]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_infer/src/infer/combine.rs
New upstream version 1.60.0+dfsg1
[rustc.git] / compiler / rustc_infer / src / infer / combine.rs
CommitLineData
1a4d82fc
JJ
1///////////////////////////////////////////////////////////////////////////
2// # Type combining
3//
4// There are four type combiners: equate, sub, lub, and glb. Each
5// implements the trait `Combine` and contains methods for combining
6// two instances of various things and yielding a new instance. These
7// combiner methods always yield a `Result<T>`. There is a lot of
8// common code for these operations, implemented as default methods on
9// the `Combine` trait.
10//
11// Each operation may have side-effects on the inference context,
12// though these can be unrolled using snapshots. On success, the
13// LUB/GLB operations return the appropriate bound. The Eq and Sub
14// operations generally return the first operand.
15//
16// ## Contravariance
17//
18// When you are relating two things which have a contravariant
19// relationship, you should use `contratys()` or `contraregions()`,
20// rather than inversing the order of arguments! This is necessary
21// because the order of arguments is not relevant for LUB and GLB. It
22// is also useful to track which value is the "expected" value in
23// terms of error reporting.
24
c295e0f8 25use super::equate::Equate;
1a4d82fc
JJ
26use super::glb::Glb;
27use super::lub::Lub;
28use super::sub::Sub;
0531ce1d 29use super::type_variable::TypeVariableValue;
dfeec247 30use super::unify_key::replace_if_possible;
dc9dc135
XL
31use super::unify_key::{ConstVarValue, ConstVariableValue};
32use super::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
dfeec247 33use super::{InferCtxt, MiscVariable, TypeTrace};
1a4d82fc 34
dfeec247 35use crate::traits::{Obligation, PredicateObligations};
1a4d82fc 36
29967ef6 37use rustc_data_structures::sso::SsoHashMap;
dfeec247 38use rustc_hir::def_id::DefId;
3dfed10e 39use rustc_middle::traits::ObligationCause;
a2a8927a 40use rustc_middle::ty::error::{ExpectedFound, TypeError};
ba9703b0
XL
41use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation};
42use rustc_middle::ty::subst::SubstsRef;
f9f354fc 43use rustc_middle::ty::{self, InferConst, ToPredicate, Ty, TyCtxt, TypeFoldable};
ba9703b0 44use rustc_middle::ty::{IntType, UintType};
1b1a35ee 45use rustc_span::{Span, DUMMY_SP};
1a4d82fc 46
1a4d82fc 47#[derive(Clone)]
dc9dc135
XL
48pub struct CombineFields<'infcx, 'tcx> {
49 pub infcx: &'infcx InferCtxt<'infcx, 'tcx>,
1a4d82fc 50 pub trace: TypeTrace<'tcx>,
e9174d1e 51 pub cause: Option<ty::relate::Cause>,
7cac9316 52 pub param_env: ty::ParamEnv<'tcx>,
54a0048b 53 pub obligations: PredicateObligations<'tcx>,
1a4d82fc
JJ
54}
55
e74abb32 56#[derive(Copy, Clone, Debug)]
cc61c64b 57pub enum RelationDir {
dfeec247
XL
58 SubtypeOf,
59 SupertypeOf,
60 EqTo,
cc61c64b
XL
61}
62
dc9dc135
XL
63impl<'infcx, 'tcx> InferCtxt<'infcx, 'tcx> {
64 pub fn super_combine_tys<R>(
65 &self,
66 relation: &mut R,
67 a: Ty<'tcx>,
68 b: Ty<'tcx>,
69 ) -> RelateResult<'tcx, Ty<'tcx>>
70 where
71 R: TypeRelation<'tcx>,
a7813a04
XL
72 {
73 let a_is_expected = relation.a_is_expected();
1a4d82fc 74
1b1a35ee 75 match (a.kind(), b.kind()) {
a7813a04 76 // Relate integral variables to other types
b7449926 77 (&ty::Infer(ty::IntVar(a_id)), &ty::Infer(ty::IntVar(b_id))) => {
74b04a01 78 self.inner
a7813a04 79 .borrow_mut()
f9f354fc 80 .int_unification_table()
a7813a04
XL
81 .unify_var_var(a_id, b_id)
82 .map_err(|e| int_unification_error(a_is_expected, e))?;
83 Ok(a)
84 }
b7449926 85 (&ty::Infer(ty::IntVar(v_id)), &ty::Int(v)) => {
a7813a04
XL
86 self.unify_integral_variable(a_is_expected, v_id, IntType(v))
87 }
b7449926 88 (&ty::Int(v), &ty::Infer(ty::IntVar(v_id))) => {
a7813a04
XL
89 self.unify_integral_variable(!a_is_expected, v_id, IntType(v))
90 }
b7449926 91 (&ty::Infer(ty::IntVar(v_id)), &ty::Uint(v)) => {
a7813a04
XL
92 self.unify_integral_variable(a_is_expected, v_id, UintType(v))
93 }
b7449926 94 (&ty::Uint(v), &ty::Infer(ty::IntVar(v_id))) => {
a7813a04
XL
95 self.unify_integral_variable(!a_is_expected, v_id, UintType(v))
96 }
1a4d82fc 97
a7813a04 98 // Relate floating-point variables to other types
b7449926 99 (&ty::Infer(ty::FloatVar(a_id)), &ty::Infer(ty::FloatVar(b_id))) => {
74b04a01 100 self.inner
a7813a04 101 .borrow_mut()
f9f354fc 102 .float_unification_table()
a7813a04
XL
103 .unify_var_var(a_id, b_id)
104 .map_err(|e| float_unification_error(relation.a_is_expected(), e))?;
105 Ok(a)
106 }
