]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_hir_analysis/src/impl_wf_check/min_specialization.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / compiler / rustc_hir_analysis / src / impl_wf_check / min_specialization.rs
CommitLineData
ba9703b0
XL
1//! # Minimal Specialization
2//!
3//! This module contains the checks for sound specialization used when the
4//! `min_specialization` feature is enabled. This requires that the impl is
5//! *always applicable*.
6//!
7//! If `impl1` specializes `impl2` then `impl1` is always applicable if we know
8//! that all the bounds of `impl2` are satisfied, and all of the bounds of
9//! `impl1` are satisfied for some choice of lifetimes then we know that
10//! `impl1` applies for any choice of lifetimes.
11//!
12//! ## Basic approach
13//!
14//! To enforce this requirement on specializations we take the following
15//! approach:
16//!
17//! 1. Match up the substs for `impl2` so that the implemented trait and
18//! self-type match those for `impl1`.
19//! 2. Check for any direct use of `'static` in the substs of `impl2`.
20//! 3. Check that all of the generic parameters of `impl1` occur at most once
21//! in the *unconstrained* substs for `impl2`. A parameter is constrained if
22//! its value is completely determined by an associated type projection
23//! predicate.
24//! 4. Check that all predicates on `impl1` either exist on `impl2` (after
25//! matching substs), or are well-formed predicates for the trait's type
26//! arguments.
27//!
28//! ## Example
29//!
30//! Suppose we have the following always applicable impl:
31//!
04454e1e 32//! ```ignore (illustrative)
ba9703b0
XL
33//! impl<T> SpecExtend<T> for std::vec::IntoIter<T> { /* specialized impl */ }
34//! impl<T, I: Iterator<Item=T>> SpecExtend<T> for I { /* default impl */ }
35//! ```
36//!
37//! We get that the subst for `impl2` are `[T, std::vec::IntoIter<T>]`. `T` is
38//! constrained to be `<I as Iterator>::Item`, so we check only
39//! `std::vec::IntoIter<T>` for repeated parameters, which it doesn't have. The
40//! predicates of `impl1` are only `T: Sized`, which is also a predicate of
41//! `impl2`. So this specialization is sound.
42//!
43//! ## Extensions
44//!
45//! Unfortunately not all specializations in the standard library are allowed
46//! by this. So there are two extensions to these rules that allow specializing
47//! on some traits: that is, using them as bounds on the specializing impl,
48//! even when they don't occur in the base impl.
49//!
50//! ### rustc_specialization_trait
51//!
52//! If a trait is always applicable, then it's sound to specialize on it. We
53//! check trait is always applicable in the same way as impls, except that step
54//! 4 is now "all predicates on `impl1` are always applicable". We require that
55//! `specialization` or `min_specialization` is enabled to implement these
56//! traits.
57//!
58//! ### rustc_unsafe_specialization_marker
59//!
60//! There are also some specialization on traits with no methods, including the
61//! stable `FusedIterator` trait. We allow marking marker traits with an
62//! unstable attribute that means we ignore them in point 3 of the checks
63//! above. This is unsound, in the sense that the specialized impl may be used
64//! when it doesn't apply, but we allow it in the short term since it can't
65//! cause use after frees with purely safe code in the same way as specializing
66//! on traits with methods can.
