]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_hir_analysis/src/check/compare_impl_item.rs
New upstream version 1.71.1+dfsg1
[rustc.git] / compiler / rustc_hir_analysis / src / check / compare_impl_item.rs
CommitLineData
064997fb 1use super::potentially_plural_count;
1b1a35ee 2use crate::errors::LifetimesOrBoundsMismatchOnTrait;
2b03887a 3use hir::def_id::{DefId, LocalDefId};
487cf647 4use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
9c376795
FG
5use rustc_errors::{
6 pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed, MultiSpan,
7};
dfeec247
XL
8use rustc_hir as hir;
9use rustc_hir::def::{DefKind, Res};
10use rustc_hir::intravisit;
9ffffee4 11use rustc_hir::{GenericParamKind, ImplItemKind};
064997fb 12use rustc_infer::infer::outlives::env::OutlivesEnvironment;
f2b60f7d 13use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
487cf647 14use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
29967ef6 15use rustc_infer::traits::util;
ba9703b0 16use rustc_middle::ty::error::{ExpectedFound, TypeError};
ba9703b0 17use rustc_middle::ty::util::ExplicitSelf;
f2b60f7d 18use rustc_middle::ty::{
353b0b11 19 self, InternalSubsts, Ty, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt,
f2b60f7d 20};
3dfed10e 21use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
dfeec247 22use rustc_span::Span;
2b03887a 23use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
f2b60f7d 24use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
064997fb
FG
25use rustc_trait_selection::traits::{
26 self, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
27};
cdc7bbd5 28use std::iter;
85aaf69f
SL
29
30/// Checks that a method from an impl conforms to the signature of
31/// the same method as declared in the trait.
32///
33/// # Parameters
34///
9fa01778 35/// - `impl_m`: type of the method we are checking
9fa01778
XL
36/// - `trait_m`: the method in the trait
37/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
9c376795 38pub(super) fn compare_impl_method<'tcx>(
dc9dc135 39 tcx: TyCtxt<'tcx>,
9ffffee4
FG
40 impl_m: ty::AssocItem,
41 trait_m: ty::AssocItem,
dc9dc135 42 impl_trait_ref: ty::TraitRef<'tcx>,
dc9dc135 43) {
dfeec247 44 debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
85aaf69f 45
9c376795 46 let _: Result<_, ErrorGuaranteed> = try {
9ffffee4
FG
47 compare_self_type(tcx, impl_m, trait_m, impl_trait_ref)?;
48 compare_number_of_generics(tcx, impl_m, trait_m, false)?;
9c376795 49 compare_generic_param_kinds(tcx, impl_m, trait_m, false)?;
9ffffee4 50 compare_number_of_method_arguments(tcx, impl_m, trait_m)?;
9c376795 51 compare_synthetic_generics(tcx, impl_m, trait_m)?;
9ffffee4 52 compare_asyncness(tcx, impl_m, trait_m)?;
9c376795
FG
53 compare_method_predicate_entailment(
54 tcx,
55 impl_m,
9c376795
FG
56 trait_m,
57 impl_trait_ref,
58 CheckImpliedWfMode::Check,
59 )?;
60 };
c30ab7b3
SL
61}
62
49aad941 63/// This function is best explained by example. Consider a trait with it's implementation:
f2b60f7d 64///
49aad941
FG
65/// ```rust
66/// trait Trait<'t, T> {
67/// // `trait_m`
68/// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
69/// }
f2b60f7d 70///
49aad941 71/// struct Foo;
f2b60f7d 72///
49aad941
FG
73/// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
74/// // `impl_m`
75/// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo { Foo }
76/// }
77/// ```
f2b60f7d
FG
78///
79/// We wish to decide if those two method types are compatible.
80/// For this we have to show that, assuming the bounds of the impl hold, the
81/// bounds of `trait_m` imply the bounds of `impl_m`.
82///
83/// We start out with `trait_to_impl_substs`, that maps the trait
84/// type parameters to impl type parameters. This is taken from the
85/// impl trait reference:
86///
49aad941
FG
87/// ```rust,ignore (pseudo-Rust)
88/// trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
89/// ```
f2b60f7d
FG
90///
91/// We create a mapping `dummy_substs` that maps from the impl type
92/// parameters to fresh types and regions. For type parameters,
93/// this is the identity transform, but we could as well use any
94/// placeholder types. For regions, we convert from bound to free
95/// regions (Note: but only early-bound regions, i.e., those
96/// declared on the impl or used in type parameter bounds).
97///
49aad941
FG
98/// ```rust,ignore (pseudo-Rust)
99/// impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
100/// ```
f2b60f7d
FG
101///
102/// Now we can apply `placeholder_substs` to the type of the impl method
103/// to yield a new function type in terms of our fresh, placeholder
104/// types:
105///
49aad941
FG
106/// ```rust,ignore (pseudo-Rust)
107/// <'b> fn(t: &'i0 U0, m: &'b) -> Foo
108/// ```
f2b60f7d
FG
109///
110/// We now want to extract and substitute the type of the *trait*
111/// method and compare it. To do so, we must create a compound
112/// substitution by combining `trait_to_impl_substs` and
113/// `impl_to_placeholder_substs`, and also adding a mapping for the method
114/// type parameters. We extend the mapping to also include
115/// the method parameters.
116///
49aad941
FG
117/// ```rust,ignore (pseudo-Rust)
118/// trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
119/// ```
f2b60f7d
FG
120///
121/// Applying this to the trait method type yields:
122///
49aad941
FG
123/// ```rust,ignore (pseudo-Rust)
124/// <'a> fn(t: &'i0 U0, m: &'a) -> Foo
125/// ```
f2b60f7d
FG
126///
127/// This type is also the same but the name of the bound region (`'a`
9c376795 128/// vs `'b`). However, the normal subtyping rules on fn types handle
f2b60f7d
FG
129/// this kind of equivalency just fine.
130///
131/// We now use these substitutions to ensure that all declared bounds are
132/// satisfied by the implementation's method.
133///
134/// We do this by creating a parameter environment which contains a
135/// substitution corresponding to `impl_to_placeholder_substs`. We then build
136/// `trait_to_placeholder_substs` and use it to convert the predicates contained
137/// in the `trait_m` generics to the placeholder form.
138///
139/// Finally we register each of these predicates as an obligation and check that
140/// they hold.
9ffffee4 141#[instrument(level = "debug", skip(tcx, impl_trait_ref))]
9c376795 142fn compare_method_predicate_entailment<'tcx>(
dc9dc135 143 tcx: TyCtxt<'tcx>,
9ffffee4
FG
144 impl_m: ty::AssocItem,
145 trait_m: ty::AssocItem,
dc9dc135 146 impl_trait_ref: ty::TraitRef<'tcx>,
487cf647 147 check_implied_wf: CheckImpliedWfMode,
5e7ed085 148) -> Result<(), ErrorGuaranteed> {
476ff2be
SL
149 let trait_to_impl_substs = impl_trait_ref.substs;
150
7cac9316 151 // This node-id should be used for the `body_id` field on each
064997fb
FG
152 // `ObligationCause` (and the `FnCtxt`).
153 //
154 // FIXME(@lcnr): remove that after removing `cause.body_id` from
155 // obligations.
9ffffee4
FG
156 let impl_m_def_id = impl_m.def_id.expect_local();
157 let impl_m_span = tcx.def_span(impl_m_def_id);
487cf647 158 let cause = ObligationCause::new(
f035d41b 159 impl_m_span,
9ffffee4 160 impl_m_def_id,
064997fb 161 ObligationCauseCode::CompareImplItemObligation {
9ffffee4 162 impl_item_def_id: impl_m_def_id,
476ff2be 163 trait_item_def_id: trait_m.def_id,
064997fb 164 kind: impl_m.kind,
476ff2be 165 },
f035d41b 166 );
85aaf69f 167
0bf4aa26 168 // Create mapping from impl to placeholder.
f035d41b 169 let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
85aaf69f 170
0bf4aa26 171 // Create mapping from trait to placeholder.
f035d41b 172 let trait_to_placeholder_substs =
064997fb 173 impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
f035d41b 174 debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
85aaf69f 175
7cac9316
XL
176 let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
177 let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
476ff2be 178
c30ab7b3 179 // Check region bounds.
487cf647 180 check_region_bounds_on_impl_item(tcx, impl_m, trait_m, false)?;
c30ab7b3
SL
181
182 // Create obligations for each predicate declared by the impl
183 // definition in the context of the trait's parameter
184 // environment. We can't just use `impl_env.caller_bounds`,
185 // however, because we want to replace all late-bound regions with
186 // region variables.
7cac9316
XL
187 let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
188 let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
c30ab7b3
SL
189
190 debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
191
192 // This is the only tricky bit of the new way we check implementation methods
193 // We need to build a set of predicates where only the method-level bounds
194 // are from the trait and we assume all other bounds from the implementation
195 // to be previously satisfied.
196 //
197 // We then register the obligations from the impl_m and check to see
198 // if all constraints hold.
9c376795
FG
199 hybrid_preds.predicates.extend(
200 trait_m_predicates
201 .instantiate_own(tcx, trait_to_placeholder_substs)
202 .map(|(predicate, _)| predicate),
203 );
c30ab7b3 204
0bf4aa26 205 // Construct trait parameter environment and then shift it into the placeholder viewpoint.
c30ab7b3
SL
206 // The key step here is to update the caller_bounds's predicates to be
207 // the new hybrid bounds we computed.
9ffffee4 208 let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_def_id);
a2a8927a 209 let param_env = ty::ParamEnv::new(
9ffffee4 210 tcx.mk_predicates(&hybrid_preds.predicates),
a2a8927a
XL
211 Reveal::UserFacing,
212 hir::Constness::NotConst,
213 );
064997fb 214 let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
7cac9316 215
2b03887a
FG
216 let infcx = &tcx.infer_ctxt().build();
217 let ocx = ObligationCtxt::new(infcx);
a7813a04 218
2b03887a 219 debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
a7813a04 220
2b03887a 221 let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
9c376795 222 for (predicate, span) in impl_m_own_bounds {
9ffffee4 223 let normalize_cause = traits::ObligationCause::misc(span, impl_m_def_id);
487cf647 224 let predicate = ocx.normalize(&normalize_cause, param_env, predicate);
a7813a04 225
2b03887a
FG
226 let cause = ObligationCause::new(
227 span,
9ffffee4 228 impl_m_def_id,
2b03887a 229 ObligationCauseCode::CompareImplItemObligation {
9ffffee4 230 impl_item_def_id: impl_m_def_id,
2b03887a
FG
231 trait_item_def_id: trait_m.def_id,
232 kind: impl_m.kind,
233 },
a1dfa0c6 234 );
487cf647 235 ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
2b03887a 236 }
064997fb 237
2b03887a
FG
238 // We now need to check that the signature of the impl method is
239 // compatible with that of the trait method. We do this by
240 // checking that `impl_fty <: trait_fty`.
241 //
242 // FIXME. Unfortunately, this doesn't quite work right now because
243 // associated type normalization is not integrated into subtype
244 // checks. For the comparison to be valid, we need to
245 // normalize the associated types in the impl/trait methods
246 // first. However, because function types bind regions, just
247 // calling `normalize_associated_types_in` would have no effect on
248 // any associated types appearing in the fn arguments or return
249 // type.
250
251 // Compute placeholder form of impl and trait method tys.