b7449926 107 (&ty::Infer(ty::FloatVar(v_id)), &ty::Float(v)) => {
a7813a04
XL
108 self.unify_float_variable(a_is_expected, v_id, v)
109 }
b7449926 110 (&ty::Float(v), &ty::Infer(ty::FloatVar(v_id))) => {
a7813a04
XL
111 self.unify_float_variable(!a_is_expected, v_id, v)
112 }
1a4d82fc 113
a7813a04 114 // All other cases of inference are errors
dfeec247 115 (&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
f035d41b 116 Err(TypeError::Sorts(ty::relate::expected_found(relation, a, b)))
a7813a04 117 }
1a4d82fc 118
dfeec247 119 _ => ty::relate::super_relate_tys(relation, a, b),
1a4d82fc
JJ
120 }
121 }
122
48663c56
XL
123 pub fn super_combine_consts<R>(
124 &self,
125 relation: &mut R,
5099ac24
FG
126 a: ty::Const<'tcx>,
127 b: ty::Const<'tcx>,
128 ) -> RelateResult<'tcx, ty::Const<'tcx>>
48663c56 129 where
f9f354fc 130 R: ConstEquateRelation<'tcx>,
48663c56 131 {
e1599b0c 132 debug!("{}.consts({:?}, {:?})", relation.tag(), a, b);
dfeec247
XL
133 if a == b {
134 return Ok(a);
135 }
e1599b0c 136
f9f354fc
XL
137 let a = replace_if_possible(&mut self.inner.borrow_mut().const_unification_table(), a);
138 let b = replace_if_possible(&mut self.inner.borrow_mut().const_unification_table(), b);
e1599b0c 139
48663c56
XL
140 let a_is_expected = relation.a_is_expected();
141
5099ac24 142 match (a.val(), b.val()) {
dfeec247
XL
143 (
144 ty::ConstKind::Infer(InferConst::Var(a_vid)),
145 ty::ConstKind::Infer(InferConst::Var(b_vid)),
146 ) => {
74b04a01 147 self.inner
48663c56 148 .borrow_mut()
f9f354fc 149 .const_unification_table()
48663c56
XL
150 .unify_var_var(a_vid, b_vid)
151 .map_err(|e| const_unification_error(a_is_expected, e))?;
152 return Ok(a);
153 }
154
155 // All other cases of inference with other variables are errors.
dfeec247
XL
156 (ty::ConstKind::Infer(InferConst::Var(_)), ty::ConstKind::Infer(_))
157 | (ty::ConstKind::Infer(_), ty::ConstKind::Infer(InferConst::Var(_))) => {
60c5eb7d 158 bug!("tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var)")
48663c56
XL
159 }
160
60c5eb7d 161 (ty::ConstKind::Infer(InferConst::Var(vid)), _) => {
1b1a35ee 162 return self.unify_const_variable(relation.param_env(), vid, b, a_is_expected);
48663c56
XL
163 }
164
60c5eb7d 165 (_, ty::ConstKind::Infer(InferConst::Var(vid))) => {
1b1a35ee 166 return self.unify_const_variable(relation.param_env(), vid, a, !a_is_expected);
48663c56 167 }
f9f354fc 168 (ty::ConstKind::Unevaluated(..), _) if self.tcx.lazy_normalization() => {
3dfed10e 169 // FIXME(#59490): Need to remove the leak check to accommodate
f9f354fc
XL
170 // escaping bound variables here.
171 if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
172 relation.const_equate_obligation(a, b);
173 }
174 return Ok(b);
175 }
176 (_, ty::ConstKind::Unevaluated(..)) if self.tcx.lazy_normalization() => {
3dfed10e 177 // FIXME(#59490): Need to remove the leak check to accommodate
f9f354fc
XL
178 // escaping bound variables here.
179 if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
180 relation.const_equate_obligation(a, b);
181 }
182 return Ok(a);
183 }
48663c56
XL
184 _ => {}
185 }
186
187 ty::relate::super_relate_consts(relation, a, b)
188 }
189
1b1a35ee
XL
190 /// Unifies the const variable `target_vid` with the given constant.
191 ///
192 /// This also tests if the given const `ct` contains an inference variable which was previously
193 /// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct`
cdc7bbd5 194 /// would result in an infinite type as we continuously replace an inference variable
1b1a35ee
XL
195 /// in `ct` with `ct` itself.
196 ///
197 /// This is especially important as unevaluated consts use their parents generics.
198 /// They therefore often contain unused substs, making these errors far more likely.
199 ///
200 /// A good example of this is the following:
201 ///
202 /// ```rust
94222f64 203 /// #![feature(generic_const_exprs)]
1b1a35ee
XL
204 ///
205 /// fn bind<const N: usize>(value: [u8; N]) -> [u8; 3 + 4] {
206 /// todo!()
207 /// }
208 ///
209 /// fn main() {
210 /// let mut arr = Default::default();
211 /// arr = bind(arr);
212 /// }
213 /// ```
214 ///
215 /// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics
216 /// of `fn bind` (meaning that its substs contain `N`).
217 ///
218 /// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`.
219 /// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`.
220 ///
221 /// As `3 + 4` contains `N` in its substs, this must not succeed.
222 ///
223 /// See `src/test/ui/const-generics/occurs-check/` for more examples where this is relevant.
