]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_hir_analysis/src/check/intrinsicck.rs
New upstream version 1.70.0+dfsg1
[rustc.git] / compiler / rustc_hir_analysis / src / check / intrinsicck.rs
CommitLineData
5869c6ff 1use rustc_ast::InlineAsmTemplatePiece;
353b0b11 2use rustc_data_structures::fx::FxIndexSet;
dfeec247 3use rustc_hir as hir;
9ffffee4 4use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitableExt, UintTy};
f9f354fc 5use rustc_session::lint;
9ffffee4 6use rustc_span::def_id::LocalDefId;
2b03887a 7use rustc_span::{Symbol, DUMMY_SP};
353b0b11 8use rustc_target::abi::FieldIdx;
923072b8 9use rustc_target::asm::{InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType};
60c5eb7d 10
f2b60f7d
FG
11pub struct InlineAsmCtxt<'a, 'tcx> {
12 tcx: TyCtxt<'tcx>,
13 param_env: ty::ParamEnv<'tcx>,
14 get_operand_ty: Box<dyn Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a>,
15}
16
17impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
18 pub fn new_global_asm(tcx: TyCtxt<'tcx>) -> Self {
19 InlineAsmCtxt {
20 tcx,
21 param_env: ty::ParamEnv::empty(),
22 get_operand_ty: Box::new(|e| bug!("asm operand in global asm: {e:?}")),
23 }
24 }
25
26 pub fn new_in_fn(
27 tcx: TyCtxt<'tcx>,
28 param_env: ty::ParamEnv<'tcx>,
29 get_operand_ty: impl Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a,
30 ) -> Self {
31 InlineAsmCtxt { tcx, param_env, get_operand_ty: Box::new(get_operand_ty) }
32 }
f9f354fc 33
923072b8 34 // FIXME(compiler-errors): This could use `<$ty as Pointee>::Metadata == ()`
f9f354fc 35 fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool {
923072b8
FG
36 // Type still may have region variables, but `Sized` does not depend
37 // on those, so just erase them before querying.
2b03887a 38 if ty.is_sized(self.tcx, self.param_env) {
f9f354fc
XL
39 return true;
40 }
1b1a35ee 41 if let ty::Foreign(..) = ty.kind() {
f9f354fc
XL
42 return true;
43 }
44 false
45 }
46
47 fn check_asm_operand_type(
48 &self,
49 idx: usize,
50 reg: InlineAsmRegOrRegClass,
f2b60f7d 51 expr: &'tcx hir::Expr<'tcx>,
f9f354fc 52 template: &[InlineAsmTemplatePiece],
94222f64 53 is_input: bool,
f2b60f7d 54 tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
353b0b11 55 target_features: &FxIndexSet<Symbol>,
f9f354fc 56 ) -> Option<InlineAsmType> {
f2b60f7d 57 let ty = (self.get_operand_ty)(expr);
2b03887a 58 if ty.has_non_region_infer() {
f2b60f7d
FG
59 bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
60 }
29967ef6 61 let asm_ty_isize = match self.tcx.sess.target.pointer_width {
f9f354fc
XL
62 16 => InlineAsmType::I16,
63 32 => InlineAsmType::I32,
64 64 => InlineAsmType::I64,
65 _ => unreachable!(),
66 };
923072b8 67
1b1a35ee 68 let asm_ty = match *ty.kind() {
94222f64
XL
69 // `!` is allowed for input but not for output (issue #87802)
70 ty::Never if is_input => return None,
71 ty::Error(_) => return None,
f9f354fc
XL
72 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Some(InlineAsmType::I8),
73 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Some(InlineAsmType::I16),
74 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Some(InlineAsmType::I32),
75 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Some(InlineAsmType::I64),
76 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Some(InlineAsmType::I128),
77 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Some(asm_ty_isize),
78 ty::Float(FloatTy::F32) => Some(InlineAsmType::F32),
79 ty::Float(FloatTy::F64) => Some(InlineAsmType::F64),
80 ty::FnPtr(_) => Some(asm_ty_isize),
f2b60f7d 81 ty::RawPtr(ty::TypeAndMut { ty, mutbl: _ }) if self.is_thin_ptr_ty(ty) => {
f9f354fc
XL
82 Some(asm_ty_isize)
83 }
