]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_data_structures/src/sip128.rs
New upstream version 1.60.0+dfsg1
[rustc.git] / compiler / rustc_data_structures / src / sip128.rs
CommitLineData
abe05a73
XL
1//! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes.
2
abe05a73 3use std::hash::Hasher;
29967ef6 4use std::mem::{self, MaybeUninit};
dfeec247 5use std::ptr;
abe05a73 6
416331ca
XL
7#[cfg(test)]
8mod tests;
9
29967ef6
XL
10// The SipHash algorithm operates on 8-byte chunks.
11const ELEM_SIZE: usize = mem::size_of::<u64>();
12
13// Size of the buffer in number of elements, not including the spill.
14//
15// The selection of this size was guided by rustc-perf benchmark comparisons of
16// different buffer sizes. It should be periodically reevaluated as the compiler
17// implementation and input characteristics change.
18//
19// Using the same-sized buffer for everything we hash is a performance versus
20// complexity tradeoff. The ideal buffer size, and whether buffering should even
21// be used, depends on what is being hashed. It may be worth it to size the
22// buffer appropriately (perhaps by making SipHasher128 generic over the buffer
23// size) or disable buffering depending on what is being hashed. But at this
24// time, we use the same buffer size for everything.
25const BUFFER_CAPACITY: usize = 8;
26
27// Size of the buffer in bytes, not including the spill.
28const BUFFER_SIZE: usize = BUFFER_CAPACITY * ELEM_SIZE;
29
30// Size of the buffer in number of elements, including the spill.
31const BUFFER_WITH_SPILL_CAPACITY: usize = BUFFER_CAPACITY + 1;
32
33// Size of the buffer in bytes, including the spill.
34const BUFFER_WITH_SPILL_SIZE: usize = BUFFER_WITH_SPILL_CAPACITY * ELEM_SIZE;
35
36// Index of the spill element in the buffer.
37const BUFFER_SPILL_INDEX: usize = BUFFER_WITH_SPILL_CAPACITY - 1;
38
abe05a73 39#[derive(Debug, Clone)]
29967ef6 40#[repr(C)]
abe05a73 41pub struct SipHasher128 {
29967ef6
XL
42 // The access pattern during hashing consists of accesses to `nbuf` and
43 // `buf` until the buffer is full, followed by accesses to `state` and
44 // `processed`, and then repetition of that pattern until hashing is done.
45 // This is the basis for the ordering of fields below. However, in practice
46 // the cache miss-rate for data access is extremely low regardless of order.
47 nbuf: usize, // how many bytes in buf are valid
48 buf: [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY], // unprocessed bytes le
49 state: State, // hash State
50 processed: usize, // how many bytes we've processed
abe05a73
XL
51}
52
53#[derive(Debug, Clone, Copy)]
54#[repr(C)]
55struct State {
56 // v0, v2 and v1, v3 show up in pairs in the algorithm,
57 // and simd implementations of SipHash will use vectors
58 // of v02 and v13. By placing them in this order in the struct,
59 // the compiler can pick up on just a few simd optimizations by itself.
60 v0: u64,
61 v2: u64,
62 v1: u64,
63 v3: u64,
64}
65
66macro_rules! compress {
dfeec247
XL
67 ($state:expr) => {{ compress!($state.v0, $state.v1, $state.v2, $state.v3) }};
68 ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{
69 $v0 = $v0.wrapping_add($v1);
70 $v1 = $v1.rotate_left(13);
71 $v1 ^= $v0;
abe05a73 72 $v0 = $v0.rotate_left(32);
dfeec247
XL
73 $v2 = $v2.wrapping_add($v3);
74 $v3 = $v3.rotate_left(16);
75 $v3 ^= $v2;
76 $v0 = $v0.wrapping_add($v3);
77 $v3 = $v3.rotate_left(21);
78 $v3 ^= $v0;
79 $v2 = $v2.wrapping_add($v1);
80 $v1 = $v1.rotate_left(17);
81 $v1 ^= $v2;
abe05a73 82 $v2 = $v2.rotate_left(32);
dfeec247 83 }};
abe05a73
XL
84}
85
29967ef6
XL
86// Copies up to 8 bytes from source to destination. This performs better than
87// `ptr::copy_nonoverlapping` on microbenchmarks and may perform better on real
88// workloads since all of the copies have fixed sizes and avoid calling memcpy.