252 let tcx = infcx.tcx;
f2b60f7d 253
487cf647 254 let mut wf_tys = FxIndexSet::default();
dfeec247 255
9ffffee4 256 let unnormalized_impl_sig = infcx.instantiate_binder_with_fresh_vars(
2b03887a
FG
257 impl_m_span,
258 infer::HigherRankedType,
9ffffee4 259 tcx.fn_sig(impl_m.def_id).subst_identity(),
2b03887a 260 );
487cf647 261 let unnormalized_impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(unnormalized_impl_sig));
dfeec247 262
9ffffee4 263 let norm_cause = ObligationCause::misc(impl_m_span, impl_m_def_id);
9c376795
FG
264 let impl_sig = ocx.normalize(&norm_cause, param_env, unnormalized_impl_sig);
265 debug!("compare_impl_method: impl_fty={:?}", impl_sig);
2b03887a 266
9ffffee4 267 let trait_sig = tcx.fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
2b03887a
FG
268 let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
269
270 // Next, add all inputs and output as well-formed tys. Importantly,
271 // we have to do this before normalization, since the normalized ty may
272 // not contain the input parameters. See issue #87748.
273 wf_tys.extend(trait_sig.inputs_and_output.iter());
487cf647 274 let trait_sig = ocx.normalize(&norm_cause, param_env, trait_sig);
2b03887a
FG
275 // We also have to add the normalized trait signature
276 // as we don't normalize during implied bounds computation.
277 wf_tys.extend(trait_sig.inputs_and_output.iter());
278 let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
279
280 debug!("compare_impl_method: trait_fty={:?}", trait_fty);
281
282 // FIXME: We'd want to keep more accurate spans than "the method signature" when
283 // processing the comparison between the trait and impl fn, but we sadly lose them
284 // and point at the whole signature when a trait bound or specific input or output
285 // type would be more appropriate. In other places we have a `Vec<Span>`
286 // corresponding to their `Vec<Predicate>`, but we don't have that here.
287 // Fixing this would improve the output of test `issue-83765.rs`.
9c376795 288 let result = ocx.sup(&cause, param_env, trait_sig, impl_sig);
dfeec247 289
2b03887a 290 if let Err(terr) = result {
9c376795 291 debug!(?impl_sig, ?trait_sig, ?terr, "sub_types failed");
c30ab7b3 292
487cf647
FG
293 let emitted = report_trait_method_mismatch(
294 &infcx,
295 cause,
2b03887a 296 terr,
9c376795
FG
297 (trait_m, trait_sig),
298 (impl_m, impl_sig),
487cf647 299 impl_trait_ref,
2b03887a 300 );
487cf647
FG
301 return Err(emitted);
302 }
5e7ed085 303
487cf647
FG
304 if check_implied_wf == CheckImpliedWfMode::Check {
305 // We need to check that the impl's args are well-formed given
306 // the hybrid param-env (impl + trait method where-clauses).
307 ocx.register_obligation(traits::Obligation::new(
308 infcx.tcx,
309 ObligationCause::dummy(),
310 param_env,
311 ty::Binder::dummy(ty::PredicateKind::WellFormed(unnormalized_impl_fty.into())),
312 ));
2b03887a 313 }
85aaf69f 314
2b03887a
FG
315 // Check that all obligations are satisfied by the implementation's
316 // version.
317 let errors = ocx.select_all_or_error();
318 if !errors.is_empty() {
487cf647
FG
319 match check_implied_wf {
320 CheckImpliedWfMode::Check => {
9ffffee4 321 let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m_def_id);
9c376795 322 return compare_method_predicate_entailment(
487cf647
FG
323 tcx,
324 impl_m,
487cf647
FG
325 trait_m,
326 impl_trait_ref,
327 CheckImpliedWfMode::Skip,
328 )
329 .map(|()| {
330 // If the skip-mode was successful, emit a lint.
9c376795 331 emit_implied_wf_lint(infcx.tcx, impl_m, impl_m_hir_id, vec![]);
487cf647
FG
332 });
333 }
334 CheckImpliedWfMode::Skip => {
353b0b11 335 let reported = infcx.err_ctxt().report_fulfillment_errors(&errors);
487cf647
FG
336 return Err(reported);
337 }
338 }
2b03887a 339 }
85aaf69f 340
2b03887a
FG
341 // Finally, resolve all regions. This catches wily misuses of
342 // lifetime parameters.
487cf647 343 let outlives_env = OutlivesEnvironment::with_bounds(
2b03887a 344 param_env,
9ffffee4 345 infcx.implied_bounds_tys(param_env, impl_m_def_id, wf_tys.clone()),
2b03887a 346 );
487cf647
FG
347 let errors = infcx.resolve_regions(&outlives_env);
348 if !errors.is_empty() {
349 // FIXME(compiler-errors): This can be simplified when IMPLIED_BOUNDS_ENTAILMENT
350 // becomes a hard error (i.e. ideally we'd just call `resolve_regions_and_report_errors`
9ffffee4 351 let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m_def_id);
487cf647
FG
352 match check_implied_wf {
353 CheckImpliedWfMode::Check => {
9c376795 354 return compare_method_predicate_entailment(
487cf647
FG
355 tcx,
356 impl_m,
487cf647
FG
357 trait_m,
358 impl_trait_ref,
359 CheckImpliedWfMode::Skip,
360 )
361 .map(|()| {
9c376795
FG
362 let bad_args = extract_bad_args_for_implies_lint(
363 tcx,
364 &errors,
365 (trait_m, trait_sig),
366 // Unnormalized impl sig corresponds to the HIR types written
367 (impl_m, unnormalized_impl_sig),
368 impl_m_hir_id,
369 );
487cf647 370 // If the skip-mode was successful, emit a lint.
9c376795 371 emit_implied_wf_lint(tcx, impl_m, impl_m_hir_id, bad_args);
487cf647
FG
372 });
373 }
374 CheckImpliedWfMode::Skip => {
375 if infcx.tainted_by_errors().is_none() {
9ffffee4 376 infcx.err_ctxt().report_region_errors(impl_m_def_id, &errors);
487cf647
FG
377 }
378 return Err(tcx
379 .sess
380 .delay_span_bug(rustc_span::DUMMY_SP, "error should have been emitted"));
381 }
382 }
383 }
85aaf69f 384
2b03887a 385 Ok(())
c30ab7b3
SL
386}
387
9c376795
FG
388fn extract_bad_args_for_implies_lint<'tcx>(
389 tcx: TyCtxt<'tcx>,
390 errors: &[infer::RegionResolutionError<'tcx>],
9ffffee4
FG
391 (trait_m, trait_sig): (ty::AssocItem, ty::FnSig<'tcx>),
392 (impl_m, impl_sig): (ty::AssocItem, ty::FnSig<'tcx>),
9c376795
FG
393 hir_id: hir::HirId,
394) -> Vec<(Span, Option<String>)> {
395 let mut blame_generics = vec![];
396 for error in errors {
397 // Look for the subregion origin that contains an input/output type
398 let origin = match error {
399 infer::RegionResolutionError::ConcreteFailure(o, ..) => o,
400 infer::RegionResolutionError::GenericBoundFailure(o, ..) => o,
401 infer::RegionResolutionError::SubSupConflict(_, _, o, ..) => o,
402 infer::RegionResolutionError::UpperBoundUniverseConflict(.., o, _) => o,
403 };
404 // Extract (possible) input/output types from origin
405 match origin {
406 infer::SubregionOrigin::Subtype(trace) => {
407 if let Some((a, b)) = trace.values.ty() {
408 blame_generics.extend([a, b]);
409 }
410 }
411 infer::SubregionOrigin::RelateParamBound(_, ty, _) => blame_generics.push(*ty),
412 infer::SubregionOrigin::ReferenceOutlivesReferent(ty, _) => blame_generics.push(*ty),
413 _ => {}
414 }
415 }
416
417 let fn_decl = tcx.hir().fn_decl_by_hir_id(hir_id).unwrap();
418 let opt_ret_ty = match fn_decl.output {
419 hir::FnRetTy::DefaultReturn(_) => None,
420 hir::FnRetTy::Return(ty) => Some(ty),
421 };
422
423 // Map late-bound regions from trait to impl, so the names are right.
424 let mapping = std::iter::zip(
9ffffee4
FG
425 tcx.fn_sig(trait_m.def_id).skip_binder().bound_vars(),
426 tcx.fn_sig(impl_m.def_id).skip_binder().bound_vars(),
9c376795
FG
427 )
428 .filter_map(|(impl_bv, trait_bv)| {
429 if let ty::BoundVariableKind::Region(impl_bv) = impl_bv
430 && let ty::BoundVariableKind::Region(trait_bv) = trait_bv
431 {
432 Some((impl_bv, trait_bv))
433 } else {
434 None
435 }
436 })
437 .collect();
438
439 // For each arg, see if it was in the "blame" of any of the region errors.
440 // If so, then try to produce a suggestion to replace the argument type with
441 // one from the trait.
442 let mut bad_args = vec![];
443 for (idx, (ty, hir_ty)) in
444 std::iter::zip(impl_sig.inputs_and_output, fn_decl.inputs.iter().chain(opt_ret_ty))
445 .enumerate()
446 {
447 let expected_ty = trait_sig.inputs_and_output[idx]
448 .fold_with(&mut RemapLateBound { tcx, mapping: &mapping });
449 if blame_generics.iter().any(|blame| ty.contains(*blame)) {
450 let expected_ty_sugg = expected_ty.to_string();
451 bad_args.push((
452 hir_ty.span,
453 // Only suggest something if it actually changed.
454 (expected_ty_sugg != ty.to_string()).then_some(expected_ty_sugg),
455 ));
456 }
457 }
458
459 bad_args
460}
461
462struct RemapLateBound<'a, 'tcx> {
463 tcx: TyCtxt<'tcx>,
464 mapping: &'a FxHashMap<ty::BoundRegionKind, ty::BoundRegionKind>,
465}
466
9ffffee4
FG
467impl<'tcx> TypeFolder<TyCtxt<'tcx>> for RemapLateBound<'_, 'tcx> {
468 fn interner(&self) -> TyCtxt<'tcx> {
9c376795
FG
469 self.tcx
470 }
471
472 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
473 if let ty::ReFree(fr) = *r {
9ffffee4
FG
474 self.tcx.mk_re_free(
475 fr.scope,
476 self.mapping.get(&fr.bound_region).copied().unwrap_or(fr.bound_region),
477 )
9c376795
FG
478 } else {
479 r
480 }
481 }
482}
483
484fn emit_implied_wf_lint<'tcx>(
485 tcx: TyCtxt<'tcx>,
9ffffee4 486 impl_m: ty::AssocItem,
9c376795
FG
487 hir_id: hir::HirId,
488 bad_args: Vec<(Span, Option<String>)>,
489) {
490 let span: MultiSpan = if bad_args.is_empty() {
491 tcx.def_span(impl_m.def_id).into()
492 } else {
493 bad_args.iter().map(|(span, _)| *span).collect::<Vec<_>>().into()
494 };
495 tcx.struct_span_lint_hir(
496 rustc_session::lint::builtin::IMPLIED_BOUNDS_ENTAILMENT,
497 hir_id,
498 span,
499 "impl method assumes more implied bounds than the corresponding trait method",
500 |lint| {
501 let bad_args: Vec<_> =
502 bad_args.into_iter().filter_map(|(span, sugg)| Some((span, sugg?))).collect();
503 if !bad_args.is_empty() {
504 lint.multipart_suggestion(
505 format!(
506 "replace {} type{} to make the impl signature compatible",
507 pluralize!("this", bad_args.len()),
508 pluralize!(bad_args.len())
509 ),
510 bad_args,
511 Applicability::MaybeIncorrect,
512 );
513 }
514 lint
515 },
516 );
517}
518
487cf647
FG
519#[derive(Debug, PartialEq, Eq)]
520enum CheckImpliedWfMode {
521 /// Checks implied well-formedness of the impl method. If it fails, we will
522 /// re-check with `Skip`, and emit a lint if it succeeds.
