]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_index/src/bit_set.rs
New upstream version 1.54.0+dfsg1
[rustc.git] / compiler / rustc_index / src / bit_set.rs
CommitLineData
e74abb32 1use crate::vec::{Idx, IndexVec};
3dfed10e 2use arrayvec::ArrayVec;
0bf4aa26
XL
3use std::fmt;
4use std::iter;
5use std::marker::PhantomData;
6use std::mem;
3dfed10e 7use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Not, Range, Shl};
0bf4aa26 8use std::slice;
416331ca 9
3dfed10e
XL
10use rustc_macros::{Decodable, Encodable};
11
dc9dc135 12#[cfg(test)]
416331ca 13mod tests;
0bf4aa26
XL
14
15pub type Word = u64;
16pub const WORD_BYTES: usize = mem::size_of::<Word>();
17pub const WORD_BITS: usize = WORD_BYTES * 8;
18
e74abb32
XL
19/// A fixed-size bitset type with a dense representation.
20///
21/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
0bf4aa26
XL
22///
23/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
24/// just be `usize`.
25///
26/// All operations that involve an element will panic if the element is equal
27/// to or greater than the domain size. All operations that involve two bitsets
28/// will panic if the bitsets have differing domain sizes.
e74abb32 29///
1b1a35ee
XL
30#[derive(Eq, PartialEq, Decodable, Encodable)]
31pub struct BitSet<T> {
0bf4aa26
XL
32 domain_size: usize,
33 words: Vec<Word>,
34 marker: PhantomData<T>,
35}
36
1b1a35ee
XL
37impl<T> BitSet<T> {
38 /// Gets the domain size.
39 pub fn domain_size(&self) -> usize {
40 self.domain_size
41 }
42}
43
0bf4aa26 44impl<T: Idx> BitSet<T> {
9fa01778 45 /// Creates a new, empty bitset with a given `domain_size`.
0bf4aa26
XL
46 #[inline]
47 pub fn new_empty(domain_size: usize) -> BitSet<T> {
48 let num_words = num_words(domain_size);
dfeec247 49 BitSet { domain_size, words: vec![0; num_words], marker: PhantomData }
0bf4aa26
XL
50 }
51
9fa01778 52 /// Creates a new, filled bitset with a given `domain_size`.
0bf4aa26
XL
53 #[inline]
54 pub fn new_filled(domain_size: usize) -> BitSet<T> {
55 let num_words = num_words(domain_size);
dfeec247 56 let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData };
0bf4aa26
XL
57 result.clear_excess_bits();
58 result
59 }
60
0bf4aa26
XL
61 /// Clear all elements.
62 #[inline]
63 pub fn clear(&mut self) {
64 for word in &mut self.words {
65 *word = 0;
66 }
67 }
68
69 /// Clear excess bits in the final word.
70 fn clear_excess_bits(&mut self) {
71 let num_bits_in_final_word = self.domain_size % WORD_BITS;
72 if num_bits_in_final_word > 0 {
73 let mask = (1 << num_bits_in_final_word) - 1;
74 let final_word_idx = self.words.len() - 1;
75 self.words[final_word_idx] &= mask;
76 }
77 }
78
0bf4aa26
XL
79 /// Count the number of set bits in the set.
80 pub fn count(&self) -> usize {
81 self.words.iter().map(|e| e.count_ones() as usize).sum()
82 }
83
9fa01778 84 /// Returns `true` if `self` contains `elem`.
0bf4aa26
XL
85 #[inline]
86 pub fn contains(&self, elem: T) -> bool {
87 assert!(elem.index() < self.domain_size);
88 let (word_index, mask) = word_index_and_mask(elem);
89 (self.words[word_index] & mask) != 0
90 }
91
92 /// Is `self` is a (non-strict) superset of `other`?
93 #[inline]
94 pub fn superset(&self, other: &BitSet<T>) -> bool {
95 assert_eq!(self.domain_size, other.domain_size);
96 self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
97 }
98
99 /// Is the set empty?
100 #[inline]
101 pub fn is_empty(&self) -> bool {
102 self.words.iter().all(|a| *a == 0)
103 }
104
9fa01778 105 /// Insert `elem`. Returns whether the set has changed.
0bf4aa26
XL
106 #[inline]
107 pub fn insert(&mut self, elem: T) -> bool {
108 assert!(elem.index() < self.domain_size);
109 let (word_index, mask) = word_index_and_mask(elem);
110 let word_ref = &mut self.words[word_index];
111 let word = *word_ref;
112 let new_word = word | mask;
113 *word_ref = new_word;
114 new_word != word
115 }
116
117 /// Sets all bits to true.
118 pub fn insert_all(&mut self) {
119 for word in &mut self.words {
120 *word = !0;
121 }
122 self.clear_excess_bits();
123 }
124
9fa01778 125 /// Returns `true` if the set has changed.
0bf4aa26
XL
126 #[inline]
127 pub fn remove(&mut self, elem: T) -> bool {
128 assert!(elem.index() < self.domain_size);
129 let (word_index, mask) = word_index_and_mask(elem);
130 let word_ref = &mut self.words[word_index];
131 let word = *word_ref;
132 let new_word = word & !mask;
133 *word_ref = new_word;
134 new_word != word
135 }
136
9fa01778 137 /// Sets `self = self | other` and returns `true` if `self` changed
0bf4aa26
XL
138 /// (i.e., if new bits were added).
