else {
366 false
367 }
368 } else {
369 false
370 };
60c5eb7d
XL
371
372 if !done {
373 // General case: we need two pointers.
136023e0
XL
374 let a = self.scalar_to_ptr(a);
375 let b = self.scalar_to_ptr(b);
376 let (a_alloc_id, a_offset, _) = self.memory.ptr_get_alloc(a)?;
377 let (b_alloc_id, b_offset, _) = self.memory.ptr_get_alloc(b)?;
378 if a_alloc_id != b_alloc_id {
60c5eb7d
XL
379 throw_ub_format!(
380 "ptr_offset_from cannot compute offset of pointers into different \
381 allocations.",
382 );
383 }
384 let usize_layout = self.layout_of(self.tcx.types.usize)?;
ba9703b0 385 let isize_layout = self.layout_of(self.tcx.types.isize)?;
136023e0
XL
386 let a_offset = ImmTy::from_uint(a_offset.bytes(), usize_layout);
387 let b_offset = ImmTy::from_uint(b_offset.bytes(), usize_layout);
dfeec247 388 let (val, _overflowed, _ty) =
6a06907d 389 self.overflowing_binary_op(BinOp::Sub, &a_offset, &b_offset)?;
60c5eb7d
XL
390 let pointee_layout = self.layout_of(substs.type_at(0))?;
391 let val = ImmTy::from_scalar(val, isize_layout);
392 let size = ImmTy::from_int(pointee_layout.size.bytes(), isize_layout);
6a06907d 393 self.exact_div(&val, &size, dest)?;
60c5eb7d 394 }
e74abb32
XL
395 }
396
60c5eb7d 397 sym::transmute => {
6a06907d 398 self.copy_op_transmute(&args[0], dest)?;
b7449926 399 }
a2a8927a 400 sym::assert_inhabited | sym::assert_zero_valid | sym::assert_uninit_valid => {
fc512014
XL
401 let ty = instance.substs.type_at(0);
402 let layout = self.layout_of(ty)?;
403
a2a8927a
XL
404 // For *all* intrinsics we first check `is_uninhabited` to give a more specific
405 // error message.
fc512014
XL
406 if layout.abi.is_uninhabited() {
407 // The run-time intrinsic panics just to get a good backtrace; here we abort
408 // since there is no problem showing a backtrace even for aborts.
409 M::abort(
410 self,
411 format!(
412 "aborted execution: attempted to instantiate uninhabited type `{}`",
413 ty
414 ),
415 )?;
416 }
a2a8927a
XL
417 if intrinsic_name == sym::assert_zero_valid
418 && !layout.might_permit_raw_init(self, /*zero:*/ true)
419 {
420 M::abort(
421 self,
422 format!(
423 "aborted execution: attempted to zero-initialize type `{}`, which is invalid",
424 ty
425 ),
426 )?;
427 }
428 if intrinsic_name == sym::assert_uninit_valid
429 && !layout.might_permit_raw_init(self, /*zero:*/ false)
430 {
431 M::abort(
432 self,
433 format!(
434 "aborted execution: attempted to leave type `{}` uninitialized, which is invalid",
435 ty
436 ),
437 )?;
438 }
fc512014 439 }
60c5eb7d 440 sym::simd_insert => {
6a06907d
XL
441 let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
442 let elem = &args[2];
3c0e092e
XL
443 let (input, input_len) = self.operand_to_simd(&args[0])?;
444 let (dest, dest_len) = self.place_to_simd(dest)?;
445 assert_eq!(input_len, dest_len, "Return vector length must match input length");
e74abb32 446 assert!(
3c0e092e
XL
447 index < dest_len,
448 "Index `{}` must be in bounds of vector with length {}`",
dfeec247 449 index,
3c0e092e 450 dest_len
e74abb32 451 );
b7449926 452
3c0e092e
XL
453 for i in 0..dest_len {
454 let place = self.mplace_index(&dest, i)?;
