]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_infer/src/infer/mod.rs
New upstream version 1.71.1+dfsg1
[rustc.git] / compiler / rustc_infer / src / infer / mod.rs
CommitLineData
353b0b11 1pub use self::at::DefineOpaqueTypes;
74b04a01 2pub use self::freshen::TypeFreshener;
94222f64 3pub use self::lexical_region_resolve::RegionResolutionError;
74b04a01
XL
4pub use self::LateBoundRegionConversionTime::*;
5pub use self::RegionVariableOrigin::*;
6pub use self::SubregionOrigin::*;
7pub use self::ValuePairs::*;
9ffffee4 8pub use combine::ObligationEmittingRelation;
74b04a01 9
5e7ed085 10use self::opaque_types::OpaqueTypeStorage;
f9f354fc
XL
11pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
12
064997fb 13use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine, TraitEngineExt};
74b04a01 14
487cf647 15use rustc_data_structures::fx::FxIndexMap;
74b04a01
XL
16use rustc_data_structures::fx::{FxHashMap, FxHashSet};
17use rustc_data_structures::sync::Lrc;
f9f354fc 18use rustc_data_structures::undo_log::Rollback;
74b04a01 19use rustc_data_structures::unify as ut;
5e7ed085 20use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
ba9703b0
XL
21use rustc_hir::def_id::{DefId, LocalDefId};
22use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
23use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
24use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
923072b8 25use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
f2b60f7d 26use rustc_middle::mir::ConstraintCategory;
49aad941 27use rustc_middle::traits::{select, DefiningAnchor};
94222f64 28use rustc_middle::ty::error::{ExpectedFound, TypeError};
064997fb 29use rustc_middle::ty::fold::BoundVarReplacerDelegate;
923072b8 30use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
ba9703b0
XL
31use rustc_middle::ty::relate::RelateResult;
32use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
9ffffee4 33use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
ba9703b0 34pub use rustc_middle::ty::IntVarValue;
9ffffee4 35use rustc_middle::ty::{self, GenericParamDefKind, InferConst, InferTy, Ty, TyCtxt};
ba9703b0 36use rustc_middle::ty::{ConstVid, FloatVid, IntVid, TyVid};
74b04a01 37use rustc_span::symbol::Symbol;
487cf647 38use rustc_span::Span;
ba9703b0 39
2b03887a 40use std::cell::{Cell, RefCell};
74b04a01
XL
41use std::fmt;
42
43use self::combine::CombineFields;
2b03887a 44use self::error_reporting::TypeErrCtxt;
f9f354fc 45use self::free_regions::RegionRelations;
74b04a01 46use self::lexical_region_resolve::LexicalRegionResolutions;
353b0b11 47use self::region_constraints::{GenericKind, VarInfos, VerifyBound};
f9f354fc
XL
48use self::region_constraints::{
49 RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
50};
c295e0f8 51use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
74b04a01
XL
52
53pub mod at;
54pub mod canonical;
55mod combine;
56mod equate;
57pub mod error_reporting;
f9f354fc 58pub mod free_regions;
74b04a01
XL
59mod freshen;
60mod fudge;
49aad941 61mod generalize;
74b04a01
XL
62mod glb;
63mod higher_ranked;
64pub mod lattice;
65mod lexical_region_resolve;
66mod lub;
67pub mod nll_relate;
94222f64 68pub mod opaque_types;
74b04a01 69pub mod outlives;
c295e0f8 70mod projection;
74b04a01
XL
71pub mod region_constraints;
72pub mod resolve;
73mod sub;
74pub mod type_variable;
f9f354fc 75mod undo_log;
74b04a01 76
74b04a01
XL
77#[must_use]
78#[derive(Debug)]
79pub struct InferOk<'tcx, T> {
80 pub value: T,
81 pub obligations: PredicateObligations<'tcx>,
82}
83pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
84
74b04a01
XL
85pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
86pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
87
f9f354fc
XL
88pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
89 ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
90>;
91
74b04a01
XL
92/// This type contains all the things within `InferCtxt` that sit within a
93/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
94/// operations are hot enough that we want only one call to `borrow_mut` per
95/// call to `start_snapshot` and `rollback_to`.
5099ac24 96#[derive(Clone)]
74b04a01 97pub struct InferCtxtInner<'tcx> {
353b0b11 98 /// Cache for projections.
74b04a01 99 ///
353b0b11
FG
100 /// This cache is snapshotted along with the infcx.
101 projection_cache: traits::ProjectionCacheStorage<'tcx>,
74b04a01
XL
102
103 /// We instantiate `UnificationTable` with `bounds<Ty>` because the types
104 /// that might instantiate a general type variable have an order,
105 /// represented by its upper and lower bounds.
f9f354fc 106 type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
74b04a01
XL
107
108 /// Map from const parameter variable to the kind of const it represents.
f9f354fc 109 const_unification_storage: ut::UnificationTableStorage<ty::ConstVid<'tcx>>,
74b04a01
XL
110
111 /// Map from integral variable to the kind of integer it represents.
f9f354fc 112 int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
74b04a01
XL
113
114 /// Map from floating variable to the kind of float it represents.
f9f354fc 115 float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
74b04a01
XL
116
117 /// Tracks the set of region variables and the constraints between them.
353b0b11 118 ///
74b04a01
XL
119 /// This is initially `Some(_)` but when
120 /// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
121 /// -- further attempts to perform unification, etc., may fail if new
122 /// region constraints would've been added.
f9f354fc 123 region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
74b04a01 124
353b0b11
FG
125 /// A set of constraints that regionck must validate.
126 ///
127 /// Each constraint has the form `T:'a`, meaning "some type `T` must
74b04a01
XL
128 /// outlive the lifetime 'a". These constraints derive from
129 /// instantiated type parameters. So if you had a struct defined
353b0b11 130 /// like the following:
04454e1e 131 /// ```ignore (illustrative)
353b0b11 132 /// struct Foo<T: 'static> { ... }
04454e1e 133 /// ```
353b0b11 134 /// In some expression `let x = Foo { ... }`, it will
74b04a01
XL
135 /// instantiate the type parameter `T` with a fresh type `$0`. At
136 /// the same time, it will record a region obligation of
353b0b11 137 /// `$0: 'static`. This will get checked later by regionck. (We
74b04a01
XL
138 /// can't generally check these things right away because we have
139 /// to wait until types are resolved.)
140 ///
141 /// These are stored in a map keyed to the id of the innermost
142 /// enclosing fn body / static initializer expression. This is
143 /// because the location where the obligation was incurred can be
144 /// relevant with respect to which sublifetime assumptions are in
145 /// place. The reason that we store under the fn-id, and not
146 /// something more fine-grained, is so that it is easier for
147 /// regionck to be sure that it has found *all* the region
148 /// obligations (otherwise, it's easy to fail to walk to a
149 /// particular node-id).