67
68use crate::constrained_generic_params as cgp;
04454e1e 69use crate::errors::SubstsOnOverriddenImpl;
ba9703b0
XL
70
71use rustc_data_structures::fx::FxHashSet;
487cf647 72use rustc_hir as hir;
f9f354fc 73use rustc_hir::def_id::{DefId, LocalDefId};
ba9703b0 74use rustc_infer::infer::outlives::env::OutlivesEnvironment;
f2b60f7d 75use rustc_infer::infer::TyCtxtInferExt;
ba9703b0 76use rustc_infer::traits::specialization_graph::Node;
ba9703b0
XL
77use rustc_middle::ty::subst::{GenericArg, InternalSubsts, SubstsRef};
78use rustc_middle::ty::trait_def::TraitSpecializationKind;
064997fb 79use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
ba9703b0 80use rustc_span::Span;
2b03887a 81use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
f2b60f7d
FG
82use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
83use rustc_trait_selection::traits::{self, translate_substs, wf, ObligationCtxt};
ba9703b0 84
064997fb 85pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
ba9703b0 86 if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
f2b60f7d 87 check_always_applicable(tcx, impl_def_id, node);
ba9703b0
XL
88 }
89}
90
064997fb 91fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId) -> Option<Node> {
ba9703b0 92 let trait_ref = tcx.impl_trait_ref(impl1_def_id)?;
f25598a0 93 let trait_def = tcx.trait_def(trait_ref.skip_binder().def_id);
ba9703b0 94
064997fb 95 let impl2_node = trait_def.ancestors(tcx, impl1_def_id.to_def_id()).ok()?.nth(1)?;
ba9703b0
XL
96
97 let always_applicable_trait =
98 matches!(trait_def.specialization_kind, TraitSpecializationKind::AlwaysApplicable);
99 if impl2_node.is_from_trait() && !always_applicable_trait {
100 // Implementing a normal trait isn't a specialization.
101 return None;
102 }
103 Some(impl2_node)
104}
105
106/// Check that `impl1` is a sound specialization
487cf647 107#[instrument(level = "debug", skip(tcx))]
f2b60f7d
FG
108fn check_always_applicable(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node) {
109 if let Some((impl1_substs, impl2_substs)) = get_impl_substs(tcx, impl1_def_id, impl2_node) {
ba9703b0 110 let impl2_def_id = impl2_node.def_id();
487cf647 111 debug!(?impl2_def_id, ?impl2_substs);
ba9703b0 112
ba9703b0
XL
113 let parent_substs = if impl2_node.is_from_trait() {
114 impl2_substs.to_vec()
115 } else {
116 unconstrained_parent_impl_substs(tcx, impl2_def_id, impl2_substs)
117 };
118
064997fb 119 let span = tcx.def_span(impl1_def_id);
487cf647 120 check_constness(tcx, impl1_def_id, impl2_node, span);
ba9703b0
XL
121 check_static_lifetimes(tcx, &parent_substs, span);
122 check_duplicate_params(tcx, impl1_substs, &parent_substs, span);
f2b60f7d 123 check_predicates(tcx, impl1_def_id, impl1_substs, impl2_node, impl2_substs, span);
ba9703b0
XL
124 }
125}
126
487cf647
FG
127/// Check that the specializing impl `impl1` is at least as const as the base
128/// impl `impl2`
129fn check_constness(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node, span: Span) {
130 if impl2_node.is_from_trait() {
131 // This isn't a specialization
132 return;
133 }
134
135 let impl1_constness = tcx.constness(impl1_def_id.to_def_id());
136 let impl2_constness = tcx.constness(impl2_node.def_id());
137
138 if let hir::Constness::Const = impl2_constness {
139 if let hir::Constness::NotConst = impl1_constness {
140 tcx.sess
141 .struct_span_err(span, "cannot specialize on const impl with non-const impl")
142 .emit();
143 }
144 }
145}
146
ba9703b0
XL
147/// Given a specializing impl `impl1`, and the base impl `impl2`, returns two
148/// substitutions `(S1, S2)` that equate their trait references. The returned
149/// types are expressed in terms of the generics of `impl1`.