89//
90// This is specifically designed for copies of up to 8 bytes, because that's the
91// maximum of number bytes needed to fill an 8-byte-sized element on which
92// SipHash operates. Note that for variable-sized copies which are known to be
93// less than 8 bytes, this function will perform more work than necessary unless
94// the compiler is able to optimize the extra work away.
abe05a73 95#[inline]
29967ef6
XL
96unsafe fn copy_nonoverlapping_small(src: *const u8, dst: *mut u8, count: usize) {
97 debug_assert!(count <= 8);
98
99 if count == 8 {
100 ptr::copy_nonoverlapping(src, dst, 8);
101 return;
102 }
103
104 let mut i = 0;
105 if i + 3 < count {
106 ptr::copy_nonoverlapping(src.add(i), dst.add(i), 4);
abe05a73
XL
107 i += 4;
108 }
29967ef6
XL
109
110 if i + 1 < count {
111 ptr::copy_nonoverlapping(src.add(i), dst.add(i), 2);
abe05a73
XL
112 i += 2
113 }
29967ef6
XL
114
115 if i < count {
116 *dst.add(i) = *src.add(i);
abe05a73
XL
117 i += 1;
118 }
29967ef6
XL
119
120 debug_assert_eq!(i, count);
abe05a73
XL
121}
122
29967ef6
XL
123// # Implementation
124//
125// This implementation uses buffering to reduce the hashing cost for inputs
126// consisting of many small integers. Buffering simplifies the integration of
127// integer input--the integer write function typically just appends to the
128// buffer with a statically sized write, updates metadata, and returns.
129//
130// Buffering also prevents alternating between writes that do and do not trigger
131// the hashing process. Only when the entire buffer is full do we transition
132// into hashing. This allows us to keep the hash state in registers for longer,
133// instead of loading and storing it before and after processing each element.
134//
135// When a write fills the buffer, a buffer processing function is invoked to
136// hash all of the buffered input. The buffer processing functions are marked
137// `#[inline(never)]` so that they aren't inlined into the append functions,
138// which ensures the more frequently called append functions remain inlineable
139// and don't include register pushing/popping that would only be made necessary
140// by inclusion of the complex buffer processing path which uses those
141// registers.
142//
143// The buffer includes a "spill"--an extra element at the end--which simplifies
144// the integer write buffer processing path. The value that fills the buffer can
145// be written with a statically sized write that may spill over into the spill.
146// After the buffer is processed, the part of the value that spilled over can be
147// written from the spill to the beginning of the buffer with another statically
148// sized write. This write may copy more bytes than actually spilled over, but
149// we maintain the metadata such that any extra copied bytes will be ignored by
150// subsequent processing. Due to the static sizes, this scheme performs better
151// than copying the exact number of bytes needed into the end and beginning of
152// the buffer.
153//
154// The buffer is uninitialized, which improves performance, but may preclude
155// efficient implementation of alternative approaches. The improvement is not so
156// large that an alternative approach should be disregarded because it cannot be
157// efficiently implemented with an uninitialized buffer. On the other hand, an
158// uninitialized buffer may become more important should a larger one be used.
159//
160// # Platform Dependence
161//
162// The SipHash algorithm operates on byte sequences. It parses the input stream
163// as 8-byte little-endian integers. Therefore, given the same byte sequence, it
164// produces the same result on big- and little-endian hardware.
165//
166// However, the Hasher trait has methods which operate on multi-byte integers.
167// How they are converted into byte sequences can be endian-dependent (by using
168// native byte order) or independent (by consistently using either LE or BE byte
169// order). It can also be `isize` and `usize` size dependent (by using the
170// native size), or independent (by converting to a common size), supposing the
171// values can be represented in 32 bits.
172//
173// In order to make `SipHasher128` consistent with `SipHasher` in libstd, we
174// choose to do the integer to byte sequence conversion in the platform-
175// dependent way. Clients can achieve platform-independent hashing by widening
176// `isize` and `usize` integers to 64 bits on 32-bit systems and byte-swapping
177// integers on big-endian systems before passing them to the writing functions.