150 ///
151 /// Before running `resolve_regions_and_report_errors`, the creator
152 /// of the inference context is expected to invoke
923072b8 153 /// [`InferCtxt::process_registered_region_obligations`]
74b04a01
XL
154 /// for each body-id in this map, which will process the
155 /// obligations within. This is expected to be done 'late enough'
156 /// that all type inference variables have been bound and so forth.
064997fb 157 region_obligations: Vec<RegionObligation<'tcx>>,
f9f354fc
XL
158
159 undo_log: InferCtxtUndoLogs<'tcx>,
94222f64 160
5e7ed085 161 /// Caches for opaque type inference.
9ffffee4 162 opaque_type_storage: OpaqueTypeStorage<'tcx>,
74b04a01
XL
163}
164
165impl<'tcx> InferCtxtInner<'tcx> {
166 fn new() -> InferCtxtInner<'tcx> {
167 InferCtxtInner {
168 projection_cache: Default::default(),
f9f354fc
XL
169 type_variable_storage: type_variable::TypeVariableStorage::new(),
170 undo_log: InferCtxtUndoLogs::default(),
171 const_unification_storage: ut::UnificationTableStorage::new(),
172 int_unification_storage: ut::UnificationTableStorage::new(),
173 float_unification_storage: ut::UnificationTableStorage::new(),
174 region_constraint_storage: Some(RegionConstraintStorage::new()),
74b04a01 175 region_obligations: vec![],
5e7ed085 176 opaque_type_storage: Default::default(),
74b04a01
XL
177 }
178 }
179
f9f354fc 180 #[inline]
064997fb 181 pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
f9f354fc
XL
182 &self.region_obligations
183 }
184
185 #[inline]
186 pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
187 self.projection_cache.with_log(&mut self.undo_log)
188 }
189
353b0b11
FG
190 #[inline]
191 fn try_type_variables_probe_ref(
192 &self,
193 vid: ty::TyVid,
194 ) -> Option<&type_variable::TypeVariableValue<'tcx>> {
195 // Uses a read-only view of the unification table, this way we don't
196 // need an undo log.
197 self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
198 }
199
f9f354fc
XL
200 #[inline]
201 fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
202 self.type_variable_storage.with_log(&mut self.undo_log)
203 }
204
5e7ed085
FG
205 #[inline]
206 pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
207 self.opaque_type_storage.with_log(&mut self.undo_log)
208 }
209
f9f354fc 210 #[inline]
9ffffee4 211 fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
f9f354fc
XL
212 self.int_unification_storage.with_log(&mut self.undo_log)
213 }
214
215 #[inline]
9ffffee4 216 fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
f9f354fc
XL
217 self.float_unification_storage.with_log(&mut self.undo_log)
218 }
219
220 #[inline]
9ffffee4 221 fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::ConstVid<'tcx>> {
f9f354fc
XL
222 self.const_unification_storage.with_log(&mut self.undo_log)
223 }
224
225 #[inline]
226 pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
227 self.region_constraint_storage
228 .as_mut()
229 .expect("region constraints already solved")
230 .with_log(&mut self.undo_log)
74b04a01
XL
231 }
232}
233
2b03887a 234pub struct InferCtxt<'tcx> {
74b04a01
XL
235 pub tcx: TyCtxt<'tcx>,
236
94222f64
XL
237 /// The `DefId` of the item in whose context we are performing inference or typeck.
238 /// It is used to check whether an opaque type use is a defining use.
5099ac24 239 ///
064997fb 240 /// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up
5099ac24
FG
241 /// the obligation. This frequently happens for
242 /// short lived InferCtxt within queries. The opaque type obligations are forwarded
243 /// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
064997fb 244 ///
9ffffee4 245 /// Its default value is `DefiningAnchor::Error`, this way it is easier to catch errors that
064997fb
FG
246 /// might come up during inference or typeck.
247 pub defining_use_anchor: DefiningAnchor,
248
249 /// Whether this inference context should care about region obligations in
250 /// the root universe. Most notably, this is used during hir typeck as region
251 /// solving is left to borrowck instead.
252 pub considering_regions: bool,
94222f64 253
74b04a01
XL
254 pub inner: RefCell<InferCtxtInner<'tcx>>,
255
256 /// If set, this flag causes us to skip the 'leak check' during
257 /// higher-ranked subtyping operations. This flag is a temporary one used
258 /// to manage the removal of the leak-check: for the time being, we still run the
259 /// leak-check, but we issue warnings. This flag can only be set to true
260 /// when entering a snapshot.
261 skip_leak_check: Cell<bool>,
262
263 /// Once region inference is done, the values for each variable.
264 lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
265
266 /// Caches the results of trait selection. This cache is used
267 /// for things that have to do with the parameters in scope.
ba9703b0 268 pub selection_cache: select::SelectionCache<'tcx>,
74b04a01
XL
269
270 /// Caches the results of trait evaluation.
ba9703b0 271 pub evaluation_cache: select::EvaluationCache<'tcx>,
74b04a01 272
353b0b11 273 /// The set of predicates on which errors have been reported, to
74b04a01 274 /// avoid reporting the same error twice.
487cf647 275 pub reported_trait_errors: RefCell<FxIndexMap<Span, Vec<ty::Predicate<'tcx>>>>,
74b04a01
XL
276
277 pub reported_closure_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
278
279 /// When an error occurs, we want to avoid reporting "derived"
280 /// errors that are due to this original failure. Normally, we
281 /// handle this with the `err_count_on_creation` count, which
282 /// basically just tracks how many errors were reported when we
283 /// started type-checking a fn and checks to see if any new errors
284 /// have been reported since then. Not great, but it works.
285 ///
286 /// However, when errors originated in other passes -- notably
287 /// resolve -- this heuristic breaks down. Therefore, we have this
288 /// auxiliary flag that one can set whenever one creates a
289 /// type-error that is due to an error in a prior pass.
290 ///
291 /// Don't read this flag directly, call `is_tainted_by_errors()`
292 /// and `set_tainted_by_errors()`.
f2b60f7d 293 tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
74b04a01
XL
294
295 /// Track how many errors were reported when this infcx is created.
353b0b11 296 /// If the number of errors increases, that's also a sign (like
5e7ed085 297 /// `tainted_by_errors`) to avoid reporting certain kinds of errors.
f2b60f7d 298 // FIXME(matthewjasper) Merge into `tainted_by_errors`
74b04a01
XL
299 err_count_on_creation: usize,
300
301 /// This flag is true while there is an active snapshot.
302 in_snapshot: Cell<bool>,
303
304 /// What is the innermost universe we have created? Starts out as
305 /// `UniverseIndex::root()` but grows from there as we enter
306 /// universal quantifiers.
307 ///
308 /// N.B., at present, we exclude the universal quantifiers on the
309 /// item we are type-checking, and just consider those names as
310 /// part of the root universe. So this would only get incremented
311 /// when we enter into a higher-ranked (`for<..>`) type or trait
312 /// bound.
313 universe: Cell<ty::UniverseIndex>,
f2b60f7d 314
487cf647
FG
315 /// During coherence we have to assume that other crates may add
316 /// additional impls which we currently don't know about.
