]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_index/src/bit_set.rs
New upstream version 1.57.0+dfsg1
[rustc.git] / compiler / rustc_index / src / bit_set.rs
CommitLineData
e74abb32 1use crate::vec::{Idx, IndexVec};
3dfed10e 2use arrayvec::ArrayVec;
0bf4aa26
XL
3use std::fmt;
4use std::iter;
5use std::marker::PhantomData;
6use std::mem;
3dfed10e 7use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Not, Range, Shl};
0bf4aa26 8use std::slice;
416331ca 9
3dfed10e
XL
10use rustc_macros::{Decodable, Encodable};
11
dc9dc135 12#[cfg(test)]
416331ca 13mod tests;
0bf4aa26
XL
14
15pub type Word = u64;
16pub const WORD_BYTES: usize = mem::size_of::<Word>();
17pub const WORD_BITS: usize = WORD_BYTES * 8;
18
94222f64
XL
19pub trait BitRelations<Rhs> {
20 fn union(&mut self, other: &Rhs) -> bool;
21 fn subtract(&mut self, other: &Rhs) -> bool;
22 fn intersect(&mut self, other: &Rhs) -> bool;
23}
24
25macro_rules! bit_relations_inherent_impls {
26 () => {
27 /// Sets `self = self | other` and returns `true` if `self` changed
28 /// (i.e., if new bits were added).
29 pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
30 where
31 Self: BitRelations<Rhs>,
32 {
33 <Self as BitRelations<Rhs>>::union(self, other)
34 }
35
36 /// Sets `self = self - other` and returns `true` if `self` changed.
37 /// (i.e., if any bits were removed).
38 pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
39 where
40 Self: BitRelations<Rhs>,
41 {
42 <Self as BitRelations<Rhs>>::subtract(self, other)
43 }
44
45 /// Sets `self = self & other` and return `true` if `self` changed.
46 /// (i.e., if any bits were removed).
47 pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
48 where
49 Self: BitRelations<Rhs>,
50 {
51 <Self as BitRelations<Rhs>>::intersect(self, other)
52 }
53 };
54}
55
e74abb32
XL
56/// A fixed-size bitset type with a dense representation.
57///
58/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
0bf4aa26
XL
59///
60/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
61/// just be `usize`.
62///
63/// All operations that involve an element will panic if the element is equal
64/// to or greater than the domain size. All operations that involve two bitsets
65/// will panic if the bitsets have differing domain sizes.
e74abb32 66///
1b1a35ee
XL
67#[derive(Eq, PartialEq, Decodable, Encodable)]
68pub struct BitSet<T> {
0bf4aa26
XL
69 domain_size: usize,
70 words: Vec<Word>,
71 marker: PhantomData<T>,
72}
73
1b1a35ee
XL
74impl<T> BitSet<T> {
75 /// Gets the domain size.
76 pub fn domain_size(&self) -> usize {
77 self.domain_size
78 }
79}
80
0bf4aa26 81impl<T: Idx> BitSet<T> {
9fa01778 82 /// Creates a new, empty bitset with a given `domain_size`.
0bf4aa26
XL
83 #[inline]
84 pub fn new_empty(domain_size: usize) -> BitSet<T> {
85 let num_words = num_words(domain_size);
dfeec247 86 BitSet { domain_size, words: vec![0; num_words], marker: PhantomData }
0bf4aa26
XL
87 }
88
9fa01778 89 /// Creates a new, filled bitset with a given `domain_size`.
0bf4aa26
XL
90 #[inline]
91 pub fn new_filled(domain_size: usize) -> BitSet<T> {
92 let num_words = num_words(domain_size);
dfeec247 93 let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData };
0bf4aa26
XL
94 result.clear_excess_bits();
95 result
96 }
97
0bf4aa26
XL
98 /// Clear all elements.
99 #[inline]
100 pub fn clear(&mut self) {
101 for word in &mut self.words {
102 *word = 0;
103 }
104 }
105
106 /// Clear excess bits in the final word.
107 fn clear_excess_bits(&mut self) {
108 let num_bits_in_final_word = self.domain_size % WORD_BITS;
109 if num_bits_in_final_word > 0 {
110 let mask = (1 << num_bits_in_final_word) - 1;
111 let final_word_idx = self.words.len() - 1;
112 self.words[final_word_idx] &= mask;
113 }
114 }
115
0bf4aa26
XL
116 /// Count the number of set bits in the set.
117 pub fn count(&self) -> usize {
118 self.words.iter().map(|e| e.count_ones() as usize).sum()
119 }
120
9fa01778 121 /// Returns `true` if `self` contains `elem`.
0bf4aa26
XL
122 #[inline]
123 pub fn contains(&self, elem: T) -> bool {
124 assert!(elem.index() < self.domain_size);
125 let (word_index, mask) = word_index_and_mask(elem);
126 (self.words[word_index] & mask) != 0
127 }
128
129 /// Is `self` is a (non-strict) superset of `other`?
130 #[inline]
131 pub fn superset(&self, other: &BitSet<T>) -> bool {
132 assert_eq!(self.domain_size, other.domain_size);
133 self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
134 }
135
136 /// Is the set empty?
137 #[inline]
138 pub fn is_empty(&self) -> bool {
139 self.words.iter().all(|a| *a == 0)
140 }
141
9fa01778 142 /// Insert `elem`. Returns whether the set has changed.
0bf4aa26
XL
143 #[inline]
144 pub fn insert(&mut self, elem: T) -> bool {
145 assert!(elem.index() < self.domain_size);
146 let (word_index, mask) = word_index_and_mask(elem);
147 let word_ref = &mut self.words[word_index];
148 let word = *word_ref;
149 let new_word = word | mask;
150 *word_ref = new_word;
151 new_word != word
152 }
153
154 /// Sets all bits to true.
155 pub fn insert_all(&mut self) {
156 for word in &mut self.words {
157 *word = !0;
158 }
159 self.clear_excess_bits();
160 }
161
9fa01778 162 /// Returns `true` if the set has changed.
0bf4aa26
XL
163 #[inline]
164 pub fn remove(&mut self, elem: T) -> bool {
165 assert!(elem.index() < self.domain_size);
166 let (word_index, mask) = word_index_and_mask(elem);
167 let word_ref = &mut self.words[word_index];
168 let word = *word_ref;
169 let new_word = word & !mask;
170 *word_ref = new_word;
171 new_word != word
172 }
173
9fa01778 174 /// Gets a slice of the underlying words.