523 Check,
524 /// Skips checking implied well-formedness of the impl method, but will emit
9c376795 525 /// a lint if the `compare_method_predicate_entailment` succeeded. This means that
487cf647
FG
526 /// the reason that we had failed earlier during `Check` was due to the impl
527 /// having stronger requirements than the trait.
528 Skip,
529}
530
9c376795
FG
531fn compare_asyncness<'tcx>(
532 tcx: TyCtxt<'tcx>,
9ffffee4
FG
533 impl_m: ty::AssocItem,
534 trait_m: ty::AssocItem,
9c376795
FG
535) -> Result<(), ErrorGuaranteed> {
536 if tcx.asyncness(trait_m.def_id) == hir::IsAsync::Async {
9ffffee4 537 match tcx.fn_sig(impl_m.def_id).skip_binder().skip_binder().output().kind() {
9c376795
FG
538 ty::Alias(ty::Opaque, ..) => {
539 // allow both `async fn foo()` and `fn foo() -> impl Future`
540 }
541 ty::Error(_) => {
542 // We don't know if it's ok, but at least it's already an error.
543 }
544 _ => {
545 return Err(tcx.sess.emit_err(crate::errors::AsyncTraitImplShouldBeAsync {
9ffffee4 546 span: tcx.def_span(impl_m.def_id),
9c376795 547 method_name: trait_m.name,
9ffffee4 548 trait_item_span: tcx.hir().span_if_local(trait_m.def_id),
9c376795
FG
549 }));
550 }
551 };
552 }
553
554 Ok(())
555}
556
557/// Given a method def-id in an impl, compare the method signature of the impl
558/// against the trait that it's implementing. In doing so, infer the hidden types
559/// that this method's signature provides to satisfy each return-position `impl Trait`
560/// in the trait signature.
561///
562/// The method is also responsible for making sure that the hidden types for each
563/// RPITIT actually satisfy the bounds of the `impl Trait`, i.e. that if we infer
564/// `impl Trait = Foo`, that `Foo: Trait` holds.
565///
566/// For example, given the sample code:
567///
568/// ```
569/// #![feature(return_position_impl_trait_in_trait)]
570///
571/// use std::ops::Deref;
572///
573/// trait Foo {
574/// fn bar() -> impl Deref<Target = impl Sized>;
575/// // ^- RPITIT #1 ^- RPITIT #2
576/// }
577///
578/// impl Foo for () {
579/// fn bar() -> Box<String> { Box::new(String::new()) }
580/// }
581/// ```
582///
583/// The hidden types for the RPITITs in `bar` would be inferred to:
584/// * `impl Deref` (RPITIT #1) = `Box<String>`
585/// * `impl Sized` (RPITIT #2) = `String`
586///
587/// The relationship between these two types is straightforward in this case, but
588/// may be more tenuously connected via other `impl`s and normalization rules for
589/// cases of more complicated nested RPITITs.
487cf647 590#[instrument(skip(tcx), level = "debug", ret)]
9c376795 591pub(super) fn collect_return_position_impl_trait_in_trait_tys<'tcx>(
f2b60f7d 592 tcx: TyCtxt<'tcx>,
353b0b11 593 impl_m_def_id: LocalDefId,
49aad941 594) -> Result<&'tcx FxHashMap<DefId, ty::EarlyBinder<Ty<'tcx>>>, ErrorGuaranteed> {
353b0b11 595 let impl_m = tcx.opt_associated_item(impl_m_def_id.to_def_id()).unwrap();
f2b60f7d 596 let trait_m = tcx.opt_associated_item(impl_m.trait_item_def_id.unwrap()).unwrap();
9c376795
FG
597 let impl_trait_ref =
598 tcx.impl_trait_ref(impl_m.impl_container(tcx).unwrap()).unwrap().subst_identity();
353b0b11 599 let param_env = tcx.param_env(impl_m_def_id);
f2b60f7d 600
9c376795
FG
601 // First, check a few of the same things as `compare_impl_method`,
602 // just so we don't ICE during substitution later.
9ffffee4 603 compare_number_of_generics(tcx, impl_m, trait_m, true)?;
487cf647
FG
604 compare_generic_param_kinds(tcx, impl_m, trait_m, true)?;
605 check_region_bounds_on_impl_item(tcx, impl_m, trait_m, true)?;
606
f2b60f7d
FG
607 let trait_to_impl_substs = impl_trait_ref.substs;
608
9ffffee4 609 let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m_def_id);
f2b60f7d
FG
610 let return_span = tcx.hir().fn_decl_by_hir_id(impl_m_hir_id).unwrap().output.span();
611 let cause = ObligationCause::new(
612 return_span,
9ffffee4 613 impl_m_def_id,
f2b60f7d 614 ObligationCauseCode::CompareImplItemObligation {
9ffffee4 615 impl_item_def_id: impl_m_def_id,
f2b60f7d
FG
616 trait_item_def_id: trait_m.def_id,
617 kind: impl_m.kind,
618 },
619 );
620
621 // Create mapping from impl to placeholder.
622 let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
623
624 // Create mapping from trait to placeholder.
625 let trait_to_placeholder_substs =
626 impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
627
2b03887a
FG
628 let infcx = &tcx.infer_ctxt().build();
629 let ocx = ObligationCtxt::new(infcx);
f2b60f7d 630
487cf647 631 // Normalize the impl signature with fresh variables for lifetime inference.
9ffffee4 632 let norm_cause = ObligationCause::misc(return_span, impl_m_def_id);
2b03887a 633 let impl_sig = ocx.normalize(
487cf647 634 &norm_cause,
2b03887a 635 param_env,
9ffffee4 636 infcx.instantiate_binder_with_fresh_vars(
2b03887a
FG
637 return_span,
638 infer::HigherRankedType,
9ffffee4 639 tcx.fn_sig(impl_m.def_id).subst_identity(),
2b03887a
FG
640 ),
641 );
9c376795 642 impl_sig.error_reported()?;
2b03887a 643 let impl_return_ty = impl_sig.output();
f2b60f7d 644
487cf647
FG
645 // Normalize the trait signature with liberated bound vars, passing it through
646 // the ImplTraitInTraitCollector, which gathers all of the RPITITs and replaces
647 // them with inference variables.
648 // We will use these inference variables to collect the hidden types of RPITITs.
9ffffee4 649 let mut collector = ImplTraitInTraitCollector::new(&ocx, return_span, param_env, impl_m_def_id);
2b03887a
FG
650 let unnormalized_trait_sig = tcx
651 .liberate_late_bound_regions(
652 impl_m.def_id,
9ffffee4 653 tcx.fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs),
2b03887a
FG
654 )
655 .fold_with(&mut collector);
9ffffee4
FG
656
657 debug_assert_ne!(
658 collector.types.len(),
659 0,
660 "expect >1 RPITITs in call to `collect_return_position_impl_trait_in_trait_tys`"
661 );
662
487cf647 663 let trait_sig = ocx.normalize(&norm_cause, param_env, unnormalized_trait_sig);
9c376795 664 trait_sig.error_reported()?;
2b03887a 665 let trait_return_ty = trait_sig.output();
f2b60f7d 666
487cf647 667 let wf_tys = FxIndexSet::from_iter(
2b03887a
FG
668 unnormalized_trait_sig.inputs_and_output.iter().chain(trait_sig.inputs_and_output.iter()),
669 );
f2b60f7d 670
487cf647
FG
671 match ocx.eq(&cause, param_env, trait_return_ty, impl_return_ty) {
672 Ok(()) => {}
2b03887a
FG
673 Err(terr) => {
674 let mut diag = struct_span_err!(
675 tcx.sess,
676 cause.span(),
677 E0053,
678 "method `{}` has an incompatible return type for trait",
679 trait_m.name
680 );
681 let hir = tcx.hir();
682 infcx.err_ctxt().note_type_err(
683 &mut diag,
684 &cause,
685 hir.get_if_local(impl_m.def_id)
686 .and_then(|node| node.fn_decl())
687 .map(|decl| (decl.output.span(), "return type in trait".to_owned())),
688 Some(infer::ValuePairs::Terms(ExpectedFound {
689 expected: trait_return_ty.into(),
690 found: impl_return_ty.into(),
691 })),
692 terr,
693 false,
694 false,
695 );
696 return Err(diag.emit());
697 }
698 }
f2b60f7d 699
487cf647
FG
700 debug!(?trait_sig, ?impl_sig, "equating function signatures");
701
2b03887a
FG
702 // Unify the whole function signature. We need to do this to fully infer
703 // the lifetimes of the return type, but do this after unifying just the
704 // return types, since we want to avoid duplicating errors from
9c376795
FG
705 // `compare_method_predicate_entailment`.
706 match ocx.eq(&cause, param_env, trait_sig, impl_sig) {
487cf647 707 Ok(()) => {}
2b03887a 708 Err(terr) => {
9c376795 709 // This function gets called during `compare_method_predicate_entailment` when normalizing a
487cf647 710 // signature that contains RPITIT. When the method signatures don't match, we have to
9c376795 711 // emit an error now because `compare_method_predicate_entailment` will not report the error
487cf647
FG
712 // when normalization fails.
713 let emitted = report_trait_method_mismatch(
714 infcx,
715 cause,
716 terr,
9c376795
FG
717 (trait_m, trait_sig),
718 (impl_m, impl_sig),
487cf647 719 impl_trait_ref,
2b03887a 720 );
487cf647 721 return Err(emitted);
2b03887a
FG
722 }
723 }
f2b60f7d 724
2b03887a
FG
725 // Check that all obligations are satisfied by the implementation's
726 // RPITs.
727 let errors = ocx.select_all_or_error();
728 if !errors.is_empty() {
353b0b11 729 let reported = infcx.err_ctxt().report_fulfillment_errors(&errors);
2b03887a
FG
730 return Err(reported);
731 }
f2b60f7d 732
353b0b11
FG
733 let collected_types = collector.types;
734
2b03887a
FG
735 // Finally, resolve all regions. This catches wily misuses of
736 // lifetime parameters.
353b0b11 737 let outlives_env = OutlivesEnvironment::with_bounds(
2b03887a 738 param_env,
9ffffee4 739 infcx.implied_bounds_tys(param_env, impl_m_def_id, wf_tys),
2b03887a 740 );
353b0b11 741 ocx.resolve_regions_and_report_errors(impl_m_def_id, &outlives_env)?;
2b03887a
FG
742
743 let mut collected_tys = FxHashMap::default();
353b0b11 744 for (def_id, (ty, substs)) in collected_types {
2b03887a
FG
745 match infcx.fully_resolve(ty) {
746 Ok(ty) => {
747 // `ty` contains free regions that we created earlier while liberating the
9c376795 748 // trait fn signature. However, projection normalization expects `ty` to
2b03887a
FG
749 // contains `def_id`'s early-bound regions.
