]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_const_eval/src/interpret/place.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_const_eval / src / interpret / place.rs
CommitLineData
b7449926
XL
1//! Computations on places -- field projections, going from mir::Place, and writing
2//! into a place.
3//! All high-level functions to write to memory work on places as destinations.
4
5use std::convert::TryFrom;
0bf4aa26 6use std::hash::Hash;
b7449926 7
17df50a5 8use rustc_ast::Mutability;
60c5eb7d 9use rustc_macros::HashStable;
ba9703b0 10use rustc_middle::mir;
c295e0f8 11use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
ba9703b0 12use rustc_middle::ty::{self, Ty};
f035d41b 13use rustc_target::abi::{Abi, Align, FieldsShape, TagEncoding};
c295e0f8 14use rustc_target::abi::{HasDataLayout, Size, VariantIdx, Variants};
ff7c6d11 15
0bf4aa26 16use super::{
136023e0
XL
17 alloc_range, mir_assign_valid_types, AllocId, AllocRef, AllocRefMut, CheckInAllocMsg,
18 ConstAlloc, ImmTy, Immediate, InterpCx, InterpResult, LocalValue, Machine, MemoryKind, OpTy,
19 Operand, Pointer, PointerArithmetic, Provenance, Scalar, ScalarMaybeUninit,
b7449926 20};
ff7c6d11 21
136023e0 22#[derive(Copy, Clone, Hash, PartialEq, Eq, HashStable, Debug)]
dfeec247 23/// Information required for the sound usage of a `MemPlace`.
136023e0 24pub enum MemPlaceMeta<Tag: Provenance = AllocId> {
dfeec247 25 /// The unsized payload (e.g. length for slices or vtable pointer for trait objects).
f9f354fc 26 Meta(Scalar<Tag>),
dfeec247
XL
27 /// `Sized` types or unsized `extern type`
28 None,
29 /// The address of this place may not be taken. This protects the `MemPlace` from coming from
ba9703b0 30 /// a ZST Operand without a backing allocation and being converted to an integer address. This
dfeec247
XL
31 /// should be impossible, because you can't take the address of an operand, but this is a second
32 /// protection layer ensuring that we don't mess up.
33 Poison,
34}
35
6a06907d
XL
36#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
37rustc_data_structures::static_assert_size!(MemPlaceMeta, 24);
38
136023e0 39impl<Tag: Provenance> MemPlaceMeta<Tag> {
f9f354fc 40 pub fn unwrap_meta(self) -> Scalar<Tag> {
dfeec247
XL
41 match self {
42 Self::Meta(s) => s,
43 Self::None | Self::Poison => {
44 bug!("expected wide pointer extra data (e.g. slice length or trait object vtable)")
45 }
46 }
47 }
48 fn has_meta(self) -> bool {
49 match self {
50 Self::Meta(_) => true,
51 Self::None | Self::Poison => false,
52 }
53 }
dfeec247
XL
54}
55
136023e0
XL
56#[derive(Copy, Clone, Hash, PartialEq, Eq, HashStable, Debug)]
57pub struct MemPlace<Tag: Provenance = AllocId> {
58 /// The pointer can be a pure integer, with the `None` tag.
59 pub ptr: Pointer<Option<Tag>>,
b7449926 60 pub align: Align,
9fa01778 61 /// Metadata for unsized places. Interpretation is up to the type.
b7449926 62 /// Must not be present for sized types, but can be missing for unsized types
0731742a 63 /// (e.g., `extern type`).
f9f354fc 64 pub meta: MemPlaceMeta<Tag>,
b7449926
XL
65}
66
6a06907d 67#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
136023e0 68rustc_data_structures::static_assert_size!(MemPlace, 48);
6a06907d 69
136023e0
XL
70#[derive(Copy, Clone, Hash, PartialEq, Eq, HashStable, Debug)]
71pub enum Place<Tag: Provenance = AllocId> {
2c00a5a8 72 /// A place referring to a value allocated in the `Memory` system.
f9f354fc 73 Ptr(MemPlace<Tag>),
b7449926
XL
74
75 /// To support alloc-free locals, we are able to write directly to a local.
76 /// (Without that optimization, we'd just always be a `MemPlace`.)
dfeec247 77 Local { frame: usize, local: mir::Local },
b7449926
XL
78}
79
6a06907d 80#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
136023e0 81rustc_data_structures::static_assert_size!(Place, 56);
6a06907d 82
b7449926 83#[derive(Copy, Clone, Debug)]
136023e0 84pub struct PlaceTy<'tcx, Tag: Provenance = AllocId> {
60c5eb7d 85 place: Place<Tag>, // Keep this private; it helps enforce invariants.
ba9703b0 86 pub layout: TyAndLayout<'tcx>,
ff7c6d11
XL
87}
88
6a06907d 89#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
136023e0 90rustc_data_structures::static_assert_size!(PlaceTy<'_>, 72);
6a06907d 91
136023e0 92impl<'tcx, Tag: Provenance> std::ops::Deref for PlaceTy<'tcx, Tag> {
0bf4aa26 93 type Target = Place<Tag>;
b7449926 94 #[inline(always)]
0bf4aa26 95 fn deref(&self) -> &Place<Tag> {
b7449926
XL
96 &self.place
97 }
ff7c6d11
XL
98}
99
b7449926 100/// A MemPlace with its layout. Constructing it is only possible in this module.
136023e0
XL
101#[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
102pub struct MPlaceTy<'tcx, Tag: Provenance = AllocId> {
0bf4aa26 103 mplace: MemPlace<Tag>,
ba9703b0 104 pub layout: TyAndLayout<'tcx>,
b7449926
XL
105}
106
6a06907d 107#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
136023e0 108rustc_data_structures::static_assert_size!(MPlaceTy<'_>, 64);
6a06907d 109
136023e0 110impl<'tcx, Tag: Provenance> std::ops::Deref for MPlaceTy<'tcx, Tag> {
0bf4aa26 111 type Target = MemPlace<Tag>;
b7449926 112 #[inline(always)]
0bf4aa26 113 fn deref(&self) -> &MemPlace<Tag> {
b7449926
XL
114 &self.mplace
115 }
116}
117
136023e0 118impl<'tcx, Tag: Provenance> From<MPlaceTy<'tcx, Tag>> for PlaceTy<'tcx, Tag> {
b7449926 119 #[inline(always)]
0bf4aa26 120 fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
dfeec247 121 PlaceTy { place: Place::Ptr(mplace.mplace), layout: mplace.layout }
ff7c6d11 122 }
b7449926 123}
ff7c6d11 124
136023e0 125impl<Tag: Provenance> MemPlace<Tag> {
b7449926 126 #[inline(always)]
136023e0 127 pub fn from_ptr(ptr: Pointer<Option<Tag>>, align: Align) -> Self {
dfeec247 128 MemPlace { ptr, align, meta: MemPlaceMeta::None }
ff7c6d11
XL
129 }
130
136023e0
XL
131 /// Adjust the provenance of the main pointer (metadata is unaffected).
132 pub fn map_provenance(self, f: impl FnOnce(Option<Tag>) -> Option<Tag>) -> Self {
133 MemPlace { ptr: self.ptr.map_provenance(f), ..self }
ff7c6d11
XL
134 }
135
60c5eb7d 136 /// Turn a mplace into a (thin or wide) pointer, as a reference, pointing to the same space.
a1dfa0c6
XL
137 /// This is the inverse of `ref_to_mplace`.