0bf4aa26
XL
175 pub fn words(&self) -> &[Word] {
176 &self.words
177 }
178
179 /// Iterates over the indices of set bits in a sorted order.
180 #[inline]
416331ca 181 pub fn iter(&self) -> BitIter<'_, T> {
e74abb32 182 BitIter::new(&self.words)
0bf4aa26
XL
183 }
184
185 /// Duplicates the set as a hybrid set.
186 pub fn to_hybrid(&self) -> HybridBitSet<T> {
187 // Note: we currently don't bother trying to make a Sparse set.
188 HybridBitSet::Dense(self.to_owned())
189 }
dc9dc135
XL
190
191 /// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at
192 /// least one bit that is not in `other` (i.e. `other` is not a superset of `self`).
193 ///
194 /// This is an optimization for union of a hybrid bitset.
195 fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
196 assert!(sparse.domain_size == self.domain_size);
197 self.clear_excess_bits();
198
199 let mut not_already = false;
200 // Index of the current word not yet merged.
201 let mut current_index = 0;
202 // Mask of bits that came from the sparse set in the current word.
203 let mut new_bit_mask = 0;
204 for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) {
205 // Next bit is in a word not inspected yet.
206 if word_index > current_index {
207 self.words[current_index] |= new_bit_mask;
208 // Were there any bits in the old word that did not occur in the sparse set?
209 not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
210 // Check all words we skipped for any set bit.
dfeec247 211 not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0);
dc9dc135
XL
212 // Update next word.
213 current_index = word_index;
214 // Reset bit mask, no bits have been merged yet.
215 new_bit_mask = 0;
216 }
217 // Add bit and mark it as coming from the sparse set.
218 // self.words[word_index] |= mask;
219 new_bit_mask |= mask;
220 }
221 self.words[current_index] |= new_bit_mask;
222 // Any bits in the last inspected word that were not in the sparse set?
223 not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
224 // Any bits in the tail? Note `clear_excess_bits` before.
dfeec247 225 not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0);
dc9dc135
XL
226
227 not_already
228 }
94222f64
XL
229
230 bit_relations_inherent_impls! {}
0bf4aa26
XL
231}
232
94222f64
XL
233// dense REL dense
234impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> {
235 fn union(&mut self, other: &BitSet<T>) -> bool {
236 assert_eq!(self.domain_size, other.domain_size);
237 bitwise(&mut self.words, &other.words, |a, b| a | b)
238 }
239
240 fn subtract(&mut self, other: &BitSet<T>) -> bool {
241 assert_eq!(self.domain_size, other.domain_size);
242 bitwise(&mut self.words, &other.words, |a, b| a & !b)
243 }
244
245 fn intersect(&mut self, other: &BitSet<T>) -> bool {
246 assert_eq!(self.domain_size, other.domain_size);
247 bitwise(&mut self.words, &other.words, |a, b| a & b)
248 }
0bf4aa26
XL
249}
250
94222f64
XL
251// Applies a function to mutate a bitset, and returns true if any
252// of the applications return true
253fn sequential_update<T: Idx>(
254 mut self_update: impl FnMut(T) -> bool,
255 it: impl Iterator<Item = T>,
256) -> bool {
257 let mut changed = false;
258 for elem in it {
259 changed |= self_update(elem);
260 }
261 changed
0bf4aa26
XL
262}
263
94222f64
XL
264// Optimization of intersection for SparseBitSet that's generic
265// over the RHS
266fn sparse_intersect<T: Idx>(
267 set: &mut SparseBitSet<T>,
268 other_contains: impl Fn(&T) -> bool,
269) -> bool {
270 let size = set.elems.len();
271 set.elems.retain(|elem| other_contains(elem));
272 set.elems.len() != size
273}
274
275// Optimization of dense/sparse intersection. The resulting set is
276// guaranteed to be at most the size of the sparse set, and hence can be
277// represented as a sparse set. Therefore the sparse set is copied and filtered,
278// then returned as the new set.
279fn dense_sparse_intersect<T: Idx>(
280 dense: &BitSet<T>,
281 sparse: &SparseBitSet<T>,
282) -> (SparseBitSet<T>, bool) {
283 let mut sparse_copy = sparse.clone();
284 sparse_intersect(&mut sparse_copy, |el| dense.contains(*el));
285 let n = sparse_copy.len();
286 (sparse_copy, n != dense.count())
287}
288
289// hybrid REL dense
290impl<T: Idx> BitRelations<BitSet<T>> for HybridBitSet<T> {
291 fn union(&mut self, other: &BitSet<T>) -> bool {
292 assert_eq!(self.domain_size(), other.domain_size);
293 match self {
294 HybridBitSet::Sparse(sparse) => {
295 // `self` is sparse and `other` is dense. To
296 // merge them, we have two available strategies:
297 // * Densify `self` then merge other
298 // * Clone other then integrate bits from `self`
299 // The second strategy requires dedicated method
300 // since the usual `union` returns the wrong
301 // result. In the dedicated case the computation
302 // is slightly faster if the bits of the sparse
303 // bitset map to only few words of the dense
304 // representation, i.e. indices are near each
305 // other.
306 //
307 // Benchmarking seems to suggest that the second
308 // option is worth it.