139 pub fn union(&mut self, other: &impl UnionIntoBitSet<T>) -> bool {
140 other.union_into(self)
141 }
142
9fa01778 143 /// Sets `self = self - other` and returns `true` if `self` changed.
0bf4aa26
XL
144 /// (i.e., if any bits were removed).
145 pub fn subtract(&mut self, other: &impl SubtractFromBitSet<T>) -> bool {
146 other.subtract_from(self)
147 }
148
9fa01778 149 /// Sets `self = self & other` and return `true` if `self` changed.
0bf4aa26
XL
150 /// (i.e., if any bits were removed).
151 pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
152 assert_eq!(self.domain_size, other.domain_size);
dfeec247 153 bitwise(&mut self.words, &other.words, |a, b| a & b)
0bf4aa26
XL
154 }
155
9fa01778 156 /// Gets a slice of the underlying words.
0bf4aa26
XL
157 pub fn words(&self) -> &[Word] {
158 &self.words
159 }
160
161 /// Iterates over the indices of set bits in a sorted order.
162 #[inline]
416331ca 163 pub fn iter(&self) -> BitIter<'_, T> {
e74abb32 164 BitIter::new(&self.words)
0bf4aa26
XL
165 }
166
167 /// Duplicates the set as a hybrid set.
168 pub fn to_hybrid(&self) -> HybridBitSet<T> {
169 // Note: we currently don't bother trying to make a Sparse set.
170 HybridBitSet::Dense(self.to_owned())
171 }
dc9dc135
XL
172
173 /// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at
174 /// least one bit that is not in `other` (i.e. `other` is not a superset of `self`).
175 ///
176 /// This is an optimization for union of a hybrid bitset.
177 fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
178 assert!(sparse.domain_size == self.domain_size);
179 self.clear_excess_bits();
180
181 let mut not_already = false;
182 // Index of the current word not yet merged.
183 let mut current_index = 0;
184 // Mask of bits that came from the sparse set in the current word.
185 let mut new_bit_mask = 0;
186 for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) {
187 // Next bit is in a word not inspected yet.
188 if word_index > current_index {
189 self.words[current_index] |= new_bit_mask;
190 // Were there any bits in the old word that did not occur in the sparse set?
191 not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
192 // Check all words we skipped for any set bit.
dfeec247 193 not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0);
dc9dc135
XL
194 // Update next word.
195 current_index = word_index;
196 // Reset bit mask, no bits have been merged yet.
197 new_bit_mask = 0;
198 }
199 // Add bit and mark it as coming from the sparse set.
200 // self.words[word_index] |= mask;
201 new_bit_mask |= mask;
202 }
203 self.words[current_index] |= new_bit_mask;
204 // Any bits in the last inspected word that were not in the sparse set?
205 not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
206 // Any bits in the tail? Note `clear_excess_bits` before.
dfeec247 207 not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0);
dc9dc135
XL
208
209 not_already
210 }
0bf4aa26
XL
211}
212
213/// This is implemented by all the bitsets so that BitSet::union() can be
214/// passed any type of bitset.
215pub trait UnionIntoBitSet<T: Idx> {
216 // Performs `other = other | self`.
217 fn union_into(&self, other: &mut BitSet<T>) -> bool;
218}
219
220/// This is implemented by all the bitsets so that BitSet::subtract() can be
221/// passed any type of bitset.
222pub trait SubtractFromBitSet<T: Idx> {
223 // Performs `other = other - self`.
224 fn subtract_from(&self, other: &mut BitSet<T>) -> bool;
225}
226
227impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
228 fn union_into(&self, other: &mut BitSet<T>) -> bool {
229 assert_eq!(self.domain_size, other.domain_size);
dfeec247 230 bitwise(&mut other.words, &self.words, |a, b| a | b)
0bf4aa26
XL
231 }
232}
233
234impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> {
235 fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
236 assert_eq!(self.domain_size, other.domain_size);
dfeec247 237 bitwise(&mut other.words, &self.words, |a, b| a & !b)
0bf4aa26
XL
238 }
239}
240
1b1a35ee
XL
241impl<T> Clone for BitSet<T> {
242 fn clone(&self) -> Self {
243 BitSet { domain_size: self.domain_size, words: self.words.clone(), marker: PhantomData }
244 }
245
246 fn clone_from(&mut self, from: &Self) {
247 if self.domain_size != from.domain_size {
248 self.words.resize(from.domain_size, 0);
249 self.domain_size = from.domain_size;
250 }
251
252 self.words.copy_from_slice(&from.words);
253 }
254}
255
0bf4aa26 256impl<T: Idx> fmt::Debug for BitSet<T> {
9fa01778 257 fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
dfeec247 258 w.debug_list().entries(self.iter()).finish()
0bf4aa26
XL
259 }
260}
261
262impl<T: Idx> ToString for BitSet<T> {
263 fn to_string(&self) -> String {
264 let mut result = String::new();
265 let mut sep = '[';
266
267 // Note: this is a little endian printout of bytes.
268
269 // i tracks how many bits we have printed so far.
270 let mut i = 0;
271 for word in &self.words {
272 let mut word = *word;
dfeec247
XL
273 for _ in 0..WORD_BYTES {
274 // for each byte in `word`:
0bf4aa26
XL
275 let remain = self.domain_size - i;
276 // If less than a byte remains, then mask just that many bits.