750 let id_substs = InternalSubsts::identity_for_item(tcx, def_id);
751 debug!(?id_substs, ?substs);
752 let map: FxHashMap<ty::GenericArg<'tcx>, ty::GenericArg<'tcx>> =
753 std::iter::zip(substs, id_substs).collect();
754 debug!(?map);
755
756 // NOTE(compiler-errors): RPITITs, like all other RPITs, have early-bound
757 // region substs that are synthesized during AST lowering. These are substs
758 // that are appended to the parent substs (trait and trait method). However,
759 // we're trying to infer the unsubstituted type value of the RPITIT inside
760 // the *impl*, so we can later use the impl's method substs to normalize
761 // an RPITIT to a concrete type (`confirm_impl_trait_in_trait_candidate`).
762 //
763 // Due to the design of RPITITs, during AST lowering, we have no idea that
764 // an impl method corresponds to a trait method with RPITITs in it. Therefore,
765 // we don't have a list of early-bound region substs for the RPITIT in the impl.
766 // Since early region parameters are index-based, we can't just rebase these
767 // (trait method) early-bound region substs onto the impl, and there's no
768 // guarantee that the indices from the trait substs and impl substs line up.
769 // So to fix this, we subtract the number of trait substs and add the number of
770 // impl substs to *renumber* these early-bound regions to their corresponding
771 // indices in the impl's substitutions list.
772 //
773 // Also, we only need to account for a difference in trait and impl substs,
774 // since we previously enforce that the trait method and impl method have the
775 // same generics.
776 let num_trait_substs = trait_to_impl_substs.len();
777 let num_impl_substs = tcx.generics_of(impl_m.container_id(tcx)).params.len();
778 let ty = tcx.fold_regions(ty, |region, _| {
487cf647
FG
779 match region.kind() {
780 // Remap all free regions, which correspond to late-bound regions in the function.
781 ty::ReFree(_) => {}
782 // Remap early-bound regions as long as they don't come from the `impl` itself.
783 ty::ReEarlyBound(ebr) if tcx.parent(ebr.def_id) != impl_m.container_id(tcx) => {}
784 _ => return region,
785 }
2b03887a
FG
786 let Some(ty::ReEarlyBound(e)) = map.get(&region.into()).map(|r| r.expect_region().kind())
787 else {
9ffffee4 788 return tcx.mk_re_error_with_message(return_span, "expected ReFree to map to ReEarlyBound")
2b03887a 789 };
9ffffee4 790 tcx.mk_re_early_bound(ty::EarlyBoundRegion {
2b03887a
FG
791 def_id: e.def_id,
792 name: e.name,
793 index: (e.index as usize - num_trait_substs + num_impl_substs) as u32,
9ffffee4 794 })
2b03887a
FG
795 });
796 debug!(%ty);
49aad941 797 collected_tys.insert(def_id, ty::EarlyBinder(ty));
2b03887a
FG
798 }
799 Err(err) => {
487cf647 800 let reported = tcx.sess.delay_span_bug(
2b03887a
FG
801 return_span,
802 format!("could not fully resolve: {ty} => {err:?}"),
803 );
49aad941 804 collected_tys.insert(def_id, ty::EarlyBinder(tcx.ty_error(reported)));
f2b60f7d
FG
805 }
806 }
2b03887a 807 }
f2b60f7d 808
2b03887a 809 Ok(&*tcx.arena.alloc(collected_tys))
f2b60f7d
FG
810}
811
812struct ImplTraitInTraitCollector<'a, 'tcx> {
813 ocx: &'a ObligationCtxt<'a, 'tcx>,
814 types: FxHashMap<DefId, (Ty<'tcx>, ty::SubstsRef<'tcx>)>,
815 span: Span,
816 param_env: ty::ParamEnv<'tcx>,
9ffffee4 817 body_id: LocalDefId,
f2b60f7d
FG
818}
819
820impl<'a, 'tcx> ImplTraitInTraitCollector<'a, 'tcx> {
821 fn new(
822 ocx: &'a ObligationCtxt<'a, 'tcx>,
823 span: Span,
824 param_env: ty::ParamEnv<'tcx>,
9ffffee4 825 body_id: LocalDefId,
f2b60f7d
FG
826 ) -> Self {
827 ImplTraitInTraitCollector { ocx, types: FxHashMap::default(), span, param_env, body_id }
828 }
829}
830
9ffffee4
FG
831impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ImplTraitInTraitCollector<'_, 'tcx> {
832 fn interner(&self) -> TyCtxt<'tcx> {
f2b60f7d
FG
833 self.ocx.infcx.tcx
834 }
835
836 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
9c376795 837 if let ty::Alias(ty::Projection, proj) = ty.kind()
353b0b11 838 && self.interner().is_impl_trait_in_trait(proj.def_id)
f2b60f7d 839 {
9c376795 840 if let Some((ty, _)) = self.types.get(&proj.def_id) {
f2b60f7d
FG
841 return *ty;
842 }
843 //FIXME(RPITIT): Deny nested RPITIT in substs too
844 if proj.substs.has_escaping_bound_vars() {
845 bug!("FIXME(RPITIT): error here");
846 }
847 // Replace with infer var
848 let infer_ty = self.ocx.infcx.next_ty_var(TypeVariableOrigin {
849 span: self.span,
850 kind: TypeVariableOriginKind::MiscVariable,
851 });
9c376795 852 self.types.insert(proj.def_id, (infer_ty, proj.substs));
f2b60f7d 853 // Recurse into bounds
49aad941 854 for (pred, pred_span) in self.interner().explicit_item_bounds(proj.def_id).subst_iter_copied(self.interner(), proj.substs) {
f2b60f7d
FG
855 let pred = pred.fold_with(self);
856 let pred = self.ocx.normalize(
487cf647 857 &ObligationCause::misc(self.span, self.body_id),
f2b60f7d
FG
858 self.param_env,
859 pred,
860 );
861
862 self.ocx.register_obligation(traits::Obligation::new(
9ffffee4 863 self.interner(),
f2b60f7d
FG
864 ObligationCause::new(
865 self.span,
866 self.body_id,
9c376795 867 ObligationCauseCode::BindingObligation(proj.def_id, pred_span),
f2b60f7d
FG
868 ),
869 self.param_env,
870 pred,
871 ));
872 }
873 infer_ty
874 } else {
875 ty.super_fold_with(self)
876 }
877 }
878}
879
487cf647
FG
880fn report_trait_method_mismatch<'tcx>(
881 infcx: &InferCtxt<'tcx>,
882 mut cause: ObligationCause<'tcx>,
883 terr: TypeError<'tcx>,
9ffffee4
FG
884 (trait_m, trait_sig): (ty::AssocItem, ty::FnSig<'tcx>),
885 (impl_m, impl_sig): (ty::AssocItem, ty::FnSig<'tcx>),
487cf647
FG
886 impl_trait_ref: ty::TraitRef<'tcx>,
887) -> ErrorGuaranteed {
888 let tcx = infcx.tcx;
889 let (impl_err_span, trait_err_span) =
890 extract_spans_for_error_reporting(&infcx, terr, &cause, impl_m, trait_m);
891
892 let mut diag = struct_span_err!(
893 tcx.sess,
894 impl_err_span,
895 E0053,
896 "method `{}` has an incompatible type for trait",
897 trait_m.name
898 );
899 match &terr {
900 TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
901 if trait_m.fn_has_self_parameter =>
902 {
903 let ty = trait_sig.inputs()[0];
904 let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty()) {
905 ExplicitSelf::ByValue => "self".to_owned(),
906 ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
907 ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
908 _ => format!("self: {ty}"),
909 };
910
911 // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
912 // span points only at the type `Box<Self`>, but we want to cover the whole
913 // argument pattern and type.
9ffffee4 914 let (sig, body) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
9c376795
FG
915 let span = tcx
916 .hir()
917 .body_param_names(body)
918 .zip(sig.decl.inputs.iter())
919 .map(|(param, ty)| param.span.to(ty.span))
920 .next()
921 .unwrap_or(impl_err_span);
487cf647
FG
922
923 diag.span_suggestion(
924 span,
925 "change the self-receiver type to match the trait",
926 sugg,
927 Applicability::MachineApplicable,
928 );
929 }
930 TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
931 if trait_sig.inputs().len() == *i {
932 // Suggestion to change output type. We do not suggest in `async` functions
933 // to avoid complex logic or incorrect output.
9c376795
FG
934 if let ImplItemKind::Fn(sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind
935 && !sig.header.asyncness.is_async()
936 {
937 let msg = "change the output type to match the trait";
938 let ap = Applicability::MachineApplicable;
939 match sig.decl.output {
940 hir::FnRetTy::DefaultReturn(sp) => {
941 let sugg = format!("-> {} ", trait_sig.output());
942 diag.span_suggestion_verbose(sp, msg, sugg, ap);
943 }
944 hir::FnRetTy::Return(hir_ty) => {
945 let sugg = trait_sig.output();
946 diag.span_suggestion(hir_ty.span, msg, sugg, ap);
947 }
948 };
487cf647
FG
949 };
950 } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
951 diag.span_suggestion(
952 impl_err_span,
953 "change the parameter type to match the trait",
954 trait_ty,
955 Applicability::MachineApplicable,
956 );
957 }
958 }
959 _ => {}
960 }
961
962 cause.span = impl_err_span;
963 infcx.err_ctxt().note_type_err(
964 &mut diag,
965 &cause,
966 trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
9c376795 967 Some(infer::ValuePairs::Sigs(ExpectedFound { expected: trait_sig, found: impl_sig })),
487cf647
FG
968 terr,
969 false,
970 false,
971 );
972
973 return diag.emit();
974}
975
dfeec247 976fn check_region_bounds_on_impl_item<'tcx>(
dc9dc135 977 tcx: TyCtxt<'tcx>,
9ffffee4
FG
978 impl_m: ty::AssocItem,
979 trait_m: ty::AssocItem,
487cf647 980 delay: bool,
5e7ed085 981) -> Result<(), ErrorGuaranteed> {
487cf647 982 let impl_generics = tcx.generics_of(impl_m.def_id);
94b46f34 983 let impl_params = impl_generics.own_counts().lifetimes;
c30ab7b3 984
487cf647
FG
985 let trait_generics = tcx.generics_of(trait_m.def_id);
986 let trait_params = trait_generics.own_counts().lifetimes;
987
dfeec247
XL
988 debug!(
989 "check_region_bounds_on_impl_item: \
c30ab7b3 990 trait_generics={:?} \
dfeec247
XL
991 impl_generics={:?}",
992 trait_generics, impl_generics
993 );
c30ab7b3
SL
994
995 // Must have same number of early-bound lifetime parameters.
996 // Unfortunately, if the user screws up the bounds, then this
9c376795 997 // will change classification between early and late. E.g.,
c30ab7b3
SL
998 // if in trait we have `<'a,'b:'a>`, and in impl we just have
999 // `<'a,'b>`, then we have 2 early-bound lifetime parameters
1000 // in trait but 0 in the impl. But if we report "expected 2
1001 // but found 0" it's confusing, because it looks like there
1002 // are zero. Since I don't quite know how to phrase things at
1003 // the moment, give a kind of vague error message.
94b46f34 1004 if trait_params != impl_params {
064997fb
FG
1005 let span = tcx
1006 .hir()
1007 .get_generics(impl_m.def_id.expect_local())
1008 .expect("expected impl item to have generics or else we can't compare them")
1009 .span;
5869c6ff 1010
487cf647
FG
1011 let mut generics_span = None;
1012 let mut bounds_span = vec![];
1013 let mut where_span = None;
1014 if let Some(trait_node) = tcx.hir().get_if_local(trait_m.def_id)
1015 && let Some(trait_generics) = trait_node.generics()
1016 {
1017 generics_span = Some(trait_generics.span);
1018 // FIXME: we could potentially look at the impl's bounds to not point at bounds that
1019 // *are* present in the impl.
