]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_infer/src/infer/mod.rs
New upstream version 1.54.0+dfsg1
[rustc.git] / compiler / rustc_infer / src / infer / mod.rs
CommitLineData
74b04a01
XL
1pub use self::freshen::TypeFreshener;
2pub use self::LateBoundRegionConversionTime::*;
3pub use self::RegionVariableOrigin::*;
4pub use self::SubregionOrigin::*;
5pub use self::ValuePairs::*;
74b04a01 6
f9f354fc
XL
7pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
8
74b04a01
XL
9use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine};
10
74b04a01
XL
11use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12use rustc_data_structures::sync::Lrc;
f9f354fc 13use rustc_data_structures::undo_log::Rollback;
74b04a01
XL
14use rustc_data_structures::unify as ut;
15use rustc_errors::DiagnosticBuilder;
16use rustc_hir as hir;
ba9703b0
XL
17use rustc_hir::def_id::{DefId, LocalDefId};
18use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
19use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
20use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
1b1a35ee 21use rustc_middle::mir::interpret::EvalToConstValueResult;
ba9703b0
XL
22use rustc_middle::traits::select;
23use rustc_middle::ty::error::{ExpectedFound, TypeError, UnconstrainedNumeric};
24use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
25use rustc_middle::ty::relate::RelateResult;
26use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
27pub use rustc_middle::ty::IntVarValue;
28use rustc_middle::ty::{self, GenericParamDefKind, InferConst, Ty, TyCtxt};
29use rustc_middle::ty::{ConstVid, FloatVid, IntVid, TyVid};
30use rustc_session::config::BorrowckMode;
74b04a01
XL
31use rustc_span::symbol::Symbol;
32use rustc_span::Span;
ba9703b0 33
74b04a01
XL
34use std::cell::{Cell, Ref, RefCell};
35use std::collections::BTreeMap;
36use std::fmt;
37
38use self::combine::CombineFields;
f9f354fc 39use self::free_regions::RegionRelations;
74b04a01
XL
40use self::lexical_region_resolve::LexicalRegionResolutions;
41use self::outlives::env::OutlivesEnvironment;
42use self::region_constraints::{GenericKind, RegionConstraintData, VarInfos, VerifyBound};
f9f354fc
XL
43use self::region_constraints::{
44 RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
45};
74b04a01
XL
46use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
47
48pub mod at;
49pub mod canonical;
50mod combine;
51mod equate;
52pub mod error_reporting;
f9f354fc 53pub mod free_regions;
74b04a01
XL
54mod freshen;
55mod fudge;
56mod glb;
57mod higher_ranked;
58pub mod lattice;
59mod lexical_region_resolve;
60mod lub;
61pub mod nll_relate;
74b04a01
XL
62pub mod outlives;
63pub mod region_constraints;
64pub mod resolve;
65mod sub;
66pub mod type_variable;
f9f354fc 67mod undo_log;
74b04a01
XL
68
69use crate::infer::canonical::OriginalQueryValues;
ba9703b0 70pub use rustc_middle::infer::unify_key;
74b04a01
XL
71
72#[must_use]
73#[derive(Debug)]
74pub struct InferOk<'tcx, T> {
75 pub value: T,
76 pub obligations: PredicateObligations<'tcx>,
77}
78pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
79
80pub type Bound<T> = Option<T>;
81pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
82pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
83
f9f354fc
XL
84pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
85 ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
86>;
87
ba9703b0
XL
88/// How we should handle region solving.
89///
90/// This is used so that the region values inferred by HIR region solving are
91/// not exposed, and so that we can avoid doing work in HIR typeck that MIR
92/// typeck will also do.
93#[derive(Copy, Clone, Debug)]
94pub enum RegionckMode {
95 /// The default mode: report region errors, don't erase regions.
96 Solve,
97 /// Erase the results of region after solving.
98 Erase {
99 /// A flag that is used to suppress region errors, when we are doing
100 /// region checks that the NLL borrow checker will also do -- it might
101 /// be set to true.
102 suppress_errors: bool,
103 },
104}
105
106impl Default for RegionckMode {
107 fn default() -> Self {
108 RegionckMode::Solve
109 }
74b04a01
XL
110}
111
ba9703b0 112impl RegionckMode {
74b04a01
XL
113 /// Indicates that the MIR borrowck will repeat these region
114 /// checks, so we should ignore errors if NLL is (unconditionally)
115 /// enabled.
ba9703b0 116 pub fn for_item_body(tcx: TyCtxt<'_>) -> Self {
74b04a01
XL
117 // FIXME(Centril): Once we actually remove `::Migrate` also make
118 // this always `true` and then proceed to eliminate the dead code.
119 match tcx.borrowck_mode() {
120 // If we're on Migrate mode, report AST region errors
ba9703b0 121 BorrowckMode::Migrate => RegionckMode::Erase { suppress_errors: false },
74b04a01
XL
122
123 // If we're on MIR, don't report AST region errors as they should be reported by NLL
ba9703b0 124 BorrowckMode::Mir => RegionckMode::Erase { suppress_errors: true },
74b04a01
XL
125 }
126 }
127}
128
129/// This type contains all the things within `InferCtxt` that sit within a
130/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
131/// operations are hot enough that we want only one call to `borrow_mut` per
132/// call to `start_snapshot` and `rollback_to`.
133pub struct InferCtxtInner<'tcx> {
134 /// Cache for projections. This cache is snapshotted along with the infcx.
135 ///
136 /// Public so that `traits::project` can use it.
f9f354fc 137 pub projection_cache: traits::ProjectionCacheStorage<'tcx>,
74b04a01
XL
138
139 /// We instantiate `UnificationTable` with `bounds<Ty>` because the types
140 /// that might instantiate a general type variable have an order,
141 /// represented by its upper and lower bounds.
f9f354fc 142 type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
74b04a01
XL
143
144 /// Map from const parameter variable to the kind of const it represents.
f9f354fc 145 const_unification_storage: ut::UnificationTableStorage<ty::ConstVid<'tcx>>,
74b04a01
XL
146
147 /// Map from integral variable to the kind of integer it represents.
f9f354fc 148 int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
74b04a01
XL
149
150 /// Map from floating variable to the kind of float it represents.
f9f354fc 151 float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
74b04a01
XL
152
153 /// Tracks the set of region variables and the constraints between them.
154 /// This is initially `Some(_)` but when
155 /// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
156 /// -- further attempts to perform unification, etc., may fail if new
157 /// region constraints would've been added.
f9f354fc 158 region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
74b04a01
XL
159
160 /// A set of constraints that regionck must validate. Each
161 /// constraint has the form `T:'a`, meaning "some type `T` must
162 /// outlive the lifetime 'a". These constraints derive from
163 /// instantiated type parameters. So if you had a struct defined
164 /// like
165 ///
166 /// struct Foo<T:'static> { ... }
167 ///
168 /// then in some expression `let x = Foo { ... }` it will
169 /// instantiate the type parameter `T` with a fresh type `$0`. At
170 /// the same time, it will record a region obligation of
171 /// `$0:'static`. This will get checked later by regionck. (We
172 /// can't generally check these things right away because we have
173 /// to wait until types are resolved.)
174 ///
175 /// These are stored in a map keyed to the id of the innermost
176 /// enclosing fn body / static initializer expression. This is
177 /// because the location where the obligation was incurred can be
178 /// relevant with respect to which sublifetime assumptions are in
179 /// place. The reason that we store under the fn-id, and not
180 /// something more fine-grained, is so that it is easier for
181 /// regionck to be sure that it has found *all* the region
182 /// obligations (otherwise, it's easy to fail to walk to a
183 /// particular node-id).