277 let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
278 assert!(mask <= 0xFF);
279 let byte = word & mask;
280
281 result.push_str(&format!("{}{:02x}", sep, byte));
282
dfeec247
XL
283 if remain <= 8 {
284 break;
285 }
0bf4aa26
XL
286 word >>= 8;
287 i += 8;
288 sep = '-';
289 }
290 sep = '|';
291 }
292 result.push(']');
293
294 result
295 }
296}
297
298pub struct BitIter<'a, T: Idx> {
e74abb32
XL
299 /// A copy of the current word, but with any already-visited bits cleared.
300 /// (This lets us use `trailing_zeros()` to find the next set bit.) When it
301 /// is reduced to 0, we move onto the next word.
302 word: Word,
303
304 /// The offset (measured in bits) of the current word.
305 offset: usize,
306
307 /// Underlying iterator over the words.
308 iter: slice::Iter<'a, Word>,
309
dfeec247 310 marker: PhantomData<T>,
0bf4aa26
XL
311}
312
e74abb32
XL
313impl<'a, T: Idx> BitIter<'a, T> {
314 #[inline]
315 fn new(words: &'a [Word]) -> BitIter<'a, T> {
316 // We initialize `word` and `offset` to degenerate values. On the first
317 // call to `next()` we will fall through to getting the first word from
318 // `iter`, which sets `word` to the first word (if there is one) and
319 // `offset` to 0. Doing it this way saves us from having to maintain
320 // additional state about whether we have started.
321 BitIter {
322 word: 0,
ba9703b0 323 offset: usize::MAX - (WORD_BITS - 1),
e74abb32
XL
324 iter: words.iter(),
325 marker: PhantomData,
326 }
327 }
328}
329
0bf4aa26
XL
330impl<'a, T: Idx> Iterator for BitIter<'a, T> {
331 type Item = T;
332 fn next(&mut self) -> Option<T> {
333 loop {
e74abb32
XL
334 if self.word != 0 {
335 // Get the position of the next set bit in the current word,
336 // then clear the bit.
337 let bit_pos = self.word.trailing_zeros() as usize;
338 let bit = 1 << bit_pos;
339 self.word ^= bit;
dfeec247 340 return Some(T::new(bit_pos + self.offset));
0bf4aa26
XL
341 }
342
e74abb32
XL
343 // Move onto the next word. `wrapping_add()` is needed to handle
344 // the degenerate initial value given to `offset` in `new()`.
345 let word = self.iter.next()?;
346 self.word = *word;
347 self.offset = self.offset.wrapping_add(WORD_BITS);
0bf4aa26
XL
348 }
349 }
350}
351
0bf4aa26
XL
352#[inline]
353fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
dfeec247
XL
354where
355 Op: Fn(Word, Word) -> Word,
0bf4aa26
XL
356{
357 assert_eq!(out_vec.len(), in_vec.len());
17df50a5 358 let mut changed = 0;
cdc7bbd5 359 for (out_elem, in_elem) in iter::zip(out_vec, in_vec) {
0bf4aa26
XL
360 let old_val = *out_elem;
361 let new_val = op(old_val, *in_elem);
362 *out_elem = new_val;
17df50a5
XL
363 // This is essentially equivalent to a != with changed being a bool, but
364 // in practice this code gets auto-vectorized by the compiler for most
365 // operators. Using != here causes us to generate quite poor code as the
366 // compiler tries to go back to a boolean on each loop iteration.
367 changed |= old_val ^ new_val;
0bf4aa26 368 }
17df50a5 369 changed != 0
0bf4aa26
XL
370}
371
372const SPARSE_MAX: usize = 8;
373
374/// A fixed-size bitset type with a sparse representation and a maximum of
3dfed10e
XL
375/// `SPARSE_MAX` elements. The elements are stored as a sorted `ArrayVec` with
376/// no duplicates.
0bf4aa26
XL
377///
378/// This type is used by `HybridBitSet`; do not use directly.
379#[derive(Clone, Debug)]
1b1a35ee 380pub struct SparseBitSet<T> {
0bf4aa26 381 domain_size: usize,
cdc7bbd5 382 elems: ArrayVec<T, SPARSE_MAX>,
0bf4aa26
XL
383}
384
385impl<T: Idx> SparseBitSet<T> {
386 fn new_empty(domain_size: usize) -> Self {
3dfed10e 387 SparseBitSet { domain_size, elems: ArrayVec::new() }
0bf4aa26
XL
388 }
389
390 fn len(&self) -> usize {
391 self.elems.len()
392 }
393
394 fn is_empty(&self) -> bool {
395 self.elems.len() == 0
396 }
397
398 fn contains(&self, elem: T) -> bool {
399 assert!(elem.index() < self.domain_size);
400 self.elems.contains(&elem)
401 }
402
403 fn insert(&mut self, elem: T) -> bool {
404 assert!(elem.index() < self.domain_size);
405 let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
406 if self.elems[i] == elem {
407 // `elem` is already in the set.
408 false
409 } else {
410 // `elem` is smaller than one or more existing elements.
411 self.elems.insert(i, elem);
412 true
413 }
414 } else {
415 // `elem` is larger than all existing elements.