309 let mut new_dense = other.clone();
310 let changed = new_dense.reverse_union_sparse(sparse);
311 *self = HybridBitSet::Dense(new_dense);
312 changed
313 }
314
315 HybridBitSet::Dense(dense) => dense.union(other),
316 }
317 }
318
319 fn subtract(&mut self, other: &BitSet<T>) -> bool {
320 assert_eq!(self.domain_size(), other.domain_size);
321 match self {
322 HybridBitSet::Sparse(sparse) => {
323 sequential_update(|elem| sparse.remove(elem), other.iter())
324 }
325 HybridBitSet::Dense(dense) => dense.subtract(other),
326 }
327 }
328
329 fn intersect(&mut self, other: &BitSet<T>) -> bool {
330 assert_eq!(self.domain_size(), other.domain_size);
331 match self {
332 HybridBitSet::Sparse(sparse) => sparse_intersect(sparse, |elem| other.contains(*elem)),
333 HybridBitSet::Dense(dense) => dense.intersect(other),
334 }
0bf4aa26
XL
335 }
336}
337
94222f64
XL
338// dense REL hybrid
339impl<T: Idx> BitRelations<HybridBitSet<T>> for BitSet<T> {
340 fn union(&mut self, other: &HybridBitSet<T>) -> bool {
341 assert_eq!(self.domain_size, other.domain_size());
342 match other {
343 HybridBitSet::Sparse(sparse) => {
344 sequential_update(|elem| self.insert(elem), sparse.iter().cloned())
345 }
346 HybridBitSet::Dense(dense) => self.union(dense),
347 }
348 }
349
350 fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
351 assert_eq!(self.domain_size, other.domain_size());
352 match other {
353 HybridBitSet::Sparse(sparse) => {
354 sequential_update(|elem| self.remove(elem), sparse.iter().cloned())
355 }
356 HybridBitSet::Dense(dense) => self.subtract(dense),
357 }
358 }
359
360 fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
361 assert_eq!(self.domain_size, other.domain_size());
362 match other {
363 HybridBitSet::Sparse(sparse) => {
364 let (updated, changed) = dense_sparse_intersect(self, sparse);
365
366 // We can't directly assign the SparseBitSet to the BitSet, and
367 // doing `*self = updated.to_dense()` would cause a drop / reallocation. Instead,
368 // the BitSet is cleared and `updated` is copied into `self`.
369 self.clear();
370 for elem in updated.iter() {
371 self.insert(*elem);
372 }
373 changed
374 }
375 HybridBitSet::Dense(dense) => self.intersect(dense),
376 }
377 }
378}
379
380// hybrid REL hybrid
381impl<T: Idx> BitRelations<HybridBitSet<T>> for HybridBitSet<T> {
382 fn union(&mut self, other: &HybridBitSet<T>) -> bool {
383 assert_eq!(self.domain_size(), other.domain_size());
384 match self {
385 HybridBitSet::Sparse(_) => {
386 match other {
387 HybridBitSet::Sparse(other_sparse) => {
388 // Both sets are sparse. Add the elements in
389 // `other_sparse` to `self` one at a time. This
390 // may or may not cause `self` to be densified.
391 let mut changed = false;
392 for elem in other_sparse.iter() {
393 changed |= self.insert(*elem);
394 }
395 changed
396 }
397
398 HybridBitSet::Dense(other_dense) => self.union(other_dense),
399 }
400 }
401
402 HybridBitSet::Dense(self_dense) => self_dense.union(other),
403 }
404 }
405
406 fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
407 assert_eq!(self.domain_size(), other.domain_size());
408 match self {
409 HybridBitSet::Sparse(self_sparse) => {
410 sequential_update(|elem| self_sparse.remove(elem), other.iter())
411 }
412 HybridBitSet::Dense(self_dense) => self_dense.subtract(other),
413 }
414 }
415
416 fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
417 assert_eq!(self.domain_size(), other.domain_size());
418 match self {
419 HybridBitSet::Sparse(self_sparse) => {
420 sparse_intersect(self_sparse, |elem| other.contains(*elem))
421 }
422 HybridBitSet::Dense(self_dense) => match other {
423 HybridBitSet::Sparse(other_sparse) => {
424 let (updated, changed) = dense_sparse_intersect(self_dense, other_sparse);
425 *self = HybridBitSet::Sparse(updated);
426 changed
427 }
428 HybridBitSet::Dense(other_dense) => self_dense.intersect(other_dense),
429 },
430 }
0bf4aa26
XL
431 }
432}
433
1b1a35ee
XL
434impl<T> Clone for BitSet<T> {
435 fn clone(&self) -> Self {
436 BitSet { domain_size: self.domain_size, words: self.words.clone(), marker: PhantomData }
437 }
438
439 fn clone_from(&mut self, from: &Self) {
440 if self.domain_size != from.domain_size {
441 self.words.resize(from.domain_size, 0);
442 self.domain_size = from.domain_size;
443 }
444
445 self.words.copy_from_slice(&from.words);
446 }
447}
448
0bf4aa26 449impl<T: Idx> fmt::Debug for BitSet<T> {
9fa01778 450 fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
dfeec247 451 w.debug_list().entries(self.iter()).finish()
0bf4aa26
XL
452 }
453}
454
455impl<T: Idx> ToString for BitSet<T> {
456 fn to_string(&self) -> String {
457 let mut result = String::new();
458 let mut sep = '[';
459
460 // Note: this is a little endian printout of bytes.
461
462 // i tracks how many bits we have printed so far.
463 let mut i = 0;
464 for word in &self.words {
465 let mut word = *word;
dfeec247
XL
466 for _ in 0..WORD_BYTES {
467 // for each byte in `word`:
0bf4aa26
XL
468 let remain = self.domain_size - i;
469 // If less than a byte remains, then mask just that many bits.
470 let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
471 assert!(mask <= 0xFF);
472 let byte = word & mask;
473
474 result.push_str(&format!("{}{:02x}", sep, byte));
475
dfeec247
XL
476 if remain <= 8 {
477 break;
478 }
0bf4aa26
XL
479 word >>= 8;
480 i += 8;
481 sep = '-';
482 }
483 sep = '|';
484 }
485 result.push(']');
486
487 result
488 }
489}
490
491pub struct BitIter<'a, T: Idx> {
e74abb32
XL
492 /// A copy of the current word, but with any already-visited bits cleared.
493 /// (This lets us use `trailing_zeros()` to find the next set bit.) When it
494 /// is reduced to 0, we move onto the next word.
495 word: Word,
496
497 /// The offset (measured in bits) of the current word.
498 offset: usize,
499
500 /// Underlying iterator over the words.
501 iter: slice::Iter<'a, Word>,
502
dfeec247 503 marker: PhantomData<T>,
0bf4aa26
XL
504}
505
e74abb32
XL
506impl<'a, T: Idx> BitIter<'a, T> {
507 #[inline]
508 fn new(words: &'a [Word]) -> BitIter<'a, T> {
509 // We initialize `word` and `offset` to degenerate values. On the first
510 // call to `next()` we will fall through to getting the first word from
511 // `iter`, which sets `word` to the first word (if there is one) and
512 // `offset` to 0. Doing it this way saves us from having to maintain
513 // additional state about whether we have started.