317 ///
353b0b11 318 /// To deal with this evaluation, we should be conservative
487cf647
FG
319 /// and consider the possibility of impls from outside this crate.
320 /// This comes up primarily when resolving ambiguity. Imagine
321 /// there is some trait reference `$0: Bar` where `$0` is an
322 /// inference variable. If `intercrate` is true, then we can never
323 /// say for sure that this reference is not implemented, even if
324 /// there are *no impls at all for `Bar`*, because `$0` could be
325 /// bound to some type that in a downstream crate that implements
326 /// `Bar`.
327 ///
353b0b11 328 /// Outside of coherence, we set this to false because we are only
487cf647
FG
329 /// interested in types that the user could actually have written.
330 /// In other words, we consider `$0: Bar` to be unimplemented if
331 /// there is no type that the user could *actually name* that
332 /// would satisfy it. This avoids crippling inference, basically.
333 pub intercrate: bool,
74b04a01
XL
334}
335
74b04a01 336/// See the `error_reporting` module for more details.
064997fb 337#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
74b04a01 338pub enum ValuePairs<'tcx> {
74b04a01 339 Regions(ExpectedFound<ty::Region<'tcx>>),
5099ac24 340 Terms(ExpectedFound<ty::Term<'tcx>>),
353b0b11 341 Aliases(ExpectedFound<ty::AliasTy<'tcx>>),
74b04a01
XL
342 TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
343 PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
9c376795 344 Sigs(ExpectedFound<ty::FnSig<'tcx>>),
74b04a01
XL
345}
346
5099ac24
FG
347impl<'tcx> ValuePairs<'tcx> {
348 pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
f2b60f7d
FG
349 if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
350 && let Some(expected) = expected.ty()
351 && let Some(found) = found.ty()
5099ac24 352 {
f2b60f7d 353 Some((expected, found))
5099ac24
FG
354 } else {
355 None
356 }
357 }
358}
359
74b04a01
XL
360/// The trace designates the path through inference that we took to
361/// encounter an error or subtyping constraint.
362///
363/// See the `error_reporting` module for more details.
364#[derive(Clone, Debug)]
365pub struct TypeTrace<'tcx> {
04454e1e
FG
366 pub cause: ObligationCause<'tcx>,
367 pub values: ValuePairs<'tcx>,
74b04a01
XL
368}
369
370/// The origin of a `r1 <= r2` constraint.
371///
372/// See `error_reporting` module for more details
373#[derive(Clone, Debug)]
374pub enum SubregionOrigin<'tcx> {
375 /// Arose from a subtyping relation
376 Subtype(Box<TypeTrace<'tcx>>),
377
74b04a01 378 /// When casting `&'a T` to an `&'b Trait` object,
353b0b11 379 /// relating `'a` to `'b`.
74b04a01
XL
380 RelateObjectBound(Span),
381
382 /// Some type parameter was instantiated with the given type,
383 /// and that type must outlive some region.
94222f64 384 RelateParamBound(Span, Ty<'tcx>, Option<Span>),
74b04a01
XL
385
386 /// The given region parameter was instantiated with a region
387 /// that must outlive some other region.
388 RelateRegionParamBound(Span),
389
353b0b11 390 /// Creating a pointer `b` to contents of another reference.
74b04a01
XL
391 Reborrow(Span),
392
74b04a01
XL
393 /// (&'a &'b T) where a >= b
394 ReferenceOutlivesReferent(Ty<'tcx>, Span),
395
74b04a01
XL
396 /// Comparing the signature and requirements of an impl method against
397 /// the containing trait.
f2b60f7d
FG
398 CompareImplItemObligation {
399 span: Span,
400 impl_item_def_id: LocalDefId,
401 trait_item_def_id: DefId,
402 },
5099ac24 403
353b0b11 404 /// Checking that the bounds of a trait's associated type hold for a given impl.
5099ac24
FG
405 CheckAssociatedTypeBounds {
406 parent: Box<SubregionOrigin<'tcx>>,
5e7ed085 407 impl_item_def_id: LocalDefId,
5099ac24
FG
408 trait_item_def_id: DefId,
409 },
f2b60f7d
FG
410
411 AscribeUserTypeProvePredicate(Span),
74b04a01
XL
412}
413
414// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
6a06907d 415#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
74b04a01
XL
416static_assert_size!(SubregionOrigin<'_>, 32);
417
f2b60f7d
FG
418impl<'tcx> SubregionOrigin<'tcx> {
419 pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
420 match self {
421 Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
422 Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
423 _ => ConstraintCategory::BoringNoLocation,
424 }
425 }
426}
427
74b04a01
XL
428/// Times when we replace late-bound regions with variables:
429#[derive(Clone, Copy, Debug)]
430pub enum LateBoundRegionConversionTime {
431 /// when a fn is called
432 FnCall,
433
434 /// when two higher-ranked types are compared
435 HigherRankedType,
436
437 /// when projecting an associated type
438 AssocTypeProjection(DefId),
439}
440
353b0b11 441/// Reasons to create a region inference variable.
74b04a01 442///
353b0b11 443/// See `error_reporting` module for more details.
74b04a01
XL
444#[derive(Copy, Clone, Debug)]
445pub enum RegionVariableOrigin {
353b0b11
FG
446 /// Region variables created for ill-categorized reasons.
447 ///
448 /// They mostly indicate places in need of refactoring.
74b04a01
XL
449 MiscVariable(Span),
450
353b0b11 451 /// Regions created by a `&P` or `[...]` pattern.
74b04a01
XL
452 PatternRegion(Span),
453
353b0b11
FG
454 /// Regions created by `&` operator.
455 ///
74b04a01 456 AddrOfRegion(Span),
353b0b11 457 /// Regions created as part of an autoref of a method receiver.
3c0e092e 458 Autoref(Span),
74b04a01 459
353b0b11 460 /// Regions created as part of an automatic coercion.
74b04a01
XL
461 Coercion(Span),
462
353b0b11 463 /// Region variables created as the values for early-bound regions.
74b04a01
XL
464 EarlyBoundRegion(Span, Symbol),
465
466 /// Region variables created for bound regions
353b0b11 467 /// in a function or method that is called.
fc512014 468 LateBoundRegion(Span, ty::BoundRegionKind, LateBoundRegionConversionTime),
74b04a01
XL
469
470 UpvarRegion(ty::UpvarId, Span),
471
74b04a01
XL
472 /// This origin is used for the inference variables that we create
473 /// during NLL region processing.
5869c6ff 474 Nll(NllRegionVariableOrigin),
74b04a01
XL
475}
476
477#[derive(Copy, Clone, Debug)]
5869c6ff 478pub enum NllRegionVariableOrigin {
74b04a01
XL
479 /// During NLL region processing, we create variables for free
480 /// regions that we encounter in the function signature and
481 /// elsewhere. This origin indices we've got one of those.
482 FreeRegion,
483
484 /// "Universal" instantiation of a higher-ranked region (e.g.,
485 /// from a `for<'a> T` binder). Meant to represent "any region".