416 self.elems.push(elem);
417 true
418 };
419 assert!(self.len() <= SPARSE_MAX);
420 changed
421 }
422
423 fn remove(&mut self, elem: T) -> bool {
424 assert!(elem.index() < self.domain_size);
425 if let Some(i) = self.elems.iter().position(|&e| e == elem) {
426 self.elems.remove(i);
427 true
428 } else {
429 false
430 }
431 }
432
433 fn to_dense(&self) -> BitSet<T> {
434 let mut dense = BitSet::new_empty(self.domain_size);
435 for elem in self.elems.iter() {
436 dense.insert(*elem);
437 }
438 dense
439 }
440
9fa01778 441 fn iter(&self) -> slice::Iter<'_, T> {
0bf4aa26
XL
442 self.elems.iter()
443 }
444}
445
446impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
447 fn union_into(&self, other: &mut BitSet<T>) -> bool {
448 assert_eq!(self.domain_size, other.domain_size);
449 let mut changed = false;
450 for elem in self.iter() {
451 changed |= other.insert(*elem);
452 }
453 changed
454 }
455}
456
457impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
458 fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
459 assert_eq!(self.domain_size, other.domain_size);
460 let mut changed = false;
461 for elem in self.iter() {
462 changed |= other.remove(*elem);
463 }
464 changed
465 }
466}
467
468/// A fixed-size bitset type with a hybrid representation: sparse when there
469/// are up to a `SPARSE_MAX` elements in the set, but dense when there are more
470/// than `SPARSE_MAX`.
471///
472/// This type is especially efficient for sets that typically have a small
473/// number of elements, but a large `domain_size`, and are cleared frequently.
474///
475/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
476/// just be `usize`.
477///
478/// All operations that involve an element will panic if the element is equal
479/// to or greater than the domain size. All operations that involve two bitsets
480/// will panic if the bitsets have differing domain sizes.
1b1a35ee
XL
481#[derive(Clone)]
482pub enum HybridBitSet<T> {
0bf4aa26
XL
483 Sparse(SparseBitSet<T>),
484 Dense(BitSet<T>),
485}
486
1b1a35ee
XL
487impl<T: Idx> fmt::Debug for HybridBitSet<T> {
488 fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
489 match self {
490 Self::Sparse(b) => b.fmt(w),
491 Self::Dense(b) => b.fmt(w),
492 }
493 }
494}
495
0bf4aa26
XL
496impl<T: Idx> HybridBitSet<T> {
497 pub fn new_empty(domain_size: usize) -> Self {
498 HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
499 }
500
1b1a35ee 501 pub fn domain_size(&self) -> usize {
0bf4aa26
XL
502 match self {
503 HybridBitSet::Sparse(sparse) => sparse.domain_size,
504 HybridBitSet::Dense(dense) => dense.domain_size,
505 }
506 }
507
508 pub fn clear(&mut self) {
509 let domain_size = self.domain_size();
510 *self = HybridBitSet::new_empty(domain_size);
511 }
512
513 pub fn contains(&self, elem: T) -> bool {
514 match self {
515 HybridBitSet::Sparse(sparse) => sparse.contains(elem),
516 HybridBitSet::Dense(dense) => dense.contains(elem),
517 }
518 }
519
520 pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
521 match (self, other) {
522 (HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
523 self_dense.superset(other_dense)
524 }
525 _ => {
526 assert!(self.domain_size() == other.domain_size());
527 other.iter().all(|elem| self.contains(elem))
528 }
529 }
530 }
531
532 pub fn is_empty(&self) -> bool {
533 match self {
534 HybridBitSet::Sparse(sparse) => sparse.is_empty(),
535 HybridBitSet::Dense(dense) => dense.is_empty(),
536 }
537 }
538
539 pub fn insert(&mut self, elem: T) -> bool {
540 // No need to check `elem` against `self.domain_size` here because all
541 // the match cases check it, one way or another.
542 match self {
543 HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
544 // The set is sparse and has space for `elem`.
545 sparse.insert(elem)
546 }
547 HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
548 // The set is sparse and does not have space for `elem`, but
549 // that doesn't matter because `elem` is already present.
550 false
551 }
552 HybridBitSet::Sparse(sparse) => {
553 // The set is sparse and full. Convert to a dense set.
554 let mut dense = sparse.to_dense();
555 let changed = dense.insert(elem);
556 assert!(changed);
557 *self = HybridBitSet::Dense(dense);
558 changed
559 }
560 HybridBitSet::Dense(dense) => dense.insert(elem),
561 }
562 }
563
564 pub fn insert_all(&mut self) {
565 let domain_size = self.domain_size();
566 match self {
567 HybridBitSet::Sparse(_) => {
568 *self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
569 }
570 HybridBitSet::Dense(dense) => dense.insert_all(),
571 }
572 }
573
574 pub fn remove(&mut self, elem: T) -> bool {
575 // Note: we currently don't bother going from Dense back to Sparse.
576 match self {
577 HybridBitSet::Sparse(sparse) => sparse.remove(elem),
578 HybridBitSet::Dense(dense) => dense.remove(elem),
579 }
580 }
581
582 pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
583 match self {
584 HybridBitSet::Sparse(self_sparse) => {
585 match other {
586 HybridBitSet::Sparse(other_sparse) => {
587 // Both sets are sparse. Add the elements in
588 // `other_sparse` to `self` one at a time. This
589 // may or may not cause `self` to be densified.