178// This causes the input byte sequence to look identical on big- and little-
179// endian systems (supposing `isize` and `usize` values can be represented in 32
180// bits), which ensures platform-independent results.
abe05a73
XL
181impl SipHasher128 {
182 #[inline]
183 pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 {
29967ef6
XL
184 let mut hasher = SipHasher128 {
185 nbuf: 0,
186 buf: MaybeUninit::uninit_array(),
187 state: State {
188 v0: key0 ^ 0x736f6d6570736575,
189 // The XOR with 0xee is only done on 128-bit algorithm version.
190 v1: key1 ^ (0x646f72616e646f6d ^ 0xee),
191 v2: key0 ^ 0x6c7967656e657261,
192 v3: key1 ^ 0x7465646279746573,
193 },
194 processed: 0,
abe05a73 195 };
29967ef6
XL
196
197 unsafe {
198 // Initialize spill because we read from it in `short_write_process_buffer`.
199 *hasher.buf.get_unchecked_mut(BUFFER_SPILL_INDEX) = MaybeUninit::zeroed();
200 }
201
202 hasher
abe05a73
XL
203 }
204
205 #[inline]
5099ac24 206 pub fn short_write<const LEN: usize>(&mut self, bytes: [u8; LEN]) {
29967ef6 207 let nbuf = self.nbuf;
5099ac24 208 debug_assert!(LEN <= 8);
29967ef6 209 debug_assert!(nbuf < BUFFER_SIZE);
5099ac24 210 debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE);
29967ef6 211
5099ac24 212 if nbuf + LEN < BUFFER_SIZE {
29967ef6
XL
213 unsafe {
214 // The memcpy call is optimized away because the size is known.
215 let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
5099ac24 216 ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN);
29967ef6
XL
217 }
218
5099ac24 219 self.nbuf = nbuf + LEN;
29967ef6
XL
220
221 return;
222 }
223
5099ac24 224 unsafe { self.short_write_process_buffer(bytes) }
abe05a73
XL
225 }
226
29967ef6
XL
227 // A specialized write function for values with size <= 8 that should only
228 // be called when the write would cause the buffer to fill.
1b1a35ee 229 //
29967ef6
XL
230 // SAFETY: the write of `x` into `self.buf` starting at byte offset
231 // `self.nbuf` must cause `self.buf` to become fully initialized (and not
232 // overflow) if it wasn't already.
233 #[inline(never)]
5099ac24 234 unsafe fn short_write_process_buffer<const LEN: usize>(&mut self, bytes: [u8; LEN]) {
29967ef6 235 let nbuf = self.nbuf;
5099ac24 236 debug_assert!(LEN <= 8);
29967ef6 237 debug_assert!(nbuf < BUFFER_SIZE);
5099ac24
FG
238 debug_assert!(nbuf + LEN >= BUFFER_SIZE);
239 debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE);
29967ef6
XL
240
241 // Copy first part of input into end of buffer, possibly into spill
242 // element. The memcpy call is optimized away because the size is known.
243 let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
5099ac24 244 ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN);
29967ef6
XL
245
246 // Process buffer.
247 for i in 0..BUFFER_CAPACITY {
248 let elem = self.buf.get_unchecked(i).assume_init().to_le();
249 self.state.v3 ^= elem;
250 Sip24Rounds::c_rounds(&mut self.state);
251 self.state.v0 ^= elem;
252 }
253
5099ac24
FG
254 // Copy remaining input into start of buffer by copying LEN - 1
255 // elements from spill (at most LEN - 1 bytes could have overflowed
29967ef6 256 // into the spill). The memcpy call is optimized away because the size
5099ac24 257 // is known. And the whole copy is optimized away for LEN == 1.
29967ef6 258 let src = self.buf.get_unchecked(BUFFER_SPILL_INDEX) as *const _ as *const u8;
5099ac24 259 ptr::copy_nonoverlapping(src, self.buf.as_mut_ptr() as *mut u8, LEN - 1);
29967ef6
XL
260
261 // This function should only be called when the write fills the buffer.
5099ac24
FG
262 // Therefore, when LEN == 1, the new `self.nbuf` must be zero.