6a06907d 224 #[instrument(level = "debug", skip(self))]
1b1a35ee 225 fn unify_const_variable(
48663c56 226 &self,
1b1a35ee
XL
227 param_env: ty::ParamEnv<'tcx>,
228 target_vid: ty::ConstVid<'tcx>,
5099ac24 229 ct: ty::Const<'tcx>,
48663c56 230 vid_is_expected: bool,
5099ac24 231 ) -> RelateResult<'tcx, ty::Const<'tcx>> {
1b1a35ee
XL
232 let (for_universe, span) = {
233 let mut inner = self.inner.borrow_mut();
234 let variable_table = &mut inner.const_unification_table();
235 let var_value = variable_table.probe_value(target_vid);
236 match var_value.val {
237 ConstVariableValue::Known { value } => {
238 bug!("instantiating {:?} which has a known value {:?}", target_vid, value)
239 }
240 ConstVariableValue::Unknown { universe } => (universe, var_value.origin.span),
241 }
242 };
243 let value = ConstInferUnifier { infcx: self, span, param_env, for_universe, target_vid }
244 .relate(ct, ct)?;
245
74b04a01 246 self.inner
48663c56 247 .borrow_mut()
f9f354fc 248 .const_unification_table()
dfeec247 249 .unify_var_value(
1b1a35ee 250 target_vid,
dfeec247
XL
251 ConstVarValue {
252 origin: ConstVariableOrigin {
253 kind: ConstVariableOriginKind::ConstInference,
254 span: DUMMY_SP,
255 },
256 val: ConstVariableValue::Known { value },
dc9dc135 257 },
dfeec247 258 )
1b1a35ee
XL
259 .map(|()| value)
260 .map_err(|e| const_unification_error(vid_is_expected, e))
48663c56
XL
261 }
262
dfeec247
XL
263 fn unify_integral_variable(
264 &self,
265 vid_is_expected: bool,
266 vid: ty::IntVid,
267 val: ty::IntVarValue,
268 ) -> RelateResult<'tcx, Ty<'tcx>> {
74b04a01 269 self.inner
a7813a04 270 .borrow_mut()
f9f354fc 271 .int_unification_table()
0531ce1d 272 .unify_var_value(vid, Some(val))
a7813a04
XL
273 .map_err(|e| int_unification_error(vid_is_expected, e))?;
274 match val {
275 IntType(v) => Ok(self.tcx.mk_mach_int(v)),
276 UintType(v) => Ok(self.tcx.mk_mach_uint(v)),
277 }
1a4d82fc 278 }
1a4d82fc 279
dfeec247
XL
280 fn unify_float_variable(
281 &self,
282 vid_is_expected: bool,
283 vid: ty::FloatVid,
5869c6ff 284 val: ty::FloatTy,
dfeec247 285 ) -> RelateResult<'tcx, Ty<'tcx>> {
74b04a01 286 self.inner
a7813a04 287 .borrow_mut()
f9f354fc 288 .float_unification_table()
0531ce1d 289 .unify_var_value(vid, Some(ty::FloatVarValue(val)))
a7813a04
XL
290 .map_err(|e| float_unification_error(vid_is_expected, e))?;
291 Ok(self.tcx.mk_mach_float(val))
292 }
c34b1796
AL
293}
294
dc9dc135
XL
295impl<'infcx, 'tcx> CombineFields<'infcx, 'tcx> {
296 pub fn tcx(&self) -> TyCtxt<'tcx> {
c34b1796
AL
297 self.infcx.tcx
298 }
299
dc9dc135 300 pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'tcx> {
5bcae85e 301 Equate::new(self, a_is_expected)
1a4d82fc
JJ
302 }
303
dc9dc135 304 pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'tcx> {
5bcae85e 305 Sub::new(self, a_is_expected)
c34b1796
AL
306 }
307
dc9dc135 308 pub fn lub<'a>(&'a mut self, a_is_expected: bool) -> Lub<'a, 'infcx, 'tcx> {
5bcae85e 309 Lub::new(self, a_is_expected)
c34b1796
AL
310 }
311
dc9dc135 312 pub fn glb<'a>(&'a mut self, a_is_expected: bool) -> Glb<'a, 'infcx, 'tcx> {
5bcae85e 313 Glb::new(self, a_is_expected)
1a4d82fc
JJ
314 }
315
9fa01778
XL
316 /// Here, `dir` is either `EqTo`, `SubtypeOf`, or `SupertypeOf`.
317 /// The idea is that we should ensure that the type `a_ty` is equal
cc61c64b
XL
318 /// to, a subtype of, or a supertype of (respectively) the type
319 /// to which `b_vid` is bound.
320 ///
321 /// Since `b_vid` has not yet been instantiated with a type, we
322 /// will first instantiate `b_vid` with a *generalized* version
323 /// of `a_ty`. Generalization introduces other inference
324 /// variables wherever subtyping could occur.
dfeec247
XL
325 pub fn instantiate(
326 &mut self,
327 a_ty: Ty<'tcx>,
328 dir: RelationDir,
329 b_vid: ty::TyVid,
330 a_is_expected: bool,
331 ) -> RelateResult<'tcx, ()> {
cc61c64b 332 use self::RelationDir::*;
1a4d82fc 333
cc61c64b 334 // Get the actual variable that b_vid has been inferred to
f9f354fc 335 debug_assert!(self.infcx.inner.borrow_mut().type_variables().probe(b_vid).is_unknown());
1a4d82fc 336
cc61c64b
XL
337 debug!("instantiate(a_ty={:?} dir={:?} b_vid={:?})", a_ty, dir, b_vid);
338
339 // Generalize type of `a_ty` appropriately depending on the
340 // direction. As an example, assume:
341 //
342 // - `a_ty == &'x ?1`, where `'x` is some free region and `?1` is an
343 // inference variable,
344 // - and `dir` == `SubtypeOf`.