486 Placeholder(ty::PlaceholderRegion),
487
488 Existential {
489 /// If this is true, then this variable was created to represent a lifetime
490 /// bound in a `for` binder. For example, it might have been created to
491 /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
492 /// Such variables are created when we are trying to figure out if there
493 /// is any valid instantiation of `'a` that could fit into some scenario.
494 ///
495 /// This is used to inform error reporting: in the case that we are trying to
496 /// determine whether there is any valid instantiation of a `'a` variable that meets
497 /// some constraint C, we want to blame the "source" of that `for` type,
498 /// rather than blaming the source of the constraint C.
499 from_forall: bool,
500 },
501}
502
ba9703b0 503// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
74b04a01
XL
504#[derive(Copy, Clone, Debug)]
505pub enum FixupError<'tcx> {
506 UnresolvedIntTy(IntVid),
507 UnresolvedFloatTy(FloatVid),
508 UnresolvedTy(TyVid),
509 UnresolvedConst(ConstVid<'tcx>),
510}
511
512/// See the `region_obligations` field for more information.
f2b60f7d 513#[derive(Clone, Debug)]
74b04a01
XL
514pub struct RegionObligation<'tcx> {
515 pub sub_region: ty::Region<'tcx>,
516 pub sup_type: Ty<'tcx>,
517 pub origin: SubregionOrigin<'tcx>,
518}
519
520impl<'tcx> fmt::Display for FixupError<'tcx> {
521 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
522 use self::FixupError::*;
523
524 match *self {
525 UnresolvedIntTy(_) => write!(
526 f,
527 "cannot determine the type of this integer; \
528 add a suffix to specify the type explicitly"
529 ),
530 UnresolvedFloatTy(_) => write!(
531 f,
532 "cannot determine the type of this number; \
533 add a suffix to specify the type explicitly"
534 ),
535 UnresolvedTy(_) => write!(f, "unconstrained type"),
536 UnresolvedConst(_) => write!(f, "unconstrained const value"),
537 }
538 }
539}
540
353b0b11 541/// Used to configure inference contexts before their creation.
74b04a01 542pub struct InferCtxtBuilder<'tcx> {
f035d41b 543 tcx: TyCtxt<'tcx>,
064997fb
FG
544 defining_use_anchor: DefiningAnchor,
545 considering_regions: bool,
487cf647
FG
546 /// Whether we are in coherence mode.
547 intercrate: bool,
74b04a01
XL
548}
549
550pub trait TyCtxtInferExt<'tcx> {
551 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
552}
553
a2a8927a 554impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
74b04a01 555 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
064997fb
FG
556 InferCtxtBuilder {
557 tcx: self,
558 defining_use_anchor: DefiningAnchor::Error,
559 considering_regions: true,
487cf647 560 intercrate: false,
064997fb 561 }
74b04a01
XL
562 }
563}
564
565impl<'tcx> InferCtxtBuilder<'tcx> {
94222f64
XL
566 /// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
567 /// you need to call this function. Otherwise the opaque type will be treated opaquely.
568 ///
569 /// It is only meant to be called in two places, for typeck
2b03887a 570 /// (via `Inherited::build`) and for the inference context used
94222f64 571 /// in mir borrowck.
064997fb
FG
572 pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor) -> Self {
573 self.defining_use_anchor = defining_use_anchor;
574 self
575 }
576
353b0b11
FG
577 pub fn intercrate(mut self, intercrate: bool) -> Self {
578 self.intercrate = intercrate;
74b04a01
XL
579 self
580 }
581
487cf647
FG
582 pub fn ignoring_regions(mut self) -> Self {
583 self.considering_regions = false;
f2b60f7d
FG
584 self
585 }
586
74b04a01
XL
587 /// Given a canonical value `C` as a starting point, create an
588 /// inference context that contains each of the bound values
589 /// within instantiated as a fresh variable. The `f` closure is
590 /// invoked with the new infcx, along with the instantiated value
591 /// `V` and a substitution `S`. This substitution `S` maps from
592 /// the bound values in `C` to their instantiated values in `V`
593 /// (in other words, `S(C) = V`).
2b03887a 594 pub fn build_with_canonical<T>(
74b04a01
XL
595 &mut self,
596 span: Span,
597 canonical: &Canonical<'tcx, T>,
2b03887a 598 ) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
74b04a01 599 where
9ffffee4 600 T: TypeFoldable<TyCtxt<'tcx>>,
74b04a01 601 {
2b03887a
FG
602 let infcx = self.build();
603 let (value, subst) = infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
604 (infcx, value, subst)
74b04a01
XL
605 }
606
2b03887a 607 pub fn build(&mut self) -> InferCtxt<'tcx> {
487cf647 608 let InferCtxtBuilder { tcx, defining_use_anchor, considering_regions, intercrate } = *self;
2b03887a 609 InferCtxt {
f035d41b 610 tcx,
94222f64 611 defining_use_anchor,
064997fb 612 considering_regions,
f035d41b
XL
613 inner: RefCell::new(InferCtxtInner::new()),
614 lexical_region_resolutions: RefCell::new(None),
615 selection_cache: Default::default(),
616 evaluation_cache: Default::default(),
617 reported_trait_errors: Default::default(),
618 reported_closure_mismatch: Default::default(),
f2b60f7d 619 tainted_by_errors: Cell::new(None),
f035d41b
XL
620 err_count_on_creation: tcx.sess.err_count(),
621 in_snapshot: Cell::new(false),
622 skip_leak_check: Cell::new(false),
623 universe: Cell::new(ty::UniverseIndex::ROOT),
487cf647 624 intercrate,
2b03887a 625 }
74b04a01
XL
626 }
627}
628
629impl<'tcx, T> InferOk<'tcx, T> {
630 pub fn unit(self) -> InferOk<'tcx, ()> {
631 InferOk { value: (), obligations: self.obligations }
632 }
633
634 /// Extracts `value`, registering any obligations into `fulfill_cx`.
635 pub fn into_value_registering_obligations(
636 self,
2b03887a 637 infcx: &InferCtxt<'tcx>,
74b04a01
XL
638 fulfill_cx: &mut dyn TraitEngine<'tcx>,
639 ) -> T {
640 let InferOk { value, obligations } = self;
064997fb 641 fulfill_cx.register_predicate_obligations(infcx, obligations);
74b04a01
XL
642 value
643 }
644}
645
646impl<'tcx> InferOk<'tcx, ()> {
647 pub fn into_obligations(self) -> PredicateObligations<'tcx> {
648 self.obligations
649 }
650}
651
652#[must_use = "once you start a snapshot, you should always consume it"]
2b03887a 653pub struct CombinedSnapshot<'tcx> {
f9f354fc 654 undo_snapshot: Snapshot<'tcx>,
74b04a01 655 region_constraints_snapshot: RegionSnapshot,
74b04a01
XL
656 universe: ty::UniverseIndex,
657 was_in_snapshot: bool,
74b04a01
XL
658}
659
2b03887a
FG
660impl<'tcx> InferCtxt<'tcx> {
661 /// Creates a `TypeErrCtxt` for emitting various inference errors.