590 assert_eq!(self.domain_size(), other.domain_size());
591 let mut changed = false;
592 for elem in other_sparse.iter() {
593 changed |= self.insert(*elem);
594 }
595 changed
596 }
597 HybridBitSet::Dense(other_dense) => {
dc9dc135
XL
598 // `self` is sparse and `other` is dense. To
599 // merge them, we have two available strategies:
600 // * Densify `self` then merge other
601 // * Clone other then integrate bits from `self`
602 // The second strategy requires dedicated method
603 // since the usual `union` returns the wrong
604 // result. In the dedicated case the computation
605 // is slightly faster if the bits of the sparse
606 // bitset map to only few words of the dense
607 // representation, i.e. indices are near each
608 // other.
609 //
610 // Benchmarking seems to suggest that the second
611 // option is worth it.
612 let mut new_dense = other_dense.clone();
613 let changed = new_dense.reverse_union_sparse(self_sparse);
0bf4aa26
XL
614 *self = HybridBitSet::Dense(new_dense);
615 changed
616 }
617 }
618 }
619
620 HybridBitSet::Dense(self_dense) => self_dense.union(other),
621 }
622 }
623
624 /// Converts to a dense set, consuming itself in the process.
625 pub fn to_dense(self) -> BitSet<T> {
626 match self {
627 HybridBitSet::Sparse(sparse) => sparse.to_dense(),
628 HybridBitSet::Dense(dense) => dense,
629 }
630 }
631
9fa01778 632 pub fn iter(&self) -> HybridIter<'_, T> {
0bf4aa26
XL
633 match self {
634 HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
635 HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
636 }
637 }
638}
639
640impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
641 fn union_into(&self, other: &mut BitSet<T>) -> bool {
642 match self {
643 HybridBitSet::Sparse(sparse) => sparse.union_into(other),
644 HybridBitSet::Dense(dense) => dense.union_into(other),
645 }
646 }
647}
648
649impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
650 fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
651 match self {
652 HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
653 HybridBitSet::Dense(dense) => dense.subtract_from(other),
654 }
655 }
656}
657
658pub enum HybridIter<'a, T: Idx> {
659 Sparse(slice::Iter<'a, T>),
660 Dense(BitIter<'a, T>),
661}
662
663impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
664 type Item = T;
665
666 fn next(&mut self) -> Option<T> {
667 match self {
e74abb32 668 HybridIter::Sparse(sparse) => sparse.next().copied(),
0bf4aa26
XL
669 HybridIter::Dense(dense) => dense.next(),
670 }
671 }
672}
673
674/// A resizable bitset type with a dense representation.
675///
676/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
677/// just be `usize`.
678///
679/// All operations that involve an element will panic if the element is equal
680/// to or greater than the domain size.
681#[derive(Clone, Debug, PartialEq)]
682pub struct GrowableBitSet<T: Idx> {
683 bit_set: BitSet<T>,
684}
685
686impl<T: Idx> GrowableBitSet<T> {
687 /// Ensure that the set can hold at least `min_domain_size` elements.
688 pub fn ensure(&mut self, min_domain_size: usize) {
689 if self.bit_set.domain_size < min_domain_size {
690 self.bit_set.domain_size = min_domain_size;
691 }
692
693 let min_num_words = num_words(min_domain_size);
694 if self.bit_set.words.len() < min_num_words {
695 self.bit_set.words.resize(min_num_words, 0)
696 }
697 }
698
699 pub fn new_empty() -> GrowableBitSet<T> {
700 GrowableBitSet { bit_set: BitSet::new_empty(0) }
701 }
702
48663c56
XL
703 pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
704 GrowableBitSet { bit_set: BitSet::new_empty(capacity) }
0bf4aa26
XL
705 }
706
9fa01778 707 /// Returns `true` if the set has changed.
0bf4aa26
XL
708 #[inline]
709 pub fn insert(&mut self, elem: T) -> bool {
710 self.ensure(elem.index() + 1);
711 self.bit_set.insert(elem)
712 }
713
5869c6ff
XL
714 /// Returns `true` if the set has changed.
715 #[inline]
716 pub fn remove(&mut self, elem: T) -> bool {
717 self.ensure(elem.index() + 1);
718 self.bit_set.remove(elem)
719 }
720
721 #[inline]
722 pub fn is_empty(&self) -> bool {
723 self.bit_set.is_empty()
724 }
725
0bf4aa26
XL
726 #[inline]
727 pub fn contains(&self, elem: T) -> bool {
728 let (word_index, mask) = word_index_and_mask(elem);
dfeec247 729 if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false }
0bf4aa26
XL
730 }
731}
732
733/// A fixed-size 2D bit matrix type with a dense representation.
734///
735/// `R` and `C` are index types used to identify rows and columns respectively;
736/// typically newtyped `usize` wrappers, but they can also just be `usize`.
737///
738/// All operations that involve a row and/or column index will panic if the
739/// index exceeds the relevant bound.
3dfed10e 740#[derive(Clone, Eq, PartialEq, Decodable, Encodable)]
0bf4aa26
XL
741pub struct BitMatrix<R: Idx, C: Idx> {
742 num_rows: usize,
743 num_columns: usize,
744 words: Vec<Word>,
745 marker: PhantomData<(R, C)>,
746}
747
748impl<R: Idx, C: Idx> BitMatrix<R, C> {
9fa01778 749 /// Creates a new `rows x columns` matrix, initially empty.
0bf4aa26
XL
750 pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
751 // For every element, we need one bit for every other
752 // element. Round up to an even number of words.
753 let words_per_row = num_words(num_columns);
754 BitMatrix {
755 num_rows,
756 num_columns,
757 words: vec![0; num_rows * words_per_row],
758 marker: PhantomData,
759 }
760 }
761
dc9dc135
XL
762 /// Creates a new matrix, with `row` used as the value for every row.