184 ///
185 /// Before running `resolve_regions_and_report_errors`, the creator
186 /// of the inference context is expected to invoke
187 /// `process_region_obligations` (defined in `self::region_obligations`)
188 /// for each body-id in this map, which will process the
189 /// obligations within. This is expected to be done 'late enough'
190 /// that all type inference variables have been bound and so forth.
f9f354fc
XL
191 region_obligations: Vec<(hir::HirId, RegionObligation<'tcx>)>,
192
193 undo_log: InferCtxtUndoLogs<'tcx>,
74b04a01
XL
194}
195
196impl<'tcx> InferCtxtInner<'tcx> {
197 fn new() -> InferCtxtInner<'tcx> {
198 InferCtxtInner {
199 projection_cache: Default::default(),
f9f354fc
XL
200 type_variable_storage: type_variable::TypeVariableStorage::new(),
201 undo_log: InferCtxtUndoLogs::default(),
202 const_unification_storage: ut::UnificationTableStorage::new(),
203 int_unification_storage: ut::UnificationTableStorage::new(),
204 float_unification_storage: ut::UnificationTableStorage::new(),
205 region_constraint_storage: Some(RegionConstraintStorage::new()),
74b04a01
XL
206 region_obligations: vec![],
207 }
208 }
209
f9f354fc
XL
210 #[inline]
211 pub fn region_obligations(&self) -> &[(hir::HirId, RegionObligation<'tcx>)] {
212 &self.region_obligations
213 }
214
215 #[inline]
216 pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
217 self.projection_cache.with_log(&mut self.undo_log)
218 }
219
220 #[inline]
221 fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
222 self.type_variable_storage.with_log(&mut self.undo_log)
223 }
224
225 #[inline]
226 fn int_unification_table(
227 &mut self,
228 ) -> ut::UnificationTable<
229 ut::InPlace<
230 ty::IntVid,
231 &mut ut::UnificationStorage<ty::IntVid>,
232 &mut InferCtxtUndoLogs<'tcx>,
233 >,
234 > {
235 self.int_unification_storage.with_log(&mut self.undo_log)
236 }
237
238 #[inline]
239 fn float_unification_table(
240 &mut self,
241 ) -> ut::UnificationTable<
242 ut::InPlace<
243 ty::FloatVid,
244 &mut ut::UnificationStorage<ty::FloatVid>,
245 &mut InferCtxtUndoLogs<'tcx>,
246 >,
247 > {
248 self.float_unification_storage.with_log(&mut self.undo_log)
249 }
250
251 #[inline]
252 fn const_unification_table(
253 &mut self,
254 ) -> ut::UnificationTable<
255 ut::InPlace<
256 ty::ConstVid<'tcx>,
257 &mut ut::UnificationStorage<ty::ConstVid<'tcx>>,
258 &mut InferCtxtUndoLogs<'tcx>,
259 >,
260 > {
261 self.const_unification_storage.with_log(&mut self.undo_log)
262 }
263
264 #[inline]
265 pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
266 self.region_constraint_storage
267 .as_mut()
268 .expect("region constraints already solved")
269 .with_log(&mut self.undo_log)
74b04a01
XL
270 }
271}
272
273pub struct InferCtxt<'a, 'tcx> {
274 pub tcx: TyCtxt<'tcx>,
275
3dfed10e
XL
276 /// During type-checking/inference of a body, `in_progress_typeck_results`
277 /// contains a reference to the typeck results being built up, which are
74b04a01
XL
278 /// used for reading closure kinds/signatures as they are inferred,
279 /// and for error reporting logic to read arbitrary node types.
3dfed10e 280 pub in_progress_typeck_results: Option<&'a RefCell<ty::TypeckResults<'tcx>>>,
74b04a01
XL
281
282 pub inner: RefCell<InferCtxtInner<'tcx>>,
283
284 /// If set, this flag causes us to skip the 'leak check' during
285 /// higher-ranked subtyping operations. This flag is a temporary one used
286 /// to manage the removal of the leak-check: for the time being, we still run the
287 /// leak-check, but we issue warnings. This flag can only be set to true
288 /// when entering a snapshot.
289 skip_leak_check: Cell<bool>,
290
291 /// Once region inference is done, the values for each variable.
292 lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
293
294 /// Caches the results of trait selection. This cache is used
295 /// for things that have to do with the parameters in scope.
ba9703b0 296 pub selection_cache: select::SelectionCache<'tcx>,
74b04a01
XL
297
298 /// Caches the results of trait evaluation.
ba9703b0 299 pub evaluation_cache: select::EvaluationCache<'tcx>,
74b04a01
XL
300
301 /// the set of predicates on which errors have been reported, to
302 /// avoid reporting the same error twice.
303 pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,
304
305 pub reported_closure_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
306
307 /// When an error occurs, we want to avoid reporting "derived"
308 /// errors that are due to this original failure. Normally, we
309 /// handle this with the `err_count_on_creation` count, which
310 /// basically just tracks how many errors were reported when we
311 /// started type-checking a fn and checks to see if any new errors
312 /// have been reported since then. Not great, but it works.
313 ///
314 /// However, when errors originated in other passes -- notably
315 /// resolve -- this heuristic breaks down. Therefore, we have this
316 /// auxiliary flag that one can set whenever one creates a
317 /// type-error that is due to an error in a prior pass.
318 ///
319 /// Don't read this flag directly, call `is_tainted_by_errors()`
320 /// and `set_tainted_by_errors()`.
321 tainted_by_errors_flag: Cell<bool>,
322
323 /// Track how many errors were reported when this infcx is created.
324 /// If the number of errors increases, that's also a sign (line
325 /// `tained_by_errors`) to avoid reporting certain kinds of errors.
326 // FIXME(matthewjasper) Merge into `tainted_by_errors_flag`
327 err_count_on_creation: usize,
328
329 /// This flag is true while there is an active snapshot.
330 in_snapshot: Cell<bool>,
331
332 /// What is the innermost universe we have created? Starts out as
333 /// `UniverseIndex::root()` but grows from there as we enter
334 /// universal quantifiers.
335 ///
336 /// N.B., at present, we exclude the universal quantifiers on the
337 /// item we are type-checking, and just consider those names as
338 /// part of the root universe. So this would only get incremented
339 /// when we enter into a higher-ranked (`for<..>`) type or trait
340 /// bound.
341 universe: Cell<ty::UniverseIndex>,
342}
343
74b04a01 344/// See the `error_reporting` module for more details.
fc512014 345#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable)]
74b04a01
XL
346pub enum ValuePairs<'tcx> {
347 Types(ExpectedFound<Ty<'tcx>>),
348 Regions(ExpectedFound<ty::Region<'tcx>>),
349 Consts(ExpectedFound<&'tcx ty::Const<'tcx>>),
350 TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
351 PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
352}
353
354/// The trace designates the path through inference that we took to
355/// encounter an error or subtyping constraint.
356///
357/// See the `error_reporting` module for more details.
358#[derive(Clone, Debug)]
359pub struct TypeTrace<'tcx> {
360 cause: ObligationCause<'tcx>,
361 values: ValuePairs<'tcx>,
362}
363
364/// The origin of a `r1 <= r2` constraint.
365///
366/// See `error_reporting` module for more details
367#[derive(Clone, Debug)]
368pub enum SubregionOrigin<'tcx> {
369 /// Arose from a subtyping relation
370 Subtype(Box<TypeTrace<'tcx>>),
371
74b04a01
XL
372 /// When casting `&'a T` to an `&'b Trait` object,
373 /// relating `'a` to `'b`
374 RelateObjectBound(Span),
375
376 /// Some type parameter was instantiated with the given type,
377 /// and that type must outlive some region.
378 RelateParamBound(Span, Ty<'tcx>),
379
380 /// The given region parameter was instantiated with a region
381 /// that must outlive some other region.
382 RelateRegionParamBound(Span),
383
74b04a01
XL
384 /// Creating a pointer `b` to contents of another reference
385 Reborrow(Span),
386
387 /// Creating a pointer `b` to contents of an upvar
388 ReborrowUpvar(Span, ty::UpvarId),
389
390 /// Data with type `Ty<'tcx>` was borrowed
391 DataBorrowed(Ty<'tcx>, Span),
392
393 /// (&'a &'b T) where a >= b
394 ReferenceOutlivesReferent(Ty<'tcx>, Span),
395
74b04a01
XL
396 /// Region in return type of invoked fn must enclose call
397 CallReturn(Span),
398
74b04a01
XL
399 /// Comparing the signature and requirements of an impl method against
400 /// the containing trait.
401 CompareImplMethodObligation {
402 span: Span,
f9f354fc 403 item_name: Symbol,
74b04a01
XL
404 impl_item_def_id: DefId,
405 trait_item_def_id: DefId,
406 },
407}
408
409// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
6a06907d 410#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
74b04a01
XL
411static_assert_size!(SubregionOrigin<'_>, 32);
412
74b04a01
XL
413/// Times when we replace late-bound regions with variables:
414#[derive(Clone, Copy, Debug)]
415pub enum LateBoundRegionConversionTime {
416 /// when a fn is called
417 FnCall,
418
419 /// when two higher-ranked types are compared
420 HigherRankedType,
421
422 /// when projecting an associated type
423 AssocTypeProjection(DefId),
424}
425
426/// Reasons to create a region inference variable
427///
428/// See `error_reporting` module for more details
429#[derive(Copy, Clone, Debug)]
430pub enum RegionVariableOrigin {
431 /// Region variables created for ill-categorized reasons,
432 /// mostly indicates places in need of refactoring
433 MiscVariable(Span),
434
435 /// Regions created by a `&P` or `[...]` pattern
436 PatternRegion(Span),
437
438 /// Regions created by `&` operator
439 AddrOfRegion(Span),
440
441 /// Regions created as part of an autoref of a method receiver
3dfed10e 442 Autoref(Span, ty::AssocItem),
74b04a01
XL
443
444 /// Regions created as part of an automatic coercion
445 Coercion(Span),
446
447 /// Region variables created as the values for early-bound regions
448 EarlyBoundRegion(Span, Symbol),
449
450 /// Region variables created for bound regions
451 /// in a function or method that is called
fc512014 452 LateBoundRegion(Span, ty::BoundRegionKind, LateBoundRegionConversionTime),
74b04a01
XL
453
454 UpvarRegion(ty::UpvarId, Span),
455
74b04a01
XL
456 /// This origin is used for the inference variables that we create
457 /// during NLL region processing.