138 #[inline(always)]
136023e0 139 pub fn to_ref(self, cx: &impl HasDataLayout) -> Immediate<Tag> {
a1dfa0c6 140 match self.meta {
136023e0
XL
141 MemPlaceMeta::None => Immediate::from(Scalar::from_maybe_pointer(self.ptr, cx)),
142 MemPlaceMeta::Meta(meta) => {
143 Immediate::ScalarPair(Scalar::from_maybe_pointer(self.ptr, cx).into(), meta.into())
144 }
dfeec247
XL
145 MemPlaceMeta::Poison => bug!(
146 "MPlaceTy::dangling may never be used to produce a \
147 place that will have the address of its pointee taken"
148 ),
a1dfa0c6
XL
149 }
150 }
151
5869c6ff 152 #[inline]
a2a8927a 153 pub fn offset<'tcx>(
a1dfa0c6
XL
154 self,
155 offset: Size,
dfeec247 156 meta: MemPlaceMeta<Tag>,
a1dfa0c6 157 cx: &impl HasDataLayout,
dc9dc135 158 ) -> InterpResult<'tcx, Self> {
a1dfa0c6 159 Ok(MemPlace {
136023e0 160 ptr: self.ptr.offset(offset, cx)?,
a1dfa0c6
XL
161 align: self.align.restrict_for_offset(offset),
162 meta,
163 })
164 }
0bf4aa26 165}
b7449926 166
136023e0 167impl<'tcx, Tag: Provenance> MPlaceTy<'tcx, Tag> {
0bf4aa26
XL
168 /// Produces a MemPlace that works for ZST but nothing else
169 #[inline]
136023e0 170 pub fn dangling(layout: TyAndLayout<'tcx>) -> Self {
dfeec247 171 let align = layout.align.abi;
136023e0 172 let ptr = Pointer::new(None, Size::from_bytes(align.bytes())); // no provenance, absolute address
dfeec247
XL
173 // `Poison` this to make sure that the pointer value `ptr` is never observable by the program.
174 MPlaceTy { mplace: MemPlace { ptr, align, meta: MemPlaceMeta::Poison }, layout }
ff7c6d11
XL
175 }
176
0731742a 177 #[inline]
a1dfa0c6 178 pub fn offset(
6a06907d 179 &self,
a1dfa0c6 180 offset: Size,
dfeec247 181 meta: MemPlaceMeta<Tag>,
ba9703b0 182 layout: TyAndLayout<'tcx>,
a1dfa0c6 183 cx: &impl HasDataLayout,
dc9dc135 184 ) -> InterpResult<'tcx, Self> {
dfeec247 185 Ok(MPlaceTy { mplace: self.mplace.offset(offset, meta, cx)?, layout })
a1dfa0c6
XL
186 }
187
b7449926 188 #[inline]
136023e0 189 pub fn from_aligned_ptr(ptr: Pointer<Option<Tag>>, layout: TyAndLayout<'tcx>) -> Self {
a1dfa0c6 190 MPlaceTy { mplace: MemPlace::from_ptr(ptr, layout.align.abi), layout }
ff7c6d11
XL
191 }
192
b7449926 193 #[inline]
6a06907d 194 pub(super) fn len(&self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
b7449926 195 if self.layout.is_unsized() {
0bf4aa26 196 // We need to consult `meta` metadata
1b1a35ee 197 match self.layout.ty.kind() {
ba9703b0 198 ty::Slice(..) | ty::Str => self.mplace.meta.unwrap_meta().to_machine_usize(cx),
b7449926 199 _ => bug!("len not supported on unsized type {:?}", self.layout.ty),
ff7c6d11 200 }
b7449926
XL
201 } else {
202 // Go through the layout. There are lots of types that support a length,
3c0e092e 203 // e.g., SIMD types. (But not all repr(simd) types even have FieldsShape::Array!)
b7449926 204 match self.layout.fields {
ba9703b0 205 FieldsShape::Array { count, .. } => Ok(count),
b7449926
XL
206 _ => bug!("len not supported on sized type {:?}", self.layout.ty),
207 }
208 }
209 }
ff7c6d11 210
b7449926 211 #[inline]
6a06907d 212 pub(super) fn vtable(&self) -> Scalar<Tag> {
1b1a35ee 213 match self.layout.ty.kind() {
dfeec247 214 ty::Dynamic(..) => self.mplace.meta.unwrap_meta(),
b7449926 215 _ => bug!("vtable not supported on type {:?}", self.layout.ty),
ff7c6d11
XL
216 }
217 }
218}
219
416331ca 220// These are defined here because they produce a place.
136023e0 221impl<'tcx, Tag: Provenance> OpTy<'tcx, Tag> {
b7449926 222 #[inline(always)]
dfeec247
XL
223 /// Note: do not call `as_ref` on the resulting place. This function should only be used to
224 /// read from the resulting mplace, not to get its address back.
136023e0 225 pub fn try_as_mplace(&self) -> Result<MPlaceTy<'tcx, Tag>, ImmTy<'tcx, Tag>> {
6a06907d 226 match **self {
b7449926 227 Operand::Indirect(mplace) => Ok(MPlaceTy { mplace, layout: self.layout }),
136023e0 228 Operand::Immediate(_) if self.layout.is_zst() => Ok(MPlaceTy::dangling(self.layout)),
ba9703b0 229 Operand::Immediate(imm) => Err(ImmTy::from_immediate(imm, self.layout)),
b7449926
XL
230 }
231 }
232
233 #[inline(always)]
dfeec247
XL
234 /// Note: do not call `as_ref` on the resulting place. This function should only be used to
235 /// read from the resulting mplace, not to get its address back.
136023e0
XL
236 pub fn assert_mem_place(&self) -> MPlaceTy<'tcx, Tag> {
237 self.try_as_mplace().unwrap()
b7449926
XL
238 }
239}
240
136023e0 241impl<Tag: Provenance> Place<Tag> {
b7449926 242 #[inline]
416331ca 243 pub fn assert_mem_place(self) -> MemPlace<Tag> {
b7449926
XL
244 match self {
245 Place::Ptr(mplace) => mplace,
416331ca 246 _ => bug!("assert_mem_place: expected Place::Ptr, got {:?}", self),
b7449926
XL
247 }
248 }
b7449926
XL
249}
250
136023e0 251impl<'tcx, Tag: Provenance> PlaceTy<'tcx, Tag> {
b7449926 252 #[inline]
416331ca
XL
253 pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> {
254 MPlaceTy { mplace: self.place.assert_mem_place(), layout: self.layout }
b7449926
XL
255 }
256}
257
0bf4aa26 258// separating the pointer tag for `impl Trait`, see https://github.com/rust-lang/rust/issues/54385
ba9703b0 259impl<'mir, 'tcx: 'mir, Tag, M> InterpCx<'mir, 'tcx, M>
0bf4aa26 260where
a1dfa0c6 261 // FIXME: Working around https://github.com/rust-lang/rust/issues/54385
136023e0 262 Tag: Provenance + Eq + Hash + 'static,
dc9dc135 263 M: Machine<'mir, 'tcx, PointerTag = Tag>,
0bf4aa26 264{
60c5eb7d 265 /// Take a value, which represents a (thin or wide) reference, and make it a place.
a1dfa0c6 266 /// Alignment is just based on the type. This is the inverse of `MemPlace::to_ref()`.
e1599b0c
XL
267 ///
268 /// Only call this if you are sure the place is "valid" (aligned and inbounds), or do not
269 /// want to ever use the place for memory access!