763 pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
764 let num_columns = row.domain_size();
765 let words_per_row = num_words(num_columns);
766 assert_eq!(words_per_row, row.words().len());
767 BitMatrix {
768 num_rows,
769 num_columns,
770 words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(),
771 marker: PhantomData,
772 }
773 }
774
775 pub fn rows(&self) -> impl Iterator<Item = R> {
776 (0..self.num_rows).map(R::new)
777 }
778
0bf4aa26
XL
779 /// The range of bits for a given row.
780 fn range(&self, row: R) -> (usize, usize) {
781 let words_per_row = num_words(self.num_columns);
782 let start = row.index() * words_per_row;
783 (start, start + words_per_row)
784 }
785
786 /// Sets the cell at `(row, column)` to true. Put another way, insert
787 /// `column` to the bitset for `row`.
788 ///
9fa01778 789 /// Returns `true` if this changed the matrix.
0bf4aa26
XL
790 pub fn insert(&mut self, row: R, column: C) -> bool {
791 assert!(row.index() < self.num_rows && column.index() < self.num_columns);
792 let (start, _) = self.range(row);
793 let (word_index, mask) = word_index_and_mask(column);
794 let words = &mut self.words[..];
795 let word = words[start + word_index];
796 let new_word = word | mask;
797 words[start + word_index] = new_word;
798 word != new_word
799 }
800
801 /// Do the bits from `row` contain `column`? Put another way, is
802 /// the matrix cell at `(row, column)` true? Put yet another way,
803 /// if the matrix represents (transitive) reachability, can
804 /// `row` reach `column`?
805 pub fn contains(&self, row: R, column: C) -> bool {
806 assert!(row.index() < self.num_rows && column.index() < self.num_columns);
807 let (start, _) = self.range(row);
808 let (word_index, mask) = word_index_and_mask(column);
809 (self.words[start + word_index] & mask) != 0
810 }
811
9fa01778 812 /// Returns those indices that are true in rows `a` and `b`. This
3dfed10e 813 /// is an *O*(*n*) operation where *n* is the number of elements
0bf4aa26
XL
814 /// (somewhat independent from the actual size of the
815 /// intersection, in particular).
816 pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
817 assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
818 let (row1_start, row1_end) = self.range(row1);
819 let (row2_start, row2_end) = self.range(row2);
820 let mut result = Vec::with_capacity(self.num_columns);
821 for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
822 let mut v = self.words[i] & self.words[j];
823 for bit in 0..WORD_BITS {
824 if v == 0 {
825 break;
826 }
827 if v & 0x1 != 0 {
828 result.push(C::new(base * WORD_BITS + bit));
829 }
830 v >>= 1;
831 }
832 }
833 result
834 }
835
9fa01778
XL
836 /// Adds the bits from row `read` to the bits from row `write`, and
837 /// returns `true` if anything changed.
0bf4aa26
XL
838 ///
839 /// This is used when computing transitive reachability because if
840 /// you have an edge `write -> read`, because in that case
841 /// `write` can reach everything that `read` can (and
842 /// potentially more).
843 pub fn union_rows(&mut self, read: R, write: R) -> bool {
844 assert!(read.index() < self.num_rows && write.index() < self.num_rows);
845 let (read_start, read_end) = self.range(read);
846 let (write_start, write_end) = self.range(write);
847 let words = &mut self.words[..];
848 let mut changed = false;
cdc7bbd5 849 for (read_index, write_index) in iter::zip(read_start..read_end, write_start..write_end) {
0bf4aa26
XL
850 let word = words[write_index];
851 let new_word = word | words[read_index];
852 words[write_index] = new_word;
853 changed |= word != new_word;
854 }
855 changed
856 }
857
dc9dc135
XL
858 /// Adds the bits from `with` to the bits from row `write`, and
859 /// returns `true` if anything changed.
860 pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool {
861 assert!(write.index() < self.num_rows);
862 assert_eq!(with.domain_size(), self.num_columns);
863 let (write_start, write_end) = self.range(write);
864 let mut changed = false;
cdc7bbd5 865 for (read_index, write_index) in iter::zip(0..with.words().len(), write_start..write_end) {
dc9dc135
XL
866 let word = self.words[write_index];
867 let new_word = word | with.words()[read_index];
868 self.words[write_index] = new_word;
869 changed |= word != new_word;
870 }
871 changed
872 }
873
874 /// Sets every cell in `row` to true.
875 pub fn insert_all_into_row(&mut self, row: R) {
876 assert!(row.index() < self.num_rows);
877 let (start, end) = self.range(row);
878 let words = &mut self.words[..];
879 for index in start..end {
880 words[index] = !0;
881 }
882 self.clear_excess_bits(row);
883 }
884
885 /// Clear excess bits in the final word of the row.
886 fn clear_excess_bits(&mut self, row: R) {
887 let num_bits_in_final_word = self.num_columns % WORD_BITS;
888 if num_bits_in_final_word > 0 {
889 let mask = (1 << num_bits_in_final_word) - 1;
890 let (_, end) = self.range(row);
891 let final_word_idx = end - 1;
892 self.words[final_word_idx] &= mask;
893 }
894 }
895
896 /// Gets a slice of the underlying words.