5869c6ff 458 Nll(NllRegionVariableOrigin),
74b04a01
XL
459}
460
461#[derive(Copy, Clone, Debug)]
5869c6ff 462pub enum NllRegionVariableOrigin {
74b04a01
XL
463 /// During NLL region processing, we create variables for free
464 /// regions that we encounter in the function signature and
465 /// elsewhere. This origin indices we've got one of those.
466 FreeRegion,
467
468 /// "Universal" instantiation of a higher-ranked region (e.g.,
469 /// from a `for<'a> T` binder). Meant to represent "any region".
470 Placeholder(ty::PlaceholderRegion),
471
f9f354fc
XL
472 /// The variable we create to represent `'empty(U0)`.
473 RootEmptyRegion,
474
74b04a01
XL
475 Existential {
476 /// If this is true, then this variable was created to represent a lifetime
477 /// bound in a `for` binder. For example, it might have been created to
478 /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
479 /// Such variables are created when we are trying to figure out if there
480 /// is any valid instantiation of `'a` that could fit into some scenario.
481 ///
482 /// This is used to inform error reporting: in the case that we are trying to
483 /// determine whether there is any valid instantiation of a `'a` variable that meets
484 /// some constraint C, we want to blame the "source" of that `for` type,
485 /// rather than blaming the source of the constraint C.
486 from_forall: bool,
487 },
488}
489
ba9703b0 490// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
74b04a01
XL
491#[derive(Copy, Clone, Debug)]
492pub enum FixupError<'tcx> {
493 UnresolvedIntTy(IntVid),
494 UnresolvedFloatTy(FloatVid),
495 UnresolvedTy(TyVid),
496 UnresolvedConst(ConstVid<'tcx>),
497}
498
499/// See the `region_obligations` field for more information.
500#[derive(Clone)]
501pub struct RegionObligation<'tcx> {
502 pub sub_region: ty::Region<'tcx>,
503 pub sup_type: Ty<'tcx>,
504 pub origin: SubregionOrigin<'tcx>,
505}
506
507impl<'tcx> fmt::Display for FixupError<'tcx> {
508 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
509 use self::FixupError::*;
510
511 match *self {
512 UnresolvedIntTy(_) => write!(
513 f,
514 "cannot determine the type of this integer; \
515 add a suffix to specify the type explicitly"
516 ),
517 UnresolvedFloatTy(_) => write!(
518 f,
519 "cannot determine the type of this number; \
520 add a suffix to specify the type explicitly"
521 ),
522 UnresolvedTy(_) => write!(f, "unconstrained type"),
523 UnresolvedConst(_) => write!(f, "unconstrained const value"),
524 }
525 }
526}
527
528/// Helper type of a temporary returned by `tcx.infer_ctxt()`.
529/// Necessary because we can't write the following bound:
530/// `F: for<'b, 'tcx> where 'tcx FnOnce(InferCtxt<'b, 'tcx>)`.
531pub struct InferCtxtBuilder<'tcx> {
f035d41b 532 tcx: TyCtxt<'tcx>,
3dfed10e 533 fresh_typeck_results: Option<RefCell<ty::TypeckResults<'tcx>>>,
74b04a01
XL
534}
535
536pub trait TyCtxtInferExt<'tcx> {
537 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
538}
539
540impl TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
541 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
3dfed10e 542 InferCtxtBuilder { tcx: self, fresh_typeck_results: None }
74b04a01
XL
543 }
544}
545
546impl<'tcx> InferCtxtBuilder<'tcx> {
547 /// Used only by `rustc_typeck` during body type-checking/inference,
3dfed10e
XL
548 /// will initialize `in_progress_typeck_results` with fresh `TypeckResults`.
549 pub fn with_fresh_in_progress_typeck_results(mut self, table_owner: LocalDefId) -> Self {
550 self.fresh_typeck_results = Some(RefCell::new(ty::TypeckResults::new(table_owner)));
74b04a01
XL
551 self
552 }
553
554 /// Given a canonical value `C` as a starting point, create an
555 /// inference context that contains each of the bound values
556 /// within instantiated as a fresh variable. The `f` closure is
557 /// invoked with the new infcx, along with the instantiated value
558 /// `V` and a substitution `S`. This substitution `S` maps from
559 /// the bound values in `C` to their instantiated values in `V`
560 /// (in other words, `S(C) = V`).
561 pub fn enter_with_canonical<T, R>(
562 &mut self,
563 span: Span,
564 canonical: &Canonical<'tcx, T>,
565 f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>, T, CanonicalVarValues<'tcx>) -> R,
566 ) -> R
567 where
568 T: TypeFoldable<'tcx>,
569 {
570 self.enter(|infcx| {
571 let (value, subst) =
572 infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
573 f(infcx, value, subst)
574 })
575 }
576
577 pub fn enter<R>(&mut self, f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>) -> R) -> R {
3dfed10e
XL
578 let InferCtxtBuilder { tcx, ref fresh_typeck_results } = *self;
579 let in_progress_typeck_results = fresh_typeck_results.as_ref();
f035d41b
XL
580 f(InferCtxt {
581 tcx,
3dfed10e 582 in_progress_typeck_results,
f035d41b
XL
583 inner: RefCell::new(InferCtxtInner::new()),
584 lexical_region_resolutions: RefCell::new(None),
585 selection_cache: Default::default(),
586 evaluation_cache: Default::default(),
587 reported_trait_errors: Default::default(),
588 reported_closure_mismatch: Default::default(),
589 tainted_by_errors_flag: Cell::new(false),
590 err_count_on_creation: tcx.sess.err_count(),
591 in_snapshot: Cell::new(false),
592 skip_leak_check: Cell::new(false),
593 universe: Cell::new(ty::UniverseIndex::ROOT),
74b04a01
XL
594 })
595 }
596}
597
598impl<'tcx, T> InferOk<'tcx, T> {
599 pub fn unit(self) -> InferOk<'tcx, ()> {
600 InferOk { value: (), obligations: self.obligations }
601 }
602
603 /// Extracts `value`, registering any obligations into `fulfill_cx`.