514 BitIter {
515 word: 0,
ba9703b0 516 offset: usize::MAX - (WORD_BITS - 1),
e74abb32
XL
517 iter: words.iter(),
518 marker: PhantomData,
519 }
520 }
521}
522
0bf4aa26
XL
523impl<'a, T: Idx> Iterator for BitIter<'a, T> {
524 type Item = T;
525 fn next(&mut self) -> Option<T> {
526 loop {
e74abb32
XL
527 if self.word != 0 {
528 // Get the position of the next set bit in the current word,
529 // then clear the bit.
530 let bit_pos = self.word.trailing_zeros() as usize;
531 let bit = 1 << bit_pos;
532 self.word ^= bit;
dfeec247 533 return Some(T::new(bit_pos + self.offset));
0bf4aa26
XL
534 }
535
e74abb32
XL
536 // Move onto the next word. `wrapping_add()` is needed to handle
537 // the degenerate initial value given to `offset` in `new()`.
538 let word = self.iter.next()?;
539 self.word = *word;
540 self.offset = self.offset.wrapping_add(WORD_BITS);
0bf4aa26
XL
541 }
542 }
543}
544
0bf4aa26
XL
545#[inline]
546fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
dfeec247
XL
547where
548 Op: Fn(Word, Word) -> Word,
0bf4aa26
XL
549{
550 assert_eq!(out_vec.len(), in_vec.len());
17df50a5 551 let mut changed = 0;
cdc7bbd5 552 for (out_elem, in_elem) in iter::zip(out_vec, in_vec) {
0bf4aa26
XL
553 let old_val = *out_elem;
554 let new_val = op(old_val, *in_elem);
555 *out_elem = new_val;
17df50a5
XL
556 // This is essentially equivalent to a != with changed being a bool, but
557 // in practice this code gets auto-vectorized by the compiler for most
558 // operators. Using != here causes us to generate quite poor code as the
559 // compiler tries to go back to a boolean on each loop iteration.
560 changed |= old_val ^ new_val;
0bf4aa26 561 }
17df50a5 562 changed != 0
0bf4aa26
XL
563}
564
565const SPARSE_MAX: usize = 8;
566
567/// A fixed-size bitset type with a sparse representation and a maximum of
3dfed10e
XL
568/// `SPARSE_MAX` elements. The elements are stored as a sorted `ArrayVec` with
569/// no duplicates.
0bf4aa26
XL
570///
571/// This type is used by `HybridBitSet`; do not use directly.
572#[derive(Clone, Debug)]
1b1a35ee 573pub struct SparseBitSet<T> {
0bf4aa26 574 domain_size: usize,
cdc7bbd5 575 elems: ArrayVec<T, SPARSE_MAX>,
0bf4aa26
XL
576}
577
578impl<T: Idx> SparseBitSet<T> {
579 fn new_empty(domain_size: usize) -> Self {
3dfed10e 580 SparseBitSet { domain_size, elems: ArrayVec::new() }
0bf4aa26
XL
581 }
582
583 fn len(&self) -> usize {
584 self.elems.len()
585 }
586
587 fn is_empty(&self) -> bool {
588 self.elems.len() == 0
589 }
590
591 fn contains(&self, elem: T) -> bool {
592 assert!(elem.index() < self.domain_size);
593 self.elems.contains(&elem)
594 }
595
596 fn insert(&mut self, elem: T) -> bool {
597 assert!(elem.index() < self.domain_size);
598 let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
599 if self.elems[i] == elem {
600 // `elem` is already in the set.
601 false
602 } else {
603 // `elem` is smaller than one or more existing elements.
604 self.elems.insert(i, elem);
605 true
606 }
607 } else {
608 // `elem` is larger than all existing elements.
609 self.elems.push(elem);
610 true
611 };
612 assert!(self.len() <= SPARSE_MAX);
613 changed
614 }
615
616 fn remove(&mut self, elem: T) -> bool {
617 assert!(elem.index() < self.domain_size);
618 if let Some(i) = self.elems.iter().position(|&e| e == elem) {
619 self.elems.remove(i);
620 true
621 } else {
622 false
623 }
624 }
625
626 fn to_dense(&self) -> BitSet<T> {
627 let mut dense = BitSet::new_empty(self.domain_size);
628 for elem in self.elems.iter() {
629 dense.insert(*elem);
630 }
631 dense
632 }
633
9fa01778 634 fn iter(&self) -> slice::Iter<'_, T> {
0bf4aa26
XL
635 self.elems.iter()
636 }
0bf4aa26 637
94222f64 638 bit_relations_inherent_impls! {}
0bf4aa26
XL
639}
640
641/// A fixed-size bitset type with a hybrid representation: sparse when there
642/// are up to a `SPARSE_MAX` elements in the set, but dense when there are more
643/// than `SPARSE_MAX`.
644///
645/// This type is especially efficient for sets that typically have a small
646/// number of elements, but a large `domain_size`, and are cleared frequently.
647///
648/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
649/// just be `usize`.
650///
651/// All operations that involve an element will panic if the element is equal
652/// to or greater than the domain size. All operations that involve two bitsets
653/// will panic if the bitsets have differing domain sizes.
1b1a35ee
XL
654#[derive(Clone)]
655pub enum HybridBitSet<T> {
0bf4aa26
XL
656 Sparse(SparseBitSet<T>),
657 Dense(BitSet<T>),
658}
659
1b1a35ee
XL
660impl<T: Idx> fmt::Debug for HybridBitSet<T> {
661 fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
662 match self {
663 Self::Sparse(b) => b.fmt(w),
664 Self::Dense(b) => b.fmt(w),
665 }
666 }
667}
668
0bf4aa26
XL
669impl<T: Idx> HybridBitSet<T> {
670 pub fn new_empty(domain_size: usize) -> Self {
671 HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
672 }
673
1b1a35ee 674 pub fn domain_size(&self) -> usize {
0bf4aa26
XL
675 match self {
676 HybridBitSet::Sparse(sparse) => sparse.domain_size,
677 HybridBitSet::Dense(dense) => dense.domain_size,
678 }
679 }
680
681 pub fn clear(&mut self) {
682 let domain_size = self.domain_size();
683 *self = HybridBitSet::new_empty(domain_size);
684 }
685
686 pub fn contains(&self, elem: T) -> bool {
687 match self {
688 HybridBitSet::Sparse(sparse) => sparse.contains(elem),
689 HybridBitSet::Dense(dense) => dense.contains(elem),
690 }
691 }
692
693 pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
694 match (self, other) {
695 (HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
696 self_dense.superset(other_dense)
697 }
698 _ => {
699 assert!(self.domain_size() == other.domain_size());
700 other.iter().all(|elem| self.contains(elem))
701 }
702 }
703 }
704
705 pub fn is_empty(&self) -> bool {
706 match self {
707 HybridBitSet::Sparse(sparse) => sparse.is_empty(),
708 HybridBitSet::Dense(dense) => dense.is_empty(),
709 }
710 }
711
712 pub fn insert(&mut self, elem: T) -> bool {
713 // No need to check `elem` against `self.domain_size` here because all
714 // the match cases check it, one way or another.