270 /// Generally prefer `deref_operand`.
b7449926 271 pub fn ref_to_mplace(
0bf4aa26 272 &self,
6a06907d 273 val: &ImmTy<'tcx, M::PointerTag>,
dc9dc135 274 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247
XL
275 let pointee_type =
276 val.layout.ty.builtin_deref(true).expect("`ref_to_mplace` called on non-ptr type").ty;
b7449926 277 let layout = self.layout_of(pointee_type)?;
6a06907d 278 let (ptr, meta) = match **val {
136023e0
XL
279 Immediate::Scalar(ptr) => (ptr, MemPlaceMeta::None),
280 Immediate::ScalarPair(ptr, meta) => (ptr, MemPlaceMeta::Meta(meta.check_init()?)),
60c5eb7d 281 };
0bf4aa26 282
a1dfa0c6 283 let mplace = MemPlace {
136023e0 284 ptr: self.scalar_to_ptr(ptr.check_init()?),
9fa01778
XL
285 // We could use the run-time alignment here. For now, we do not, because
286 // the point of tracking the alignment here is to make sure that the *static*
287 // alignment information emitted with the loads is correct. The run-time
288 // alignment can only be more restrictive.
a1dfa0c6 289 align: layout.align.abi,
60c5eb7d 290 meta,
b7449926
XL
291 };
292 Ok(MPlaceTy { mplace, layout })
293 }
294
416331ca
XL
295 /// Take an operand, representing a pointer, and dereference it to a place -- that
296 /// will always be a MemPlace. Lives in `place.rs` because it creates a place.
a1dfa0c6
XL
297 pub fn deref_operand(
298 &self,
6a06907d 299 src: &OpTy<'tcx, M::PointerTag>,
dc9dc135 300 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
a1dfa0c6
XL
301 let val = self.read_immediate(src)?;
302 trace!("deref to {} on {:?}", val.layout.ty, *val);
136023e0
XL
303 let mplace = self.ref_to_mplace(&val)?;
304 self.check_mplace_access(mplace, CheckInAllocMsg::DerefTest)?;
305 Ok(mplace)
0bf4aa26
XL
306 }
307
416331ca 308 #[inline]
17df50a5 309 pub(super) fn get_alloc(
416331ca 310 &self,
6a06907d 311 place: &MPlaceTy<'tcx, M::PointerTag>,
17df50a5
XL
312 ) -> InterpResult<'tcx, Option<AllocRef<'_, 'tcx, M::PointerTag, M::AllocExtra>>> {
313 assert!(!place.layout.is_unsized());
314 assert!(!place.meta.has_meta());
315 let size = place.layout.size;
316 self.memory.get(place.ptr, size, place.align)
317 }
318
319 #[inline]
320 pub(super) fn get_alloc_mut(
321 &mut self,
322 place: &MPlaceTy<'tcx, M::PointerTag>,
323 ) -> InterpResult<'tcx, Option<AllocRefMut<'_, 'tcx, M::PointerTag, M::AllocExtra>>> {
324 assert!(!place.layout.is_unsized());
325 assert!(!place.meta.has_meta());
326 let size = place.layout.size;
327 self.memory.get_mut(place.ptr, size, place.align)
416331ca
XL
328 }
329
a2a8927a 330 /// Check if this mplace is dereferenceable and sufficiently aligned.
136023e0 331 fn check_mplace_access(
e1599b0c 332 &self,
136023e0
XL
333 mplace: MPlaceTy<'tcx, M::PointerTag>,
334 msg: CheckInAllocMsg,
335 ) -> InterpResult<'tcx> {
dfeec247 336 let (size, align) = self
136023e0
XL
337 .size_and_align_of_mplace(&mplace)?
338 .unwrap_or((mplace.layout.size, mplace.layout.align.abi));
339 assert!(mplace.mplace.align <= align, "dynamic alignment less strict than static one?");
340 let align = M::enforce_alignment(&self.memory.extra).then_some(align);
341 self.memory.check_ptr_access_align(mplace.ptr, size, align.unwrap_or(Align::ONE), msg)?;
342 Ok(())
416331ca
XL
343 }
344
ba9703b0
XL
345 /// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
346 /// always possible without allocating, so it can take `&self`. Also return the field's layout.
b7449926 347 /// This supports both struct and array fields.
ba9703b0
XL
348 ///
349 /// This also works for arrays, but then the `usize` index type is restricting.
350 /// For indexing into arrays, use `mplace_index`.
b7449926
XL
351 #[inline(always)]
352 pub fn mplace_field(
8faf50e0 353 &self,
6a06907d 354 base: &MPlaceTy<'tcx, M::PointerTag>,
ba9703b0 355 field: usize,
dc9dc135 356 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
ba9703b0 357 let offset = base.layout.fields.offset(field);
94222f64 358 let field_layout = base.layout.field(self, field);
b7449926 359
9fa01778 360 // Offset may need adjustment for unsized fields.
0bf4aa26 361 let (meta, offset) = if field_layout.is_unsized() {
9fa01778
XL
362 // Re-use parent metadata to determine dynamic field layout.
363 // With custom DSTS, this *will* execute user-defined code, but the same
364 // happens at run-time so that's okay.
a2a8927a
XL
365 match self.size_and_align_of(&base.meta, &field_layout)? {
366 Some((_, align)) => (base.meta, offset.align_to(align)),
367 None => {
368 // For unsized types with an extern type tail we perform no adjustments.
369 // NOTE: keep this in sync with `PlaceRef::project_field` in the codegen backend.
370 assert!(matches!(base.meta, MemPlaceMeta::None));
371 (base.meta, offset)
dfeec247 372 }
a2a8927a 373 }
b7449926 374 } else {
0bf4aa26 375 // base.meta could be present; we might be accessing a sized field of an unsized
b7449926 376 // struct.
dfeec247 377 (MemPlaceMeta::None, offset)
b7449926
XL
378 };
379
a1dfa0c6
XL
380 // We do not look at `base.layout.align` nor `field_layout.align`, unlike
381 // codegen -- mostly to see if we can get away with that
382 base.offset(offset, meta, field_layout, self)
ff7c6d11
XL
383 }
384
ba9703b0
XL
385 /// Index into an array.
386 #[inline(always)]
387 pub fn mplace_index(
388 &self,
6a06907d 389 base: &MPlaceTy<'tcx, M::PointerTag>,
ba9703b0
XL
390 index: u64,
391 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
392 // Not using the layout method because we want to compute on u64
393 match base.layout.fields {
394 FieldsShape::Array { stride, .. } => {
395 let len = base.len(self)?;
396 if index >= len {
397 // This can only be reached in ConstProp and non-rustc-MIR.
398 throw_ub!(BoundsCheckFailed { len, index });
399 }
400 let offset = stride * index; // `Size` multiplication
401 // All fields have the same layout.