345 //
346 // Then the generalized form `b_ty` would be `&'?2 ?3`, where
347 // `'?2` and `?3` are fresh region/type inference
348 // variables. (Down below, we will relate `a_ty <: b_ty`,
349 // adding constraints like `'x: '?2` and `?1 <: ?3`.)
350 let Generalization { ty: b_ty, needs_wf } = self.generalize(a_ty, b_vid, dir)?;
dfeec247
XL
351 debug!(
352 "instantiate(a_ty={:?}, dir={:?}, b_vid={:?}, generalized b_ty={:?})",
353 a_ty, dir, b_vid, b_ty
354 );
f9f354fc 355 self.infcx.inner.borrow_mut().type_variables().instantiate(b_vid, b_ty);
cc61c64b
XL
356
357 if needs_wf {
dfeec247
XL
358 self.obligations.push(Obligation::new(
359 self.trace.cause.clone(),
360 self.param_env,
c295e0f8
XL
361 ty::Binder::dummy(ty::PredicateKind::WellFormed(b_ty.into()))
362 .to_predicate(self.infcx.tcx),
dfeec247 363 ));
1a4d82fc
JJ
364 }
365
cc61c64b
XL
366 // Finally, relate `b_ty` to `a_ty`, as described in previous comment.
367 //
368 // FIXME(#16847): This code is non-ideal because all these subtype
369 // relations wind up attributed to the same spans. We need
370 // to associate causes/spans with each of the relations in
371 // the stack to get this right.
372 match dir {
f035d41b
XL
373 EqTo => self.equate(a_is_expected).relate(a_ty, b_ty),
374 SubtypeOf => self.sub(a_is_expected).relate(a_ty, b_ty),
17df50a5
XL
375 SupertypeOf => self.sub(a_is_expected).relate_with_variance(
376 ty::Contravariant,
377 ty::VarianceDiagInfo::default(),
378 a_ty,
379 b_ty,
380 ),
cc61c64b
XL
381 }?;
382
1a4d82fc
JJ
383 Ok(())
384 }
385
cc61c64b
XL
386 /// Attempts to generalize `ty` for the type variable `for_vid`.
387 /// This checks for cycle -- that is, whether the type `ty`
388 /// references `for_vid`. The `dir` is the "direction" for which we
389 /// a performing the generalization (i.e., are we producing a type
390 /// that can be used as a supertype etc).
391 ///
392 /// Preconditions:
393 ///
394 /// - `for_vid` is a "root vid"
dfeec247
XL
395 fn generalize(
396 &self,
397 ty: Ty<'tcx>,
398 for_vid: ty::TyVid,
399 dir: RelationDir,
400 ) -> RelateResult<'tcx, Generalization<'tcx>> {
13cf67c4 401 debug!("generalize(ty={:?}, for_vid={:?}, dir={:?}", ty, for_vid, dir);
cc61c64b
XL
402 // Determine the ambient variance within which `ty` appears.
403 // The surrounding equation is:
404 //
405 // ty [op] ty2
406 //
407 // where `op` is either `==`, `<:`, or `:>`. This maps quite
408 // naturally.
409 let ambient_variance = match dir {
410 RelationDir::EqTo => ty::Invariant,
411 RelationDir::SubtypeOf => ty::Covariant,
412 RelationDir::SupertypeOf => ty::Contravariant,
413 };
414
0731742a
XL
415 debug!("generalize: ambient_variance = {:?}", ambient_variance);
416
f9f354fc 417 let for_universe = match self.infcx.inner.borrow_mut().type_variables().probe(for_vid) {
dfeec247 418 v @ TypeVariableValue::Known { .. } => {
1b1a35ee 419 bug!("instantiating {:?} which has a known value {:?}", for_vid, v,)
dfeec247 420 }
0731742a
XL
421 TypeVariableValue::Unknown { universe } => universe,
422 };
423
424 debug!("generalize: for_universe = {:?}", for_universe);
3dfed10e 425 debug!("generalize: trace = {:?}", self.trace);
0731742a 426
c34b1796
AL
427 let mut generalize = Generalizer {
428 infcx: self.infcx,
3dfed10e 429 cause: &self.trace.cause,
f9f354fc 430 for_vid_sub_root: self.infcx.inner.borrow_mut().type_variables().sub_root_var(for_vid),
0731742a 431 for_universe,
041b39d2 432 ambient_variance,
cc61c64b 433 needs_wf: false,
ff7c6d11 434 root_ty: ty,
416331ca 435 param_env: self.param_env,
29967ef6 436 cache: SsoHashMap::new(),
c34b1796 437 };
cc61c64b 438
f035d41b 439 let ty = match generalize.relate(ty, ty) {
13cf67c4
XL
440 Ok(ty) => ty,
441 Err(e) => {
442 debug!("generalize: failure {:?}", e);
443 return Err(e);
444 }
445 };
cc61c64b 446 let needs_wf = generalize.needs_wf;
13cf67c4 447 debug!("generalize: success {{ {:?}, {:?} }}", ty, needs_wf);
cc61c64b 448 Ok(Generalization { ty, needs_wf })
1a4d82fc 449 }
f9f354fc
XL
450
451 pub fn add_const_equate_obligation(
452 &mut self,
453 a_is_expected: bool,
5099ac24
FG
454 a: ty::Const<'tcx>,
455 b: ty::Const<'tcx>,
f9f354fc
XL
456 ) {
457 let predicate = if a_is_expected {
5869c6ff 458 ty::PredicateKind::ConstEquate(a, b)
f9f354fc 459 } else {
5869c6ff 460 ty::PredicateKind::ConstEquate(b, a)
f9f354fc
XL
461 };
462 self.obligations.push(Obligation::new(
463 self.trace.cause.clone(),
464 self.param_env,
c295e0f8 465 ty::Binder::dummy(predicate).to_predicate(self.tcx()),
f9f354fc
XL
466 ));
467 }
1a4d82fc
JJ
468}
469
dc9dc135
XL
470struct Generalizer<'cx, 'tcx> {
471 infcx: &'cx InferCtxt<'cx, 'tcx>,
ff7c6d11 472
9fa01778 473 /// The span, used when creating new type variables and things.