150///
151/// Example
152///
2b03887a 153/// ```ignore (illustrative)
ba9703b0
XL
154/// impl<A, B> Foo<A> for B { /* impl2 */ }
155/// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
2b03887a 156/// ```
ba9703b0
XL
157///
158/// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
f25598a0
FG
159fn get_impl_substs(
160 tcx: TyCtxt<'_>,
064997fb 161 impl1_def_id: LocalDefId,
ba9703b0 162 impl2_node: Node,
f25598a0 163) -> Option<(SubstsRef<'_>, SubstsRef<'_>)> {
2b03887a
FG
164 let infcx = &tcx.infer_ctxt().build();
165 let ocx = ObligationCtxt::new(infcx);
166 let param_env = tcx.param_env(impl1_def_id);
167 let impl1_hir_id = tcx.hir().local_def_id_to_hir_id(impl1_def_id);
ba9703b0 168
2b03887a
FG
169 let assumed_wf_types =
170 ocx.assumed_wf_types(param_env, tcx.def_span(impl1_def_id), impl1_def_id);
ba9703b0 171
2b03887a
FG
172 let impl1_substs = InternalSubsts::identity_for_item(tcx, impl1_def_id.to_def_id());
173 let impl2_substs =
174 translate_substs(infcx, param_env, impl1_def_id.to_def_id(), impl1_substs, impl2_node);
f2b60f7d 175
2b03887a
FG
176 let errors = ocx.select_all_or_error();
177 if !errors.is_empty() {
487cf647 178 ocx.infcx.err_ctxt().report_fulfillment_errors(&errors, None);
2b03887a
FG
179 return None;
180 }
f2b60f7d 181
2b03887a
FG
182 let implied_bounds = infcx.implied_bounds_tys(param_env, impl1_hir_id, assumed_wf_types);
183 let outlives_env = OutlivesEnvironment::with_bounds(param_env, Some(infcx), implied_bounds);
f25598a0
FG
184 let _ =
185 infcx.err_ctxt().check_region_obligations_and_report_errors(impl1_def_id, &outlives_env);
2b03887a
FG
186 let Ok(impl2_substs) = infcx.fully_resolve(impl2_substs) else {
187 let span = tcx.def_span(impl1_def_id);
188 tcx.sess.emit_err(SubstsOnOverriddenImpl { span });
189 return None;
190 };
191 Some((impl1_substs, impl2_substs))
ba9703b0
XL
192}
193
194/// Returns a list of all of the unconstrained subst of the given impl.
195///
196/// For example given the impl:
197///
198/// impl<'a, T, I> ... where &'a I: IntoIterator<Item=&'a T>
199///
200/// This would return the substs corresponding to `['a, I]`, because knowing
201/// `'a` and `I` determines the value of `T`.
202fn unconstrained_parent_impl_substs<'tcx>(
203 tcx: TyCtxt<'tcx>,
204 impl_def_id: DefId,
205 impl_substs: SubstsRef<'tcx>,
206) -> Vec<GenericArg<'tcx>> {
207 let impl_generic_predicates = tcx.predicates_of(impl_def_id);
208 let mut unconstrained_parameters = FxHashSet::default();
209 let mut constrained_params = FxHashSet::default();
f25598a0 210 let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).map(ty::EarlyBinder::subst_identity);
ba9703b0
XL
211
212 // Unfortunately the functions in `constrained_generic_parameters` don't do
213 // what we want here. We want only a list of constrained parameters while
214 // the functions in `cgp` add the constrained parameters to a list of
215 // unconstrained parameters.
216 for (predicate, _) in impl_generic_predicates.predicates.iter() {
487cf647
FG
217 if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) =
218 predicate.kind().skip_binder()
219 {
3dfed10e 220 let projection_ty = proj.projection_ty;
5099ac24 221 let projected_ty = proj.term;
ba9703b0
XL
222
223 let unbound_trait_ref = projection_ty.trait_ref(tcx);
224 if Some(unbound_trait_ref) == impl_trait_ref {
225 continue;
226 }
227
5099ac24 228 unconstrained_parameters.extend(cgp::parameters_for(&projection_ty, true));
ba9703b0 229
5099ac24 230 for param in cgp::parameters_for(&projected_ty, false) {
ba9703b0
XL
231 if !unconstrained_parameters.contains(&param) {
232 constrained_params.insert(param.0);
233 }
234 }
235
5099ac24 236 unconstrained_parameters.extend(cgp::parameters_for(&projected_ty, true));
ba9703b0
XL
237 }
238 }
239
240 impl_substs
241 .iter()
242 .enumerate()
243 .filter(|&(idx, _)| !constrained_params.contains(&(idx as u32)))
f9f354fc 244 .map(|(_, arg)| arg)
ba9703b0
XL
245 .collect()
246}
247
248/// Check that parameters of the derived impl don't occur more than once in the
249/// equated substs of the base impl.