487cf647 662 /// During typeck, use `FnCtxt::err_ctxt` instead.
2b03887a 663 pub fn err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx> {
487cf647
FG
664 TypeErrCtxt {
665 infcx: self,
666 typeck_results: None,
667 fallback_has_occurred: false,
668 normalize_fn_sig: Box::new(|fn_sig| fn_sig),
9c376795
FG
669 autoderef_steps: Box::new(|ty| {
670 debug_assert!(false, "shouldn't be using autoderef_steps outside of typeck");
671 vec![(ty, vec![])]
672 }),
5e7ed085 673 }
94222f64
XL
674 }
675
74b04a01
XL
676 pub fn is_in_snapshot(&self) -> bool {
677 self.in_snapshot.get()
678 }
679
9ffffee4 680 pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
74b04a01
XL
681 t.fold_with(&mut self.freshener())
682 }
683
94222f64
XL
684 /// Returns the origin of the type variable identified by `vid`, or `None`
685 /// if this is not a type variable.
686 ///
687 /// No attempt is made to resolve `ty`.
2b03887a 688 pub fn type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
94222f64
XL
689 match *ty.kind() {
690 ty::Infer(ty::TyVar(vid)) => {
691 Some(*self.inner.borrow_mut().type_variables().var_origin(vid))
692 }
693 _ => None,
74b04a01
XL
694 }
695 }
696
697 pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
353b0b11 698 freshen::TypeFreshener::new(self)
74b04a01
XL
699 }
700
74b04a01
XL
701 pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
702 let mut inner = self.inner.borrow_mut();
74b04a01 703 let mut vars: Vec<Ty<'_>> = inner
f9f354fc 704 .type_variables()
74b04a01
XL
705 .unsolved_variables()
706 .into_iter()
707 .map(|t| self.tcx.mk_ty_var(t))
708 .collect();
709 vars.extend(
f9f354fc 710 (0..inner.int_unification_table().len())
74b04a01 711 .map(|i| ty::IntVid { index: i as u32 })
f9f354fc 712 .filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
74b04a01
XL
713 .map(|v| self.tcx.mk_int_var(v)),
714 );
715 vars.extend(
f9f354fc 716 (0..inner.float_unification_table().len())
74b04a01 717 .map(|i| ty::FloatVid { index: i as u32 })
f9f354fc 718 .filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
74b04a01
XL
719 .map(|v| self.tcx.mk_float_var(v)),
720 );
721 vars
722 }
723
2b03887a 724 fn combine_fields<'a>(
74b04a01
XL
725 &'a self,
726 trace: TypeTrace<'tcx>,
727 param_env: ty::ParamEnv<'tcx>,
353b0b11 728 define_opaque_types: DefineOpaqueTypes,
74b04a01
XL
729 ) -> CombineFields<'a, 'tcx> {
730 CombineFields {
731 infcx: self,
732 trace,
733 cause: None,
734 param_env,
735 obligations: PredicateObligations::new(),
5e7ed085 736 define_opaque_types,
74b04a01
XL
737 }
738 }
739
2b03887a 740 fn start_snapshot(&self) -> CombinedSnapshot<'tcx> {
74b04a01
XL
741 debug!("start_snapshot()");
742
743 let in_snapshot = self.in_snapshot.replace(true);
744
745 let mut inner = self.inner.borrow_mut();
f9f354fc 746
74b04a01 747 CombinedSnapshot {
f9f354fc 748 undo_snapshot: inner.undo_log.start_snapshot(),
74b04a01 749 region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
74b04a01
XL
750 universe: self.universe(),
751 was_in_snapshot: in_snapshot,
74b04a01
XL
752 }
753 }
754
c295e0f8 755 #[instrument(skip(self, snapshot), level = "debug")]
2b03887a 756 fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'tcx>) {
74b04a01 757 let CombinedSnapshot {
f9f354fc 758 undo_snapshot,
74b04a01 759 region_constraints_snapshot,
74b04a01
XL
760 universe,
761 was_in_snapshot,
74b04a01
XL
762 } = snapshot;
763
764 self.in_snapshot.set(was_in_snapshot);
765 self.universe.set(universe);
74b04a01
XL
766
767 let mut inner = self.inner.borrow_mut();
f9f354fc 768 inner.rollback_to(undo_snapshot);
74b04a01 769 inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
74b04a01
XL
770 }
771
c295e0f8 772 #[instrument(skip(self, snapshot), level = "debug")]
2b03887a 773 fn commit_from(&self, snapshot: CombinedSnapshot<'tcx>) {
74b04a01 774 let CombinedSnapshot {
f9f354fc
XL
775 undo_snapshot,
776 region_constraints_snapshot: _,
74b04a01
XL
777 universe: _,
778 was_in_snapshot,
74b04a01
XL
779 } = snapshot;
780
781 self.in_snapshot.set(was_in_snapshot);
74b04a01 782
f9f354fc 783 self.inner.borrow_mut().commit(undo_snapshot);
74b04a01
XL
784 }
785
74b04a01 786 /// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
c295e0f8 787 #[instrument(skip(self, f), level = "debug")]
74b04a01
XL
788 pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
789 where
2b03887a 790 F: FnOnce(&CombinedSnapshot<'tcx>) -> Result<T, E>,
74b04a01 791 {
74b04a01
XL
792 let snapshot = self.start_snapshot();
793 let r = f(&snapshot);
794 debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
795 match r {
796 Ok(_) => {
797 self.commit_from(snapshot);
798 }
799 Err(_) => {
800 self.rollback_to("commit_if_ok -- error", snapshot);
801 }
802 }
803 r
804 }
805
806 /// Execute `f` then unroll any bindings it creates.
c295e0f8 807 #[instrument(skip(self, f), level = "debug")]
74b04a01
XL
808 pub fn probe<R, F>(&self, f: F) -> R
809 where
2b03887a 810 F: FnOnce(&CombinedSnapshot<'tcx>) -> R,
74b04a01 811 {
74b04a01
XL
812 let snapshot = self.start_snapshot();
813 let r = f(&snapshot);
814 self.rollback_to("probe", snapshot);
815 r
816 }
817
818 /// If `should_skip` is true, then execute `f` then unroll any bindings it creates.
c295e0f8 819 #[instrument(skip(self, f), level = "debug")]
74b04a01
XL
820 pub fn probe_maybe_skip_leak_check<R, F>(&self, should_skip: bool, f: F) -> R
821 where
2b03887a 822 F: FnOnce(&CombinedSnapshot<'tcx>) -> R,
74b04a01 823 {
74b04a01 824 let snapshot = self.start_snapshot();
f9f354fc
XL
825 let was_skip_leak_check = self.skip_leak_check.get();
826 if should_skip {
827 self.skip_leak_check.set(true);
828 }
74b04a01
XL
829 let r = f(&snapshot);
830 self.rollback_to("probe", snapshot);
f9f354fc 831 self.skip_leak_check.set(was_skip_leak_check);
74b04a01
XL
832 r
833 }
834
835 /// Scan the constraints produced since `snapshot` began and returns:
836 ///
353b0b11
FG
837 /// - `None` -- if none of them involves "region outlives" constraints.