3dfed10e 474 cause: &'cx ObligationCause<'tcx>,
ff7c6d11
XL
475
476 /// The vid of the type variable that is in the process of being
477 /// instantiated; if we find this within the type we are folding,
478 /// that means we would have created a cyclic type.
cc61c64b 479 for_vid_sub_root: ty::TyVid,
ff7c6d11 480
0731742a
XL
481 /// The universe of the type variable that is in the process of
482 /// being instantiated. Any fresh variables that we create in this
483 /// process should be in that same universe.
484 for_universe: ty::UniverseIndex,
485
ff7c6d11 486 /// Track the variance as we descend into the type.
cc61c64b 487 ambient_variance: ty::Variance,
ff7c6d11
XL
488
489 /// See the field `needs_wf` in `Generalization`.
490 needs_wf: bool,
491
492 /// The root type that we are generalizing. Used when reporting cycles.
493 root_ty: Ty<'tcx>,
416331ca
XL
494
495 param_env: ty::ParamEnv<'tcx>,
6c58768f 496
29967ef6 497 cache: SsoHashMap<Ty<'tcx>, RelateResult<'tcx, Ty<'tcx>>>,
cc61c64b
XL
498}
499
500/// Result from a generalization operation. This includes
501/// not only the generalized type, but also a bool flag
83c7162d 502/// indicating whether further WF checks are needed.
cc61c64b
XL
503struct Generalization<'tcx> {
504 ty: Ty<'tcx>,
505
506 /// If true, then the generalized type may not be well-formed,
507 /// even if the source type is well-formed, so we should add an
508 /// additional check to enforce that it is. This arises in
509 /// particular around 'bivariant' type parameters that are only
510 /// constrained by a where-clause. As an example, imagine a type:
511 ///
9fa01778 512 /// struct Foo<A, B> where A: Iterator<Item = B> {
cc61c64b
XL
513 /// data: A
514 /// }
515 ///
516 /// here, `A` will be covariant, but `B` is
517 /// unconstrained. However, whatever it is, for `Foo` to be WF, it
518 /// must be equal to `A::Item`. If we have an input `Foo<?A, ?B>`,
519 /// then after generalization we will wind up with a type like
520 /// `Foo<?C, ?D>`. When we enforce that `Foo<?A, ?B> <: Foo<?C,
521 /// ?D>` (or `>:`), we will wind up with the requirement that `?A
522 /// <: ?C`, but no particular relationship between `?B` and `?D`
523 /// (after all, we do not know the variance of the normalized form
524 /// of `A::Item` with respect to `A`). If we do nothing else, this
9fa01778 525 /// may mean that `?D` goes unconstrained (as in #41677). So, in
cc61c64b
XL
526 /// this scenario where we create a new type variable in a
527 /// bivariant context, we set the `needs_wf` flag to true. This
528 /// will force the calling code to check that `WF(Foo<?C, ?D>)`
529 /// holds, which in turn implies that `?C::Item == ?D`. So once
530 /// `?C` is constrained, that should suffice to restrict `?D`.
531 needs_wf: bool,
1a4d82fc
JJ
532}
533
a2a8927a 534impl<'tcx> TypeRelation<'tcx> for Generalizer<'_, 'tcx> {
dc9dc135 535 fn tcx(&self) -> TyCtxt<'tcx> {
1a4d82fc
JJ
536 self.infcx.tcx
537 }
dfeec247
XL
538 fn param_env(&self) -> ty::ParamEnv<'tcx> {
539 self.param_env
540 }
1a4d82fc 541
cc61c64b
XL
542 fn tag(&self) -> &'static str {
543 "Generalizer"
544 }
545
546 fn a_is_expected(&self) -> bool {
547 true
548 }
549
dfeec247
XL
550 fn binders<T>(
551 &mut self,
cdc7bbd5
XL
552 a: ty::Binder<'tcx, T>,
553 b: ty::Binder<'tcx, T>,
554 ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
dfeec247
XL
555 where
556 T: Relate<'tcx>,
cc61c64b 557 {
fc512014 558 Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
cc61c64b
XL
559 }
560
dfeec247
XL
561 fn relate_item_substs(
562 &mut self,
563 item_def_id: DefId,
564 a_subst: SubstsRef<'tcx>,
565 b_subst: SubstsRef<'tcx>,
566 ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
cc61c64b
XL
567 if self.ambient_variance == ty::Variance::Invariant {
568 // Avoid fetching the variance if we are in an invariant
569 // context; no need, and it can induce dependency cycles
0731742a 570 // (e.g., #41849).