1020 for p in trait_generics.predicates {
1021 if let hir::WherePredicate::BoundPredicate(pred) = p {
1022 for b in pred.bounds {
1023 if let hir::GenericBound::Outlives(lt) = b {
1024 bounds_span.push(lt.ident.span);
1025 }
1026 }
1027 }
1028 }
1029 if let Some(impl_node) = tcx.hir().get_if_local(impl_m.def_id)
1030 && let Some(impl_generics) = impl_node.generics()
1031 {
1032 let mut impl_bounds = 0;
1033 for p in impl_generics.predicates {
1034 if let hir::WherePredicate::BoundPredicate(pred) = p {
1035 for b in pred.bounds {
1036 if let hir::GenericBound::Outlives(_) = b {
1037 impl_bounds += 1;
1038 }
1039 }
1040 }
1041 }
1042 if impl_bounds == bounds_span.len() {
1043 bounds_span = vec![];
1044 } else if impl_generics.has_where_clause_predicates {
1045 where_span = Some(impl_generics.where_clause_span);
1046 }
1047 }
1048 }
1049 let reported = tcx
1050 .sess
1051 .create_err(LifetimesOrBoundsMismatchOnTrait {
1052 span,
9ffffee4 1053 item_kind: assoc_item_kind_str(&impl_m),
487cf647
FG
1054 ident: impl_m.ident(tcx),
1055 generics_span,
1056 bounds_span,
1057 where_span,
1058 })
1059 .emit_unless(delay);
5e7ed085 1060 return Err(reported);
85aaf69f 1061 }
9e0c209e 1062
0bf4aa26 1063 Ok(())
c30ab7b3 1064}
9e0c209e 1065
3c0e092e 1066#[instrument(level = "debug", skip(infcx))]
2b03887a
FG
1067fn extract_spans_for_error_reporting<'tcx>(
1068 infcx: &infer::InferCtxt<'tcx>,
f2b60f7d 1069 terr: TypeError<'_>,
dc9dc135 1070 cause: &ObligationCause<'tcx>,
9ffffee4
FG
1071 impl_m: ty::AssocItem,
1072 trait_m: ty::AssocItem,
dc9dc135 1073) -> (Span, Option<Span>) {
c30ab7b3 1074 let tcx = infcx.tcx;
9c376795 1075 let mut impl_args = {
9ffffee4 1076 let (sig, _) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
9c376795 1077 sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
c30ab7b3 1078 };
9c376795
FG
1079
1080 let trait_args = trait_m.def_id.as_local().map(|def_id| {
9ffffee4 1081 let (sig, _) = tcx.hir().expect_trait_item(def_id).expect_fn();
9c376795
FG
1082 sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
1083 });
9e0c209e 1084
f2b60f7d 1085 match terr {
9c376795 1086 TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
cdc7bbd5 1087 (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
c30ab7b3 1088 }
064997fb 1089 _ => (cause.span(), tcx.hir().span_if_local(trait_m.def_id)),
c30ab7b3
SL
1090 }
1091}
1092
dc9dc135
XL
1093fn compare_self_type<'tcx>(
1094 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1095 impl_m: ty::AssocItem,
1096 trait_m: ty::AssocItem,
dc9dc135 1097 impl_trait_ref: ty::TraitRef<'tcx>,
5e7ed085 1098) -> Result<(), ErrorGuaranteed> {
c30ab7b3 1099 // Try to give more informative error messages about self typing
9c376795 1100 // mismatches. Note that any mismatch will also be detected
c30ab7b3 1101 // below, where we construct a canonical function type that
9c376795 1102 // includes the self parameter as a normal parameter. It's just
c30ab7b3
SL
1103 // that the error messages you get out of this code are a bit more
1104 // inscrutable, particularly for cases where one method has no
1105 // self.
476ff2be 1106
9ffffee4 1107 let self_string = |method: ty::AssocItem| {
476ff2be 1108 let untransformed_self_ty = match method.container {
064997fb
FG
1109 ty::ImplContainer => impl_trait_ref.self_ty(),
1110 ty::TraitContainer => tcx.types.self_param,
476ff2be 1111 };
9ffffee4 1112 let self_arg_ty = tcx.fn_sig(method.def_id).subst_identity().input(0);
0531ce1d 1113 let param_env = ty::ParamEnv::reveal_all();
abe05a73 1114
2b03887a
FG
1115 let infcx = tcx.infer_ctxt().build();
1116 let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
9ffffee4 1117 let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty);
2b03887a
FG
1118 match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
1119 ExplicitSelf::ByValue => "self".to_owned(),
1120 ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
1121 ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
1122 _ => format!("self: {self_arg_ty}"),
1123 }
476ff2be
SL
1124 };
1125
ba9703b0 1126 match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
476ff2be
SL
1127 (false, false) | (true, true) => {}
1128
1129 (false, true) => {
1130 let self_descr = self_string(impl_m);
9ffffee4 1131 let impl_m_span = tcx.def_span(impl_m.def_id);
dfeec247
XL
1132 let mut err = struct_span_err!(
1133 tcx.sess,
1134 impl_m_span,
1135 E0185,
cdc7bbd5 1136 "method `{}` has a `{}` declaration in the impl, but not in the trait",
5099ac24 1137 trait_m.name,
dfeec247
XL
1138 self_descr
1139 );
04454e1e 1140 err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
0731742a 1141 if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
04454e1e 1142 err.span_label(span, format!("trait method declared without `{self_descr}`"));
2c00a5a8 1143 } else {
064997fb 1144 err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
c30ab7b3 1145 }
9c376795 1146 return Err(err.emit());
c30ab7b3 1147 }
476ff2be
SL
1148
1149 (true, false) => {
1150 let self_descr = self_string(trait_m);
9ffffee4 1151 let impl_m_span = tcx.def_span(impl_m.def_id);
dfeec247
XL
1152 let mut err = struct_span_err!(
1153 tcx.sess,
1154 impl_m_span,
1155 E0186,
cdc7bbd5 1156 "method `{}` has a `{}` declaration in the trait, but not in the impl",
5099ac24 1157 trait_m.name,
dfeec247
XL
1158 self_descr
1159 );
04454e1e 1160 err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
0731742a 1161 if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
04454e1e 1162 err.span_label(span, format!("`{self_descr}` used in trait"));
7cac9316 1163 } else {
064997fb 1164 err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
c30ab7b3 1165 }
9c376795
FG
1166
1167 return Err(err.emit());
c30ab7b3 1168 }
c30ab7b3
SL
1169 }
1170
1171 Ok(())
1172}
1173
04454e1e
FG
1174/// Checks that the number of generics on a given assoc item in a trait impl is the same
1175/// as the number of generics on the respective assoc item in the trait definition.
1176///
1177/// For example this code emits the errors in the following code:
49aad941 1178/// ```rust,compile_fail
04454e1e
FG
1179/// trait Trait {
1180/// fn foo();
1181/// type Assoc<T>;
1182/// }
1183///
1184/// impl Trait for () {
1185/// fn foo<T>() {}
1186/// //~^ error
1187/// type Assoc = u32;
1188/// //~^ error
1189/// }
1190/// ```
1191///
1192/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
1193/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
1194/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
dc9dc135
XL
1195fn compare_number_of_generics<'tcx>(
1196 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1197 impl_: ty::AssocItem,
1198 trait_: ty::AssocItem,
487cf647 1199 delay: bool,
5e7ed085 1200) -> Result<(), ErrorGuaranteed> {
532ac7d7
XL
1201 let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
1202 let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
1203
04454e1e
FG
1204 // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
1205 // in `compare_generic_param_kinds` which will give a nicer error message than something like:
1206 // "expected 1 type parameter, found 0 type parameters"
1207 if (trait_own_counts.types + trait_own_counts.consts)
1208 == (impl_own_counts.types + impl_own_counts.consts)
1209 {
1210 return Ok(());
1211 }
1212
353b0b11
FG
1213 // We never need to emit a separate error for RPITITs, since if an RPITIT
1214 // has mismatched type or const generic arguments, then the method that it's
1215 // inheriting the generics from will also have mismatched arguments, and
1216 // we'll report an error for that instead. Delay a bug for safety, though.
1217 if tcx.opt_rpitit_info(trait_.def_id).is_some() {
1218 return Err(tcx.sess.delay_span_bug(
1219 rustc_span::DUMMY_SP,
1220 "errors comparing numbers of generics of trait/impl functions were not emitted",
1221 ));
1222 }
1223
532ac7d7
XL
1224 let matchings = [
1225 ("type", trait_own_counts.types, impl_own_counts.types),
1226 ("const", trait_own_counts.consts, impl_own_counts.consts),
1227 ];
1228
9ffffee4 1229 let item_kind = assoc_item_kind_str(&impl_);
dfeec247 1230
5e7ed085 1231 let mut err_occurred = None;
136023e0 1232 for (kind, trait_count, impl_count) in matchings {
532ac7d7 1233 if impl_count != trait_count {
923072b8
FG
1234 let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
1235 let mut spans = generics
1236 .params
1237 .iter()
1238 .filter(|p| match p.kind {
1239 hir::GenericParamKind::Lifetime {
1240 kind: hir::LifetimeParamKind::Elided,
1241 } => {
1242 // A fn can have an arbitrary number of extra elided lifetimes for the
1243 // same signature.