250///
251/// For example forbid the following:
252///
2b03887a 253/// ```ignore (illustrative)
ba9703b0
XL
254/// impl<A> Tr for A { }
255/// impl<B> Tr for (B, B) { }
2b03887a 256/// ```
ba9703b0
XL
257///
258/// Note that only consider the unconstrained parameters of the base impl:
259///
2b03887a 260/// ```ignore (illustrative)
ba9703b0
XL
261/// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
262/// impl<T> Tr<T> for Vec<T> { }
2b03887a 263/// ```
ba9703b0
XL
264///
265/// The substs for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
266/// but `S` is constrained in the parent impl, so `parent_substs` is only
267/// `[Vec<T>]`. This means we allow this impl.
268fn check_duplicate_params<'tcx>(
269 tcx: TyCtxt<'tcx>,
270 impl1_substs: SubstsRef<'tcx>,
271 parent_substs: &Vec<GenericArg<'tcx>>,
272 span: Span,
273) {
5099ac24 274 let mut base_params = cgp::parameters_for(parent_substs, true);
ba9703b0
XL
275 base_params.sort_by_key(|param| param.0);
276 if let (_, [duplicate, ..]) = base_params.partition_dedup() {
277 let param = impl1_substs[duplicate.0 as usize];
278 tcx.sess
279 .struct_span_err(span, &format!("specializing impl repeats parameter `{}`", param))
280 .emit();
281 }
282}
283
284/// Check that `'static` lifetimes are not introduced by the specializing impl.
285///
286/// For example forbid the following:
287///
2b03887a 288/// ```ignore (illustrative)
ba9703b0
XL
289/// impl<A> Tr for A { }
290/// impl Tr for &'static i32 { }
2b03887a 291/// ```
ba9703b0
XL
292fn check_static_lifetimes<'tcx>(
293 tcx: TyCtxt<'tcx>,
294 parent_substs: &Vec<GenericArg<'tcx>>,
295 span: Span,
296) {
5099ac24 297 if tcx.any_free_region_meets(parent_substs, |r| r.is_static()) {
ba9703b0
XL
298 tcx.sess.struct_span_err(span, "cannot specialize on `'static` lifetime").emit();
299 }
300}
301
302/// Check whether predicates on the specializing impl (`impl1`) are allowed.
303///
487cf647 304/// Each predicate `P` must be one of:
ba9703b0 305///
487cf647
FG
306/// * Global (not reference any parameters).
307/// * A `T: Tr` predicate where `Tr` is an always-applicable trait.
308/// * Present on the base impl `impl2`.
309/// * This check is done using the `trait_predicates_eq` function below.
310/// * A well-formed predicate of a type argument of the trait being implemented,
ba9703b0 311/// including the `Self`-type.
487cf647 312#[instrument(level = "debug", skip(tcx))]
ba9703b0 313fn check_predicates<'tcx>(
f2b60f7d 314 tcx: TyCtxt<'tcx>,
f9f354fc 315 impl1_def_id: LocalDefId,
ba9703b0
XL
316 impl1_substs: SubstsRef<'tcx>,
317 impl2_node: Node,
318 impl2_substs: SubstsRef<'tcx>,
319 span: Span,
320) {
064997fb
FG
321 let instantiated = tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_substs);
322 let impl1_predicates: Vec<_> = traits::elaborate_predicates_with_span(
c295e0f8 323 tcx,
064997fb
FG
324 std::iter::zip(
325 instantiated.predicates,
326 // Don't drop predicates (unsound!) because `spans` is too short
327 instantiated.spans.into_iter().chain(std::iter::repeat(span)),
328 ),
c295e0f8 329 )
064997fb 330 .map(|obligation| (obligation.predicate, obligation.cause.span))
c295e0f8
XL
331 .collect();
332
ba9703b0
XL
333 let mut impl2_predicates = if impl2_node.is_from_trait() {
334 // Always applicable traits have to be always applicable without any
335 // assumptions.
c295e0f8 336 Vec::new()
ba9703b0 337 } else {
c295e0f8
XL
338 traits::elaborate_predicates(
339 tcx,
340 tcx.predicates_of(impl2_node.def_id())
341 .instantiate(tcx, impl2_substs)
342 .predicates
343 .into_iter(),
344 )
345 .map(|obligation| obligation.predicate)
346 .collect()
ba9703b0 347 };
487cf647 348 debug!(?impl1_predicates, ?impl2_predicates);
ba9703b0
XL
349
350 // Since impls of always applicable traits don't get to assume anything, we
351 // can also assume their supertraits apply.