5e7ed085 84 ty::Adt(adt, substs) if adt.repr().simd() => {
f9f354fc 85 let fields = &adt.non_enum_variant().fields;
353b0b11 86 let elem_ty = fields[FieldIdx::from_u32(0)].ty(self.tcx, substs);
1b1a35ee 87 match elem_ty.kind() {
f035d41b 88 ty::Never | ty::Error(_) => return None,
f9f354fc
XL
89 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => {
90 Some(InlineAsmType::VecI8(fields.len() as u64))
91 }
92 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => {
93 Some(InlineAsmType::VecI16(fields.len() as u64))
94 }
95 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => {
96 Some(InlineAsmType::VecI32(fields.len() as u64))
97 }
98 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => {
99 Some(InlineAsmType::VecI64(fields.len() as u64))
100 }
101 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
102 Some(InlineAsmType::VecI128(fields.len() as u64))
103 }
104 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
29967ef6 105 Some(match self.tcx.sess.target.pointer_width {
f9f354fc
XL
106 16 => InlineAsmType::VecI16(fields.len() as u64),
107 32 => InlineAsmType::VecI32(fields.len() as u64),
108 64 => InlineAsmType::VecI64(fields.len() as u64),
109 _ => unreachable!(),
110 })
111 }
112 ty::Float(FloatTy::F32) => Some(InlineAsmType::VecF32(fields.len() as u64)),
113 ty::Float(FloatTy::F64) => Some(InlineAsmType::VecF64(fields.len() as u64)),
114 _ => None,
115 }
116 }
923072b8 117 ty::Infer(_) => unreachable!(),
f9f354fc
XL
118 _ => None,
119 };
5e7ed085
FG
120 let Some(asm_ty) = asm_ty else {
121 let msg = &format!("cannot use value of type `{ty}` for inline assembly");
122 let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
123 err.note(
124 "only integers, floats, SIMD vectors, pointers and function pointers \
125 can be used as arguments for inline assembly",
126 );
127 err.emit();
128 return None;
f9f354fc
XL
129 };
130
131 // Check that the type implements Copy. The only case where this can
132 // possibly fail is for SIMD types which don't #[derive(Copy)].
2b03887a 133 if !ty.is_copy_modulo_regions(self.tcx, self.param_env) {
f9f354fc
XL
134 let msg = "arguments for inline assembly must be copyable";
135 let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
5e7ed085 136 err.note(&format!("`{ty}` does not implement the Copy trait"));
f9f354fc
XL
137 err.emit();
138 }
139
140 // Ideally we wouldn't need to do this, but LLVM's register allocator
141 // really doesn't like it when tied operands have different types.
142 //
143 // This is purely an LLVM limitation, but we have to live with it since
144 // there is no way to hide this with implicit conversions.
145 //
146 // For the purposes of this check we only look at the `InlineAsmType`,
147 // which means that pointers and integers are treated as identical (modulo
148 // size).
149 if let Some((in_expr, Some(in_asm_ty))) = tied_input {
150 if in_asm_ty != asm_ty {
f035d41b 151 let msg = "incompatible types for asm inout argument";
f9f354fc 152 let mut err = self.tcx.sess.struct_span_err(vec![in_expr.span, expr.span], msg);
923072b8 153
f2b60f7d 154 let in_expr_ty = (self.get_operand_ty)(in_expr);
923072b8 155 err.span_label(in_expr.span, &format!("type `{in_expr_ty}`"));
5e7ed085 156 err.span_label(expr.span, &format!("type `{ty}`"));
f9f354fc
XL
157 err.note(
158 "asm inout arguments must have the same type, \
159 unless they are both pointers or integers of the same size",
160 );
161 err.emit();
162 }
163
164 // All of the later checks have already been done on the input, so
165 // let's not emit errors and warnings twice.
166 return Some(asm_ty);
167 }
168
169 // Check the type against the list of types supported by the selected
170 // register class.