455 let value =
456 if i == index { *elem } else { self.mplace_index(&input, i)?.into() };
457 self.copy_op(&value, &place.into())?;
e74abb32
XL
458 }
459 }
60c5eb7d 460 sym::simd_extract => {
6a06907d 461 let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
3c0e092e 462 let (input, input_len) = self.operand_to_simd(&args[0])?;
e74abb32 463 assert!(
3c0e092e
XL
464 index < input_len,
465 "index `{}` must be in bounds of vector with length `{}`",
dfeec247 466 index,
3c0e092e 467 input_len
e74abb32 468 );
3c0e092e 469 self.copy_op(&self.mplace_index(&input, index)?.into(), dest)?;
e74abb32 470 }
94222f64 471 sym::likely | sym::unlikely | sym::black_box => {
f035d41b 472 // These just return their argument
6a06907d 473 self.copy_op(&args[0], dest)?;
f035d41b 474 }
1b1a35ee 475 sym::assume => {
6a06907d 476 let cond = self.read_scalar(&args[0])?.check_init()?.to_bool()?;
1b1a35ee
XL
477 if !cond {
478 throw_ub_format!("`assume` intrinsic called with `false`");
479 }
480 }
136023e0
XL
481 sym::raw_eq => {
482 let result = self.raw_eq_intrinsic(&args[0], &args[1])?;
483 self.write_scalar(result, dest)?;
484 }
b7449926
XL
485 _ => return Ok(false),
486 }
487
6a06907d 488 trace!("{:?}", self.dump_place(**dest));
60c5eb7d 489 self.go_to_block(ret);
b7449926
XL
490 Ok(true)
491 }
492
e74abb32
XL
493 pub fn exact_div(
494 &mut self,
6a06907d
XL
495 a: &ImmTy<'tcx, M::PointerTag>,
496 b: &ImmTy<'tcx, M::PointerTag>,
497 dest: &PlaceTy<'tcx, M::PointerTag>,
e74abb32
XL
498 ) -> InterpResult<'tcx> {
499 // Performs an exact division, resulting in undefined behavior where
74b04a01
XL
500 // `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`.
501 // First, check x % y != 0 (or if that computation overflows).
6a06907d 502 let (res, overflow, _ty) = self.overflowing_binary_op(BinOp::Rem, &a, &b)?;
74b04a01
XL
503 if overflow || res.assert_bits(a.layout.size) != 0 {
504 // Then, check if `b` is -1, which is the "MIN / -1" case.
e74abb32 505 let minus1 = Scalar::from_int(-1, dest.layout.size);
60c5eb7d
XL
506 let b_scalar = b.to_scalar().unwrap();
507 if b_scalar == minus1 {
e74abb32
XL
508 throw_ub_format!("exact_div: result of dividing MIN by -1 cannot be represented")
509 } else {
dfeec247 510 throw_ub_format!("exact_div: {} cannot be divided by {} without remainder", a, b,)
e74abb32
XL
511 }
512 }
74b04a01 513 // `Rem` says this is all right, so we can let `Div` do its job.
6a06907d 514 self.binop_ignore_overflow(BinOp::Div, &a, &b, dest)
e74abb32 515 }
f9f354fc
XL
516
517 /// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its
518 /// allocation. For integer pointers, we consider each of them their own tiny allocation of size
17df50a5 519 /// 0, so offset-by-0 (and only 0) is okay -- except that null cannot be offset by _any_ value.
f9f354fc
XL
520 pub fn ptr_offset_inbounds(
521 &self,
136023e0 522 ptr: Pointer<Option<M::PointerTag>>,
f9f354fc
XL
523 pointee_ty: Ty<'tcx>,
524 offset_count: i64,
136023e0 525 ) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>> {
f9f354fc
XL
526 // We cannot overflow i64 as a type's size must be <= isize::MAX.