604 pub fn into_value_registering_obligations(
605 self,
606 infcx: &InferCtxt<'_, 'tcx>,
607 fulfill_cx: &mut dyn TraitEngine<'tcx>,
608 ) -> T {
609 let InferOk { value, obligations } = self;
610 for obligation in obligations {
611 fulfill_cx.register_predicate_obligation(infcx, obligation);
612 }
613 value
614 }
615}
616
617impl<'tcx> InferOk<'tcx, ()> {
618 pub fn into_obligations(self) -> PredicateObligations<'tcx> {
619 self.obligations
620 }
621}
622
623#[must_use = "once you start a snapshot, you should always consume it"]
624pub struct CombinedSnapshot<'a, 'tcx> {
f9f354fc 625 undo_snapshot: Snapshot<'tcx>,
74b04a01 626 region_constraints_snapshot: RegionSnapshot,
74b04a01
XL
627 universe: ty::UniverseIndex,
628 was_in_snapshot: bool,
3dfed10e 629 _in_progress_typeck_results: Option<Ref<'a, ty::TypeckResults<'tcx>>>,
74b04a01
XL
630}
631
632impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
633 pub fn is_in_snapshot(&self) -> bool {
634 self.in_snapshot.get()
635 }
636
637 pub fn freshen<T: TypeFoldable<'tcx>>(&self, t: T) -> T {
638 t.fold_with(&mut self.freshener())
639 }
640
641 pub fn type_var_diverges(&'a self, ty: Ty<'_>) -> bool {
1b1a35ee 642 match *ty.kind() {
f9f354fc 643 ty::Infer(ty::TyVar(vid)) => self.inner.borrow_mut().type_variables().var_diverges(vid),
74b04a01
XL
644 _ => false,
645 }
646 }
647
648 pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
649 freshen::TypeFreshener::new(self)
650 }
651
652 pub fn type_is_unconstrained_numeric(&'a self, ty: Ty<'_>) -> UnconstrainedNumeric {
ba9703b0
XL
653 use rustc_middle::ty::error::UnconstrainedNumeric::Neither;
654 use rustc_middle::ty::error::UnconstrainedNumeric::{UnconstrainedFloat, UnconstrainedInt};
1b1a35ee 655 match *ty.kind() {
74b04a01 656 ty::Infer(ty::IntVar(vid)) => {
f9f354fc 657 if self.inner.borrow_mut().int_unification_table().probe_value(vid).is_some() {
74b04a01
XL
658 Neither
659 } else {
660 UnconstrainedInt
661 }
662 }
663 ty::Infer(ty::FloatVar(vid)) => {
f9f354fc 664 if self.inner.borrow_mut().float_unification_table().probe_value(vid).is_some() {
74b04a01
XL
665 Neither
666 } else {
667 UnconstrainedFloat
668 }
669 }
670 _ => Neither,
671 }
672 }
673
674 pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
675 let mut inner = self.inner.borrow_mut();
74b04a01 676 let mut vars: Vec<Ty<'_>> = inner
f9f354fc 677 .type_variables()
74b04a01
XL
678 .unsolved_variables()
679 .into_iter()
680 .map(|t| self.tcx.mk_ty_var(t))
681 .collect();
682 vars.extend(
f9f354fc 683 (0..inner.int_unification_table().len())
74b04a01 684 .map(|i| ty::IntVid { index: i as u32 })
f9f354fc 685 .filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
74b04a01
XL
686 .map(|v| self.tcx.mk_int_var(v)),
687 );
688 vars.extend(
f9f354fc 689 (0..inner.float_unification_table().len())
74b04a01 690 .map(|i| ty::FloatVid { index: i as u32 })
f9f354fc 691 .filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
74b04a01
XL
692 .map(|v| self.tcx.mk_float_var(v)),
693 );
694 vars
695 }
696
697 fn combine_fields(
698 &'a self,
699 trace: TypeTrace<'tcx>,
700 param_env: ty::ParamEnv<'tcx>,
701 ) -> CombineFields<'a, 'tcx> {
702 CombineFields {
703 infcx: self,
704 trace,
705 cause: None,
706 param_env,
707 obligations: PredicateObligations::new(),
708 }
709 }
710
711 /// Clear the "currently in a snapshot" flag, invoke the closure,
712 /// then restore the flag to its original value. This flag is a
713 /// debugging measure designed to detect cases where we start a
714 /// snapshot, create type variables, and register obligations
715 /// which may involve those type variables in the fulfillment cx,
716 /// potentially leaving "dangling type variables" behind.
717 /// In such cases, an assertion will fail when attempting to
718 /// register obligations, within a snapshot. Very useful, much
719 /// better than grovelling through megabytes of `RUSTC_LOG` output.
720 ///
721 /// HOWEVER, in some cases the flag is unhelpful. In particular, we
722 /// sometimes create a "mini-fulfilment-cx" in which we enroll
723 /// obligations. As long as this fulfillment cx is fully drained
724 /// before we return, this is not a problem, as there won't be any
725 /// escaping obligations in the main cx. In those cases, you can
726 /// use this function.
727 pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
728 where
729 F: FnOnce(&Self) -> R,
730 {
731 let flag = self.in_snapshot.replace(false);
732 let result = func(self);
733 self.in_snapshot.set(flag);
734 result
735 }
736
737 fn start_snapshot(&self) -> CombinedSnapshot<'a, 'tcx> {
738 debug!("start_snapshot()");
739
740 let in_snapshot = self.in_snapshot.replace(true);
741
742 let mut inner = self.inner.borrow_mut();
f9f354fc 743
74b04a01 744 CombinedSnapshot {
f9f354fc 745 undo_snapshot: inner.undo_log.start_snapshot(),
74b04a01 746 region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
74b04a01
XL
747 universe: self.universe(),
748 was_in_snapshot: in_snapshot,
3dfed10e 749 // Borrow typeck results "in progress" (i.e., during typeck)
74b04a01 750 // to ban writes from within a snapshot to them.
3dfed10e
XL
751 _in_progress_typeck_results: self
752 .in_progress_typeck_results
753 .map(|typeck_results| typeck_results.borrow()),
74b04a01
XL
754 }
755 }
756
757 fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'a, 'tcx>) {
758 debug!("rollback_to(cause={})", cause);
759 let CombinedSnapshot {
f9f354fc 760 undo_snapshot,
74b04a01 761 region_constraints_snapshot,
74b04a01
XL
762 universe,
763 was_in_snapshot,
3dfed10e 764 _in_progress_typeck_results,
74b04a01
XL
765 } = snapshot;
766
767 self.in_snapshot.set(was_in_snapshot);
768 self.universe.set(universe);
74b04a01
XL
769
770 let mut inner = self.inner.borrow_mut();
f9f354fc 771 inner.rollback_to(undo_snapshot);
74b04a01 772 inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
74b04a01
XL
773 }
774
775 fn commit_from(&self, snapshot: CombinedSnapshot<'a, 'tcx>) {
776 debug!("commit_from()");
777 let CombinedSnapshot {
f9f354fc
XL
778 undo_snapshot,
779 region_constraints_snapshot: _,
74b04a01
XL
780 universe: _,
781 was_in_snapshot,
3dfed10e 782 _in_progress_typeck_results,
74b04a01
XL
783 } = snapshot;
784
785 self.in_snapshot.set(was_in_snapshot);
74b04a01 786
f9f354fc 787 self.inner.borrow_mut().commit(undo_snapshot);
74b04a01
XL
788 }
789
790 /// Executes `f` and commit the bindings.
791 pub fn commit_unconditionally<R, F>(&self, f: F) -> R
792 where
793 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
794 {
795 debug!("commit_unconditionally()");
796 let snapshot = self.start_snapshot();
797 let r = f(&snapshot);
798 self.commit_from(snapshot);
799 r
800 }
801
802 /// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
803 pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
804 where
805 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> Result<T, E>,
806 {
807 debug!("commit_if_ok()");
808 let snapshot = self.start_snapshot();
809 let r = f(&snapshot);
810 debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
811 match r {
812 Ok(_) => {
813 self.commit_from(snapshot);
814 }
815 Err(_) => {
816 self.rollback_to("commit_if_ok -- error", snapshot);
817 }
818 }
819 r
820 }
821
822 /// Execute `f` then unroll any bindings it creates.
823 pub fn probe<R, F>(&self, f: F) -> R
824 where
825 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
826 {
827 debug!("probe()");
828 let snapshot = self.start_snapshot();
829 let r = f(&snapshot);
830 self.rollback_to("probe", snapshot);
831 r
832 }
833
834 /// If `should_skip` is true, then execute `f` then unroll any bindings it creates.
835 pub fn probe_maybe_skip_leak_check<R, F>(&self, should_skip: bool, f: F) -> R
836 where
837 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
838 {
839 debug!("probe()");
840 let snapshot = self.start_snapshot();
f9f354fc
XL
841 let was_skip_leak_check = self.skip_leak_check.get();
842 if should_skip {
843 self.skip_leak_check.set(true);
844 }
74b04a01
XL
845 let r = f(&snapshot);
846 self.rollback_to("probe", snapshot);
f9f354fc 847 self.skip_leak_check.set(was_skip_leak_check);
74b04a01
XL
848 r
849 }
850
851 /// Scan the constraints produced since `snapshot` began and returns:
852 ///
853 /// - `None` -- if none of them involve "region outlives" constraints
854 /// - `Some(true)` -- if there are `'a: 'b` constraints where `'a` or `'b` is a placeholder
855 /// - `Some(false)` -- if there are `'a: 'b` constraints but none involve placeholders
856 pub fn region_constraints_added_in_snapshot(
857 &self,
858 snapshot: &CombinedSnapshot<'a, 'tcx>,
859 ) -> Option<bool> {
860 self.inner
861 .borrow_mut()
862 .unwrap_region_constraints()
f9f354fc 863 .region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
74b04a01
XL
864 }
865
866 pub fn add_given(&self, sub: ty::Region<'tcx>, sup: ty::RegionVid) {
867 self.inner.borrow_mut().unwrap_region_constraints().add_given(sub, sup);
868 }
869
870 pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
871 where
872 T: at::ToTrace<'tcx>,
873 {
874 let origin = &ObligationCause::dummy();
875 self.probe(|_| {
876 self.at(origin, param_env).sub(a, b).map(|InferOk { obligations: _, .. }| {
877 // Ignore obligations, since we are unrolling
878 // everything anyway.
879 })
880 })
881 }
882
883 pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
884 where
885 T: at::ToTrace<'tcx>,
886 {
887 let origin = &ObligationCause::dummy();
888 self.probe(|_| {
889 self.at(origin, param_env).eq(a, b).map(|InferOk { obligations: _, .. }| {
890 // Ignore obligations, since we are unrolling
891 // everything anyway.