715 match self {
716 HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
717 // The set is sparse and has space for `elem`.
718 sparse.insert(elem)
719 }
720 HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
721 // The set is sparse and does not have space for `elem`, but
722 // that doesn't matter because `elem` is already present.
723 false
724 }
725 HybridBitSet::Sparse(sparse) => {
726 // The set is sparse and full. Convert to a dense set.
727 let mut dense = sparse.to_dense();
728 let changed = dense.insert(elem);
729 assert!(changed);
730 *self = HybridBitSet::Dense(dense);
731 changed
732 }
733 HybridBitSet::Dense(dense) => dense.insert(elem),
734 }
735 }
736
737 pub fn insert_all(&mut self) {
738 let domain_size = self.domain_size();
739 match self {
740 HybridBitSet::Sparse(_) => {
741 *self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
742 }
743 HybridBitSet::Dense(dense) => dense.insert_all(),
744 }
745 }
746
747 pub fn remove(&mut self, elem: T) -> bool {
748 // Note: we currently don't bother going from Dense back to Sparse.
749 match self {
750 HybridBitSet::Sparse(sparse) => sparse.remove(elem),
751 HybridBitSet::Dense(dense) => dense.remove(elem),
752 }
753 }
754
0bf4aa26
XL
755 /// Converts to a dense set, consuming itself in the process.
756 pub fn to_dense(self) -> BitSet<T> {
757 match self {
758 HybridBitSet::Sparse(sparse) => sparse.to_dense(),
759 HybridBitSet::Dense(dense) => dense,
760 }
761 }
762
9fa01778 763 pub fn iter(&self) -> HybridIter<'_, T> {
0bf4aa26
XL
764 match self {
765 HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
766 HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
767 }
768 }
0bf4aa26 769
94222f64 770 bit_relations_inherent_impls! {}
0bf4aa26
XL
771}
772
773pub enum HybridIter<'a, T: Idx> {
774 Sparse(slice::Iter<'a, T>),
775 Dense(BitIter<'a, T>),
776}
777
778impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
779 type Item = T;
780
781 fn next(&mut self) -> Option<T> {
782 match self {
e74abb32 783 HybridIter::Sparse(sparse) => sparse.next().copied(),
0bf4aa26
XL
784 HybridIter::Dense(dense) => dense.next(),
785 }
786 }
787}
788
789/// A resizable bitset type with a dense representation.
790///
791/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
792/// just be `usize`.
793///
794/// All operations that involve an element will panic if the element is equal
795/// to or greater than the domain size.
796#[derive(Clone, Debug, PartialEq)]
797pub struct GrowableBitSet<T: Idx> {
798 bit_set: BitSet<T>,
799}
800
801impl<T: Idx> GrowableBitSet<T> {
802 /// Ensure that the set can hold at least `min_domain_size` elements.
803 pub fn ensure(&mut self, min_domain_size: usize) {
804 if self.bit_set.domain_size < min_domain_size {
805 self.bit_set.domain_size = min_domain_size;
806 }
807
808 let min_num_words = num_words(min_domain_size);
809 if self.bit_set.words.len() < min_num_words {
810 self.bit_set.words.resize(min_num_words, 0)
811 }
812 }
813
814 pub fn new_empty() -> GrowableBitSet<T> {
815 GrowableBitSet { bit_set: BitSet::new_empty(0) }
816 }
817
48663c56
XL
818 pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
819 GrowableBitSet { bit_set: BitSet::new_empty(capacity) }
0bf4aa26
XL
820 }
821
9fa01778 822 /// Returns `true` if the set has changed.
0bf4aa26
XL
823 #[inline]
824 pub fn insert(&mut self, elem: T) -> bool {
825 self.ensure(elem.index() + 1);
826 self.bit_set.insert(elem)
827 }
828
5869c6ff
XL
829 /// Returns `true` if the set has changed.
830 #[inline]
831 pub fn remove(&mut self, elem: T) -> bool {
832 self.ensure(elem.index() + 1);
833 self.bit_set.remove(elem)
834 }
835
836 #[inline]
837 pub fn is_empty(&self) -> bool {
838 self.bit_set.is_empty()
839 }
840
0bf4aa26
XL
841 #[inline]
842 pub fn contains(&self, elem: T) -> bool {
843 let (word_index, mask) = word_index_and_mask(elem);
c295e0f8 844 self.bit_set.words.get(word_index).map_or(false, |word| (word & mask) != 0)
0bf4aa26
XL
845 }
846}
847
848/// A fixed-size 2D bit matrix type with a dense representation.
849///
850/// `R` and `C` are index types used to identify rows and columns respectively;
851/// typically newtyped `usize` wrappers, but they can also just be `usize`.
852///
853/// All operations that involve a row and/or column index will panic if the
854/// index exceeds the relevant bound.
3dfed10e 855#[derive(Clone, Eq, PartialEq, Decodable, Encodable)]
0bf4aa26
XL
856pub struct BitMatrix<R: Idx, C: Idx> {
857 num_rows: usize,
858 num_columns: usize,
859 words: Vec<Word>,
860 marker: PhantomData<(R, C)>,
861}
862
863impl<R: Idx, C: Idx> BitMatrix<R, C> {
9fa01778 864 /// Creates a new `rows x columns` matrix, initially empty.