171 let asm_arch = self.tcx.sess.asm_arch.unwrap();
172 let reg_class = reg.reg_class();
173 let supported_tys = reg_class.supported_types(asm_arch);
5e7ed085
FG
174 let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
175 let msg = &format!("type `{ty}` cannot be used with this register class");
176 let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
177 let supported_tys: Vec<_> =
178 supported_tys.iter().map(|(t, _)| t.to_string()).collect();
179 err.note(&format!(
180 "register class `{}` supports these types: {}",
181 reg_class.name(),
182 supported_tys.join(", "),
183 ));
184 if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
185 err.help(&format!(
186 "consider using the `{}` register class instead",
187 suggest.name()
f9f354fc 188 ));
f9f354fc 189 }
5e7ed085
FG
190 err.emit();
191 return Some(asm_ty);
f9f354fc
XL
192 };
193
194 // Check whether the selected type requires a target feature. Note that
c295e0f8
XL
195 // this is different from the feature check we did earlier. While the
196 // previous check checked that this register class is usable at all
197 // with the currently enabled features, some types may only be usable
198 // with a register class when a certain feature is enabled. We check
199 // this here since it depends on the results of typeck.
f9f354fc
XL
200 //
201 // Also note that this check isn't run when the operand type is never
c295e0f8
XL
202 // (!). In that case we still need the earlier check to verify that the
203 // register class is usable at all.
f9f354fc 204 if let Some(feature) = feature {
353b0b11 205 if !target_features.contains(feature) {
f9f354fc
XL
206 let msg = &format!("`{}` target feature is not enabled", feature);
207 let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
208 err.note(&format!(
209 "this is required to use type `{}` with register class `{}`",
210 ty,
211 reg_class.name(),
212 ));
213 err.emit();
214 return Some(asm_ty);
215 }
216 }
217
218 // Check whether a modifier is suggested for using this type.
219 if let Some((suggested_modifier, suggested_result)) =
220 reg_class.suggest_modifier(asm_arch, asm_ty)
221 {
222 // Search for any use of this operand without a modifier and emit
223 // the suggestion for them.
224 let mut spans = vec![];
225 for piece in template {
226 if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
227 {
228 if operand_idx == idx && modifier.is_none() {
229 spans.push(span);
230 }
231 }
232 }
233 if !spans.is_empty() {
234 let (default_modifier, default_result) =
235 reg_class.default_modifier(asm_arch).unwrap();
236 self.tcx.struct_span_lint_hir(
237 lint::builtin::ASM_SUB_REGISTER,
238 expr.hir_id,
239 spans,
2b03887a 240 "formatting may not be suitable for sub-register argument",
f9f354fc 241 |lint| {
2b03887a
FG
242 lint.span_label(expr.span, "for this argument");
243 lint.help(&format!(
f2b60f7d 244 "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}`",
f9f354fc 245 ));
2b03887a 246 lint.help(&format!(
f2b60f7d 247 "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}`",
f9f354fc 248 ));
2b03887a 249 lint
f9f354fc
XL
250 },
251 );
252 }
253 }
254
255 Some(asm_ty)
256 }
257
9ffffee4
FG
258 pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: LocalDefId) {
259 let target_features = self.tcx.asm_target_features(enclosing_id.to_def_id());
923072b8
FG
260 let Some(asm_arch) = self.tcx.sess.asm_arch else {
261 self.tcx.sess.delay_span_bug(DUMMY_SP, "target architecture does not support asm");
262 return;
263 };
c295e0f8
XL
264 for (idx, (op, op_sp)) in asm.operands.iter().enumerate() {
265 // Validate register classes against currently enabled target
266 // features. We check that at least one type is available for
267 // the enabled features.
268 //
269 // We ignore target feature requirements for clobbers: if the
270 // feature is disabled then the compiler doesn't care what we
271 // do with the registers.
272 //
273 // Note that this is only possible for explicit register
274 // operands, which cannot be used in the asm string.
275 if let Some(reg) = op.reg() {
5e7ed085
FG
276 // Some explicit registers cannot be used depending on the
277 // target. Reject those here.
278 if let InlineAsmRegOrRegClass::Reg(reg) = reg {
923072b8
FG
279 if let InlineAsmReg::Err = reg {
280 // `validate` will panic on `Err`, as an error must
281 // already have been reported.