897 pub fn words(&self) -> &[Word] {
898 &self.words
899 }
900
0bf4aa26
XL
901 /// Iterates through all the columns set to true in a given row of
902 /// the matrix.
416331ca 903 pub fn iter(&self, row: R) -> BitIter<'_, C> {
0bf4aa26
XL
904 assert!(row.index() < self.num_rows);
905 let (start, end) = self.range(row);
e74abb32 906 BitIter::new(&self.words[start..end])
0bf4aa26 907 }
dc9dc135
XL
908
909 /// Returns the number of elements in `row`.
910 pub fn count(&self, row: R) -> usize {
911 let (start, end) = self.range(row);
912 self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
913 }
0bf4aa26
XL
914}
915
f035d41b
XL
916impl<R: Idx, C: Idx> fmt::Debug for BitMatrix<R, C> {
917 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
918 /// Forces its contents to print in regular mode instead of alternate mode.
919 struct OneLinePrinter<T>(T);
920 impl<T: fmt::Debug> fmt::Debug for OneLinePrinter<T> {
921 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
922 write!(fmt, "{:?}", self.0)
923 }
924 }
925
926 write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?;
927 let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c)));
928 fmt.debug_set().entries(items.map(OneLinePrinter)).finish()
929 }
930}
931
0bf4aa26
XL
932/// A fixed-column-size, variable-row-size 2D bit matrix with a moderately
933/// sparse representation.
934///
935/// Initially, every row has no explicit representation. If any bit within a
936/// row is set, the entire row is instantiated as `Some(<HybridBitSet>)`.
937/// Furthermore, any previously uninstantiated rows prior to it will be
938/// instantiated as `None`. Those prior rows may themselves become fully
939/// instantiated later on if any of their bits are set.
940///
941/// `R` and `C` are index types used to identify rows and columns respectively;
942/// typically newtyped `usize` wrappers, but they can also just be `usize`.
943#[derive(Clone, Debug)]
944pub struct SparseBitMatrix<R, C>
945where
946 R: Idx,
947 C: Idx,
948{
949 num_columns: usize,
950 rows: IndexVec<R, Option<HybridBitSet<C>>>,
951}
952
953impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
9fa01778 954 /// Creates a new empty sparse bit matrix with no rows or columns.
0bf4aa26 955 pub fn new(num_columns: usize) -> Self {
dfeec247 956 Self { num_columns, rows: IndexVec::new() }
0bf4aa26
XL
957 }
958
959 fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> {
960 // Instantiate any missing rows up to and including row `row` with an
961 // empty HybridBitSet.
962 self.rows.ensure_contains_elem(row, || None);
963
964 // Then replace row `row` with a full HybridBitSet if necessary.
965 let num_columns = self.num_columns;
966 self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns))
967 }
968
969 /// Sets the cell at `(row, column)` to true. Put another way, insert
970 /// `column` to the bitset for `row`.
971 ///
9fa01778 972 /// Returns `true` if this changed the matrix.
0bf4aa26
XL
973 pub fn insert(&mut self, row: R, column: C) -> bool {
974 self.ensure_row(row).insert(column)
975 }
976
977 /// Do the bits from `row` contain `column`? Put another way, is
978 /// the matrix cell at `(row, column)` true? Put yet another way,
979 /// if the matrix represents (transitive) reachability, can
980 /// `row` reach `column`?
981 pub fn contains(&self, row: R, column: C) -> bool {
982 self.row(row).map_or(false, |r| r.contains(column))
983 }
984
9fa01778
XL
985 /// Adds the bits from row `read` to the bits from row `write`, and
986 /// returns `true` if anything changed.
0bf4aa26
XL
987 ///
988 /// This is used when computing transitive reachability because if
989 /// you have an edge `write -> read`, because in that case
990 /// `write` can reach everything that `read` can (and
991 /// potentially more).
992 pub fn union_rows(&mut self, read: R, write: R) -> bool {
993 if read == write || self.row(read).is_none() {
994 return false;
995 }
996
997 self.ensure_row(write);
998 if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
999 write_row.union(read_row)
1000 } else {
1001 unreachable!()
1002 }
1003 }
1004
1005 /// Union a row, `from`, into the `into` row.
1006 pub fn union_into_row(&mut self, into: R, from: &HybridBitSet<C>) -> bool {
1007 self.ensure_row(into).union(from)
1008 }
1009
1010 /// Insert all bits in the given row.
1011 pub fn insert_all_into_row(&mut self, row: R) {
1012 self.ensure_row(row).insert_all();
1013 }
1014
1015 pub fn rows(&self) -> impl Iterator<Item = R> {
1016 self.rows.indices()
1017 }
1018
1019 /// Iterates through all the columns set to true in a given row of
1020 /// the matrix.
1021 pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
1022 self.row(row).into_iter().flat_map(|r| r.iter())
1023 }
1024
1025 pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
dfeec247 1026 if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
0bf4aa26
XL
1027 }
1028}
1029
1030#[inline]
1031fn num_words<T: Idx>(domain_size: T) -> usize {
1032 (domain_size.index() + WORD_BITS - 1) / WORD_BITS
1033}
1034
1035#[inline]
1036fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
1037 let elem = elem.index();
1038 let word_index = elem / WORD_BITS;
1039 let mask = 1 << (elem % WORD_BITS);
1040 (word_index, mask)
1041}
3dfed10e
XL
1042
1043/// Integral type used to represent the bit set.