838 /// - `Some(true)` -- if there are `'a: 'b` constraints where `'a` or `'b` is a placeholder.
839 /// - `Some(false)` -- if there are `'a: 'b` constraints but none involve placeholders.
74b04a01
XL
840 pub fn region_constraints_added_in_snapshot(
841 &self,
2b03887a 842 snapshot: &CombinedSnapshot<'tcx>,
74b04a01
XL
843 ) -> Option<bool> {
844 self.inner
845 .borrow_mut()
846 .unwrap_region_constraints()
f9f354fc 847 .region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
74b04a01
XL
848 }
849
2b03887a 850 pub fn opaque_types_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
04454e1e
FG
851 self.inner.borrow().undo_log.opaque_types_in_snapshot(&snapshot.undo_snapshot)
852 }
853
9ffffee4 854 pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool
74b04a01
XL
855 where
856 T: at::ToTrace<'tcx>,
857 {
858 let origin = &ObligationCause::dummy();
353b0b11 859 self.probe(|_| self.at(origin, param_env).sub(DefineOpaqueTypes::No, a, b).is_ok())
74b04a01
XL
860 }
861
9ffffee4 862 pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool
74b04a01
XL
863 where
864 T: at::ToTrace<'tcx>,
865 {
866 let origin = &ObligationCause::dummy();
353b0b11 867 self.probe(|_| self.at(origin, param_env).eq(DefineOpaqueTypes::No, a, b).is_ok())
74b04a01
XL
868 }
869
c295e0f8 870 #[instrument(skip(self), level = "debug")]
74b04a01
XL
871 pub fn sub_regions(
872 &self,
873 origin: SubregionOrigin<'tcx>,
874 a: ty::Region<'tcx>,
875 b: ty::Region<'tcx>,
876 ) {
74b04a01
XL
877 self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
878 }
879
880 /// Require that the region `r` be equal to one of the regions in
881 /// the set `regions`.
c295e0f8 882 #[instrument(skip(self), level = "debug")]
74b04a01
XL
883 pub fn member_constraint(
884 &self,
064997fb 885 key: ty::OpaqueTypeKey<'tcx>,
74b04a01
XL
886 definition_span: Span,
887 hidden_ty: Ty<'tcx>,
888 region: ty::Region<'tcx>,
889 in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
890 ) {
74b04a01 891 self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
064997fb 892 key,
74b04a01
XL
893 definition_span,
894 hidden_ty,
895 region,
896 in_regions,
897 );
898 }
899
94222f64
XL
900 /// Processes a `Coerce` predicate from the fulfillment context.
901 /// This is NOT the preferred way to handle coercion, which is to
902 /// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
903 ///
904 /// This method here is actually a fallback that winds up being
905 /// invoked when `FnCtxt::coerce` encounters unresolved type variables
906 /// and records a coercion predicate. Presently, this method is equivalent
907 /// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
908 /// actually requiring `a <: b`. This is of course a valid coercion,
909 /// but it's not as flexible as `FnCtxt::coerce` would be.
910 ///
911 /// (We may refactor this in the future, but there are a number of
912 /// practical obstacles. Among other things, `FnCtxt::coerce` presently
913 /// records adjustments that are required on the HIR in order to perform
914 /// the coercion, and we don't currently have a way to manage that.)
915 pub fn coerce_predicate(
916 &self,
917 cause: &ObligationCause<'tcx>,
918 param_env: ty::ParamEnv<'tcx>,
919 predicate: ty::PolyCoercePredicate<'tcx>,
f2b60f7d 920 ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
94222f64
XL
921 let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
922 a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
923 a: p.a,
924 b: p.b,
925 });
926 self.subtype_predicate(cause, param_env, subtype_predicate)
927 }
928
74b04a01
XL
929 pub fn subtype_predicate(
930 &self,
931 cause: &ObligationCause<'tcx>,
932 param_env: ty::ParamEnv<'tcx>,
f9f354fc 933 predicate: ty::PolySubtypePredicate<'tcx>,
f2b60f7d 934 ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
94222f64
XL
935 // Check for two unresolved inference variables, in which case we can
936 // make no progress. This is partly a micro-optimization, but it's
937 // also an opportunity to "sub-unify" the variables. This isn't
938 // *necessary* to prevent cycles, because they would eventually be sub-unified
939 // anyhow during generalization, but it helps with diagnostics (we can detect
940 // earlier that they are sub-unified).
941 //
942 // Note that we can just skip the binders here because
943 // type variables can't (at present, at
74b04a01
XL
944 // least) capture any of the things bound by this binder.
945 //
94222f64
XL
946 // Note that this sub here is not just for diagnostics - it has semantic
947 // effects as well.
948 let r_a = self.shallow_resolve(predicate.skip_binder().a);
949 let r_b = self.shallow_resolve(predicate.skip_binder().b);
950 match (r_a.kind(), r_b.kind()) {
951 (&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
952 self.inner.borrow_mut().type_variables().sub(a_vid, b_vid);
f2b60f7d 953 return Err((a_vid, b_vid));
94222f64
XL
954 }
955 _ => {}
74b04a01
XL
956 }
957
f2b60f7d 958 Ok(self.commit_if_ok(|_snapshot| {
29967ef6 959 let ty::SubtypePredicate { a_is_expected, a, b } =
9ffffee4 960 self.instantiate_binder_with_placeholders(predicate);
74b04a01 961
353b0b11
FG
962 let ok =
963 self.at(cause, param_env).sub_exp(DefineOpaqueTypes::No, a_is_expected, a, b)?;
74b04a01 964
74b04a01
XL
965 Ok(ok.unit())
966 }))
967 }
968
969 pub fn region_outlives_predicate(
970 &self,
971 cause: &traits::ObligationCause<'tcx>,
f9f354fc 972 predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
064997fb 973 ) {
9ffffee4 974 let ty::OutlivesPredicate(r_a, r_b) = self.instantiate_binder_with_placeholders(predicate);
064997fb
FG
975 let origin =
976 SubregionOrigin::from_obligation_cause(cause, || RelateRegionParamBound(cause.span));
977 self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
74b04a01
XL
978 }
979
c295e0f8
XL
980 /// Number of type variables created so far.