94222f64 402 let field_layout = base.layout.field(self, 0);
ba9703b0
XL
403
404 assert!(!field_layout.is_unsized());
405 base.offset(offset, MemPlaceMeta::None, field_layout, self)
406 }
f035d41b
XL
407 _ => span_bug!(
408 self.cur_span(),
409 "`mplace_index` called on non-array type {:?}",
410 base.layout.ty
411 ),
ba9703b0
XL
412 }
413 }
414
b7449926
XL
415 // Iterates over all fields of an array. Much more efficient than doing the
416 // same by repeatedly calling `mplace_array`.
a2a8927a 417 pub(super) fn mplace_array_fields<'a>(
0531ce1d 418 &self,
6a06907d
XL
419 base: &'a MPlaceTy<'tcx, Tag>,
420 ) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'a>
0bf4aa26 421 {
b7449926 422 let len = base.len(self)?; // also asserts that we have a type where this makes sense
ee023bcb
FG
423 let FieldsShape::Array { stride, .. } = base.layout.fields else {
424 span_bug!(self.cur_span(), "mplace_array_fields: expected an array layout");
94b46f34 425 };
94222f64 426 let layout = base.layout.field(self, 0);
b7449926 427 let dl = &self.tcx.data_layout;
ba9703b0
XL
428 // `Size` multiplication
429 Ok((0..len).map(move |i| base.offset(stride * i, MemPlaceMeta::None, layout, dl)))
0531ce1d
XL
430 }
431
dfeec247 432 fn mplace_subslice(
8faf50e0 433 &self,
6a06907d 434 base: &MPlaceTy<'tcx, M::PointerTag>,
b7449926
XL
435 from: u64,
436 to: u64,
60c5eb7d 437 from_end: bool,
dc9dc135 438 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
b7449926 439 let len = base.len(self)?; // also asserts that we have a type where this makes sense
60c5eb7d 440 let actual_to = if from_end {
ba9703b0 441 if from.checked_add(to).map_or(true, |to| to > len) {
dfeec247 442 // This can only be reached in ConstProp and non-rustc-MIR.
ba9703b0 443 throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
dfeec247 444 }
ba9703b0 445 len.checked_sub(to).unwrap()
60c5eb7d
XL
446 } else {
447 to
448 };
b7449926
XL
449
450 // Not using layout method because that works with usize, and does not work with slices
451 // (that have count 0 in their layout).
452 let from_offset = match base.layout.fields {
ba9703b0 453 FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
f035d41b
XL
454 _ => {
455 span_bug!(self.cur_span(), "unexpected layout of index access: {:#?}", base.layout)
456 }
ff7c6d11 457 };
b7449926 458
0bf4aa26 459 // Compute meta and new layout
ba9703b0 460 let inner_len = actual_to.checked_sub(from).unwrap();
1b1a35ee 461 let (meta, ty) = match base.layout.ty.kind() {
b7449926
XL
462 // It is not nice to match on the type, but that seems to be the only way to
463 // implement this.
5099ac24 464 ty::Array(inner, _) => (MemPlaceMeta::None, self.tcx.mk_array(*inner, inner_len)),
b7449926 465 ty::Slice(..) => {
ba9703b0 466 let len = Scalar::from_machine_usize(inner_len, self);
dfeec247 467 (MemPlaceMeta::Meta(len), base.layout.ty)
b7449926 468 }
f035d41b
XL
469 _ => {
470 span_bug!(self.cur_span(), "cannot subslice non-array type: `{:?}`", base.layout.ty)
471 }
b7449926
XL
472 };
473 let layout = self.layout_of(ty)?;
a1dfa0c6 474 base.offset(from_offset, meta, layout, self)
b7449926
XL
475 }
476
6a06907d 477 pub(crate) fn mplace_downcast(
b7449926 478 &self,
6a06907d 479 base: &MPlaceTy<'tcx, M::PointerTag>,
a1dfa0c6 480 variant: VariantIdx,
dc9dc135 481 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
ee023bcb
FG
482 // Downcasts only change the layout.
483 // (In particular, no check about whether this is even the active variant -- that's by design,
484 // see https://github.com/rust-lang/rust/issues/93688#issuecomment-1032929496.)
dfeec247 485 assert!(!base.meta.has_meta());
6a06907d 486 Ok(MPlaceTy { layout: base.layout.for_variant(self, variant), ..*base })
b7449926
XL
487 }
488
489 /// Project into an mplace
dfeec247 490 pub(super) fn mplace_projection(
b7449926 491 &self,
6a06907d 492 base: &MPlaceTy<'tcx, M::PointerTag>,
f9f354fc 493 proj_elem: mir::PlaceElem<'tcx>,
dc9dc135 494 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
ba9703b0 495 use rustc_middle::mir::ProjectionElem::*;
f9f354fc 496 Ok(match proj_elem {
ba9703b0 497 Field(field, _) => self.mplace_field(base, field.index())?,
b7449926 498 Downcast(_, variant) => self.mplace_downcast(base, variant)?,
6a06907d 499 Deref => self.deref_operand(&base.into())?,
b7449926
XL
500
501 Index(local) => {
9fa01778
XL
502 let layout = self.layout_of(self.tcx.types.usize)?;
503 let n = self.access_local(self.frame(), local, Some(layout))?;
6a06907d 504 let n = self.read_scalar(&n)?;
136023e0 505 let n = n.to_machine_usize(self)?;
ba9703b0 506 self.mplace_index(base, n)?
b7449926
XL
507 }
508
dfeec247 509 ConstantIndex { offset, min_length, from_end } => {
b7449926 510 let n = base.len(self)?;
1b1a35ee 511 if n < min_length {
dfeec247 512 // This can only be reached in ConstProp and non-rustc-MIR.
1b1a35ee 513 throw_ub!(BoundsCheckFailed { len: min_length, index: n });
dfeec247 514 }
b7449926
XL
515
516 let index = if from_end {
ba9703b0 517 assert!(0 < offset && offset <= min_length);
1b1a35ee 518 n.checked_sub(offset).unwrap()
b7449926 519 } else {
dfeec247 520 assert!(offset < min_length);
1b1a35ee 521 offset
b7449926
XL
522 };
523
ba9703b0 524 self.mplace_index(base, index)?
b7449926
XL
525 }
526
1b1a35ee 527 Subslice { from, to, from_end } => self.mplace_subslice(base, from, to, from_end)?,
b7449926 528 })
ff7c6d11
XL
529 }
530
3c0e092e
XL
531 /// Converts a repr(simd) place into a place where `place_index` accesses the SIMD elements.
532 /// Also returns the number of elements.
533 pub fn mplace_to_simd(
534 &self,
535 base: &MPlaceTy<'tcx, M::PointerTag>,
536 ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, u64)> {
537 // Basically we just transmute this place into an array following simd_size_and_type.
538 // (Transmuting is okay since this is an in-memory place. We also double-check the size
539 // stays the same.)
540 let (len, e_ty) = base.layout.ty.simd_size_and_type(*self.tcx);
541 let array = self.tcx.mk_array(e_ty, len);
542 let layout = self.layout_of(array)?;
543 assert_eq!(layout.size, base.layout.size);
544 Ok((MPlaceTy { layout, ..*base }, len))
545 }
546
9fa01778 547 /// Gets the place of a field inside the place, and also the field's type.
b7449926 548 /// Just a convenience function, but used quite a bit.
a1dfa0c6
XL
549 /// This is the only projection that might have a side-effect: We cannot project
550 /// into the field of a local `ScalarPair`, we have to first allocate it.
b7449926 551 pub fn place_field(
ff7c6d11 552 &mut self,
6a06907d 553 base: &PlaceTy<'tcx, M::PointerTag>,
ba9703b0 554 field: usize,
dc9dc135 555 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
b7449926
XL
556 // FIXME: We could try to be smarter and avoid allocation for fields that span the
557 // entire place.