892 })
893 })
894 }
895
896 pub fn sub_regions(
897 &self,
898 origin: SubregionOrigin<'tcx>,
899 a: ty::Region<'tcx>,
900 b: ty::Region<'tcx>,
901 ) {
902 debug!("sub_regions({:?} <: {:?})", a, b);
903 self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
904 }
905
906 /// Require that the region `r` be equal to one of the regions in
907 /// the set `regions`.
908 pub fn member_constraint(
909 &self,
910 opaque_type_def_id: DefId,
911 definition_span: Span,
912 hidden_ty: Ty<'tcx>,
913 region: ty::Region<'tcx>,
914 in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
915 ) {
916 debug!("member_constraint({:?} <: {:?})", region, in_regions);
917 self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
918 opaque_type_def_id,
919 definition_span,
920 hidden_ty,
921 region,
922 in_regions,
923 );
924 }
925
926 pub fn subtype_predicate(
927 &self,
928 cause: &ObligationCause<'tcx>,
929 param_env: ty::ParamEnv<'tcx>,
f9f354fc 930 predicate: ty::PolySubtypePredicate<'tcx>,
74b04a01
XL
931 ) -> Option<InferResult<'tcx, ()>> {
932 // Subtle: it's ok to skip the binder here and resolve because
933 // `shallow_resolve` just ignores anything that is not a type
934 // variable, and because type variable's can't (at present, at
935 // least) capture any of the things bound by this binder.
936 //
937 // NOTE(nmatsakis): really, there is no *particular* reason to do this
938 // `shallow_resolve` here except as a micro-optimization.
939 // Naturally I could not resist.
940 let two_unbound_type_vars = {
941 let a = self.shallow_resolve(predicate.skip_binder().a);
942 let b = self.shallow_resolve(predicate.skip_binder().b);
943 a.is_ty_var() && b.is_ty_var()
944 };
945
946 if two_unbound_type_vars {
947 // Two unbound type variables? Can't make progress.
948 return None;
949 }
950
f035d41b 951 Some(self.commit_if_ok(|_snapshot| {
29967ef6 952 let ty::SubtypePredicate { a_is_expected, a, b } =
fc512014 953 self.replace_bound_vars_with_placeholders(predicate);
74b04a01
XL
954
955 let ok = self.at(cause, param_env).sub_exp(a_is_expected, a, b)?;
956
74b04a01
XL
957 Ok(ok.unit())
958 }))
959 }
960
961 pub fn region_outlives_predicate(
962 &self,
963 cause: &traits::ObligationCause<'tcx>,
f9f354fc 964 predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
74b04a01 965 ) -> UnitResult<'tcx> {
f035d41b 966 self.commit_if_ok(|_snapshot| {
29967ef6 967 let ty::OutlivesPredicate(r_a, r_b) =
fc512014 968 self.replace_bound_vars_with_placeholders(predicate);
74b04a01
XL
969 let origin = SubregionOrigin::from_obligation_cause(cause, || {
970 RelateRegionParamBound(cause.span)
971 });
972 self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
74b04a01
XL
973 Ok(())
974 })
975 }
976
977 pub fn next_ty_var_id(&self, diverging: bool, origin: TypeVariableOrigin) -> TyVid {
f9f354fc 978 self.inner.borrow_mut().type_variables().new_var(self.universe(), diverging, origin)
74b04a01
XL
979 }
980
981 pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
982 self.tcx.mk_ty_var(self.next_ty_var_id(false, origin))
983 }
984
985 pub fn next_ty_var_in_universe(
986 &self,
987 origin: TypeVariableOrigin,
988 universe: ty::UniverseIndex,
989 ) -> Ty<'tcx> {
f9f354fc 990 let vid = self.inner.borrow_mut().type_variables().new_var(universe, false, origin);
74b04a01
XL
991 self.tcx.mk_ty_var(vid)
992 }
993
994 pub fn next_diverging_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
995 self.tcx.mk_ty_var(self.next_ty_var_id(true, origin))
996 }
997
998 pub fn next_const_var(
999 &self,
1000 ty: Ty<'tcx>,
1001 origin: ConstVariableOrigin,
1002 ) -> &'tcx ty::Const<'tcx> {
1003 self.tcx.mk_const_var(self.next_const_var_id(origin), ty)
1004 }
1005
1006 pub fn next_const_var_in_universe(
1007 &self,
1008 ty: Ty<'tcx>,
1009 origin: ConstVariableOrigin,
1010 universe: ty::UniverseIndex,
1011 ) -> &'tcx ty::Const<'tcx> {
1012 let vid = self
1013 .inner
1014 .borrow_mut()
f9f354fc 1015 .const_unification_table()
74b04a01
XL
1016 .new_key(ConstVarValue { origin, val: ConstVariableValue::Unknown { universe } });
1017 self.tcx.mk_const_var(vid, ty)
1018 }
1019
1020 pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
f9f354fc 1021 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
74b04a01
XL
1022 origin,
1023 val: ConstVariableValue::Unknown { universe: self.universe() },
1024 })
1025 }
1026
1027 fn next_int_var_id(&self) -> IntVid {
f9f354fc 1028 self.inner.borrow_mut().int_unification_table().new_key(None)
74b04a01
XL
1029 }
1030
1031 pub fn next_int_var(&self) -> Ty<'tcx> {
1032 self.tcx.mk_int_var(self.next_int_var_id())
1033 }
1034
1035 fn next_float_var_id(&self) -> FloatVid {
f9f354fc 1036 self.inner.borrow_mut().float_unification_table().new_key(None)
74b04a01
XL
1037 }
1038
1039 pub fn next_float_var(&self) -> Ty<'tcx> {
1040 self.tcx.mk_float_var(self.next_float_var_id())
1041 }
1042
1043 /// Creates a fresh region variable with the next available index.
1044 /// The variable will be created in the maximum universe created
1045 /// thus far, allowing it to name any region created thus far.
1046 pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
1047 self.next_region_var_in_universe(origin, self.universe())
1048 }
1049
1050 /// Creates a fresh region variable with the next available index
1051 /// in the given universe; typically, you can use
1052 /// `next_region_var` and just use the maximal universe.
1053 pub fn next_region_var_in_universe(
1054 &self,
1055 origin: RegionVariableOrigin,
1056 universe: ty::UniverseIndex,
1057 ) -> ty::Region<'tcx> {
1058 let region_var =
1059 self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
1060 self.tcx.mk_region(ty::ReVar(region_var))
1061 }
1062
1063 /// Return the universe that the region `r` was created in. For
1064 /// most regions (e.g., `'static`, named regions from the user,
1065 /// etc) this is the root universe U0. For inference variables or
1066 /// placeholders, however, it will return the universe which which
1067 /// they are associated.
1068 fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
1069 self.inner.borrow_mut().unwrap_region_constraints().universe(r)
1070 }
1071
1072 /// Number of region variables created so far.
1073 pub fn num_region_vars(&self) -> usize {
1074 self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
1075 }
1076
1077 /// Just a convenient wrapper of `next_region_var` for using during NLL.
5869c6ff
XL
1078 pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
1079 self.next_region_var(RegionVariableOrigin::Nll(origin))
74b04a01
XL
1080 }
1081
1082 /// Just a convenient wrapper of `next_region_var` for using during NLL.
1083 pub fn next_nll_region_var_in_universe(
1084 &self,
5869c6ff 1085 origin: NllRegionVariableOrigin,
74b04a01
XL
1086 universe: ty::UniverseIndex,
1087 ) -> ty::Region<'tcx> {
5869c6ff 1088 self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
74b04a01
XL
1089 }
1090
1091 pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
1092 match param.kind {
1093 GenericParamDefKind::Lifetime => {
1094 // Create a region inference variable for the given
1095 // region parameter definition.
1096 self.next_region_var(EarlyBoundRegion(span, param.name)).into()
1097 }
1098 GenericParamDefKind::Type { .. } => {
1099 // Create a type inference variable for the given
1100 // type parameter definition. The substitutions are
1101 // for actual parameters that may be referred to by
1102 // the default of this type parameter, if it exists.