981 pub fn num_ty_vars(&self) -> usize {
982 self.inner.borrow_mut().type_variables().num_vars()
983 }
984
985 pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
986 self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
74b04a01
XL
987 }
988
989 pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
c295e0f8 990 self.tcx.mk_ty_var(self.next_ty_var_id(origin))
74b04a01
XL
991 }
992
5e7ed085
FG
993 pub fn next_ty_var_id_in_universe(
994 &self,
995 origin: TypeVariableOrigin,
996 universe: ty::UniverseIndex,
997 ) -> TyVid {
998 self.inner.borrow_mut().type_variables().new_var(universe, origin)
999 }
1000
74b04a01
XL
1001 pub fn next_ty_var_in_universe(
1002 &self,
1003 origin: TypeVariableOrigin,
1004 universe: ty::UniverseIndex,
1005 ) -> Ty<'tcx> {
5e7ed085 1006 let vid = self.next_ty_var_id_in_universe(origin, universe);
74b04a01
XL
1007 self.tcx.mk_ty_var(vid)
1008 }
1009
5099ac24 1010 pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
487cf647 1011 self.tcx.mk_const(self.next_const_var_id(origin), ty)
74b04a01
XL
1012 }
1013
1014 pub fn next_const_var_in_universe(
1015 &self,
1016 ty: Ty<'tcx>,
1017 origin: ConstVariableOrigin,
1018 universe: ty::UniverseIndex,
5099ac24 1019 ) -> ty::Const<'tcx> {
74b04a01
XL
1020 let vid = self
1021 .inner
1022 .borrow_mut()
f9f354fc 1023 .const_unification_table()
74b04a01 1024 .new_key(ConstVarValue { origin, val: ConstVariableValue::Unknown { universe } });
487cf647 1025 self.tcx.mk_const(vid, ty)
74b04a01
XL
1026 }
1027
1028 pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
f9f354fc 1029 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
74b04a01
XL
1030 origin,
1031 val: ConstVariableValue::Unknown { universe: self.universe() },
1032 })
1033 }
1034
1035 fn next_int_var_id(&self) -> IntVid {
f9f354fc 1036 self.inner.borrow_mut().int_unification_table().new_key(None)
74b04a01
XL
1037 }
1038
1039 pub fn next_int_var(&self) -> Ty<'tcx> {
1040 self.tcx.mk_int_var(self.next_int_var_id())
1041 }
1042
1043 fn next_float_var_id(&self) -> FloatVid {
f9f354fc 1044 self.inner.borrow_mut().float_unification_table().new_key(None)
74b04a01
XL
1045 }
1046
1047 pub fn next_float_var(&self) -> Ty<'tcx> {
1048 self.tcx.mk_float_var(self.next_float_var_id())
1049 }
1050
1051 /// Creates a fresh region variable with the next available index.
1052 /// The variable will be created in the maximum universe created
1053 /// thus far, allowing it to name any region created thus far.
1054 pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
1055 self.next_region_var_in_universe(origin, self.universe())
1056 }
1057
1058 /// Creates a fresh region variable with the next available index
1059 /// in the given universe; typically, you can use
1060 /// `next_region_var` and just use the maximal universe.
1061 pub fn next_region_var_in_universe(
1062 &self,
1063 origin: RegionVariableOrigin,
1064 universe: ty::UniverseIndex,
1065 ) -> ty::Region<'tcx> {
1066 let region_var =
1067 self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
9ffffee4 1068 self.tcx.mk_re_var(region_var)
74b04a01
XL
1069 }
1070
9c376795 1071 /// Return the universe that the region `r` was created in. For
74b04a01
XL
1072 /// most regions (e.g., `'static`, named regions from the user,
1073 /// etc) this is the root universe U0. For inference variables or
2b03887a
FG
1074 /// placeholders, however, it will return the universe which they
1075 /// are associated.
94222f64 1076 pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
74b04a01
XL
1077 self.inner.borrow_mut().unwrap_region_constraints().universe(r)
1078 }
1079
1080 /// Number of region variables created so far.
1081 pub fn num_region_vars(&self) -> usize {
1082 self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
1083 }
1084
1085 /// Just a convenient wrapper of `next_region_var` for using during NLL.
9ffffee4 1086 #[instrument(skip(self), level = "debug")]
5869c6ff
XL
1087 pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
1088 self.next_region_var(RegionVariableOrigin::Nll(origin))
74b04a01
XL
1089 }
1090
1091 /// Just a convenient wrapper of `next_region_var` for using during NLL.
9ffffee4 1092 #[instrument(skip(self), level = "debug")]
74b04a01
XL
1093 pub fn next_nll_region_var_in_universe(
1094 &self,
5869c6ff 1095 origin: NllRegionVariableOrigin,
74b04a01
XL
1096 universe: ty::UniverseIndex,
1097 ) -> ty::Region<'tcx> {
5869c6ff 1098 self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
74b04a01
XL
1099 }
1100
1101 pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
1102 match param.kind {
1103 GenericParamDefKind::Lifetime => {
1104 // Create a region inference variable for the given
1105 // region parameter definition.
1106 self.next_region_var(EarlyBoundRegion(span, param.name)).into()
1107 }
1108 GenericParamDefKind::Type { .. } => {
1109 // Create a type inference variable for the given
1110 // type parameter definition. The substitutions are
1111 // for actual parameters that may be referred to by
1112 // the default of this type parameter, if it exists.
1113 // e.g., `struct Foo<A, B, C = (A, B)>(...);` when
1114 // used in a path such as `Foo::<T, U>::new()` will
1115 // use an inference variable for `C` with `[T, U]`
1116 // as the substitutions for the default, `(T, U)`.
f9f354fc 1117 let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
74b04a01 1118 self.universe(),
74b04a01
XL
1119 TypeVariableOrigin {
1120 kind: TypeVariableOriginKind::TypeParameterDefinition(
1121 param.name,
1122 Some(param.def_id),
1123 ),
1124 span,
1125 },
1126 );
1127
1128 self.tcx.mk_ty_var(ty_var_id).into()
1129 }
1130 GenericParamDefKind::Const { .. } => {
1131 let origin = ConstVariableOrigin {
1b1a35ee
XL
1132 kind: ConstVariableOriginKind::ConstParameterDefinition(
1133 param.name,
1134 param.def_id,
1135 ),
74b04a01
XL
1136 span,
1137 };
1138 let const_var_id =
f9f354fc 1139 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
74b04a01
XL
1140 origin,
1141 val: ConstVariableValue::Unknown { universe: self.universe() },
1142 });
9ffffee4
FG
1143 self.tcx
1144 .mk_const(
1145 const_var_id,
1146 self.tcx
1147 .type_of(param.def_id)
1148 .no_bound_vars()
1149 .expect("const parameter types cannot be generic"),
1150 )
1151 .into()
74b04a01
XL
1152 }
1153 }
1154 }
1155
1156 /// Given a set of generics defined on a type or impl, returns a substitution mapping each
1157 /// type/region parameter to a fresh inference variable.
1158 pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
1159 InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
1160 }
1161
1162 /// Returns `true` if errors have been reported since this infcx was
1163 /// created. This is sometimes used as a heuristic to skip
1164 /// reporting errors that often occur as a result of earlier
1165 /// errors, but where it's hard to be 100% sure (e.g., unresolved
1166 /// inference variables, regionck errors).