558 let mplace = self.force_allocation(base)?;
6a06907d 559 Ok(self.mplace_field(&mplace, field)?.into())
ff7c6d11
XL
560 }
561
ba9703b0
XL
562 pub fn place_index(
563 &mut self,
6a06907d 564 base: &PlaceTy<'tcx, M::PointerTag>,
ba9703b0
XL
565 index: u64,
566 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
567 let mplace = self.force_allocation(base)?;
6a06907d 568 Ok(self.mplace_index(&mplace, index)?.into())
ba9703b0
XL
569 }
570
b7449926 571 pub fn place_downcast(
a1dfa0c6 572 &self,
6a06907d 573 base: &PlaceTy<'tcx, M::PointerTag>,
a1dfa0c6 574 variant: VariantIdx,
dc9dc135 575 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
b7449926
XL
576 // Downcast just changes the layout
577 Ok(match base.place {
dfeec247 578 Place::Ptr(mplace) => {
6a06907d 579 self.mplace_downcast(&MPlaceTy { mplace, layout: base.layout }, variant)?.into()
dfeec247 580 }
b7449926 581 Place::Local { .. } => {
a1dfa0c6 582 let layout = base.layout.for_variant(self, variant);
6a06907d 583 PlaceTy { layout, ..*base }
ff7c6d11 584 }
b7449926 585 })
ff7c6d11
XL
586 }
587
9fa01778 588 /// Projects into a place.
b7449926
XL
589 pub fn place_projection(
590 &mut self,
6a06907d 591 base: &PlaceTy<'tcx, M::PointerTag>,
f9f354fc 592 &proj_elem: &mir::ProjectionElem<mir::Local, Ty<'tcx>>,
dc9dc135 593 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
ba9703b0 594 use rustc_middle::mir::ProjectionElem::*;
f9f354fc 595 Ok(match proj_elem {
ba9703b0 596 Field(field, _) => self.place_field(base, field.index())?,
b7449926 597 Downcast(_, variant) => self.place_downcast(base, variant)?,
6a06907d 598 Deref => self.deref_operand(&self.place_to_op(base)?)?.into(),
b7449926
XL
599 // For the other variants, we have to force an allocation.
600 // This matches `operand_projection`.
601 Subslice { .. } | ConstantIndex { .. } | Index(_) => {
602 let mplace = self.force_allocation(base)?;
6a06907d 603 self.mplace_projection(&mplace, proj_elem)?.into()
b7449926
XL
604 }
605 })
606 }
ff7c6d11 607
3c0e092e
XL
608 /// Converts a repr(simd) place into a place where `place_index` accesses the SIMD elements.
609 /// Also returns the number of elements.
610 pub fn place_to_simd(
611 &mut self,
612 base: &PlaceTy<'tcx, M::PointerTag>,
613 ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, u64)> {
614 let mplace = self.force_allocation(base)?;
615 self.mplace_to_simd(&mplace)
616 }
617
9fa01778 618 /// Computes a place. You should only use this if you intend to write into this
b7449926 619 /// place; for reading, a more efficient alternative is `eval_place_for_read`.
0bf4aa26
XL
620 pub fn eval_place(
621 &mut self,
ba9703b0 622 place: mir::Place<'tcx>,
dc9dc135 623 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
f9f354fc
XL
624 let mut place_ty = PlaceTy {
625 // This works even for dead/uninitialized locals; we check further when writing
626 place: Place::Local { frame: self.frame_idx(), local: place.local },
627 layout: self.layout_of_local(self.frame(), place.local, None)?,
e1599b0c 628 };
b7449926 629
e1599b0c 630 for elem in place.projection.iter() {
6a06907d 631 place_ty = self.place_projection(&place_ty, &elem)?
e1599b0c 632 }
ff7c6d11 633
3dfed10e 634 trace!("{:?}", self.dump_place(place_ty.place));
f9f354fc
XL
635 // Sanity-check the type we ended up with.
636 debug_assert!(mir_assign_valid_types(
637 *self.tcx,
f035d41b 638 self.param_env,
f9f354fc
XL
639 self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
640 place.ty(&self.frame().body.local_decls, *self.tcx).ty
a2a8927a 641 )?)?,
f9f354fc
XL
642 place_ty.layout,
643 ));
e1599b0c 644 Ok(place_ty)
ff7c6d11
XL
645 }
646
a1dfa0c6 647 /// Write an immediate to a place
0bf4aa26 648 #[inline(always)]
a1dfa0c6 649 pub fn write_immediate(
b7449926 650 &mut self,
a1dfa0c6 651 src: Immediate<M::PointerTag>,
6a06907d 652 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 653 ) -> InterpResult<'tcx> {
a1dfa0c6 654 self.write_immediate_no_validate(src, dest)?;
0bf4aa26
XL
655
656 if M::enforce_validity(self) {
657 // Data got changed, better make sure it matches the type!
6a06907d 658 self.validate_operand(&self.place_to_op(dest)?)?;
dc9dc135
XL
659 }
660
661 Ok(())
662 }
663
136023e0 664 /// Write a scalar to a place
dc9dc135 665 #[inline(always)]
136023e0 666 pub fn write_scalar(
dc9dc135 667 &mut self,
136023e0
XL
668 val: impl Into<ScalarMaybeUninit<M::PointerTag>>,
669 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 670 ) -> InterpResult<'tcx> {
136023e0
XL
671 self.write_immediate(Immediate::Scalar(val.into()), dest)
672 }
0bf4aa26 673
136023e0
XL
674 /// Write a pointer to a place
675 #[inline(always)]
676 pub fn write_pointer(
677 &mut self,
678 ptr: impl Into<Pointer<Option<M::PointerTag>>>,
679 dest: &PlaceTy<'tcx, M::PointerTag>,
680 ) -> InterpResult<'tcx> {
681 self.write_scalar(Scalar::from_maybe_pointer(ptr.into(), self), dest)
0bf4aa26
XL
682 }
683
a1dfa0c6 684 /// Write an immediate to a place.
0bf4aa26
XL
685 /// If you use this you are responsible for validating that things got copied at the
686 /// right type.
a1dfa0c6 687 fn write_immediate_no_validate(
0bf4aa26 688 &mut self,
a1dfa0c6 689 src: Immediate<M::PointerTag>,
6a06907d 690 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 691 ) -> InterpResult<'tcx> {
0bf4aa26
XL
692 if cfg!(debug_assertions) {
693 // This is a very common path, avoid some checks in release mode
694 assert!(!dest.layout.is_unsized(), "Cannot write unsized data");
a1dfa0c6 695 match src {
136023e0 696 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Ptr(..))) => assert_eq!(
dfeec247
XL
697 self.pointer_size(),
698 dest.layout.size,
699 "Size mismatch when writing pointer"
700 ),
29967ef6
XL
701 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Int(int))) => {
702 assert_eq!(int.size(), dest.layout.size, "Size mismatch when writing bits")
dfeec247 703 }
3dfed10e 704 Immediate::Scalar(ScalarMaybeUninit::Uninit) => {} // uninit can have any size
a1dfa0c6 705 Immediate::ScalarPair(_, _) => {
0bf4aa26
XL
706 // FIXME: Can we check anything here?