0bf4aa26
XL
865 pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
866 // For every element, we need one bit for every other
867 // element. Round up to an even number of words.
868 let words_per_row = num_words(num_columns);
869 BitMatrix {
870 num_rows,
871 num_columns,
872 words: vec![0; num_rows * words_per_row],
873 marker: PhantomData,
874 }
875 }
876
dc9dc135
XL
877 /// Creates a new matrix, with `row` used as the value for every row.
878 pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
879 let num_columns = row.domain_size();
880 let words_per_row = num_words(num_columns);
881 assert_eq!(words_per_row, row.words().len());
882 BitMatrix {
883 num_rows,
884 num_columns,
885 words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(),
886 marker: PhantomData,
887 }
888 }
889
890 pub fn rows(&self) -> impl Iterator<Item = R> {
891 (0..self.num_rows).map(R::new)
892 }
893
0bf4aa26
XL
894 /// The range of bits for a given row.
895 fn range(&self, row: R) -> (usize, usize) {
896 let words_per_row = num_words(self.num_columns);
897 let start = row.index() * words_per_row;
898 (start, start + words_per_row)
899 }
900
901 /// Sets the cell at `(row, column)` to true. Put another way, insert
902 /// `column` to the bitset for `row`.
903 ///
9fa01778 904 /// Returns `true` if this changed the matrix.
0bf4aa26
XL
905 pub fn insert(&mut self, row: R, column: C) -> bool {
906 assert!(row.index() < self.num_rows && column.index() < self.num_columns);
907 let (start, _) = self.range(row);
908 let (word_index, mask) = word_index_and_mask(column);
909 let words = &mut self.words[..];
910 let word = words[start + word_index];
911 let new_word = word | mask;
912 words[start + word_index] = new_word;
913 word != new_word
914 }
915
916 /// Do the bits from `row` contain `column`? Put another way, is
917 /// the matrix cell at `(row, column)` true? Put yet another way,
918 /// if the matrix represents (transitive) reachability, can
919 /// `row` reach `column`?
920 pub fn contains(&self, row: R, column: C) -> bool {
921 assert!(row.index() < self.num_rows && column.index() < self.num_columns);
922 let (start, _) = self.range(row);
923 let (word_index, mask) = word_index_and_mask(column);
924 (self.words[start + word_index] & mask) != 0
925 }
926
9fa01778 927 /// Returns those indices that are true in rows `a` and `b`. This
3dfed10e 928 /// is an *O*(*n*) operation where *n* is the number of elements
0bf4aa26
XL
929 /// (somewhat independent from the actual size of the
930 /// intersection, in particular).
931 pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
932 assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
933 let (row1_start, row1_end) = self.range(row1);
934 let (row2_start, row2_end) = self.range(row2);
935 let mut result = Vec::with_capacity(self.num_columns);
936 for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
937 let mut v = self.words[i] & self.words[j];
938 for bit in 0..WORD_BITS {
939 if v == 0 {
940 break;
941 }
942 if v & 0x1 != 0 {
943 result.push(C::new(base * WORD_BITS + bit));
944 }
945 v >>= 1;
946 }
947 }
948 result
949 }
950
9fa01778
XL
951 /// Adds the bits from row `read` to the bits from row `write`, and
952 /// returns `true` if anything changed.
0bf4aa26
XL
953 ///
954 /// This is used when computing transitive reachability because if
955 /// you have an edge `write -> read`, because in that case
956 /// `write` can reach everything that `read` can (and
957 /// potentially more).
958 pub fn union_rows(&mut self, read: R, write: R) -> bool {
959 assert!(read.index() < self.num_rows && write.index() < self.num_rows);
960 let (read_start, read_end) = self.range(read);
961 let (write_start, write_end) = self.range(write);
962 let words = &mut self.words[..];
963 let mut changed = false;
cdc7bbd5 964 for (read_index, write_index) in iter::zip(read_start..read_end, write_start..write_end) {
0bf4aa26
XL
965 let word = words[write_index];
966 let new_word = word | words[read_index];
967 words[write_index] = new_word;
968 changed |= word != new_word;
969 }
970 changed
971 }
972
dc9dc135
XL
973 /// Adds the bits from `with` to the bits from row `write`, and
974 /// returns `true` if anything changed.
975 pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool {
976 assert!(write.index() < self.num_rows);
977 assert_eq!(with.domain_size(), self.num_columns);
978 let (write_start, write_end) = self.range(write);
979 let mut changed = false;
cdc7bbd5 980 for (read_index, write_index) in iter::zip(0..with.words().len(), write_start..write_end) {
dc9dc135
XL
981 let word = self.words[write_index];
982 let new_word = word | with.words()[read_index];
983 self.words[write_index] = new_word;
984 changed |= word != new_word;
985 }
986 changed
987 }
988
989 /// Sets every cell in `row` to true.
990 pub fn insert_all_into_row(&mut self, row: R) {
991 assert!(row.index() < self.num_rows);
992 let (start, end) = self.range(row);
c295e0f8
XL
993 for word in self.words[start..end].iter_mut() {
994 *word = !0;
dc9dc135
XL
995 }
996 self.clear_excess_bits(row);
997 }
998
999 /// Clear excess bits in the final word of the row.
1000 fn clear_excess_bits(&mut self, row: R) {
1001 let num_bits_in_final_word = self.num_columns % WORD_BITS;
1002 if num_bits_in_final_word > 0 {
1003 let mask = (1 << num_bits_in_final_word) - 1;
1004 let (_, end) = self.range(row);
1005 let final_word_idx = end - 1;
1006 self.words[final_word_idx] &= mask;
1007 }
1008 }
1009
1010 /// Gets a slice of the underlying words.
1011 pub fn words(&self) -> &[Word] {
1012 &self.words
1013 }
1014
0bf4aa26
XL
1015 /// Iterates through all the columns set to true in a given row of
1016 /// the matrix.
416331ca 1017 pub fn iter(&self, row: R) -> BitIter<'_, C> {
0bf4aa26
XL
1018 assert!(row.index() < self.num_rows);
1019 let (start, end) = self.range(row);
e74abb32 1020 BitIter::new(&self.words[start..end])
0bf4aa26 1021 }
dc9dc135
XL
1022
1023 /// Returns the number of elements in `row`.