527 let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
528 // The computed offset, in bytes, cannot overflow an isize.
529 let offset_bytes =
530 offset_count.checked_mul(pointee_size).ok_or(err_ub!(PointerArithOverflow))?;
531 // The offset being in bounds cannot rely on "wrapping around" the address space.
532 // So, first rule out overflows in the pointer arithmetic.
136023e0 533 let offset_ptr = ptr.signed_offset(offset_bytes, self)?;
f9f354fc
XL
534 // ptr and offset_ptr must be in bounds of the same allocated object. This means all of the
535 // memory between these pointers must be accessible. Note that we do not require the
536 // pointers to be properly aligned (unlike a read/write operation).
537 let min_ptr = if offset_bytes >= 0 { ptr } else { offset_ptr };
5869c6ff 538 let size = offset_bytes.unsigned_abs();
17df50a5 539 // This call handles checking for integer/null pointers.
f9f354fc
XL
540 self.memory.check_ptr_access_align(
541 min_ptr,
542 Size::from_bytes(size),
17df50a5
XL
543 Align::ONE,
544 CheckInAllocMsg::PointerArithmeticTest,
f9f354fc
XL
545 )?;
546 Ok(offset_ptr)
547 }
17df50a5
XL
548
549 /// Copy `count*size_of::<T>()` many bytes from `*src` to `*dst`.
550 pub(crate) fn copy_intrinsic(
551 &mut self,
552 src: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
553 dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
554 count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
555 nonoverlapping: bool,
556 ) -> InterpResult<'tcx> {
557 let count = self.read_scalar(&count)?.to_machine_usize(self)?;
558 let layout = self.layout_of(src.layout.ty.builtin_deref(true).unwrap().ty)?;
559 let (size, align) = (layout.size, layout.align.abi);
560 let size = size.checked_mul(count, self).ok_or_else(|| {
561 err_ub_format!(
562 "overflow computing total size of `{}`",
563 if nonoverlapping { "copy_nonoverlapping" } else { "copy" }
564 )
565 })?;
566
136023e0
XL
567 let src = self.read_pointer(&src)?;
568 let dst = self.read_pointer(&dst)?;
17df50a5
XL
569
570 self.memory.copy(src, align, dst, align, size, nonoverlapping)
571 }
136023e0 572
a2a8927a
XL
573 pub(crate) fn write_bytes_intrinsic(
574 &mut self,
575 dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
576 byte: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
577 count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
578 ) -> InterpResult<'tcx> {
579 let layout = self.layout_of(dst.layout.ty.builtin_deref(true).unwrap().ty)?;
580
581 let dst = self.read_pointer(&dst)?;
582 let byte = self.read_scalar(&byte)?.to_u8()?;
583 let count = self.read_scalar(&count)?.to_machine_usize(self)?;
584
585 let len = layout
586 .size
587 .checked_mul(count, self)
588 .ok_or_else(|| err_ub_format!("overflow computing total size of `write_bytes`"))?;
589
590 let bytes = std::iter::repeat(byte).take(len.bytes_usize());
591 self.memory.write_bytes(dst, bytes)
592 }
593
136023e0
XL
594 pub(crate) fn raw_eq_intrinsic(
595 &mut self,
596 lhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
597 rhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
598 ) -> InterpResult<'tcx, Scalar<M::PointerTag>> {
599 let layout = self.layout_of(lhs.layout.ty.builtin_deref(true).unwrap().ty)?;
600 assert!(!layout.is_unsized());
601
602 let lhs = self.read_pointer(lhs)?;
603 let rhs = self.read_pointer(rhs)?;
604 let lhs_bytes = self.memory.read_bytes(lhs, layout.size)?;
605 let rhs_bytes = self.memory.read_bytes(rhs, layout.size)?;
606 Ok(Scalar::from_bool(lhs_bytes == rhs_bytes))
607 }
b7449926 608}