707 }
708 }
709 }
a1dfa0c6 710 trace!("write_immediate: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
0bf4aa26 711
a1dfa0c6 712 // See if we can avoid an allocation. This is the counterpart to `try_read_immediate`,
b7449926
XL
713 // but not factored as a separate function.
714 let mplace = match dest.place {
ff7c6d11 715 Place::Local { frame, local } => {
f035d41b 716 match M::access_local_mut(self, frame, local)? {
48663c56
XL
717 Ok(local) => {
718 // Local can be updated in-place.
719 *local = LocalValue::Live(Operand::Immediate(src));
b7449926 720 return Ok(());
48663c56
XL
721 }
722 Err(mplace) => {
723 // The local is in memory, go on below.
724 mplace
725 }
ff7c6d11 726 }
dfeec247 727 }
48663c56 728 Place::Ptr(mplace) => mplace, // already referring to memory
ff7c6d11 729 };
0bf4aa26 730 let dest = MPlaceTy { mplace, layout: dest.layout };
ff7c6d11 731
b7449926 732 // This is already in memory, write there.
6a06907d 733 self.write_immediate_to_mplace_no_validate(src, &dest)
ff7c6d11
XL
734 }
735
a1dfa0c6 736 /// Write an immediate to memory.
dc9dc135 737 /// If you use this you are responsible for validating that things got copied at the
0bf4aa26 738 /// right type.
a1dfa0c6 739 fn write_immediate_to_mplace_no_validate(
b7449926 740 &mut self,
a1dfa0c6 741 value: Immediate<M::PointerTag>,
6a06907d 742 dest: &MPlaceTy<'tcx, M::PointerTag>,
dc9dc135 743 ) -> InterpResult<'tcx> {
b7449926
XL
744 // Note that it is really important that the type here is the right one, and matches the
745 // type things are read at. In case `src_val` is a `ScalarPair`, we don't do any magic here
746 // to handle padding properly, which is only correct if we never look at this data with the
747 // wrong type.
748
60c5eb7d 749 // Invalid places are a thing: the return place of a diverging function
17df50a5 750 let tcx = *self.tcx;
ee023bcb
FG
751 let Some(mut alloc) = self.get_alloc_mut(dest)? else {
752 // zero-sized access
753 return Ok(());
dc9dc135 754 };
b7449926 755
0bf4aa26
XL
756 // FIXME: We should check that there are dest.layout.size many bytes available in
757 // memory. The code below is not sufficient, with enough padding it might not
758 // cover all the bytes!
b7449926 759 match value {
a1dfa0c6 760 Immediate::Scalar(scalar) => {
0bf4aa26 761 match dest.layout.abi {
ba9703b0 762 Abi::Scalar(_) => {} // fine
f035d41b
XL
763 _ => span_bug!(
764 self.cur_span(),
765 "write_immediate_to_mplace: invalid Scalar layout: {:#?}",
766 dest.layout
767 ),
0bf4aa26 768 }
17df50a5 769 alloc.write_scalar(alloc_range(Size::ZERO, dest.layout.size), scalar)
ff7c6d11 770 }
a1dfa0c6 771 Immediate::ScalarPair(a_val, b_val) => {
dc9dc135
XL
772 // We checked `ptr_align` above, so all fields will have the alignment they need.
773 // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
774 // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
b7449926 775 let (a, b) = match dest.layout.abi {
c295e0f8 776 Abi::ScalarPair(a, b) => (a.value, b.value),
f035d41b
XL
777 _ => span_bug!(
778 self.cur_span(),
dfeec247
XL
779 "write_immediate_to_mplace: invalid ScalarPair layout: {:#?}",
780 dest.layout
781 ),
b7449926 782 };
17df50a5
XL
783 let (a_size, b_size) = (a.size(&tcx), b.size(&tcx));
784 let b_offset = a_size.align_to(b.align(&tcx).abi);
a1dfa0c6 785
0bf4aa26
XL
786 // It is tempting to verify `b_offset` against `layout.fields.offset(1)`,
787 // but that does not work: We could be a newtype around a pair, then the
788 // fields do not match the `ScalarPair` components.
789
17df50a5
XL
790 alloc.write_scalar(alloc_range(Size::ZERO, a_size), a_val)?;
791 alloc.write_scalar(alloc_range(b_offset, b_size), b_val)
ff7c6d11 792 }
b7449926 793 }
ff7c6d11
XL
794 }
795
9fa01778 796 /// Copies the data from an operand to a place. This does not support transmuting!
0bf4aa26
XL
797 /// Use `copy_op_transmute` if the layouts could disagree.
798 #[inline(always)]
b7449926 799 pub fn copy_op(
ff7c6d11 800 &mut self,
6a06907d
XL
801 src: &OpTy<'tcx, M::PointerTag>,
802 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 803 ) -> InterpResult<'tcx> {
0bf4aa26
XL
804 self.copy_op_no_validate(src, dest)?;
805
806 if M::enforce_validity(self) {
807 // Data got changed, better make sure it matches the type!
6a06907d 808 self.validate_operand(&self.place_to_op(dest)?)?;
0bf4aa26
XL
809 }
810
811 Ok(())
812 }
813
9fa01778 814 /// Copies the data from an operand to a place. This does not support transmuting!
0bf4aa26 815 /// Use `copy_op_transmute` if the layouts could disagree.
dc9dc135 816 /// Also, if you use this you are responsible for validating that things get copied at the
0bf4aa26
XL
817 /// right type.
818 fn copy_op_no_validate(
819 &mut self,
6a06907d
XL
820 src: &OpTy<'tcx, M::PointerTag>,
821 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 822 ) -> InterpResult<'tcx> {
0bf4aa26
XL
823 // We do NOT compare the types for equality, because well-typed code can
824 // actually "transmute" `&mut T` to `&T` in an assignment without a cast.
f035d41b 825 if !mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
ba9703b0 826 span_bug!(
f035d41b 827 self.cur_span(),
ba9703b0
XL
828 "type mismatch when copying!\nsrc: {:?},\ndest: {:?}",
829 src.layout.ty,
830 dest.layout.ty,
831 );
832 }
b7449926
XL
833
834 // Let us see if the layout is simple so we take a shortcut, avoid force_allocation.
a1dfa0c6 835 let src = match self.try_read_immediate(src)? {
0bf4aa26 836 Ok(src_val) => {
48663c56 837 assert!(!src.layout.is_unsized(), "cannot have unsized immediates");
0bf4aa26 838 // Yay, we got a value that we can write directly.
9fa01778
XL
839 // FIXME: Add a check to make sure that if `src` is indirect,
840 // it does not overlap with `dest`.
dc9dc135 841 return self.write_immediate_no_validate(*src_val, dest);
0bf4aa26
XL
842 }
843 Err(mplace) => mplace,
b7449926
XL
844 };
845 // Slow path, this does not fit into an immediate. Just memcpy.
0bf4aa26
XL
846 trace!("copy_op: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
847
48663c56
XL
848 // This interprets `src.meta` with the `dest` local's layout, if an unsized local
849 // is being initialized!