263 // LEN is statically known, so the branch is optimized away.
264 self.nbuf = if LEN == 1 { 0 } else { nbuf + LEN - BUFFER_SIZE };
29967ef6
XL
265 self.processed += BUFFER_SIZE;
266 }
267
268 // A write function for byte slices.
269 #[inline]
270 fn slice_write(&mut self, msg: &[u8]) {
271 let length = msg.len();
272 let nbuf = self.nbuf;
273 debug_assert!(nbuf < BUFFER_SIZE);
274
275 if nbuf + length < BUFFER_SIZE {
276 unsafe {
277 let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
278
279 if length <= 8 {
280 copy_nonoverlapping_small(msg.as_ptr(), dst, length);
281 } else {
282 // This memcpy is *not* optimized away.
283 ptr::copy_nonoverlapping(msg.as_ptr(), dst, length);
284 }
285 }
286
287 self.nbuf = nbuf + length;
288
74b04a01 289 return;
abe05a73 290 }
74b04a01 291
29967ef6
XL
292 unsafe { self.slice_write_process_buffer(msg) }
293 }
294
295 // A write function for byte slices that should only be called when the
296 // write would cause the buffer to fill.
297 //
298 // SAFETY: `self.buf` must be initialized up to the byte offset `self.nbuf`,
299 // and `msg` must contain enough bytes to initialize the rest of the element
300 // containing the byte offset `self.nbuf`.
301 #[inline(never)]
302 unsafe fn slice_write_process_buffer(&mut self, msg: &[u8]) {
303 let length = msg.len();
304 let nbuf = self.nbuf;
305 debug_assert!(nbuf < BUFFER_SIZE);
306 debug_assert!(nbuf + length >= BUFFER_SIZE);
307
308 // Always copy first part of input into current element of buffer.
309 // This function should only be called when the write fills the buffer,
310 // so we know that there is enough input to fill the current element.
311 let valid_in_elem = nbuf % ELEM_SIZE;
312 let needed_in_elem = ELEM_SIZE - valid_in_elem;
313
314 let src = msg.as_ptr();
315 let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
316 copy_nonoverlapping_small(src, dst, needed_in_elem);
317
318 // Process buffer.
319
320 // Using `nbuf / ELEM_SIZE + 1` rather than `(nbuf + needed_in_elem) /
321 // ELEM_SIZE` to show the compiler that this loop's upper bound is > 0.
322 // We know that is true, because last step ensured we have a full
323 // element in the buffer.
324 let last = nbuf / ELEM_SIZE + 1;
325
326 for i in 0..last {
327 let elem = self.buf.get_unchecked(i).assume_init().to_le();
328 self.state.v3 ^= elem;
329 Sip24Rounds::c_rounds(&mut self.state);
330 self.state.v0 ^= elem;
331 }
332
333 // Process the remaining element-sized chunks of input.
334 let mut processed = needed_in_elem;
335 let input_left = length - processed;
336 let elems_left = input_left / ELEM_SIZE;
337 let extra_bytes_left = input_left % ELEM_SIZE;
338
339 for _ in 0..elems_left {
340 let elem = (msg.as_ptr().add(processed) as *const u64).read_unaligned().to_le();
341 self.state.v3 ^= elem;
342 Sip24Rounds::c_rounds(&mut self.state);
343 self.state.v0 ^= elem;
344 processed += ELEM_SIZE;
345 }
346
347 // Copy remaining input into start of buffer.
348 let src = msg.as_ptr().add(processed);
349 let dst = self.buf.as_mut_ptr() as *mut u8;
350 copy_nonoverlapping_small(src, dst, extra_bytes_left);
351
352 self.nbuf = extra_bytes_left;
353 self.processed += nbuf + processed;
abe05a73
XL
354 }
355
356 #[inline]
357 pub fn finish128(mut self) -> (u64, u64) {
29967ef6 358 debug_assert!(self.nbuf < BUFFER_SIZE);
abe05a73 359
29967ef6
XL
360 // Process full elements in buffer.
361 let last = self.nbuf / ELEM_SIZE;
abe05a73 362
29967ef6
XL
363 // Since we're consuming self, avoid updating members for a potential
364 // performance gain.