1244 !matches!(kind, ty::AssocKind::Fn)
1245 }
1246 _ => true,
1247 })
1248 .map(|p| p.span)
1249 .collect::<Vec<Span>>();
1250 if spans.is_empty() {
1251 spans = vec![generics.span]
1252 }
1253 spans
1254 };
f9f354fc 1255 let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
a2a8927a 1256 let trait_item = tcx.hir().expect_trait_item(def_id);
923072b8
FG
1257 let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
1258 let impl_trait_spans: Vec<Span> = trait_item
1259 .generics
1260 .params
1261 .iter()
1262 .filter_map(|p| match p.kind {
1263 GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
1264 _ => None,
1265 })
1266 .collect();
1267 (Some(arg_spans), impl_trait_spans)
f9f354fc 1268 } else {
9ffffee4 1269 let trait_span = tcx.hir().span_if_local(trait_.def_id);
f9f354fc
XL
1270 (trait_span.map(|s| vec![s]), vec![])
1271 };
9e0c209e 1272
a2a8927a 1273 let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
dfeec247
XL
1274 let impl_item_impl_trait_spans: Vec<Span> = impl_item
1275 .generics
1276 .params
1277 .iter()
dc9dc135 1278 .filter_map(|p| match p.kind {
3c0e092e 1279 GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
dc9dc135 1280 _ => None,
dfeec247
XL
1281 })
1282 .collect();
923072b8
FG
1283 let spans = arg_spans(impl_.kind, impl_item.generics);
1284 let span = spans.first().copied();
dc9dc135 1285
532ac7d7 1286 let mut err = tcx.sess.struct_span_err_with_code(
dc9dc135 1287 spans,
49aad941 1288 format!(
dfeec247 1289 "{} `{}` has {} {kind} parameter{} but its trait \
532ac7d7 1290 declaration has {} {kind} parameter{}",
dfeec247 1291 item_kind,
5099ac24 1292 trait_.name,
532ac7d7 1293 impl_count,
60c5eb7d 1294 pluralize!(impl_count),
532ac7d7 1295 trait_count,
60c5eb7d 1296 pluralize!(trait_count),
532ac7d7
XL
1297 kind = kind,
1298 ),
1299 DiagnosticId::Error("E0049".into()),
1300 );
c30ab7b3 1301
532ac7d7 1302 let mut suffix = None;
c30ab7b3 1303
dc9dc135
XL
1304 if let Some(spans) = trait_spans {
1305 let mut spans = spans.iter();
1306 if let Some(span) = spans.next() {
dfeec247
XL
1307 err.span_label(
1308 *span,
1309 format!(
1310 "expected {} {} parameter{}",
1311 trait_count,
1312 kind,
1313 pluralize!(trait_count),
1314 ),
1315 );
dc9dc135
XL
1316 }
1317 for span in spans {
1318 err.span_label(*span, "");
1319 }
532ac7d7 1320 } else {
04454e1e 1321 suffix = Some(format!(", expected {trait_count}"));
532ac7d7 1322 }
c30ab7b3 1323
dc9dc135 1324 if let Some(span) = span {
dfeec247
XL
1325 err.span_label(
1326 span,
1327 format!(
1328 "found {} {} parameter{}{}",
1329 impl_count,
1330 kind,
1331 pluralize!(impl_count),
49aad941 1332 suffix.unwrap_or_default(),
dfeec247
XL
1333 ),
1334 );
dc9dc135
XL
1335 }
1336
1337 for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
1338 err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
1339 }
c30ab7b3 1340
487cf647 1341 let reported = err.emit_unless(delay);
5e7ed085 1342 err_occurred = Some(reported);
532ac7d7 1343 }
c30ab7b3
SL
1344 }
1345
5e7ed085 1346 if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
c30ab7b3
SL
1347}
1348
dc9dc135
XL
1349fn compare_number_of_method_arguments<'tcx>(
1350 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1351 impl_m: ty::AssocItem,
1352 trait_m: ty::AssocItem,
5e7ed085 1353) -> Result<(), ErrorGuaranteed> {
041b39d2
XL
1354 let impl_m_fty = tcx.fn_sig(impl_m.def_id);
1355 let trait_m_fty = tcx.fn_sig(trait_m.def_id);
9ffffee4
FG
1356 let trait_number_args = trait_m_fty.skip_binder().inputs().skip_binder().len();
1357 let impl_number_args = impl_m_fty.skip_binder().inputs().skip_binder().len();
9c376795 1358
476ff2be 1359 if trait_number_args != impl_number_args {
9c376795
FG
1360 let trait_span = trait_m
1361 .def_id
1362 .as_local()
1363 .and_then(|def_id| {
9ffffee4 1364 let (trait_m_sig, _) = &tcx.hir().expect_trait_item(def_id).expect_fn();
9c376795
FG
1365 let pos = trait_number_args.saturating_sub(1);
1366 trait_m_sig.decl.inputs.get(pos).map(|arg| {
0731742a
XL
1367 if pos == 0 {
1368 arg.span
1369 } else {
9c376795 1370 arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
0731742a 1371 }
9c376795
FG
1372 })
1373 })
9ffffee4 1374 .or_else(|| tcx.hir().span_if_local(trait_m.def_id));
9c376795 1375
9ffffee4 1376 let (impl_m_sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
9c376795
FG
1377 let pos = impl_number_args.saturating_sub(1);
1378 let impl_span = impl_m_sig
1379 .decl
1380 .inputs
1381 .get(pos)
1382 .map(|arg| {
1383 if pos == 0 {
1384 arg.span
9e0c209e 1385 } else {
9c376795 1386 arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
9e0c209e 1387 }
9c376795 1388 })
9ffffee4 1389 .unwrap_or_else(|| tcx.def_span(impl_m.def_id));
9c376795 1390
dfeec247
XL
1391 let mut err = struct_span_err!(
1392 tcx.sess,
1393 impl_span,
1394 E0050,
a2a8927a 1395 "method `{}` has {} but the declaration in trait `{}` has {}",
5099ac24 1396 trait_m.name,
dfeec247
XL
1397 potentially_plural_count(impl_number_args, "parameter"),
1398 tcx.def_path_str(trait_m.def_id),
1399 trait_number_args
1400 );
9c376795 1401
c30ab7b3 1402 if let Some(trait_span) = trait_span {
dfeec247
XL
1403 err.span_label(
1404 trait_span,
1405 format!(
1406 "trait requires {}",
1407 potentially_plural_count(trait_number_args, "parameter")
1408 ),
1409 );
7cac9316 1410 } else {
064997fb 1411 err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
9e0c209e 1412 }
9c376795 1413
dfeec247
XL
1414 err.span_label(
1415 impl_span,
1416 format!(
1417 "expected {}, found {}",
1418 potentially_plural_count(trait_number_args, "parameter"),
1419 impl_number_args
1420 ),
1421 );
9c376795
FG
1422
1423 return Err(err.emit());
9e0c209e 1424 }
c30ab7b3
SL
1425
1426 Ok(())
85aaf69f 1427}
d9579d0f 1428
dc9dc135
XL
1429fn compare_synthetic_generics<'tcx>(
1430 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1431 impl_m: ty::AssocItem,
1432 trait_m: ty::AssocItem,
5e7ed085 1433) -> Result<(), ErrorGuaranteed> {
abe05a73 1434 // FIXME(chrisvittal) Clean up this function, list of FIXME items:
94b46f34 1435 // 1. Better messages for the span labels
abe05a73 1436 // 2. Explanation as to what is going on
abe05a73
XL
1437 // If we get here, we already have the same number of generics, so the zip will
1438 // be okay.
5e7ed085 1439 let mut error_found = None;
abe05a73
XL
1440 let impl_m_generics = tcx.generics_of(impl_m.def_id);
1441 let trait_m_generics = tcx.generics_of(trait_m.def_id);
8faf50e0
XL
1442 let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
1443 GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
cdc7bbd5 1444 GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
94b46f34 1445 });
dfeec247
XL
1446 let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
1447 GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
cdc7bbd5 1448 GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
94b46f34 1449 });
dfeec247 1450 for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
cdc7bbd5 1451 iter::zip(impl_m_type_params, trait_m_type_params)
0bf4aa26 1452 {
94b46f34 1453 if impl_synthetic != trait_synthetic {
04454e1e 1454 let impl_def_id = impl_def_id.expect_local();
f2b60f7d 1455 let impl_span = tcx.def_span(impl_def_id);
94b46f34 1456 let trait_span = tcx.def_span(trait_def_id);
dfeec247
XL
1457 let mut err = struct_span_err!(
1458 tcx.sess,
1459 impl_span,
1460 E0643,
1461 "method `{}` has incompatible signature for trait",
5099ac24 1462 trait_m.name
dfeec247 1463 );
94b46f34
XL
1464 err.span_label(trait_span, "declaration in trait here");
1465 match (impl_synthetic, trait_synthetic) {
1466 // The case where the impl method uses `impl Trait` but the trait method uses
1467 // explicit generics
3c0e092e 1468 (true, false) => {
94b46f34 1469 err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
9c376795 1470 let _: Option<_> = try {
94b46f34
XL
1471 // try taking the name from the trait impl
1472 // FIXME: this is obviously suboptimal since the name can already be used
1473 // as another generic argument
f2b60f7d 1474 let new_name = tcx.opt_item_name(trait_def_id)?;
6a06907d 1475 let trait_m = trait_m.def_id.as_local()?;
f2b60f7d 1476 let trait_m = tcx.hir().expect_trait_item(trait_m);
94b46f34 1477
6a06907d 1478 let impl_m = impl_m.def_id.as_local()?;
f2b60f7d 1479 let impl_m = tcx.hir().expect_impl_item(impl_m);
94b46f34
XL
1480
1481 // in case there are no generics, take the spot between the function name
1482 // and the opening paren of the argument list
f2b60f7d 1483 let new_generics_span = tcx.def_ident_span(impl_def_id)?.shrink_to_hi();
94b46f34 1484 // in case there are generics, just replace them
dfeec247
XL
1485 let generics_span =
1486 impl_m.generics.span.substitute_dummy(new_generics_span);
94b46f34 1487 // replace with the generics from the trait
dfeec247
XL
1488 let new_generics =
1489 tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
94b46f34 1490
9fa01778 1491 err.multipart_suggestion(
94b46f34
XL
1492 "try changing the `impl Trait` argument to a generic parameter",
1493 vec![
1494 // replace `impl Trait` with `T`
f2b60f7d 1495 (impl_span, new_name.to_string()),
94b46f34
XL
1496 // replace impl method generics with trait method generics
1497 // This isn't quite right, as users might have changed the names
1498 // of the generics, but it works for the common case
1499 (generics_span, new_generics),
1500 ],
0bf4aa26 1501 Applicability::MaybeIncorrect,
94b46f34 1502 );
9c376795 1503 };
dfeec247 1504 }
94b46f34
XL
1505 // The case where the trait method uses `impl Trait`, but the impl method uses
1506 // explicit generics.
3c0e092e 1507 (false, true) => {
94b46f34 1508 err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
9c376795 1509 let _: Option<_> = try {
6a06907d 1510 let impl_m = impl_m.def_id.as_local()?;
f2b60f7d 1511 let impl_m = tcx.hir().expect_impl_item(impl_m);
9ffffee4 1512 let (sig, _) = impl_m.expect_fn();
9c376795
FG
1513 let input_tys = sig.decl.inputs;
1514
04454e1e 1515 struct Visitor(Option<Span>, hir::def_id::LocalDefId);
dfeec247
XL
1516 impl<'v> intravisit::Visitor<'v> for Visitor {
1517 fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
1518 intravisit::walk_ty(self, ty);
9c376795 1519 if let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = ty.kind
04454e1e
FG
1520 && let Res::Def(DefKind::TyParam, def_id) = path.res
1521 && def_id == self.1.to_def_id()
0bf4aa26 1522 {
04454e1e 1523 self.0 = Some(ty.span);
94b46f34
XL
1524 }
1525 }
94b46f34 1526 }
9c376795 1527
94b46f34
XL
1528 let mut visitor = Visitor(None, impl_def_id);
1529 for ty in input_tys {
dfeec247 1530 intravisit::Visitor::visit_ty(&mut visitor, ty);
94b46f34
XL
1531 }
1532 let span = visitor.0?;
1533
04454e1e 1534 let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
8faf50e0 1535 let bounds = bounds.first()?.span().to(bounds.last()?.span());
dfeec247 1536 let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
94b46f34 1537
9fa01778 1538 err.multipart_suggestion(
94b46f34
XL
1539 "try removing the generic parameter and using `impl Trait` instead",
1540 vec![
1541 // delete generic parameters
1542 (impl_m.generics.span, String::new()),
1543 // replace param usage with `impl Trait`
04454e1e 1544 (span, format!("impl {bounds}")),
94b46f34 1545 ],
0bf4aa26 1546 Applicability::MaybeIncorrect,
94b46f34 1547 );
9c376795 1548 };
dfeec247 1549 }
94b46f34
XL
1550 _ => unreachable!(),
1551 }
9c376795 1552 error_found = Some(err.emit());
abe05a73
XL
1553 }
1554 }
5e7ed085 1555 if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
abe05a73
XL
1556}
1557
04454e1e
FG
1558/// Checks that all parameters in the generics of a given assoc item in a trait impl have
1559/// the same kind as the respective generic parameter in the trait def.