1103 // e.g., `struct Foo<A, B, C = (A, B)>(...);` when
1104 // used in a path such as `Foo::<T, U>::new()` will
1105 // use an inference variable for `C` with `[T, U]`
1106 // as the substitutions for the default, `(T, U)`.
f9f354fc 1107 let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
74b04a01
XL
1108 self.universe(),
1109 false,
1110 TypeVariableOrigin {
1111 kind: TypeVariableOriginKind::TypeParameterDefinition(
1112 param.name,
1113 Some(param.def_id),
1114 ),
1115 span,
1116 },
1117 );
1118
1119 self.tcx.mk_ty_var(ty_var_id).into()
1120 }
1121 GenericParamDefKind::Const { .. } => {
1122 let origin = ConstVariableOrigin {
1b1a35ee
XL
1123 kind: ConstVariableOriginKind::ConstParameterDefinition(
1124 param.name,
1125 param.def_id,
1126 ),
74b04a01
XL
1127 span,
1128 };
1129 let const_var_id =
f9f354fc 1130 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
74b04a01
XL
1131 origin,
1132 val: ConstVariableValue::Unknown { universe: self.universe() },
1133 });
1134 self.tcx.mk_const_var(const_var_id, self.tcx.type_of(param.def_id)).into()
1135 }
1136 }
1137 }
1138
1139 /// Given a set of generics defined on a type or impl, returns a substitution mapping each
1140 /// type/region parameter to a fresh inference variable.
1141 pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
1142 InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
1143 }
1144
1145 /// Returns `true` if errors have been reported since this infcx was
1146 /// created. This is sometimes used as a heuristic to skip
1147 /// reporting errors that often occur as a result of earlier
1148 /// errors, but where it's hard to be 100% sure (e.g., unresolved
1149 /// inference variables, regionck errors).
1150 pub fn is_tainted_by_errors(&self) -> bool {
1151 debug!(
1152 "is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
1153 tainted_by_errors_flag={})",
1154 self.tcx.sess.err_count(),
1155 self.err_count_on_creation,
1156 self.tainted_by_errors_flag.get()
1157 );
1158
1159 if self.tcx.sess.err_count() > self.err_count_on_creation {
1160 return true; // errors reported since this infcx was made
1161 }
1162 self.tainted_by_errors_flag.get()
1163 }
1164
1165 /// Set the "tainted by errors" flag to true. We call this when we
1166 /// observe an error from a prior pass.
1167 pub fn set_tainted_by_errors(&self) {
1168 debug!("set_tainted_by_errors()");
1169 self.tainted_by_errors_flag.set(true)
1170 }
1171
1172 /// Process the region constraints and report any errors that
1173 /// result. After this, no more unification operations should be
1174 /// done -- or the compiler will panic -- but it is legal to use
1175 /// `resolve_vars_if_possible` as well as `fully_resolve`.
1176 pub fn resolve_regions_and_report_errors(
1177 &self,
1178 region_context: DefId,
74b04a01 1179 outlives_env: &OutlivesEnvironment<'tcx>,
ba9703b0 1180 mode: RegionckMode,
74b04a01 1181 ) {
f9f354fc
XL
1182 let (var_infos, data) = {
1183 let mut inner = self.inner.borrow_mut();
1184 let inner = &mut *inner;
1185 assert!(
1186 self.is_tainted_by_errors() || inner.region_obligations.is_empty(),
1187 "region_obligations not empty: {:#?}",
1188 inner.region_obligations
1189 );
1190 inner
1191 .region_constraint_storage
1192 .take()
1193 .expect("regions already resolved")
1194 .with_log(&mut inner.undo_log)
1195 .into_infos_and_data()
1196 };
ba9703b0 1197
f9f354fc
XL
1198 let region_rels =
1199 &RegionRelations::new(self.tcx, region_context, outlives_env.free_region_map());
ba9703b0 1200
74b04a01 1201 let (lexical_region_resolutions, errors) =
ba9703b0 1202 lexical_region_resolve::resolve(region_rels, var_infos, data, mode);
74b04a01
XL
1203
1204 let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
1205 assert!(old_value.is_none());
1206
1207 if !self.is_tainted_by_errors() {
1208 // As a heuristic, just skip reporting region errors
1209 // altogether if other errors have been reported while
1210 // this infcx was in use. This is totally hokey but
1211 // otherwise we have a hard time separating legit region
1212 // errors from silly ones.
f9f354fc 1213 self.report_region_errors(&errors);
74b04a01
XL
1214 }
1215 }
1216
1217 /// Obtains (and clears) the current set of region
1218 /// constraints. The inference context is still usable: further
1219 /// unifications will simply add new constraints.
1220 ///
1221 /// This method is not meant to be used with normal lexical region
1222 /// resolution. Rather, it is used in the NLL mode as a kind of
1223 /// interim hack: basically we run normal type-check and generate
1224 /// region constraints as normal, but then we take them and
1225 /// translate them into the form that the NLL solver
1226 /// understands. See the NLL module for mode details.
1227 pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
1228 assert!(
1229 self.inner.borrow().region_obligations.is_empty(),
1230 "region_obligations not empty: {:#?}",
1231 self.inner.borrow().region_obligations
1232 );
1233
1234 self.inner.borrow_mut().unwrap_region_constraints().take_and_reset_data()
1235 }
1236
1237 /// Gives temporary access to the region constraint data.
74b04a01
XL
1238 pub fn with_region_constraints<R>(
1239 &self,
1240 op: impl FnOnce(&RegionConstraintData<'tcx>) -> R,
1241 ) -> R {
1242 let mut inner = self.inner.borrow_mut();
1243 op(inner.unwrap_region_constraints().data())
1244 }
1245
1246 /// Takes ownership of the list of variable regions. This implies
1247 /// that all the region constraints have already been taken, and
1248 /// hence that `resolve_regions_and_report_errors` can never be
1249 /// called. This is used only during NLL processing to "hand off" ownership
1250 /// of the set of region variables into the NLL region context.
1251 pub fn take_region_var_origins(&self) -> VarInfos {
f9f354fc
XL
1252 let mut inner = self.inner.borrow_mut();
1253 let (var_infos, data) = inner
1254 .region_constraint_storage
74b04a01
XL
1255 .take()
1256 .expect("regions already resolved")
f9f354fc 1257 .with_log(&mut inner.undo_log)
74b04a01
XL
1258 .into_infos_and_data();
1259 assert!(data.is_empty());
1260 var_infos
1261 }
1262
1263 pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
fc512014 1264 self.resolve_vars_if_possible(t).to_string()
74b04a01
XL
1265 }
1266
74b04a01
XL
1267 /// If `TyVar(vid)` resolves to a type, return that type. Else, return the
1268 /// universe index of `TyVar(vid)`.
1269 pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
1270 use self::type_variable::TypeVariableValue;
1271
f9f354fc 1272 match self.inner.borrow_mut().type_variables().probe(vid) {
74b04a01
XL
1273 TypeVariableValue::Known { value } => Ok(value),
1274 TypeVariableValue::Unknown { universe } => Err(universe),
1275 }
1276 }
1277
1278 /// Resolve any type variables found in `value` -- but only one
1279 /// level. So, if the variable `?X` is bound to some type
1280 /// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
1281 /// itself be bound to a type).
1282 ///
1283 /// Useful when you only need to inspect the outermost level of
1284 /// the type and don't care about nested types (or perhaps you
1285 /// will be resolving them as well, e.g. in a loop).
1286 pub fn shallow_resolve<T>(&self, value: T) -> T
1287 where
1288 T: TypeFoldable<'tcx>,
1289 {
ba9703b0 1290 value.fold_with(&mut ShallowResolver { infcx: self })
74b04a01
XL
1291 }
1292
1293 pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
f9f354fc 1294 self.inner.borrow_mut().type_variables().root_var(var)
74b04a01
XL
1295 }
1296
1297 /// Where possible, replaces type/const variables in
1298 /// `value` with their final value. Note that region variables
1299 /// are unaffected. If a type/const variable has not been unified, it
1300 /// is left as is. This is an idempotent operation that does
1301 /// not affect inference state in any way and so you can do it
1302 /// at will.
fc512014 1303 pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
74b04a01
XL
1304 where
1305 T: TypeFoldable<'tcx>,
1306 {
1307 if !value.needs_infer() {
5869c6ff 1308 return value; // Avoid duplicated subst-folding.
74b04a01
XL
1309 }
1310 let mut r = resolve::OpportunisticVarResolver::new(self);
1311 value.fold_with(&mut r)
1312 }
1313
1314 /// Returns the first unresolved variable contained in `T`. In the
1315 /// process of visiting `T`, this will resolve (where possible)
1316 /// type variables in `T`, but it never constructs the final,
1317 /// resolved type, so it's more efficient than
1318 /// `resolve_vars_if_possible()`.
1319 pub fn unresolved_type_vars<T>(&self, value: &T) -> Option<(Ty<'tcx>, Option<Span>)>
1320 where
1321 T: TypeFoldable<'tcx>,
1322 {
fc512014 1323 value.visit_with(&mut resolve::UnresolvedTypeFinder::new(self)).break_value()
74b04a01
XL
1324 }
1325
1326 pub fn probe_const_var(
1327 &self,
1328 vid: ty::ConstVid<'tcx>,
1329 ) -> Result<&'tcx ty::Const<'tcx>, ty::UniverseIndex> {
f9f354fc 1330 match self.inner.borrow_mut().const_unification_table().probe_value(vid).val {
74b04a01
XL
1331 ConstVariableValue::Known { value } => Ok(value),
1332 ConstVariableValue::Unknown { universe } => Err(universe),
1333 }
1334 }
1335
fc512014 1336 pub fn fully_resolve<T: TypeFoldable<'tcx>>(&self, value: T) -> FixupResult<'tcx, T> {
74b04a01
XL
1337 /*!