cc61c64b
XL
571 relate::relate_substs(self, None, a_subst, b_subst)
572 } else {
a2a8927a
XL
573 let tcx = self.tcx();
574 let opt_variances = tcx.variances_of(item_def_id);
575 relate::relate_substs(self, Some((item_def_id, &opt_variances)), a_subst, b_subst)
cc61c64b
XL
576 }
577 }
578
dfeec247
XL
579 fn relate_with_variance<T: Relate<'tcx>>(
580 &mut self,
581 variance: ty::Variance,
17df50a5 582 _info: ty::VarianceDiagInfo<'tcx>,
f035d41b
XL
583 a: T,
584 b: T,
dfeec247 585 ) -> RelateResult<'tcx, T> {
cc61c64b
XL
586 let old_ambient_variance = self.ambient_variance;
587 self.ambient_variance = self.ambient_variance.xform(variance);
588
589 let result = self.relate(a, b);
590 self.ambient_variance = old_ambient_variance;
591 result
592 }
593
594 fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
595 assert_eq!(t, t2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
596
6c58768f
XL
597 if let Some(result) = self.cache.get(&t) {
598 return result.clone();
599 }
0731742a
XL
600 debug!("generalize: t={:?}", t);
601
48663c56 602 // Check to see whether the type we are generalizing references
cc61c64b
XL
603 // any other type variable related to `vid` via
604 // subtyping. This is basically our "occurs check", preventing
605 // us from creating infinitely sized types.
1b1a35ee 606 let result = match *t.kind() {
b7449926 607 ty::Infer(ty::TyVar(vid)) => {
f9f354fc
XL
608 let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
609 let sub_vid = self.infcx.inner.borrow_mut().type_variables().sub_root_var(vid);
cc61c64b
XL
610 if sub_vid == self.for_vid_sub_root {
611 // If sub-roots are equal, then `for_vid` and
612 // `vid` are related via subtyping.
e74abb32 613 Err(TypeError::CyclicTy(self.root_ty))
1a4d82fc 614 } else {
f9f354fc 615 let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
74b04a01 616 match probe {
0531ce1d 617 TypeVariableValue::Known { value: u } => {
0731742a 618 debug!("generalize: known value {:?}", u);
f035d41b 619 self.relate(u, u)
cc61c64b 620 }
83c7162d 621 TypeVariableValue::Unknown { universe } => {
cc61c64b
XL
622 match self.ambient_variance {
623 // Invariant: no need to make a fresh type variable.
0731742a
XL
624 ty::Invariant => {
625 if self.for_universe.can_name(universe) {
626 return Ok(t);
627 }
628 }
cc61c64b
XL
629
630 // Bivariant: make a fresh var, but we
631 // may need a WF predicate. See
632 // comment on `needs_wf` field for
633 // more info.
634 ty::Bivariant => self.needs_wf = true,
635
636 // Co/contravariant: this will be
637 // sufficiently constrained later on.
638 ty::Covariant | ty::Contravariant => (),
639 }
640
74b04a01 641 let origin =
f9f354fc
XL
642 *self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
643 let new_var_id = self
644 .infcx
645 .inner
646 .borrow_mut()
647 .type_variables()
c295e0f8 648 .new_var(self.for_universe, origin);
532ac7d7 649 let u = self.tcx().mk_ty_var(new_var_id);
94222f64
XL
650
651 // Record that we replaced `vid` with `new_var_id` as part of a generalization
652 // operation. This is needed to detect cyclic types. To see why, see the
653 // docs in the `type_variables` module.
654 self.infcx.inner.borrow_mut().type_variables().sub(vid, new_var_id);
dfeec247 655 debug!("generalize: replacing original vid={:?} with new={:?}", vid, u);
e74abb32 656 Ok(u)
54a0048b 657 }
1a4d82fc
JJ
658 }
659 }
660 }
ba9703b0 661 ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
cc61c64b
XL
662 // No matter what mode we are in,
663 // integer/floating-point types must be equal to be
664 // relatable.
665 Ok(t)
666 }
dfeec247 667 _ => relate::super_relate_tys(self, t, t),
6c58768f
XL
668 };
669
670 self.cache.insert(t, result.clone());
671 return result;
1a4d82fc
JJ
672 }
673
dfeec247
XL
674 fn regions(
675 &mut self,
676 r: ty::Region<'tcx>,
677 r2: ty::Region<'tcx>,
678 ) -> RelateResult<'tcx, ty::Region<'tcx>> {
cc61c64b
XL
679 assert_eq!(r, r2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
680
0731742a
XL
681 debug!("generalize: regions r={:?}", r);
682
9e0c209e 683 match *r {
3157f602
XL
684 // Never make variables for regions bound within the type itself,
685 // nor for erased regions.
dfeec247 686 ty::ReLateBound(..) | ty::ReErased => {
cc61c64b
XL
687 return Ok(r);
688 }
1a4d82fc 689
dfeec247
XL
690 ty::RePlaceholder(..)
691 | ty::ReVar(..)
74b04a01 692 | ty::ReEmpty(_)
dfeec247 693 | ty::ReStatic
dfeec247
XL
694 | ty::ReEarlyBound(..)
695 | ty::ReFree(..) => {
0731742a 696 // see common code below
1a4d82fc 697 }
0731742a 698 }
ff7c6d11 699
0731742a
XL
700 // If we are in an invariant context, we can re-use the region
701 // as is, unless it happens to be in some universe that we
702 // can't name. (In the case of a region *variable*, we could
703 // use it if we promoted it into our universe, but we don't
704 // bother.)
705 if let ty::Invariant = self.ambient_variance {
706 let r_universe = self.infcx.universe_of_region(r);
707 if self.for_universe.can_name(r_universe) {
708 return Ok(r);
ff7c6d11 709 }
1a4d82fc
JJ
710 }
711
712 // FIXME: This is non-ideal because we don't give a
713 // very descriptive origin for this region variable.