365 let mut state = self.state;
366
367 for i in 0..last {
368 let elem = unsafe { self.buf.get_unchecked(i).assume_init().to_le() };
369 state.v3 ^= elem;
370 Sip24Rounds::c_rounds(&mut state);
371 state.v0 ^= elem;
372 }
373
374 // Get remaining partial element.
375 let elem = if self.nbuf % ELEM_SIZE != 0 {
376 unsafe {
377 // Ensure element is initialized by writing zero bytes. At most
378 // `ELEM_SIZE - 1` are required given the above check. It's safe
379 // to write this many because we have the spill and we maintain
380 // `self.nbuf` such that this write will start before the spill.
381 let dst = (self.buf.as_mut_ptr() as *mut u8).add(self.nbuf);
382 ptr::write_bytes(dst, 0, ELEM_SIZE - 1);
383 self.buf.get_unchecked(last).assume_init().to_le()
384 }
385 } else {
386 0
387 };
388
389 // Finalize the hash.
390 let length = self.processed + self.nbuf;
391 let b: u64 = ((length as u64 & 0xff) << 56) | elem;
392
393 state.v3 ^= b;
394 Sip24Rounds::c_rounds(&mut state);
395 state.v0 ^= b;
396
397 state.v2 ^= 0xee;
398 Sip24Rounds::d_rounds(&mut state);
399 let _0 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
400
401 state.v1 ^= 0xdd;
402 Sip24Rounds::d_rounds(&mut state);
403 let _1 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
abe05a73 404
abe05a73
XL
405 (_0, _1)
406 }
407}
408
409impl Hasher for SipHasher128 {
410 #[inline]
411 fn write_u8(&mut self, i: u8) {
5099ac24 412 self.short_write(i.to_ne_bytes());
abe05a73
XL
413 }
414
415 #[inline]
416 fn write_u16(&mut self, i: u16) {
5099ac24 417 self.short_write(i.to_ne_bytes());
abe05a73
XL
418 }
419
420 #[inline]
421 fn write_u32(&mut self, i: u32) {
5099ac24 422 self.short_write(i.to_ne_bytes());
abe05a73
XL
423 }
424
425 #[inline]
426 fn write_u64(&mut self, i: u64) {
5099ac24 427 self.short_write(i.to_ne_bytes());
abe05a73
XL
428 }
429
430 #[inline]
431 fn write_usize(&mut self, i: usize) {
5099ac24 432 self.short_write(i.to_ne_bytes());
abe05a73
XL
433 }
434
435 #[inline]
436 fn write_i8(&mut self, i: i8) {
5099ac24 437 self.short_write((i as u8).to_ne_bytes());
abe05a73
XL
438 }
439
440 #[inline]
441 fn write_i16(&mut self, i: i16) {
5099ac24 442 self.short_write((i as u16).to_ne_bytes());
abe05a73
XL
443 }
444
445 #[inline]
446 fn write_i32(&mut self, i: i32) {
5099ac24 447 self.short_write((i as u32).to_ne_bytes());
abe05a73
XL
448 }
449
450 #[inline]
451 fn write_i64(&mut self, i: i64) {
5099ac24 452 self.short_write((i as u64).to_ne_bytes());
abe05a73
XL
453 }
454
455 #[inline]
456 fn write_isize(&mut self, i: isize) {
5099ac24 457 self.short_write((i as usize).to_ne_bytes());
abe05a73
XL
458 }
459
460 #[inline]
461 fn write(&mut self, msg: &[u8]) {
29967ef6 462 self.slice_write(msg);
abe05a73
XL
463 }
464
465 fn finish(&self) -> u64 {
466 panic!("SipHasher128 cannot provide valid 64 bit hashes")
467 }
468}
469
470#[derive(Debug, Clone, Default)]
471struct Sip24Rounds;
472
473impl Sip24Rounds {
474 #[inline]
475 fn c_rounds(state: &mut State) {
476 compress!(state);
477 compress!(state);
478 }
479
480 #[inline]
481 fn d_rounds(state: &mut State) {
482 compress!(state);
483 compress!(state);
484 compress!(state);
485 compress!(state);
486 }
487}