1338 * Attempts to resolve all type/region/const variables in
1339 * `value`. Region inference must have been run already (e.g.,
1340 * by calling `resolve_regions_and_report_errors`). If some
1341 * variable was never unified, an `Err` results.
1342 *
1343 * This method is idempotent, but it not typically not invoked
1344 * except during the writeback phase.
1345 */
1346
1347 resolve::fully_resolve(self, value)
1348 }
1349
1350 // [Note-Type-error-reporting]
1351 // An invariant is that anytime the expected or actual type is Error (the special
1352 // error type, meaning that an error occurred when typechecking this expression),
1353 // this is a derived error. The error cascaded from another error (that was already
1354 // reported), so it's not useful to display it to the user.
1355 // The following methods implement this logic.
1356 // They check if either the actual or expected type is Error, and don't print the error
1357 // in this case. The typechecker should only ever report type errors involving mismatched
1358 // types using one of these methods, and should not call span_err directly for such
1359 // errors.
1360
1361 pub fn type_error_struct_with_diag<M>(
1362 &self,
1363 sp: Span,
1364 mk_diag: M,
1365 actual_ty: Ty<'tcx>,
1366 ) -> DiagnosticBuilder<'tcx>
1367 where
1368 M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
1369 {
fc512014 1370 let actual_ty = self.resolve_vars_if_possible(actual_ty);
74b04a01
XL
1371 debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
1372
1373 // Don't report an error if actual type is `Error`.
1374 if actual_ty.references_error() {
1375 return self.tcx.sess.diagnostic().struct_dummy();
1376 }
1377
1378 mk_diag(self.ty_to_string(actual_ty))
1379 }
1380
1381 pub fn report_mismatched_types(
1382 &self,
1383 cause: &ObligationCause<'tcx>,
1384 expected: Ty<'tcx>,
1385 actual: Ty<'tcx>,
1386 err: TypeError<'tcx>,
1387 ) -> DiagnosticBuilder<'tcx> {
1388 let trace = TypeTrace::types(cause, true, expected, actual);
1389 self.report_and_explain_type_error(trace, &err)
1390 }
1391
f9f354fc
XL
1392 pub fn report_mismatched_consts(
1393 &self,
1394 cause: &ObligationCause<'tcx>,
1395 expected: &'tcx ty::Const<'tcx>,
1396 actual: &'tcx ty::Const<'tcx>,
1397 err: TypeError<'tcx>,
1398 ) -> DiagnosticBuilder<'tcx> {
1399 let trace = TypeTrace::consts(cause, true, expected, actual);
1400 self.report_and_explain_type_error(trace, &err)
1401 }
1402
74b04a01
XL
1403 pub fn replace_bound_vars_with_fresh_vars<T>(
1404 &self,
1405 span: Span,
1406 lbrct: LateBoundRegionConversionTime,
cdc7bbd5 1407 value: ty::Binder<'tcx, T>,
74b04a01
XL
1408 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
1409 where
1410 T: TypeFoldable<'tcx>,
1411 {
fc512014
XL
1412 let fld_r =
1413 |br: ty::BoundRegion| self.next_region_var(LateBoundRegion(span, br.kind, lbrct));
74b04a01
XL
1414 let fld_t = |_| {
1415 self.next_ty_var(TypeVariableOrigin {
1416 kind: TypeVariableOriginKind::MiscVariable,
1417 span,
1418 })
1419 };
1420 let fld_c = |_, ty| {
1421 self.next_const_var(
1422 ty,
1423 ConstVariableOrigin { kind: ConstVariableOriginKind::MiscVariable, span },
1424 )
1425 };
1426 self.tcx.replace_bound_vars(value, fld_r, fld_t, fld_c)
1427 }
1428
f9f354fc 1429 /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
74b04a01
XL
1430 pub fn verify_generic_bound(
1431 &self,
1432 origin: SubregionOrigin<'tcx>,
1433 kind: GenericKind<'tcx>,
1434 a: ty::Region<'tcx>,
1435 bound: VerifyBound<'tcx>,
1436 ) {
1437 debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
1438
1439 self.inner
1440 .borrow_mut()
1441 .unwrap_region_constraints()
1442 .verify_generic_bound(origin, kind, a, bound);
1443 }
1444
74b04a01
XL
1445 /// Obtains the latest type of the given closure; this may be a
1446 /// closure in the current function, in which case its
1447 /// `ClosureKind` may not yet be known.
ba9703b0
XL
1448 pub fn closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind> {
1449 let closure_kind_ty = closure_substs.as_closure().kind_ty();
74b04a01
XL
1450 let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
1451 closure_kind_ty.to_opt_closure_kind()
1452 }
1453
74b04a01
XL
1454 /// Clears the selection, evaluation, and projection caches. This is useful when
1455 /// repeatedly attempting to select an `Obligation` while changing only
1456 /// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
1457 pub fn clear_caches(&self) {
1458 self.selection_cache.clear();
1459 self.evaluation_cache.clear();
f9f354fc 1460 self.inner.borrow_mut().projection_cache().clear();
74b04a01
XL
1461 }
1462
1463 fn universe(&self) -> ty::UniverseIndex {
1464 self.universe.get()
1465 }
1466
1467 /// Creates and return a fresh universe that extends all previous
1468 /// universes. Updates `self.universe` to that new universe.
1469 pub fn create_next_universe(&self) -> ty::UniverseIndex {
1470 let u = self.universe.get().next_universe();
1471 self.universe.set(u);
1472 u
1473 }
1474
1475 /// Resolves and evaluates a constant.
1476 ///
1477 /// The constant can be located on a trait like `<A as B>::C`, in which case the given
1478 /// substitutions and environment are used to resolve the constant. Alternatively if the
1479 /// constant has generic parameters in scope the substitutions are used to evaluate the value of
1480 /// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
1481 /// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
1482 /// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
1483 /// returned.
1484 ///
1485 /// This handles inferences variables within both `param_env` and `substs` by
1486 /// performing the operation on their respective canonical forms.
1487 pub fn const_eval_resolve(
1488 &self,
1489 param_env: ty::ParamEnv<'tcx>,
cdc7bbd5 1490 ty::Unevaluated { def, substs, promoted }: ty::Unevaluated<'tcx>,
74b04a01 1491 span: Option<Span>,
1b1a35ee 1492 ) -> EvalToConstValueResult<'tcx> {
74b04a01 1493 let mut original_values = OriginalQueryValues::default();
fc512014 1494 let canonical = self.canonicalize_query((param_env, substs), &mut original_values);
74b04a01
XL
1495
1496 let (param_env, substs) = canonical.value;
1497 // The return value is the evaluated value which doesn't contain any reference to inference
1498 // variables, thus we don't need to substitute back the original values.
cdc7bbd5 1499 self.tcx.const_eval_resolve(param_env, ty::Unevaluated { def, substs, promoted }, span)
74b04a01 1500 }
74b04a01
XL
1501
1502 /// If `typ` is a type variable of some kind, resolve it one level
1503 /// (but do not resolve types found in the result). If `typ` is
1504 /// not a type variable, just return it unmodified.
ba9703b0
XL
1505 // FIXME(eddyb) inline into `ShallowResolver::visit_ty`.
1506 fn shallow_resolve_ty(&self, typ: Ty<'tcx>) -> Ty<'tcx> {
1b1a35ee 1507 match *typ.kind() {
74b04a01
XL
1508 ty::Infer(ty::TyVar(v)) => {
1509 // Not entirely obvious: if `typ` is a type variable,
1510 // it can be resolved to an int/float variable, which
1511 // can then be recursively resolved, hence the
1512 // recursion. Note though that we prevent type
1513 // variables from unifying to other type variables
1514 // directly (though they may be embedded
1515 // structurally), and we prevent cycles in any case,
1516 // so this recursion should always be of very limited
1517 // depth.