1024 pub fn count(&self, row: R) -> usize {
1025 let (start, end) = self.range(row);
1026 self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
1027 }
0bf4aa26
XL
1028}
1029
f035d41b
XL
1030impl<R: Idx, C: Idx> fmt::Debug for BitMatrix<R, C> {
1031 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1032 /// Forces its contents to print in regular mode instead of alternate mode.
1033 struct OneLinePrinter<T>(T);
1034 impl<T: fmt::Debug> fmt::Debug for OneLinePrinter<T> {
1035 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1036 write!(fmt, "{:?}", self.0)
1037 }
1038 }
1039
1040 write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?;
1041 let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c)));
1042 fmt.debug_set().entries(items.map(OneLinePrinter)).finish()
1043 }
1044}
1045
0bf4aa26
XL
1046/// A fixed-column-size, variable-row-size 2D bit matrix with a moderately
1047/// sparse representation.
1048///
1049/// Initially, every row has no explicit representation. If any bit within a
1050/// row is set, the entire row is instantiated as `Some(<HybridBitSet>)`.
1051/// Furthermore, any previously uninstantiated rows prior to it will be
1052/// instantiated as `None`. Those prior rows may themselves become fully
1053/// instantiated later on if any of their bits are set.
1054///
1055/// `R` and `C` are index types used to identify rows and columns respectively;
1056/// typically newtyped `usize` wrappers, but they can also just be `usize`.
1057#[derive(Clone, Debug)]
1058pub struct SparseBitMatrix<R, C>
1059where
1060 R: Idx,
1061 C: Idx,
1062{
1063 num_columns: usize,
1064 rows: IndexVec<R, Option<HybridBitSet<C>>>,
1065}
1066
1067impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
9fa01778 1068 /// Creates a new empty sparse bit matrix with no rows or columns.
0bf4aa26 1069 pub fn new(num_columns: usize) -> Self {
dfeec247 1070 Self { num_columns, rows: IndexVec::new() }
0bf4aa26
XL
1071 }
1072
1073 fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> {
c295e0f8 1074 // Instantiate any missing rows up to and including row `row` with an empty HybridBitSet.
0bf4aa26 1075 // Then replace row `row` with a full HybridBitSet if necessary.
c295e0f8 1076 self.rows.get_or_insert_with(row, || HybridBitSet::new_empty(self.num_columns))
0bf4aa26
XL
1077 }
1078
1079 /// Sets the cell at `(row, column)` to true. Put another way, insert
1080 /// `column` to the bitset for `row`.
1081 ///
9fa01778 1082 /// Returns `true` if this changed the matrix.
0bf4aa26
XL
1083 pub fn insert(&mut self, row: R, column: C) -> bool {
1084 self.ensure_row(row).insert(column)
1085 }
1086
94222f64
XL
1087 /// Sets the cell at `(row, column)` to false. Put another way, delete
1088 /// `column` from the bitset for `row`. Has no effect if `row` does not
1089 /// exist.
1090 ///
1091 /// Returns `true` if this changed the matrix.
1092 pub fn remove(&mut self, row: R, column: C) -> bool {
1093 match self.rows.get_mut(row) {
1094 Some(Some(row)) => row.remove(column),
1095 _ => false,
1096 }
1097 }
1098
1099 /// Sets all columns at `row` to false. Has no effect if `row` does
1100 /// not exist.
1101 pub fn clear(&mut self, row: R) {
1102 if let Some(Some(row)) = self.rows.get_mut(row) {
1103 row.clear();
1104 }
1105 }
1106
0bf4aa26
XL
1107 /// Do the bits from `row` contain `column`? Put another way, is
1108 /// the matrix cell at `(row, column)` true? Put yet another way,
1109 /// if the matrix represents (transitive) reachability, can
1110 /// `row` reach `column`?
1111 pub fn contains(&self, row: R, column: C) -> bool {
1112 self.row(row).map_or(false, |r| r.contains(column))
1113 }
1114
9fa01778
XL
1115 /// Adds the bits from row `read` to the bits from row `write`, and
1116 /// returns `true` if anything changed.
0bf4aa26
XL
1117 ///
1118 /// This is used when computing transitive reachability because if
1119 /// you have an edge `write -> read`, because in that case
1120 /// `write` can reach everything that `read` can (and
1121 /// potentially more).
1122 pub fn union_rows(&mut self, read: R, write: R) -> bool {
1123 if read == write || self.row(read).is_none() {
1124 return false;
1125 }
1126
1127 self.ensure_row(write);
1128 if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
1129 write_row.union(read_row)
1130 } else {
1131 unreachable!()
1132 }
1133 }
1134
0bf4aa26
XL
1135 /// Insert all bits in the given row.
1136 pub fn insert_all_into_row(&mut self, row: R) {
1137 self.ensure_row(row).insert_all();
1138 }
1139
1140 pub fn rows(&self) -> impl Iterator<Item = R> {
1141 self.rows.indices()
1142 }
1143
1144 /// Iterates through all the columns set to true in a given row of
1145 /// the matrix.
c295e0f8 1146 pub fn iter(&self, row: R) -> impl Iterator<Item = C> + '_ {
0bf4aa26
XL
1147 self.row(row).into_iter().flat_map(|r| r.iter())
1148 }
1149
1150 pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
dfeec247 1151 if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
0bf4aa26 1152 }
94222f64
XL
1153
1154 /// Interescts `row` with `set`. `set` can be either `BitSet` or
1155 /// `HybridBitSet`. Has no effect if `row` does not exist.
1156 ///
1157 /// Returns true if the row was changed.
1158 pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool
1159 where
1160 HybridBitSet<C>: BitRelations<Set>,
1161 {
1162 match self.rows.get_mut(row) {
1163 Some(Some(row)) => row.intersect(set),
1164 _ => false,
1165 }
1166 }
1167
1168 /// Subtracts `set from `row`. `set` can be either `BitSet` or
1169 /// `HybridBitSet`. Has no effect if `row` does not exist.
1170 ///
1171 /// Returns true if the row was changed.
1172 pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool
1173 where
1174 HybridBitSet<C>: BitRelations<Set>,
1175 {
1176 match self.rows.get_mut(row) {
1177 Some(Some(row)) => row.subtract(set),
1178 _ => false,
1179 }
1180 }
1181
1182 /// Unions `row` with `set`. `set` can be either `BitSet` or
1183 /// `HybridBitSet`.