1560///
1561/// For example all 4 errors in the following code are emitted here:
49aad941 1562/// ```rust,ignore (pseudo-Rust)
04454e1e
FG
1563/// trait Foo {
1564/// fn foo<const N: u8>();
1565/// type bar<const N: u8>;
1566/// fn baz<const N: u32>();
1567/// type blah<T>;
1568/// }
1569///
1570/// impl Foo for () {
1571/// fn foo<const N: u64>() {}
1572/// //~^ error
1573/// type bar<const N: u64> {}
1574/// //~^ error
1575/// fn baz<T>() {}
1576/// //~^ error
1577/// type blah<const N: i64> = u32;
1578/// //~^ error
1579/// }
1580/// ```
1581///
1582/// This function does not handle lifetime parameters
1583fn compare_generic_param_kinds<'tcx>(
136023e0 1584 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1585 impl_item: ty::AssocItem,
1586 trait_item: ty::AssocItem,
487cf647 1587 delay: bool,
5e7ed085 1588) -> Result<(), ErrorGuaranteed> {
04454e1e
FG
1589 assert_eq!(impl_item.kind, trait_item.kind);
1590
1591 let ty_const_params_of = |def_id| {
1592 tcx.generics_of(def_id).params.iter().filter(|param| {
1593 matches!(
1594 param.kind,
1595 GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
1596 )
136023e0
XL
1597 })
1598 };
04454e1e
FG
1599
1600 for (param_impl, param_trait) in
1601 iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
1602 {
1603 use GenericParamDefKind::*;
1604 if match (&param_impl.kind, &param_trait.kind) {
1605 (Const { .. }, Const { .. })
1606 if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
1607 {
1608 true
1609 }
1610 (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
1611 // this is exhaustive so that anyone adding new generic param kinds knows
1612 // to make sure this error is reported for them.
1613 (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
1614 (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
1615 } {
1616 let param_impl_span = tcx.def_span(param_impl.def_id);
1617 let param_trait_span = tcx.def_span(param_trait.def_id);
1618
136023e0
XL
1619 let mut err = struct_span_err!(
1620 tcx.sess,
04454e1e 1621 param_impl_span,
136023e0 1622 E0053,
04454e1e
FG
1623 "{} `{}` has an incompatible generic parameter for trait `{}`",
1624 assoc_item_kind_str(&impl_item),
1625 trait_item.name,
1626 &tcx.def_path_str(tcx.parent(trait_item.def_id))
136023e0 1627 );
04454e1e
FG
1628
1629 let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
1630 Const { .. } => {
9ffffee4
FG
1631 format!(
1632 "{} const parameter of type `{}`",
1633 prefix,
1634 tcx.type_of(param.def_id).subst_identity()
1635 )
04454e1e
FG
1636 }
1637 Type { .. } => format!("{} type parameter", prefix),
1638 Lifetime { .. } => unreachable!(),
1639 };
1640
1641 let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
1642 err.span_label(trait_header_span, "");
1643 err.span_label(param_trait_span, make_param_message("expected", param_trait));
1644
064997fb 1645 let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
04454e1e
FG
1646 err.span_label(impl_header_span, "");
1647 err.span_label(param_impl_span, make_param_message("found", param_impl));
1648
487cf647 1649 let reported = err.emit_unless(delay);
5e7ed085 1650 return Err(reported);
136023e0
XL
1651 }
1652 }
1653
1654 Ok(())
1655}
1656
9c376795
FG
1657/// Use `tcx.compare_impl_const` instead
1658pub(super) fn compare_impl_const_raw(
1659 tcx: TyCtxt<'_>,
2b03887a
FG
1660 (impl_const_item_def, trait_const_item_def): (LocalDefId, DefId),
1661) -> Result<(), ErrorGuaranteed> {
1662 let impl_const_item = tcx.associated_item(impl_const_item_def);
1663 let trait_const_item = tcx.associated_item(trait_const_item_def);
9c376795
FG
1664 let impl_trait_ref =
1665 tcx.impl_trait_ref(impl_const_item.container_id(tcx)).unwrap().subst_identity();
c30ab7b3 1666 debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
d9579d0f 1667
2b03887a 1668 let impl_c_span = tcx.def_span(impl_const_item_def.to_def_id());
a7813a04 1669
2b03887a
FG
1670 let infcx = tcx.infer_ctxt().build();
1671 let param_env = tcx.param_env(impl_const_item_def.to_def_id());
1672 let ocx = ObligationCtxt::new(&infcx);
c30ab7b3 1673
2b03887a
FG
1674 // The below is for the most part highly similar to the procedure
1675 // for methods above. It is simpler in many respects, especially
1676 // because we shouldn't really have to deal with lifetimes or
1677 // predicates. In fact some of this should probably be put into
1678 // shared functions because of DRY violations...
1679 let trait_to_impl_substs = impl_trait_ref.substs;
c30ab7b3 1680
2b03887a
FG
1681 // Create a parameter environment that represents the implementation's
1682 // method.
2b03887a 1683 // Compute placeholder form of impl and trait const tys.
9ffffee4
FG
1684 let impl_ty = tcx.type_of(impl_const_item_def.to_def_id()).subst_identity();
1685 let trait_ty = tcx.type_of(trait_const_item_def).subst(tcx, trait_to_impl_substs);
2b03887a
FG
1686 let mut cause = ObligationCause::new(
1687 impl_c_span,
9ffffee4 1688 impl_const_item_def,
2b03887a
FG
1689 ObligationCauseCode::CompareImplItemObligation {
1690 impl_item_def_id: impl_const_item_def,
1691 trait_item_def_id: trait_const_item_def,
1692 kind: impl_const_item.kind,
1693 },
1694 );
a7813a04 1695
2b03887a 1696 // There is no "body" here, so just pass dummy id.
487cf647 1697 let impl_ty = ocx.normalize(&cause, param_env, impl_ty);
d9579d0f 1698
2b03887a 1699 debug!("compare_const_impl: impl_ty={:?}", impl_ty);
5bcae85e 1700
487cf647 1701 let trait_ty = ocx.normalize(&cause, param_env, trait_ty);
5bcae85e 1702
2b03887a 1703 debug!("compare_const_impl: trait_ty={:?}", trait_ty);
5bcae85e 1704
487cf647 1705 let err = ocx.sup(&cause, param_env, trait_ty, impl_ty);
5bcae85e 1706
2b03887a
FG
1707 if let Err(terr) = err {
1708 debug!(
1709 "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
1710 impl_ty, trait_ty
1711 );
cc61c64b 1712
2b03887a 1713 // Locate the Span containing just the type of the offending impl
9ffffee4 1714 let (ty, _) = tcx.hir().expect_impl_item(impl_const_item_def).expect_const();
9c376795 1715 cause.span = ty.span;
7cac9316 1716
2b03887a
FG
1717 let mut diag = struct_span_err!(
1718 tcx.sess,
1719 cause.span,
1720 E0326,
1721 "implemented const `{}` has an incompatible type for trait",
1722 trait_const_item.name
064997fb 1723 );
2b03887a
FG
1724
1725 let trait_c_span = trait_const_item_def.as_local().map(|trait_c_def_id| {
1726 // Add a label to the Span containing just the type of the const
9ffffee4 1727 let (ty, _) = tcx.hir().expect_trait_item(trait_c_def_id).expect_const();
9c376795 1728 ty.span
2b03887a
FG
1729 });
1730
1731 infcx.err_ctxt().note_type_err(
1732 &mut diag,
1733 &cause,
1734 trait_c_span.map(|span| (span, "type in trait".to_owned())),
1735 Some(infer::ValuePairs::Terms(ExpectedFound {
1736 expected: trait_ty.into(),
1737 found: impl_ty.into(),
1738 })),
1739 terr,
1740 false,
1741 false,
1742 );
1743 return Err(diag.emit());
1744 };
1745
1746 // Check that all obligations are satisfied by the implementation's
1747 // version.
1748 let errors = ocx.select_all_or_error();
1749 if !errors.is_empty() {
353b0b11 1750 return Err(infcx.err_ctxt().report_fulfillment_errors(&errors));
2b03887a
FG
1751 }
1752
353b0b11
FG
1753 let outlives_env = OutlivesEnvironment::new(param_env);
1754 ocx.resolve_regions_and_report_errors(impl_const_item_def, &outlives_env)
d9579d0f 1755}
dfeec247 1756
9c376795 1757pub(super) fn compare_impl_ty<'tcx>(
dfeec247 1758 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1759 impl_ty: ty::AssocItem,
1760 trait_ty: ty::AssocItem,
dfeec247 1761 impl_trait_ref: ty::TraitRef<'tcx>,
dfeec247
XL
1762) {
1763 debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
1764
9c376795 1765 let _: Result<(), ErrorGuaranteed> = try {
9ffffee4 1766 compare_number_of_generics(tcx, impl_ty, trait_ty, false)?;
487cf647 1767 compare_generic_param_kinds(tcx, impl_ty, trait_ty, false)?;
9ffffee4
FG
1768 compare_type_predicate_entailment(tcx, impl_ty, trait_ty, impl_trait_ref)?;
1769 check_type_bounds(tcx, trait_ty, impl_ty, impl_trait_ref)?;
9c376795 1770 };
dfeec247
XL
1771}
1772
9c376795 1773/// The equivalent of [compare_method_predicate_entailment], but for associated types
dfeec247 1774/// instead of associated functions.
f035d41b 1775fn compare_type_predicate_entailment<'tcx>(
dfeec247 1776 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1777 impl_ty: ty::AssocItem,
1778 trait_ty: ty::AssocItem,
dfeec247 1779 impl_trait_ref: ty::TraitRef<'tcx>,
5e7ed085 1780) -> Result<(), ErrorGuaranteed> {
dfeec247
XL
1781 let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
1782 let trait_to_impl_substs =
064997fb 1783 impl_substs.rebase_onto(tcx, impl_ty.container_id(tcx), impl_trait_ref.substs);
dfeec247 1784
dfeec247
XL
1785 let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
1786 let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
1787
487cf647 1788 check_region_bounds_on_impl_item(tcx, impl_ty, trait_ty, false)?;
dfeec247
XL
1789
1790 let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
9c376795 1791 if impl_ty_own_bounds.len() == 0 {
dfeec247
XL
1792 // Nothing to check.
1793 return Ok(());
1794 }
1795
1796 // This `HirId` should be used for the `body_id` field on each
1797 // `ObligationCause` (and the `FnCtxt`). This is what
1798 // `regionck_item` expects.
9ffffee4 1799 let impl_ty_def_id = impl_ty.def_id.expect_local();
dfeec247
XL
1800 debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
1801
1802 // The predicates declared by the impl definition, the trait and the
1803 // associated type in the trait are assumed.