850 let (dest, size) = self.force_allocation_maybe_sized(dest, src.meta)?;
851 let size = size.unwrap_or_else(|| {
dfeec247
XL
852 assert!(
853 !dest.layout.is_unsized(),
854 "Cannot copy into already initialized unsized place"
855 );
48663c56
XL
856 dest.layout.size
857 });
858 assert_eq!(src.meta, dest.meta, "Can only copy between equally-sized instances");
416331ca 859
17df50a5
XL
860 self.memory
861 .copy(src.ptr, src.align, dest.ptr, dest.align, size, /*nonoverlapping*/ true)
0bf4aa26
XL
862 }
863
9fa01778 864 /// Copies the data from an operand to a place. The layouts may disagree, but they must
0bf4aa26
XL
865 /// have the same size.
866 pub fn copy_op_transmute(
867 &mut self,
6a06907d
XL
868 src: &OpTy<'tcx, M::PointerTag>,
869 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 870 ) -> InterpResult<'tcx> {
f035d41b 871 if mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
0bf4aa26
XL
872 // Fast path: Just use normal `copy_op`
873 return self.copy_op(src, dest);
874 }
48663c56 875 // We still require the sizes to match.
dfeec247
XL
876 if src.layout.size != dest.layout.size {
877 // FIXME: This should be an assert instead of an error, but if we transmute within an
878 // array length computation, `typeck` may not have yet been run and errored out. In fact
ee023bcb 879 // most likely we *are* running `typeck` right now. Investigate whether we can bail out
3dfed10e 880 // on `typeck_results().has_errors` at all const eval entry points.
dfeec247 881 debug!("Size mismatch when transmuting!\nsrc: {:#?}\ndest: {:#?}", src, dest);
ba9703b0 882 self.tcx.sess.delay_span_bug(
f035d41b 883 self.cur_span(),
ba9703b0
XL
884 "size-changing transmute, should have been caught by transmute checking",
885 );
886 throw_inval!(TransmuteSizeDiff(src.layout.ty, dest.layout.ty));
dfeec247 887 }
48663c56
XL
888 // Unsized copies rely on interpreting `src.meta` with `dest.layout`, we want
889 // to avoid that here.
dfeec247
XL
890 assert!(
891 !src.layout.is_unsized() && !dest.layout.is_unsized(),
892 "Cannot transmute unsized data"
893 );
0bf4aa26
XL
894
895 // The hard case is `ScalarPair`. `src` is already read from memory in this case,
896 // using `src.layout` to figure out which bytes to use for the 1st and 2nd field.
897 // We have to write them to `dest` at the offsets they were *read at*, which is
898 // not necessarily the same as the offsets in `dest.layout`!
899 // Hence we do the copy with the source layout on both sides. We also make sure to write
900 // into memory, because if `dest` is a local we would not even have a way to write
901 // at the `src` offsets; the fact that we came from a different layout would
902 // just be lost.
903 let dest = self.force_allocation(dest)?;
904 self.copy_op_no_validate(
905 src,
6a06907d 906 &PlaceTy::from(MPlaceTy { mplace: *dest, layout: src.layout }),
0bf4aa26
XL
907 )?;
908
909 if M::enforce_validity(self) {
910 // Data got changed, better make sure it matches the type!
6a06907d 911 self.validate_operand(&dest.into())?;
0bf4aa26
XL
912 }
913
914 Ok(())
ff7c6d11
XL
915 }
916
9fa01778 917 /// Ensures that a place is in memory, and returns where it is.
a1dfa0c6
XL
918 /// If the place currently refers to a local that doesn't yet have a matching allocation,
919 /// create such an allocation.
b7449926 920 /// This is essentially `force_to_memplace`.
48663c56
XL
921 ///
922 /// This supports unsized types and returns the computed size to avoid some
923 /// redundant computation when copying; use `force_allocation` for a simpler, sized-only
924 /// version.
925 pub fn force_allocation_maybe_sized(
ff7c6d11 926 &mut self,
6a06907d 927 place: &PlaceTy<'tcx, M::PointerTag>,
dfeec247 928 meta: MemPlaceMeta<M::PointerTag>,
dc9dc135 929 ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)> {
48663c56 930 let (mplace, size) = match place.place {
b7449926 931 Place::Local { frame, local } => {
f035d41b 932 match M::access_local_mut(self, frame, local)? {
dfeec247 933 Ok(&mut local_val) => {
b7449926 934 // We need to make an allocation.
48663c56 935
b7449926 936 // We need the layout of the local. We can NOT use the layout we got,
0731742a 937 // that might e.g., be an inner field of a struct with `Scalar` layout,
b7449926 938 // that has different alignment than the outer field.
ba9703b0
XL
939 let local_layout =
940 self.layout_of_local(&self.stack()[frame], local, None)?;
dfeec247
XL
941 // We also need to support unsized types, and hence cannot use `allocate`.
942 let (size, align) = self
6a06907d 943 .size_and_align_of(&meta, &local_layout)?
48663c56 944 .expect("Cannot allocate for non-dyn-sized type");
136023e0 945 let ptr = self.memory.allocate(size, align, MemoryKind::Stack)?;
48663c56 946 let mplace = MemPlace { ptr: ptr.into(), align, meta };
dfeec247 947 if let LocalValue::Live(Operand::Immediate(value)) = local_val {
48663c56
XL
948 // Preserve old value.
949 // We don't have to validate as we can assume the local
950 // was already valid for its type.
951 let mplace = MPlaceTy { mplace, layout: local_layout };
6a06907d 952 self.write_immediate_to_mplace_no_validate(value, &mplace)?;
48663c56
XL
953 }
954 // Now we can call `access_mut` again, asserting it goes well,
955 // and actually overwrite things.
f035d41b 956 *M::access_local_mut(self, frame, local).unwrap().unwrap() =
48663c56
XL
957 LocalValue::Live(Operand::Indirect(mplace));
958 (mplace, Some(size))
b7449926 959 }
48663c56 960 Err(mplace) => (mplace, None), // this already was an indirect local
b7449926
XL
961 }
962 }
dfeec247 963 Place::Ptr(mplace) => (mplace, None),
b7449926
XL
964 };
965 // Return with the original layout, so that the caller can go on
48663c56
XL
966 Ok((MPlaceTy { mplace, layout: place.layout }, size))
967 }
968
969 #[inline(always)]
970 pub fn force_allocation(
971 &mut self,
6a06907d 972 place: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 973 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247 974 Ok(self.force_allocation_maybe_sized(place, MemPlaceMeta::None)?.0)
ff7c6d11
XL
975 }
976
b7449926 977 pub fn allocate(
ff7c6d11 978 &mut self,
ba9703b0
XL
979 layout: TyAndLayout<'tcx>,
980 kind: MemoryKind<M::MemoryKind>,
136023e0
XL
981 ) -> InterpResult<'static, MPlaceTy<'tcx, M::PointerTag>> {
982 let ptr = self.memory.allocate(layout.size, layout.align.abi, kind)?;
983 Ok(MPlaceTy::from_aligned_ptr(ptr.into(), layout))
b7449926 984 }
ff7c6d11 985
17df50a5 986 /// Returns a wide MPlace of type `&'static [mut] str` to a new 1-aligned allocation.