1044pub trait FiniteBitSetTy:
1045 BitAnd<Output = Self>
1046 + BitAndAssign
1047 + BitOrAssign
1048 + Clone
1049 + Copy
1050 + Shl
1051 + Not<Output = Self>
1052 + PartialEq
1053 + Sized
1054{
1055 /// Size of the domain representable by this type, e.g. 64 for `u64`.
1056 const DOMAIN_SIZE: u32;
1057
1058 /// Value which represents the `FiniteBitSet` having every bit set.
1059 const FILLED: Self;
1060 /// Value which represents the `FiniteBitSet` having no bits set.
1061 const EMPTY: Self;
1062
1063 /// Value for one as the integral type.
1064 const ONE: Self;
1065 /// Value for zero as the integral type.
1066 const ZERO: Self;
1067
1068 /// Perform a checked left shift on the integral type.
1069 fn checked_shl(self, rhs: u32) -> Option<Self>;
1070 /// Perform a checked right shift on the integral type.
1071 fn checked_shr(self, rhs: u32) -> Option<Self>;
1072}
1073
1074impl FiniteBitSetTy for u32 {
1075 const DOMAIN_SIZE: u32 = 32;
1076
1077 const FILLED: Self = Self::MAX;
1078 const EMPTY: Self = Self::MIN;
1079
1080 const ONE: Self = 1u32;
1081 const ZERO: Self = 0u32;
1082
1083 fn checked_shl(self, rhs: u32) -> Option<Self> {
1084 self.checked_shl(rhs)
1085 }
1086
1087 fn checked_shr(self, rhs: u32) -> Option<Self> {
1088 self.checked_shr(rhs)
1089 }
1090}
1091
1092impl std::fmt::Debug for FiniteBitSet<u32> {
1093 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1094 write!(f, "{:032b}", self.0)
1095 }
1096}
1097
1098impl FiniteBitSetTy for u64 {
1099 const DOMAIN_SIZE: u32 = 64;
1100
1101 const FILLED: Self = Self::MAX;
1102 const EMPTY: Self = Self::MIN;
1103
1104 const ONE: Self = 1u64;
1105 const ZERO: Self = 0u64;
1106
1107 fn checked_shl(self, rhs: u32) -> Option<Self> {
1108 self.checked_shl(rhs)
1109 }
1110
1111 fn checked_shr(self, rhs: u32) -> Option<Self> {
1112 self.checked_shr(rhs)
1113 }
1114}
1115
1116impl std::fmt::Debug for FiniteBitSet<u64> {
1117 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1118 write!(f, "{:064b}", self.0)
1119 }
1120}
1121
1122impl FiniteBitSetTy for u128 {
1123 const DOMAIN_SIZE: u32 = 128;
1124
1125 const FILLED: Self = Self::MAX;
1126 const EMPTY: Self = Self::MIN;
1127
1128 const ONE: Self = 1u128;
1129 const ZERO: Self = 0u128;
1130
1131 fn checked_shl(self, rhs: u32) -> Option<Self> {
1132 self.checked_shl(rhs)
1133 }
1134
1135 fn checked_shr(self, rhs: u32) -> Option<Self> {
1136 self.checked_shr(rhs)
1137 }
1138}
1139
1140impl std::fmt::Debug for FiniteBitSet<u128> {
1141 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1142 write!(f, "{:0128b}", self.0)
1143 }
1144}
1145
1146/// A fixed-sized bitset type represented by an integer type. Indices outwith than the range
1147/// representable by `T` are considered set.
1148#[derive(Copy, Clone, Eq, PartialEq, Decodable, Encodable)]
1149pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T);
1150
1151impl<T: FiniteBitSetTy> FiniteBitSet<T> {
1152 /// Creates a new, empty bitset.
1153 pub fn new_empty() -> Self {
1154 Self(T::EMPTY)
1155 }
1156
1157 /// Sets the `index`th bit.
1158 pub fn set(&mut self, index: u32) {
1159 self.0 |= T::ONE.checked_shl(index).unwrap_or(T::ZERO);
1160 }
1161
1162 /// Unsets the `index`th bit.
1163 pub fn clear(&mut self, index: u32) {
1164 self.0 &= !T::ONE.checked_shl(index).unwrap_or(T::ZERO);
1165 }
1166
1167 /// Sets the `i`th to `j`th bits.
1168 pub fn set_range(&mut self, range: Range<u32>) {
1169 let bits = T::FILLED
1170 .checked_shl(range.end - range.start)
1171 .unwrap_or(T::ZERO)
1172 .not()
1173 .checked_shl(range.start)
1174 .unwrap_or(T::ZERO);
1175 self.0 |= bits;
1176 }
1177
1178 /// Is the set empty?
1179 pub fn is_empty(&self) -> bool {
1180 self.0 == T::EMPTY
1181 }
1182
1183 /// Returns the domain size of the bitset.
1184 pub fn within_domain(&self, index: u32) -> bool {
1185 index < T::DOMAIN_SIZE
1186 }
1187
1188 /// Returns if the `index`th bit is set.
1189 pub fn contains(&self, index: u32) -> Option<bool> {
1190 self.within_domain(index)
1191 .then(|| ((self.0.checked_shr(index).unwrap_or(T::ONE)) & T::ONE) == T::ONE)
1192 }
1193}
1194
1195impl<T: FiniteBitSetTy> Default for FiniteBitSet<T> {
1196 fn default() -> Self {
1197 Self::new_empty()
1198 }
1199}