282 continue;
283 }
5e7ed085
FG
284 if let Err(msg) = reg.validate(
285 asm_arch,
286 self.tcx.sess.relocation_model(),
287 &target_features,
288 &self.tcx.sess.target,
289 op.is_clobber(),
290 ) {
291 let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
292 self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
293 continue;
294 }
295 }
296
c295e0f8
XL
297 if !op.is_clobber() {
298 let mut missing_required_features = vec![];
299 let reg_class = reg.reg_class();
923072b8
FG
300 if let InlineAsmRegClass::Err = reg_class {
301 continue;
302 }
5e7ed085 303 for &(_, feature) in reg_class.supported_types(asm_arch) {
c295e0f8
XL
304 match feature {
305 Some(feature) => {
5e7ed085 306 if target_features.contains(&feature) {
c295e0f8
XL
307 missing_required_features.clear();
308 break;
309 } else {
310 missing_required_features.push(feature);
311 }
312 }
313 None => {
314 missing_required_features.clear();
315 break;
316 }
317 }
318 }
319
320 // We are sorting primitive strs here and can use unstable sort here
321 missing_required_features.sort_unstable();
322 missing_required_features.dedup();
323 match &missing_required_features[..] {
324 [] => {}
325 [feature] => {
326 let msg = format!(
327 "register class `{}` requires the `{}` target feature",
328 reg_class.name(),
329 feature
330 );
331 self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
332 // register isn't enabled, don't do more checks
333 continue;
334 }
335 features => {
336 let msg = format!(
337 "register class `{}` requires at least one of the following target features: {}",
338 reg_class.name(),
5099ac24
FG
339 features
340 .iter()
341 .map(|f| f.as_str())
342 .intersperse(", ")
343 .collect::<String>(),
c295e0f8
XL
344 );
345 self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
346 // register isn't enabled, don't do more checks
347 continue;
348 }
349 }
350 }
351 }
352
f9f354fc 353 match *op {
9c376795 354 hir::InlineAsmOperand::In { reg, expr } => {
c295e0f8
XL
355 self.check_asm_operand_type(
356 idx,
357 reg,
358 expr,
359 asm.template,
360 true,
361 None,
5e7ed085 362 &target_features,
c295e0f8 363 );
f9f354fc 364 }
9c376795 365 hir::InlineAsmOperand::Out { reg, late: _, expr } => {
f9f354fc 366 if let Some(expr) = expr {
c295e0f8
XL
367 self.check_asm_operand_type(
368 idx,
369 reg,
370 expr,
371 asm.template,
372 false,
373 None,
5e7ed085 374 &target_features,
c295e0f8 375 );
f9f354fc
XL
376 }
377 }
9c376795 378 hir::InlineAsmOperand::InOut { reg, late: _, expr } => {
c295e0f8
XL
379 self.check_asm_operand_type(
380 idx,
381 reg,
382 expr,
383 asm.template,
384 false,
385 None,
5e7ed085 386 &target_features,
c295e0f8 387 );
f9f354fc 388 }
9c376795 389 hir::InlineAsmOperand::SplitInOut { reg, late: _, in_expr, out_expr } => {
c295e0f8
XL
390 let in_ty = self.check_asm_operand_type(
391 idx,
392 reg,
393 in_expr,
394 asm.template,
395 true,
396 None,
5e7ed085 397 &target_features,
c295e0f8 398 );
f9f354fc
XL
399 if let Some(out_expr) = out_expr {
400 self.check_asm_operand_type(
401 idx,
402 reg,
403 out_expr,
404 asm.template,
94222f64 405 false,
f9f354fc 406 Some((in_expr, in_ty)),
5e7ed085 407 &target_features,
f9f354fc
XL
408 );
409 }
410 }
04454e1e
FG
411 // No special checking is needed for these:
412 // - Typeck has checked that Const operands are integers.
413 // - AST lowering guarantees that SymStatic points to a static.
414 hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymStatic { .. } => {}
415 // Check that sym actually points to a function. Later passes
416 // depend on this.
417 hir::InlineAsmOperand::SymFn { anon_const } => {
9ffffee4 418 let ty = self.tcx.type_of(anon_const.def_id).subst_identity();
04454e1e
FG
419 match ty.kind() {
420 ty::Never | ty::Error(_) => {}
421 ty::FnDef(..) => {}
422 _ => {
423 let mut err =
424 self.tcx.sess.struct_span_err(*op_sp, "invalid `sym` operand");
425 err.span_label(
9ffffee4 426 self.tcx.def_span(anon_const.def_id),
04454e1e
FG
427 &format!("is {} `{}`", ty.kind().article(), ty),
428 );
429 err.help("`sym` operands must refer to either a function or a static");
430 err.emit();
431 }
432 };
433 }
434 }
435 }
1a4d82fc
JJ
436 }
437}