1804 let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
1805 let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
9c376795
FG
1806 hybrid_preds.predicates.extend(
1807 trait_ty_predicates
1808 .instantiate_own(tcx, trait_to_impl_substs)
1809 .map(|(predicate, _)| predicate),
1810 );
dfeec247
XL
1811
1812 debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
1813
9ffffee4
FG
1814 let impl_ty_span = tcx.def_span(impl_ty_def_id);
1815 let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_def_id);
a2a8927a 1816 let param_env = ty::ParamEnv::new(
9ffffee4 1817 tcx.mk_predicates(&hybrid_preds.predicates),
a2a8927a
XL
1818 Reveal::UserFacing,
1819 hir::Constness::NotConst,
1820 );
064997fb 1821 let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
2b03887a
FG
1822 let infcx = tcx.infer_ctxt().build();
1823 let ocx = ObligationCtxt::new(&infcx);
dfeec247 1824
2b03887a 1825 debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
dfeec247 1826
9c376795 1827 for (predicate, span) in impl_ty_own_bounds {
9ffffee4 1828 let cause = ObligationCause::misc(span, impl_ty_def_id);
487cf647 1829 let predicate = ocx.normalize(&cause, param_env, predicate);
dfeec247 1830
2b03887a
FG
1831 let cause = ObligationCause::new(
1832 span,
9ffffee4 1833 impl_ty_def_id,
2b03887a
FG
1834 ObligationCauseCode::CompareImplItemObligation {
1835 impl_item_def_id: impl_ty.def_id.expect_local(),
1836 trait_item_def_id: trait_ty.def_id,
1837 kind: impl_ty.kind,
1838 },
064997fb 1839 );
487cf647 1840 ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
2b03887a
FG
1841 }
1842
1843 // Check that all obligations are satisfied by the implementation's
1844 // version.
1845 let errors = ocx.select_all_or_error();
1846 if !errors.is_empty() {
353b0b11 1847 let reported = infcx.err_ctxt().report_fulfillment_errors(&errors);
2b03887a
FG
1848 return Err(reported);
1849 }
1850
1851 // Finally, resolve all regions. This catches wily misuses of
1852 // lifetime parameters.
353b0b11
FG
1853 let outlives_env = OutlivesEnvironment::new(param_env);
1854 ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
dfeec247
XL
1855}
1856
f035d41b
XL
1857/// Validate that `ProjectionCandidate`s created for this associated type will
1858/// be valid.
1859///
1860/// Usually given
1861///
1862/// trait X { type Y: Copy } impl X for T { type Y = S; }
1863///
1864/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
1865/// impl is well-formed we have to prove `S: Copy`.
1866///
1867/// For default associated types the normalization is not possible (the value
1868/// from the impl could be overridden). We also can't normalize generic
1869/// associated types (yet) because they contain bound parameters.
f2b60f7d 1870#[instrument(level = "debug", skip(tcx))]
9c376795 1871pub(super) fn check_type_bounds<'tcx>(
f035d41b 1872 tcx: TyCtxt<'tcx>,
9ffffee4
FG
1873 trait_ty: ty::AssocItem,
1874 impl_ty: ty::AssocItem,
f035d41b 1875 impl_trait_ref: ty::TraitRef<'tcx>,
5e7ed085 1876) -> Result<(), ErrorGuaranteed> {
353b0b11
FG
1877 let param_env = tcx.param_env(impl_ty.def_id);
1878 let container_id = impl_ty.container_id(tcx);
f035d41b
XL
1879 // Given
1880 //
1881 // impl<A, B> Foo<u32> for (A, B) {
353b0b11 1882 // type Bar<C> = Wrapper<A, B, C>
f035d41b
XL
1883 // }
1884 //
9ffffee4 1885 // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>`
353b0b11
FG
1886 // - `normalize_impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
1887 // - `normalize_impl_ty` would be `Wrapper<A, B, ^0.0>`
94222f64
XL
1888 // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
1889 // the *trait* with the generic associated type parameters (as bound vars).
1890 //
1891 // A note regarding the use of bound vars here:
1892 // Imagine as an example
1893 // ```
1894 // trait Family {
1895 // type Member<C: Eq>;
1896 // }
1897 //
1898 // impl Family for VecFamily {
1899 // type Member<C: Eq> = i32;
1900 // }
1901 // ```
1902 // Here, we would generate
1903 // ```notrust
1904 // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
1905 // ```
1906 // when we really would like to generate
1907 // ```notrust
1908 // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
1909 // ```
1910 // But, this is probably fine, because although the first clause can be used with types C that
1911 // do not implement Eq, for it to cause some kind of problem, there would have to be a
1912 // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
1913 // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
1914 // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
1915 // the trait (notably, that X: Eq and T: Family).
94222f64 1916 let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
353b0b11
FG
1917 smallvec::SmallVec::with_capacity(tcx.generics_of(impl_ty.def_id).params.len());
1918 // Extend the impl's identity substs with late-bound GAT vars
1919 let normalize_impl_ty_substs = ty::InternalSubsts::identity_for_item(tcx, container_id)
1920 .extend_to(tcx, impl_ty.def_id, |param, _| match param.kind {
1921 GenericParamDefKind::Type { .. } => {
1922 let kind = ty::BoundTyKind::Param(param.def_id, param.name);
1923 let bound_var = ty::BoundVariableKind::Ty(kind);
1924 bound_vars.push(bound_var);
1925 tcx.mk_bound(
1926 ty::INNERMOST,
1927 ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
1928 )
1929 .into()
1930 }
1931 GenericParamDefKind::Lifetime => {
1932 let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
1933 let bound_var = ty::BoundVariableKind::Region(kind);
1934 bound_vars.push(bound_var);
1935 tcx.mk_re_late_bound(
1936 ty::INNERMOST,
1937 ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
1938 )
1939 .into()
1940 }
1941 GenericParamDefKind::Const { .. } => {
1942 let bound_var = ty::BoundVariableKind::Const;
1943 bound_vars.push(bound_var);
1944 tcx.mk_const(
1945 ty::ConstKind::Bound(
1946 ty::INNERMOST,
1947 ty::BoundVar::from_usize(bound_vars.len() - 1),
1948 ),
1949 tcx.type_of(param.def_id)
1950 .no_bound_vars()
1951 .expect("const parameter types cannot be generic"),
1952 )
1953 .into()
1954 }
1955 });
3dfed10e 1956 // When checking something like
f035d41b 1957 //
3dfed10e
XL
1958 // trait X { type Y: PartialEq<<Self as X>::Y> }
1959 // impl X for T { default type Y = S; }
f035d41b 1960 //
3dfed10e
XL
1961 // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
1962 // we want <T as X>::Y to normalize to S. This is valid because we are
1963 // checking the default value specifically here. Add this equality to the
1964 // ParamEnv for normalization specifically.
353b0b11
FG
1965 let normalize_impl_ty = tcx.type_of(impl_ty.def_id).subst(tcx, normalize_impl_ty_substs);
1966 let rebased_substs =
1967 normalize_impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
1968 let bound_vars = tcx.mk_bound_variable_kinds(&bound_vars);
3dfed10e
XL
1969 let normalize_param_env = {
1970 let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
353b0b11 1971 match normalize_impl_ty.kind() {
9c376795
FG
1972 ty::Alias(ty::Projection, proj)
1973 if proj.def_id == trait_ty.def_id && proj.substs == rebased_substs =>
29967ef6
XL
1974 {
1975 // Don't include this predicate if the projected type is
1976 // exactly the same as the projection. This can occur in
1977 // (somewhat dubious) code like this:
1978 //
1979 // impl<T> X for T where T: X { type Y = <T as X>::Y; }
1980 }
1981 _ => predicates.push(
94222f64
XL
1982 ty::Binder::bind_with_vars(
1983 ty::ProjectionPredicate {
9c376795 1984 projection_ty: tcx.mk_alias_ty(trait_ty.def_id, rebased_substs),
353b0b11 1985 term: normalize_impl_ty.into(),
29967ef6 1986 },
94222f64
XL
1987 bound_vars,
1988 )
29967ef6
XL
1989 .to_predicate(tcx),
1990 ),
1991 };
9ffffee4 1992 ty::ParamEnv::new(tcx.mk_predicates(&predicates), Reveal::UserFacing, param_env.constness())
f035d41b 1993 };
94222f64
XL
1994 debug!(?normalize_param_env);
1995
9ffffee4 1996 let impl_ty_def_id = impl_ty.def_id.expect_local();
94222f64 1997 let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
064997fb 1998 let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
f035d41b 1999
2b03887a
FG
2000 let infcx = tcx.infer_ctxt().build();
2001 let ocx = ObligationCtxt::new(&infcx);
f035d41b 2002
353b0b11
FG
2003 // A synthetic impl Trait for RPITIT desugaring has no HIR, which we currently use to get the
2004 // span for an impl's associated type. Instead, for these, use the def_span for the synthesized
2005 // associated type.
2006 let impl_ty_span = if tcx.opt_rpitit_info(impl_ty.def_id).is_some() {
2007 tcx.def_span(impl_ty_def_id)
2008 } else {
2009 match tcx.hir().get_by_def_id(impl_ty_def_id) {
2010 hir::Node::TraitItem(hir::TraitItem {
2011 kind: hir::TraitItemKind::Type(_, Some(ty)),
2012 ..
2013 }) => ty.span,
2014 hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Type(ty), .. }) => ty.span,
2015 _ => bug!(),
2016 }
9ffffee4
FG
2017 };
2018 let assumed_wf_types = ocx.assumed_wf_types(param_env, impl_ty_span, impl_ty_def_id);
f2b60f7d 2019
2b03887a
FG
2020 let normalize_cause = ObligationCause::new(
2021 impl_ty_span,
9ffffee4 2022 impl_ty_def_id,
2b03887a
FG
2023 ObligationCauseCode::CheckAssociatedTypeBounds {
2024 impl_item_def_id: impl_ty.def_id.expect_local(),
2025 trait_item_def_id: trait_ty.def_id,
2026 },
2027 );
2028 let mk_cause = |span: Span| {
2029 let code = if span.is_dummy() {
2030 traits::ItemObligation(trait_ty.def_id)
2031 } else {
2032 traits::BindingObligation(trait_ty.def_id, span)
29967ef6 2033 };
9ffffee4 2034 ObligationCause::new(impl_ty_span, impl_ty_def_id, code)
2b03887a 2035 };
f035d41b 2036
353b0b11 2037 let obligations: Vec<_> = tcx
49aad941 2038 .explicit_item_bounds(trait_ty.def_id)
2b03887a
FG
2039 .subst_iter_copied(tcx, rebased_substs)
2040 .map(|(concrete_ty_bound, span)| {
2041 debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
487cf647 2042 traits::Obligation::new(tcx, mk_cause(span), param_env, concrete_ty_bound)
2b03887a
FG
2043 })
2044 .collect();
2045 debug!("check_type_bounds: item_bounds={:?}", obligations);
2046
353b0b11 2047 for mut obligation in util::elaborate(tcx, obligations) {
487cf647
FG
2048 let normalized_predicate =
2049 ocx.normalize(&normalize_cause, normalize_param_env, obligation.predicate);
2b03887a
FG
2050 debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
2051 obligation.predicate = normalized_predicate;
f035d41b 2052
2b03887a
FG
2053 ocx.register_obligation(obligation);
2054 }
2055 // Check that all obligations are satisfied by the implementation's
2056 // version.
2057 let errors = ocx.select_all_or_error();
2058 if !errors.is_empty() {
353b0b11 2059 let reported = infcx.err_ctxt().report_fulfillment_errors(&errors);
2b03887a
FG
2060 return Err(reported);
2061 }
f035d41b 2062
2b03887a
FG
2063 // Finally, resolve all regions. This catches wily misuses of
2064 // lifetime parameters.
9ffffee4 2065 let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_def_id, assumed_wf_types);
353b0b11
FG
2066 let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
2067 ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
f035d41b
XL
2068}
2069
dfeec247
XL
2070fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
2071 match impl_item.kind {
2072 ty::AssocKind::Const => "const",
ba9703b0 2073 ty::AssocKind::Fn => "method",
f035d41b 2074 ty::AssocKind::Type => "type",
dfeec247
XL
2075 }
2076}