3dfed10e 714 Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.cause.span), self.for_universe))
1a4d82fc 715 }
48663c56
XL
716
717 fn consts(
718 &mut self,
5099ac24
FG
719 c: ty::Const<'tcx>,
720 c2: ty::Const<'tcx>,
721 ) -> RelateResult<'tcx, ty::Const<'tcx>> {
48663c56
XL
722 assert_eq!(c, c2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
723
5099ac24 724 match c.val() {
60c5eb7d 725 ty::ConstKind::Infer(InferConst::Var(vid)) => {
f9f354fc
XL
726 let mut inner = self.infcx.inner.borrow_mut();
727 let variable_table = &mut inner.const_unification_table();
e74abb32
XL
728 let var_value = variable_table.probe_value(vid);
729 match var_value.val {
fc512014
XL
730 ConstVariableValue::Known { value: u } => {
731 drop(inner);
732 self.relate(u, u)
733 }
e74abb32
XL
734 ConstVariableValue::Unknown { universe } => {
735 if self.for_universe.can_name(universe) {
736 Ok(c)
737 } else {
738 let new_var_id = variable_table.new_key(ConstVarValue {
739 origin: var_value.origin,
740 val: ConstVariableValue::Unknown { universe: self.for_universe },
741 });
5099ac24 742 Ok(self.tcx().mk_const_var(new_var_id, c.ty()))
e74abb32 743 }
48663c56 744 }
48663c56
XL
745 }
746 }
5099ac24
FG
747 ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted })
748 if self.tcx().lazy_normalization() =>
749 {
750 assert_eq!(promoted, None);
17df50a5
XL
751 let substs = self.relate_with_variance(
752 ty::Variance::Invariant,
753 ty::VarianceDiagInfo::default(),
754 substs,
755 substs,
756 )?;
5099ac24
FG
757 Ok(self.tcx().mk_const(ty::ConstS {
758 ty: c.ty(),
759 val: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }),
cdc7bbd5
XL
760 }))
761 }
e74abb32 762 _ => relate::super_relate_consts(self, c, c),
48663c56
XL
763 }
764 }
1a4d82fc 765}
c34b1796 766
f9f354fc
XL
767pub trait ConstEquateRelation<'tcx>: TypeRelation<'tcx> {
768 /// Register an obligation that both constants must be equal to each other.
769 ///
770 /// If they aren't equal then the relation doesn't hold.
5099ac24 771 fn const_equate_obligation(&mut self, a: ty::Const<'tcx>, b: ty::Const<'tcx>);
f9f354fc
XL
772}
773
c34b1796 774pub trait RelateResultCompare<'tcx, T> {
dfeec247
XL
775 fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T>
776 where
e9174d1e 777 F: FnOnce() -> TypeError<'tcx>;
c34b1796
AL
778}
779
dfeec247
XL
780impl<'tcx, T: Clone + PartialEq> RelateResultCompare<'tcx, T> for RelateResult<'tcx, T> {
781 fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T>
782 where
e9174d1e 783 F: FnOnce() -> TypeError<'tcx>,
c34b1796 784 {
dfeec247 785 self.clone().and_then(|s| if s == t { self.clone() } else { Err(f()) })
c34b1796
AL
786 }
787}
788
48663c56
XL
789pub fn const_unification_error<'tcx>(
790 a_is_expected: bool,
5099ac24 791 (a, b): (ty::Const<'tcx>, ty::Const<'tcx>),
48663c56 792) -> TypeError<'tcx> {
a2a8927a 793 TypeError::ConstMismatch(ExpectedFound::new(a_is_expected, a, b))
48663c56
XL
794}
795
dfeec247
XL
796fn int_unification_error<'tcx>(
797 a_is_expected: bool,
798 v: (ty::IntVarValue, ty::IntVarValue),
799) -> TypeError<'tcx> {
c34b1796 800 let (a, b) = v;
a2a8927a 801 TypeError::IntMismatch(ExpectedFound::new(a_is_expected, a, b))
c34b1796
AL
802}
803
dfeec247
XL
804fn float_unification_error<'tcx>(
805 a_is_expected: bool,
806 v: (ty::FloatVarValue, ty::FloatVarValue),
807) -> TypeError<'tcx> {
0531ce1d 808 let (ty::FloatVarValue(a), ty::FloatVarValue(b)) = v;
a2a8927a 809 TypeError::FloatMismatch(ExpectedFound::new(a_is_expected, a, b))
c34b1796 810}
1b1a35ee
XL
811
812struct ConstInferUnifier<'cx, 'tcx> {
813 infcx: &'cx InferCtxt<'cx, 'tcx>,
814
815 span: Span,
816
817 param_env: ty::ParamEnv<'tcx>,
818
819 for_universe: ty::UniverseIndex,
820
821 /// The vid of the const variable that is in the process of being
822 /// instantiated; if we find this within the const we are folding,
823 /// that means we would have created a cyclic const.
824 target_vid: ty::ConstVid<'tcx>,
825}
826
827// We use `TypeRelation` here to propagate `RelateResult` upwards.
828//
829// Both inputs are expected to be the same.
a2a8927a 830impl<'tcx> TypeRelation<'tcx> for ConstInferUnifier<'_, 'tcx> {
1b1a35ee
XL
831 fn tcx(&self) -> TyCtxt<'tcx> {
832 self.infcx.tcx
833 }
834
835 fn param_env(&self) -> ty::ParamEnv<'tcx> {
836 self.param_env
837 }
838
839 fn tag(&self) -> &'static str {
840 "ConstInferUnifier"
841 }
842
843 fn a_is_expected(&self) -> bool {
844 true
845 }
846
847 fn relate_with_variance<T: Relate<'tcx>>(
848 &mut self,
849 _variance: ty::Variance,
17df50a5 850 _info: ty::VarianceDiagInfo<'tcx>,
1b1a35ee
XL
851 a: T,
852 b: T,
853 ) -> RelateResult<'tcx, T> {
854 // We don't care about variance here.