352 //
353 // For example, we allow:
354 //
355 // #[rustc_specialization_trait]
356 // trait AlwaysApplicable: Debug { }
357 //
358 // impl<T> Tr for T { }
359 // impl<T: AlwaysApplicable> Tr for T { }
360 //
361 // Specializing on `AlwaysApplicable` allows also specializing on `Debug`
362 // which is sound because we forbid impls like the following
363 //
364 // impl<D: Debug> AlwaysApplicable for D { }
064997fb 365 let always_applicable_traits = impl1_predicates.iter().copied().filter(|&(predicate, _)| {
c295e0f8
XL
366 matches!(
367 trait_predicate_kind(tcx, predicate),
368 Some(TraitSpecializationKind::AlwaysApplicable)
369 )
370 });
ba9703b0
XL
371
372 // Include the well-formed predicates of the type parameters of the impl.
f25598a0 373 for arg in tcx.impl_trait_ref(impl1_def_id).unwrap().subst_identity().substs {
2b03887a
FG
374 let infcx = &tcx.infer_ctxt().build();
375 let obligations = wf::obligations(
376 infcx,
377 tcx.param_env(impl1_def_id),
378 tcx.hir().local_def_id_to_hir_id(impl1_def_id),
379 0,
380 arg,
381 span,
382 )
383 .unwrap();
f2b60f7d 384
2b03887a
FG
385 assert!(!obligations.needs_infer());
386 impl2_predicates.extend(
387 traits::elaborate_obligations(tcx, obligations).map(|obligation| obligation.predicate),
388 )
ba9703b0 389 }
c295e0f8 390 impl2_predicates.extend(
064997fb 391 traits::elaborate_predicates_with_span(tcx, always_applicable_traits)
ba9703b0
XL
392 .map(|obligation| obligation.predicate),
393 );
394
064997fb 395 for (predicate, span) in impl1_predicates {
487cf647 396 if !impl2_predicates.iter().any(|pred2| trait_predicates_eq(tcx, predicate, *pred2, span)) {
f9f354fc 397 check_specialization_on(tcx, predicate, span)
ba9703b0
XL
398 }
399 }
400}
401
487cf647
FG
402/// Checks if some predicate on the specializing impl (`predicate1`) is the same
403/// as some predicate on the base impl (`predicate2`).
404///
405/// This basically just checks syntactic equivalence, but is a little more
406/// forgiving since we want to equate `T: Tr` with `T: ~const Tr` so this can work:
407///
408/// ```ignore (illustrative)
409/// #[rustc_specialization_trait]
410/// trait Specialize { }
411///
412/// impl<T: Bound> Tr for T { }
413/// impl<T: ~const Bound + Specialize> const Tr for T { }
414/// ```
415///
416/// However, we *don't* want to allow the reverse, i.e., when the bound on the
417/// specializing impl is not as const as the bound on the base impl:
418///
419/// ```ignore (illustrative)
420/// impl<T: ~const Bound> const Tr for T { }
421/// impl<T: Bound + Specialize> const Tr for T { } // should be T: ~const Bound
422/// ```
423///
424/// So we make that check in this function and try to raise a helpful error message.
425fn trait_predicates_eq<'tcx>(
426 tcx: TyCtxt<'tcx>,
427 predicate1: ty::Predicate<'tcx>,
428 predicate2: ty::Predicate<'tcx>,
429 span: Span,
430) -> bool {
431 let pred1_kind = predicate1.kind().skip_binder();
432 let pred2_kind = predicate2.kind().skip_binder();
433 let (trait_pred1, trait_pred2) = match (pred1_kind, pred2_kind) {
434 (
435 ty::PredicateKind::Clause(ty::Clause::Trait(pred1)),
436 ty::PredicateKind::Clause(ty::Clause::Trait(pred2)),
437 ) => (pred1, pred2),
438 // Just use plain syntactic equivalence if either of the predicates aren't
439 // trait predicates or have bound vars.