60c5eb7d
XL
987 pub fn allocate_str(
988 &mut self,
989 str: &str,
ba9703b0 990 kind: MemoryKind<M::MemoryKind>,
17df50a5 991 mutbl: Mutability,
60c5eb7d 992 ) -> MPlaceTy<'tcx, M::PointerTag> {
17df50a5 993 let ptr = self.memory.allocate_bytes(str.as_bytes(), Align::ONE, kind, mutbl);
ba9703b0 994 let meta = Scalar::from_machine_usize(u64::try_from(str.len()).unwrap(), self);
17df50a5
XL
995 let mplace =
996 MemPlace { ptr: ptr.into(), align: Align::ONE, meta: MemPlaceMeta::Meta(meta) };
60c5eb7d 997
17df50a5
XL
998 let ty = self.tcx.mk_ref(
999 self.tcx.lifetimes.re_static,
1000 ty::TypeAndMut { ty: self.tcx.types.str_, mutbl },
1001 );
1002 let layout = self.layout_of(ty).unwrap();
60c5eb7d
XL
1003 MPlaceTy { mplace, layout }
1004 }
1005
f035d41b
XL
1006 /// Writes the discriminant of the given variant.
1007 pub fn write_discriminant(
b7449926 1008 &mut self,
a1dfa0c6 1009 variant_index: VariantIdx,
6a06907d 1010 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 1011 ) -> InterpResult<'tcx> {
c295e0f8
XL
1012 // This must be an enum or generator.
1013 match dest.layout.ty.kind() {
1014 ty::Adt(adt, _) => assert!(adt.is_enum()),
1015 ty::Generator(..) => {}
1016 _ => span_bug!(
1017 self.cur_span(),
1018 "write_discriminant called on non-variant-type (neither enum nor generator)"
1019 ),
1020 }
60c5eb7d
XL
1021 // Layout computation excludes uninhabited variants from consideration
1022 // therefore there's no way to represent those variants in the given layout.
c295e0f8
XL
1023 // Essentially, uninhabited variants do not have a tag that corresponds to their
1024 // discriminant, so we cannot do anything here.
1025 // When evaluating we will always error before even getting here, but ConstProp 'executes'
1026 // dead code, so we cannot ICE here.
60c5eb7d 1027 if dest.layout.for_variant(self, variant_index).abi.is_uninhabited() {
c295e0f8 1028 throw_ub!(UninhabitedEnumVariantWritten)
60c5eb7d 1029 }
e74abb32 1030
b7449926 1031 match dest.layout.variants {
ba9703b0 1032 Variants::Single { index } => {
60c5eb7d 1033 assert_eq!(index, variant_index);
ff7c6d11 1034 }
ba9703b0 1035 Variants::Multiple {
f035d41b 1036 tag_encoding: TagEncoding::Direct,
c295e0f8 1037 tag: tag_layout,
f035d41b 1038 tag_field,
532ac7d7
XL
1039 ..
1040 } => {
60c5eb7d 1041 // No need to validate that the discriminant here because the
ba9703b0 1042 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
60c5eb7d 1043
48663c56
XL
1044 let discr_val =
1045 dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val;
b7449926
XL
1046
1047 // raw discriminants for enums are isize or bigger during
1048 // their computation, but the in-memory tag is the smallest possible
1049 // representation
f035d41b 1050 let size = tag_layout.value.size(self);
29967ef6 1051 let tag_val = size.truncate(discr_val);
b7449926 1052
f035d41b 1053 let tag_dest = self.place_field(dest, tag_field)?;
6a06907d 1054 self.write_scalar(Scalar::from_uint(tag_val, size), &tag_dest)?;
ff7c6d11 1055 }
ba9703b0 1056 Variants::Multiple {
f035d41b
XL
1057 tag_encoding:
1058 TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start },
c295e0f8 1059 tag: tag_layout,
f035d41b 1060 tag_field,
b7449926 1061 ..
ff7c6d11 1062 } => {
60c5eb7d 1063 // No need to validate that the discriminant here because the
ba9703b0 1064 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
60c5eb7d 1065
b7449926 1066 if variant_index != dataful_variant {
e1599b0c 1067 let variants_start = niche_variants.start().as_u32();
dfeec247
XL
1068 let variant_index_relative = variant_index
1069 .as_u32()
e1599b0c
XL
1070 .checked_sub(variants_start)
1071 .expect("overflow computing relative variant idx");
1072 // We need to use machine arithmetic when taking into account `niche_start`:
f035d41b
XL
1073 // tag_val = variant_index_relative + niche_start_val
1074 let tag_layout = self.layout_of(tag_layout.value.to_int_ty(*self.tcx))?;
1075 let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
e1599b0c 1076 let variant_index_relative_val =
f035d41b
XL
1077 ImmTy::from_uint(variant_index_relative, tag_layout);
1078 let tag_val = self.binary_op(
e1599b0c 1079 mir::BinOp::Add,
6a06907d
XL
1080 &variant_index_relative_val,
1081 &niche_start_val,
b7449926 1082 )?;
e1599b0c 1083 // Write result.
f035d41b 1084 let niche_dest = self.place_field(dest, tag_field)?;
6a06907d 1085 self.write_immediate(*tag_val, &niche_dest)?;
b7449926
XL
1086 }
1087 }
1088 }
ff7c6d11 1089
b7449926
XL
1090 Ok(())
1091 }
ff7c6d11 1092
a1dfa0c6
XL
1093 pub fn raw_const_to_mplace(
1094 &self,
1b1a35ee 1095 raw: ConstAlloc<'tcx>,
dc9dc135 1096 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
a1dfa0c6 1097 // This must be an allocation in `tcx`
f9f354fc 1098 let _ = self.tcx.global_alloc(raw.alloc_id);
3dfed10e 1099 let ptr = self.global_base_pointer(Pointer::from(raw.alloc_id))?;
a1dfa0c6 1100 let layout = self.layout_of(raw.ty)?;
136023e0 1101 Ok(MPlaceTy::from_aligned_ptr(ptr.into(), layout))
a1dfa0c6
XL
1102 }
1103
b7449926
XL
1104 /// Turn a place with a `dyn Trait` type into a place with the actual dynamic type.
1105 /// Also return some more information so drop doesn't have to run the same code twice.
dfeec247
XL
1106 pub(super) fn unpack_dyn_trait(
1107 &self,
6a06907d 1108 mplace: &MPlaceTy<'tcx, M::PointerTag>,
dfeec247 1109 ) -> InterpResult<'tcx, (ty::Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)> {
136023e0 1110 let vtable = self.scalar_to_ptr(mplace.vtable()); // also sanity checks the type
b7449926
XL
1111 let (instance, ty) = self.read_drop_type_from_vtable(vtable)?;
1112 let layout = self.layout_of(ty)?;
1113
1114 // More sanity checks
1115 if cfg!(debug_assertions) {
1116 let (size, align) = self.read_size_and_align_from_vtable(vtable)?;
1117 assert_eq!(size, layout.size);
a1dfa0c6
XL
1118 // only ABI alignment is preserved
1119 assert_eq!(align, layout.align.abi);
ff7c6d11 1120 }
ff7c6d11 1121
6a06907d 1122 let mplace = MPlaceTy { mplace: MemPlace { meta: MemPlaceMeta::None, ..**mplace }, layout };
b7449926 1123 Ok((instance, mplace))
ff7c6d11
XL
1124 }
1125}