855 self.relate(a, b)
856 }
857
858 fn binders<T>(
859 &mut self,
cdc7bbd5
XL
860 a: ty::Binder<'tcx, T>,
861 b: ty::Binder<'tcx, T>,
862 ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
1b1a35ee
XL
863 where
864 T: Relate<'tcx>,
865 {
fc512014 866 Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
1b1a35ee
XL
867 }
868
3c0e092e 869 #[tracing::instrument(level = "debug", skip(self))]
1b1a35ee
XL
870 fn tys(&mut self, t: Ty<'tcx>, _t: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
871 debug_assert_eq!(t, _t);
872 debug!("ConstInferUnifier: t={:?}", t);
873
874 match t.kind() {
875 &ty::Infer(ty::TyVar(vid)) => {
876 let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
877 let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
878 match probe {
879 TypeVariableValue::Known { value: u } => {
880 debug!("ConstOccursChecker: known value {:?}", u);
881 self.tys(u, u)
882 }
883 TypeVariableValue::Unknown { universe } => {
884 if self.for_universe.can_name(universe) {
885 return Ok(t);
886 }
887
888 let origin =
889 *self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
c295e0f8
XL
890 let new_var_id = self
891 .infcx
892 .inner
893 .borrow_mut()
894 .type_variables()
895 .new_var(self.for_universe, origin);
1b1a35ee
XL
896 let u = self.tcx().mk_ty_var(new_var_id);
897 debug!(
898 "ConstInferUnifier: replacing original vid={:?} with new={:?}",
899 vid, u
900 );
901 Ok(u)
902 }
903 }
904 }
fc512014 905 ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => Ok(t),
1b1a35ee
XL
906 _ => relate::super_relate_tys(self, t, t),
907 }
908 }
909
910 fn regions(
911 &mut self,
912 r: ty::Region<'tcx>,
913 _r: ty::Region<'tcx>,
914 ) -> RelateResult<'tcx, ty::Region<'tcx>> {
915 debug_assert_eq!(r, _r);
916 debug!("ConstInferUnifier: r={:?}", r);
917
5099ac24 918 match *r {
1b1a35ee
XL
919 // Never make variables for regions bound within the type itself,
920 // nor for erased regions.
921 ty::ReLateBound(..) | ty::ReErased => {
922 return Ok(r);
923 }
924
925 ty::RePlaceholder(..)
926 | ty::ReVar(..)
927 | ty::ReEmpty(_)
928 | ty::ReStatic
929 | ty::ReEarlyBound(..)
930 | ty::ReFree(..) => {
931 // see common code below
932 }
933 }
934
935 let r_universe = self.infcx.universe_of_region(r);
936 if self.for_universe.can_name(r_universe) {
937 return Ok(r);
938 } else {
939 // FIXME: This is non-ideal because we don't give a
940 // very descriptive origin for this region variable.
941 Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.span), self.for_universe))
942 }
943 }
944
3c0e092e 945 #[tracing::instrument(level = "debug", skip(self))]
1b1a35ee
XL
946 fn consts(
947 &mut self,
5099ac24
FG
948 c: ty::Const<'tcx>,
949 _c: ty::Const<'tcx>,
950 ) -> RelateResult<'tcx, ty::Const<'tcx>> {
1b1a35ee
XL
951 debug_assert_eq!(c, _c);
952 debug!("ConstInferUnifier: c={:?}", c);
953
5099ac24 954 match c.val() {
1b1a35ee 955 ty::ConstKind::Infer(InferConst::Var(vid)) => {
1b1a35ee
XL
956 // Check if the current unification would end up
957 // unifying `target_vid` with a const which contains
958 // an inference variable which is unioned with `target_vid`.
959 //
960 // Not doing so can easily result in stack overflows.
3c0e092e
XL
961 if self
962 .infcx
963 .inner
964 .borrow_mut()
965 .const_unification_table()
966 .unioned(self.target_vid, vid)
967 {
1b1a35ee
XL
968 return Err(TypeError::CyclicConst(c));
969 }
970
3c0e092e
XL
971 let var_value =
972 self.infcx.inner.borrow_mut().const_unification_table().probe_value(vid);
1b1a35ee
XL
973 match var_value.val {
974 ConstVariableValue::Known { value: u } => self.consts(u, u),
975 ConstVariableValue::Unknown { universe } => {
976 if self.for_universe.can_name(universe) {
977 Ok(c)
978 } else {
3c0e092e
XL
979 let new_var_id =
980 self.infcx.inner.borrow_mut().const_unification_table().new_key(
981 ConstVarValue {
982 origin: var_value.origin,
983 val: ConstVariableValue::Unknown {
984 universe: self.for_universe,
985 },
986 },
987 );
5099ac24 988 Ok(self.tcx().mk_const_var(new_var_id, c.ty()))
1b1a35ee
XL
989 }
990 }
991 }
992 }
5099ac24
FG
993 ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted })
994 if self.tcx().lazy_normalization() =>
995 {
996 assert_eq!(promoted, None);
17df50a5
XL
997 let substs = self.relate_with_variance(
998 ty::Variance::Invariant,
999 ty::VarianceDiagInfo::default(),
1000 substs,
1001 substs,
1002 )?;
5099ac24
FG
1003 Ok(self.tcx().mk_const(ty::ConstS {
1004 ty: c.ty(),
1005 val: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }),
cdc7bbd5
XL
1006 }))
1007 }
1b1a35ee
XL
1008 _ => relate::super_relate_consts(self, c, c),
1009 }
1010 }
1011}