1518 //
1519 // Note: if these two lines are combined into one we get
ba9703b0 1520 // dynamic borrow errors on `self.inner`.
f9f354fc 1521 let known = self.inner.borrow_mut().type_variables().probe(v).known();
5869c6ff 1522 known.map_or(typ, |t| self.shallow_resolve_ty(t))
74b04a01
XL
1523 }
1524
1525 ty::Infer(ty::IntVar(v)) => self
74b04a01
XL
1526 .inner
1527 .borrow_mut()
f9f354fc 1528 .int_unification_table()
74b04a01 1529 .probe_value(v)
ba9703b0 1530 .map(|v| v.to_type(self.tcx))
74b04a01
XL
1531 .unwrap_or(typ),
1532
1533 ty::Infer(ty::FloatVar(v)) => self
74b04a01
XL
1534 .inner
1535 .borrow_mut()
f9f354fc 1536 .float_unification_table()
74b04a01 1537 .probe_value(v)
ba9703b0 1538 .map(|v| v.to_type(self.tcx))
74b04a01
XL
1539 .unwrap_or(typ),
1540
1541 _ => typ,
1542 }
1543 }
1544
ba9703b0
XL
1545 /// `ty_or_const_infer_var_changed` is equivalent to one of these two:
1546 /// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
1547 /// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
1548 ///
1549 /// However, `ty_or_const_infer_var_changed` is more efficient. It's always
1550 /// inlined, despite being large, because it has only two call sites that
1551 /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
1552 /// inference variables), and it handles both `Ty` and `ty::Const` without
1553 /// having to resort to storing full `GenericArg`s in `stalled_on`.
74b04a01 1554 #[inline(always)]
ba9703b0
XL
1555 pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool {
1556 match infer_var {
1557 TyOrConstInferVar::Ty(v) => {
74b04a01
XL
1558 use self::type_variable::TypeVariableValue;
1559
ba9703b0
XL
1560 // If `inlined_probe` returns a `Known` value, it never equals
1561 // `ty::Infer(ty::TyVar(v))`.
f9f354fc 1562 match self.inner.borrow_mut().type_variables().inlined_probe(v) {
74b04a01
XL
1563 TypeVariableValue::Unknown { .. } => false,
1564 TypeVariableValue::Known { .. } => true,
1565 }
1566 }
1567
ba9703b0
XL
1568 TyOrConstInferVar::TyInt(v) => {
1569 // If `inlined_probe_value` returns a value it's always a
74b04a01
XL
1570 // `ty::Int(_)` or `ty::UInt(_)`, which never matches a
1571 // `ty::Infer(_)`.
f9f354fc 1572 self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
74b04a01
XL
1573 }
1574
ba9703b0
XL
1575 TyOrConstInferVar::TyFloat(v) => {
1576 // If `probe_value` returns a value it's always a
74b04a01
XL
1577 // `ty::Float(_)`, which never matches a `ty::Infer(_)`.
1578 //
1579 // Not `inlined_probe_value(v)` because this call site is colder.
f9f354fc 1580 self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
74b04a01
XL
1581 }
1582
ba9703b0
XL
1583 TyOrConstInferVar::Const(v) => {
1584 // If `probe_value` returns a `Known` value, it never equals
1585 // `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
1586 //
1587 // Not `inlined_probe_value(v)` because this call site is colder.
f9f354fc 1588 match self.inner.borrow_mut().const_unification_table().probe_value(v).val {
ba9703b0
XL
1589 ConstVariableValue::Unknown { .. } => false,
1590 ConstVariableValue::Known { .. } => true,
1591 }
1592 }
1593 }
1594 }
1595}
1596
1597/// Helper for `ty_or_const_infer_var_changed` (see comment on that), currently
1598/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
1599#[derive(Copy, Clone, Debug)]
1600pub enum TyOrConstInferVar<'tcx> {
1601 /// Equivalent to `ty::Infer(ty::TyVar(_))`.
1602 Ty(TyVid),
1603 /// Equivalent to `ty::Infer(ty::IntVar(_))`.
1604 TyInt(IntVid),
1605 /// Equivalent to `ty::Infer(ty::FloatVar(_))`.
1606 TyFloat(FloatVid),
1607
1608 /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
1609 Const(ConstVid<'tcx>),
1610}
1611
1612impl TyOrConstInferVar<'tcx> {
1613 /// Tries to extract an inference variable from a type or a constant, returns `None`
1614 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
1615 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1616 pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
1617 match arg.unpack() {
1618 GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
1619 GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
1620 GenericArgKind::Lifetime(_) => None,
74b04a01
XL
1621 }
1622 }
ba9703b0
XL
1623
1624 /// Tries to extract an inference variable from a type, returns `None`
1625 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
1626 pub fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
1b1a35ee 1627 match *ty.kind() {
ba9703b0
XL
1628 ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
1629 ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
1630 ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
1631 _ => None,
1632 }
1633 }
1634
1635 /// Tries to extract an inference variable from a constant, returns `None`
1636 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1637 pub fn maybe_from_const(ct: &'tcx ty::Const<'tcx>) -> Option<Self> {
1638 match ct.val {
1639 ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
1640 _ => None,
1641 }
1642 }
1643}
1644
1645struct ShallowResolver<'a, 'tcx> {
1646 infcx: &'a InferCtxt<'a, 'tcx>,
74b04a01
XL
1647}
1648
1649impl<'a, 'tcx> TypeFolder<'tcx> for ShallowResolver<'a, 'tcx> {
1650 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
1651 self.infcx.tcx
1652 }
1653
1654 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
ba9703b0 1655 self.infcx.shallow_resolve_ty(ty)
74b04a01
XL
1656 }
1657
1658 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
1659 if let ty::Const { val: ty::ConstKind::Infer(InferConst::Var(vid)), .. } = ct {
1660 self.infcx
1661 .inner
1662 .borrow_mut()
f9f354fc 1663 .const_unification_table()
74b04a01
XL
1664 .probe_value(*vid)
1665 .val
1666 .known()
1667 .unwrap_or(ct)
1668 } else {
1669 ct
1670 }
1671 }
1672}
1673
1674impl<'tcx> TypeTrace<'tcx> {
1675 pub fn span(&self) -> Span {
1676 self.cause.span
1677 }
1678
1679 pub fn types(
1680 cause: &ObligationCause<'tcx>,
1681 a_is_expected: bool,
1682 a: Ty<'tcx>,
1683 b: Ty<'tcx>,
1684 ) -> TypeTrace<'tcx> {
1685 TypeTrace { cause: cause.clone(), values: Types(ExpectedFound::new(a_is_expected, a, b)) }
1686 }
1687
f9f354fc
XL
1688 pub fn consts(
1689 cause: &ObligationCause<'tcx>,
1690 a_is_expected: bool,
1691 a: &'tcx ty::Const<'tcx>,
1692 b: &'tcx ty::Const<'tcx>,
1693 ) -> TypeTrace<'tcx> {
1694 TypeTrace { cause: cause.clone(), values: Consts(ExpectedFound::new(a_is_expected, a, b)) }
1695 }
74b04a01
XL
1696}
1697
1698impl<'tcx> SubregionOrigin<'tcx> {
1699 pub fn span(&self) -> Span {
1700 match *self {
1701 Subtype(ref a) => a.span(),
74b04a01
XL
1702 RelateObjectBound(a) => a,
1703 RelateParamBound(a, _) => a,
1704 RelateRegionParamBound(a) => a,
74b04a01
XL
1705 Reborrow(a) => a,
1706 ReborrowUpvar(a, _) => a,
1707 DataBorrowed(_, a) => a,
1708 ReferenceOutlivesReferent(_, a) => a,
74b04a01 1709 CallReturn(a) => a,
74b04a01
XL
1710 CompareImplMethodObligation { span, .. } => span,
1711 }
1712 }
1713
1714 pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
1715 where
1716 F: FnOnce() -> Self,
1717 {
1718 match cause.code {
1719 traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
1720 SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
1721 }
1722
1723 traits::ObligationCauseCode::CompareImplMethodObligation {
1724 item_name,
1725 impl_item_def_id,
1726 trait_item_def_id,
1727 } => SubregionOrigin::CompareImplMethodObligation {
1728 span: cause.span,
1729 item_name,
1730 impl_item_def_id,
1731 trait_item_def_id,
1732 },
1733
1734 _ => default(),
1735 }
1736 }
1737}
1738
1739impl RegionVariableOrigin {
1740 pub fn span(&self) -> Span {
1741 match *self {
3dfed10e
XL
1742 MiscVariable(a)
1743 | PatternRegion(a)
1744 | AddrOfRegion(a)
1745 | Autoref(a, _)
1746 | Coercion(a)
1747 | EarlyBoundRegion(a, ..)
1748 | LateBoundRegion(a, ..)
1749 | UpvarRegion(_, a) => a,
5869c6ff 1750 Nll(..) => bug!("NLL variable used with `span`"),
74b04a01
XL
1751 }
1752 }
1753}
1754
1755impl<'tcx> fmt::Debug for RegionObligation<'tcx> {
1756 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1757 write!(
1758 f,
1759 "RegionObligation(sub_region={:?}, sup_type={:?})",
1760 self.sub_region, self.sup_type
1761 )
1762 }
1763}