1184 ///
1185 /// Returns true if the row was changed.
1186 pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool
1187 where
1188 HybridBitSet<C>: BitRelations<Set>,
1189 {
1190 self.ensure_row(row).union(set)
1191 }
0bf4aa26
XL
1192}
1193
1194#[inline]
1195fn num_words<T: Idx>(domain_size: T) -> usize {
1196 (domain_size.index() + WORD_BITS - 1) / WORD_BITS
1197}
1198
1199#[inline]
1200fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
1201 let elem = elem.index();
1202 let word_index = elem / WORD_BITS;
1203 let mask = 1 << (elem % WORD_BITS);
1204 (word_index, mask)
1205}
3dfed10e
XL
1206
1207/// Integral type used to represent the bit set.
1208pub trait FiniteBitSetTy:
1209 BitAnd<Output = Self>
1210 + BitAndAssign
1211 + BitOrAssign
1212 + Clone
1213 + Copy
1214 + Shl
1215 + Not<Output = Self>
1216 + PartialEq
1217 + Sized
1218{
1219 /// Size of the domain representable by this type, e.g. 64 for `u64`.
1220 const DOMAIN_SIZE: u32;
1221
1222 /// Value which represents the `FiniteBitSet` having every bit set.
1223 const FILLED: Self;
1224 /// Value which represents the `FiniteBitSet` having no bits set.
1225 const EMPTY: Self;
1226
1227 /// Value for one as the integral type.
1228 const ONE: Self;
1229 /// Value for zero as the integral type.
1230 const ZERO: Self;
1231
1232 /// Perform a checked left shift on the integral type.
1233 fn checked_shl(self, rhs: u32) -> Option<Self>;
1234 /// Perform a checked right shift on the integral type.
1235 fn checked_shr(self, rhs: u32) -> Option<Self>;
1236}
1237
1238impl FiniteBitSetTy for u32 {
1239 const DOMAIN_SIZE: u32 = 32;
1240
1241 const FILLED: Self = Self::MAX;
1242 const EMPTY: Self = Self::MIN;
1243
1244 const ONE: Self = 1u32;
1245 const ZERO: Self = 0u32;
1246
1247 fn checked_shl(self, rhs: u32) -> Option<Self> {
1248 self.checked_shl(rhs)
1249 }
1250
1251 fn checked_shr(self, rhs: u32) -> Option<Self> {
1252 self.checked_shr(rhs)
1253 }
1254}
1255
1256impl std::fmt::Debug for FiniteBitSet<u32> {
1257 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1258 write!(f, "{:032b}", self.0)
1259 }
1260}
1261
1262impl FiniteBitSetTy for u64 {
1263 const DOMAIN_SIZE: u32 = 64;
1264
1265 const FILLED: Self = Self::MAX;
1266 const EMPTY: Self = Self::MIN;
1267
1268 const ONE: Self = 1u64;
1269 const ZERO: Self = 0u64;
1270
1271 fn checked_shl(self, rhs: u32) -> Option<Self> {
1272 self.checked_shl(rhs)
1273 }
1274
1275 fn checked_shr(self, rhs: u32) -> Option<Self> {
1276 self.checked_shr(rhs)
1277 }
1278}
1279
1280impl std::fmt::Debug for FiniteBitSet<u64> {
1281 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1282 write!(f, "{:064b}", self.0)
1283 }
1284}
1285
1286impl FiniteBitSetTy for u128 {
1287 const DOMAIN_SIZE: u32 = 128;
1288
1289 const FILLED: Self = Self::MAX;
1290 const EMPTY: Self = Self::MIN;
1291
1292 const ONE: Self = 1u128;
1293 const ZERO: Self = 0u128;
1294
1295 fn checked_shl(self, rhs: u32) -> Option<Self> {
1296 self.checked_shl(rhs)
1297 }
1298
1299 fn checked_shr(self, rhs: u32) -> Option<Self> {
1300 self.checked_shr(rhs)
1301 }
1302}
1303
1304impl std::fmt::Debug for FiniteBitSet<u128> {
1305 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1306 write!(f, "{:0128b}", self.0)
1307 }
1308}
1309
1310/// A fixed-sized bitset type represented by an integer type. Indices outwith than the range
1311/// representable by `T` are considered set.
1312#[derive(Copy, Clone, Eq, PartialEq, Decodable, Encodable)]
1313pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T);
1314
1315impl<T: FiniteBitSetTy> FiniteBitSet<T> {
1316 /// Creates a new, empty bitset.
1317 pub fn new_empty() -> Self {
1318 Self(T::EMPTY)
1319 }
1320
1321 /// Sets the `index`th bit.
1322 pub fn set(&mut self, index: u32) {
1323 self.0 |= T::ONE.checked_shl(index).unwrap_or(T::ZERO);
1324 }
1325
1326 /// Unsets the `index`th bit.
1327 pub fn clear(&mut self, index: u32) {
1328 self.0 &= !T::ONE.checked_shl(index).unwrap_or(T::ZERO);
1329 }
1330
1331 /// Sets the `i`th to `j`th bits.
1332 pub fn set_range(&mut self, range: Range<u32>) {
1333 let bits = T::FILLED
1334 .checked_shl(range.end - range.start)
1335 .unwrap_or(T::ZERO)
1336 .not()
1337 .checked_shl(range.start)
1338 .unwrap_or(T::ZERO);
1339 self.0 |= bits;
1340 }
1341
1342 /// Is the set empty?
1343 pub fn is_empty(&self) -> bool {
1344 self.0 == T::EMPTY
1345 }
1346
1347 /// Returns the domain size of the bitset.
1348 pub fn within_domain(&self, index: u32) -> bool {
1349 index < T::DOMAIN_SIZE
1350 }
1351
1352 /// Returns if the `index`th bit is set.
1353 pub fn contains(&self, index: u32) -> Option<bool> {
1354 self.within_domain(index)
1355 .then(|| ((self.0.checked_shr(index).unwrap_or(T::ONE)) & T::ONE) == T::ONE)
1356 }
1357}
1358
1359impl<T: FiniteBitSetTy> Default for FiniteBitSet<T> {
1360 fn default() -> Self {
1361 Self::new_empty()
1362 }
1363}