440 _ => return predicate1 == predicate2,
441 };
442
443 let predicates_equal_modulo_constness = {
444 let pred1_unconsted =
445 ty::TraitPredicate { constness: ty::BoundConstness::NotConst, ..trait_pred1 };
446 let pred2_unconsted =
447 ty::TraitPredicate { constness: ty::BoundConstness::NotConst, ..trait_pred2 };
448 pred1_unconsted == pred2_unconsted
449 };
450
451 if !predicates_equal_modulo_constness {
452 return false;
453 }
454
455 // Check that the predicate on the specializing impl is at least as const as
456 // the one on the base.
457 match (trait_pred2.constness, trait_pred1.constness) {
458 (ty::BoundConstness::ConstIfConst, ty::BoundConstness::NotConst) => {
459 tcx.sess.struct_span_err(span, "missing `~const` qualifier for specialization").emit();
460 }
461 _ => {}
462 }
463
464 true
465}
466
467#[instrument(level = "debug", skip(tcx))]
f9f354fc 468fn check_specialization_on<'tcx>(tcx: TyCtxt<'tcx>, predicate: ty::Predicate<'tcx>, span: Span) {
5869c6ff 469 match predicate.kind().skip_binder() {
ba9703b0
XL
470 // Global predicates are either always true or always false, so we
471 // are fine to specialize on.
5099ac24 472 _ if predicate.is_global() => (),
ba9703b0
XL
473 // We allow specializing on explicitly marked traits with no associated
474 // items.
487cf647 475 ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate {
94222f64 476 trait_ref,
487cf647 477 constness: _,
3c0e092e 478 polarity: _,
487cf647 479 })) => {
ba9703b0
XL
480 if !matches!(
481 trait_predicate_kind(tcx, predicate),
482 Some(TraitSpecializationKind::Marker)
483 ) {
484 tcx.sess
485 .struct_span_err(
486 span,
487 &format!(
488 "cannot specialize on trait `{}`",
94222f64 489 tcx.def_path_str(trait_ref.def_id),
ba9703b0
XL
490 ),
491 )
5e7ed085 492 .emit();
ba9703b0
XL
493 }
494 }
487cf647
FG
495 ty::PredicateKind::Clause(ty::Clause::Projection(ty::ProjectionPredicate {
496 projection_ty,
497 term,
498 })) => {
064997fb
FG
499 tcx.sess
500 .struct_span_err(
501 span,
502 &format!("cannot specialize on associated type `{projection_ty} == {term}`",),
503 )
504 .emit();
505 }
5e7ed085
FG
506 _ => {
507 tcx.sess
064997fb 508 .struct_span_err(span, &format!("cannot specialize on predicate `{}`", predicate))
5e7ed085
FG
509 .emit();
510 }
ba9703b0
XL
511 }
512}
513
514fn trait_predicate_kind<'tcx>(
515 tcx: TyCtxt<'tcx>,
f9f354fc 516 predicate: ty::Predicate<'tcx>,
ba9703b0 517) -> Option<TraitSpecializationKind> {
5869c6ff 518 match predicate.kind().skip_binder() {
487cf647
FG
519 ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate {
520 trait_ref,
521 constness: _,
522 polarity: _,
523 })) => Some(tcx.trait_def(trait_ref.def_id).specialization_kind),
524 ty::PredicateKind::Clause(ty::Clause::RegionOutlives(_))
525 | ty::PredicateKind::Clause(ty::Clause::TypeOutlives(_))
526 | ty::PredicateKind::Clause(ty::Clause::Projection(_))
5869c6ff
XL
527 | ty::PredicateKind::WellFormed(_)
528 | ty::PredicateKind::Subtype(_)
94222f64 529 | ty::PredicateKind::Coerce(_)
5869c6ff
XL
530 | ty::PredicateKind::ObjectSafe(_)
531 | ty::PredicateKind::ClosureKind(..)
532 | ty::PredicateKind::ConstEvaluatable(..)
533 | ty::PredicateKind::ConstEquate(..)
487cf647 534 | ty::PredicateKind::Ambiguous
5869c6ff 535 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
ba9703b0
XL
536 }
537}