487cf647
FG
1167 #[must_use = "this method does not have any side effects"]
1168 pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
74b04a01
XL
1169 debug!(
1170 "is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
f2b60f7d 1171 tainted_by_errors={})",
74b04a01
XL
1172 self.tcx.sess.err_count(),
1173 self.err_count_on_creation,
f2b60f7d 1174 self.tainted_by_errors.get().is_some()
74b04a01
XL
1175 );
1176
487cf647
FG
1177 if let Some(e) = self.tainted_by_errors.get() {
1178 return Some(e);
1179 }
1180
74b04a01 1181 if self.tcx.sess.err_count() > self.err_count_on_creation {
487cf647
FG
1182 // errors reported since this infcx was made
1183 let e = self.tcx.sess.has_errors().unwrap();
1184 self.set_tainted_by_errors(e);
1185 return Some(e);
74b04a01 1186 }
487cf647
FG
1187
1188 None
74b04a01
XL
1189 }
1190
1191 /// Set the "tainted by errors" flag to true. We call this when we
1192 /// observe an error from a prior pass.
487cf647
FG
1193 pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
1194 debug!("set_tainted_by_errors(ErrorGuaranteed)");
1195 self.tainted_by_errors.set(Some(e));
74b04a01
XL
1196 }
1197
94222f64
XL
1198 pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
1199 let mut inner = self.inner.borrow_mut();
1200 let inner = &mut *inner;
1201 inner
1202 .region_constraint_storage
1203 .as_mut()
1204 .expect("regions already resolved")
1205 .with_log(&mut inner.undo_log)
1206 .var_origin(vid)
1207 }
1208
74b04a01
XL
1209 /// Takes ownership of the list of variable regions. This implies
1210 /// that all the region constraints have already been taken, and
1211 /// hence that `resolve_regions_and_report_errors` can never be
1212 /// called. This is used only during NLL processing to "hand off" ownership
1213 /// of the set of region variables into the NLL region context.
49aad941 1214 pub fn get_region_var_origins(&self) -> VarInfos {
f9f354fc
XL
1215 let mut inner = self.inner.borrow_mut();
1216 let (var_infos, data) = inner
1217 .region_constraint_storage
49aad941 1218 .clone()
74b04a01 1219 .expect("regions already resolved")
f9f354fc 1220 .with_log(&mut inner.undo_log)
74b04a01
XL
1221 .into_infos_and_data();
1222 assert!(data.is_empty());
1223 var_infos
1224 }
1225
9c376795
FG
1226 #[instrument(level = "debug", skip(self), ret)]
1227 pub fn take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
1228 debug_assert_ne!(self.defining_use_anchor, DefiningAnchor::Error);
1229 std::mem::take(&mut self.inner.borrow_mut().opaque_type_storage.opaque_types)
1230 }
1231
74b04a01 1232 pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
fc512014 1233 self.resolve_vars_if_possible(t).to_string()
74b04a01
XL
1234 }
1235
74b04a01
XL
1236 /// If `TyVar(vid)` resolves to a type, return that type. Else, return the
1237 /// universe index of `TyVar(vid)`.
1238 pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
1239 use self::type_variable::TypeVariableValue;
1240
f9f354fc 1241 match self.inner.borrow_mut().type_variables().probe(vid) {
74b04a01
XL
1242 TypeVariableValue::Known { value } => Ok(value),
1243 TypeVariableValue::Unknown { universe } => Err(universe),
1244 }
1245 }
1246
1247 /// Resolve any type variables found in `value` -- but only one
9c376795 1248 /// level. So, if the variable `?X` is bound to some type
74b04a01
XL
1249 /// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
1250 /// itself be bound to a type).
1251 ///
1252 /// Useful when you only need to inspect the outermost level of
1253 /// the type and don't care about nested types (or perhaps you
1254 /// will be resolving them as well, e.g. in a loop).
1255 pub fn shallow_resolve<T>(&self, value: T) -> T
1256 where
9ffffee4 1257 T: TypeFoldable<TyCtxt<'tcx>>,
74b04a01 1258 {
ba9703b0 1259 value.fold_with(&mut ShallowResolver { infcx: self })
74b04a01
XL
1260 }
1261
1262 pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
f9f354fc 1263 self.inner.borrow_mut().type_variables().root_var(var)
74b04a01
XL
1264 }
1265
353b0b11
FG
1266 pub fn root_const_var(&self, var: ty::ConstVid<'tcx>) -> ty::ConstVid<'tcx> {
1267 self.inner.borrow_mut().const_unification_table().find(var)
1268 }
1269
1270 /// Resolves an int var to a rigid int type, if it was constrained to one,
1271 /// or else the root int var in the unification table.
1272 pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
1273 let mut inner = self.inner.borrow_mut();
1274 if let Some(value) = inner.int_unification_table().probe_value(vid) {
1275 value.to_type(self.tcx)
1276 } else {
1277 self.tcx.mk_int_var(inner.int_unification_table().find(vid))
1278 }
1279 }
1280
1281 /// Resolves a float var to a rigid int type, if it was constrained to one,
1282 /// or else the root float var in the unification table.
1283 pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
1284 let mut inner = self.inner.borrow_mut();
1285 if let Some(value) = inner.float_unification_table().probe_value(vid) {
1286 value.to_type(self.tcx)
1287 } else {
1288 self.tcx.mk_float_var(inner.float_unification_table().find(vid))
1289 }
1290 }
1291
74b04a01
XL
1292 /// Where possible, replaces type/const variables in
1293 /// `value` with their final value. Note that region variables
1294 /// are unaffected. If a type/const variable has not been unified, it
1295 /// is left as is. This is an idempotent operation that does
1296 /// not affect inference state in any way and so you can do it
1297 /// at will.
fc512014 1298 pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
74b04a01 1299 where
9ffffee4 1300 T: TypeFoldable<TyCtxt<'tcx>>,
74b04a01 1301 {
9ffffee4
FG
1302 if !value.has_non_region_infer() {
1303 return value;
74b04a01
XL
1304 }
1305 let mut r = resolve::OpportunisticVarResolver::new(self);
1306 value.fold_with(&mut r)
1307 }
1308
5e7ed085
FG
1309 pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
1310 where
9ffffee4 1311 T: TypeFoldable<TyCtxt<'tcx>>,
5e7ed085 1312 {
49aad941 1313 if !value.has_infer() {
5e7ed085
FG
1314 return value; // Avoid duplicated subst-folding.
1315 }
1316 let mut r = InferenceLiteralEraser { tcx: self.tcx };
1317 value.fold_with(&mut r)
1318 }
1319
487cf647
FG
1320 /// Returns the first unresolved type or const variable contained in `T`.
1321 pub fn first_unresolved_const_or_ty_var<T>(
1322 &self,
1323 value: &T,
1324 ) -> Option<(ty::Term<'tcx>, Option<Span>)>
74b04a01 1325 where
9ffffee4 1326 T: TypeVisitable<TyCtxt<'tcx>>,
74b04a01 1327 {
487cf647 1328 value.visit_with(&mut resolve::UnresolvedTypeOrConstFinder::new(self)).break_value()
74b04a01
XL
1329 }
1330
1331 pub fn probe_const_var(
1332 &self,
1333 vid: ty::ConstVid<'tcx>,
5099ac24 1334 ) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
f9f354fc 1335 match self.inner.borrow_mut().const_unification_table().probe_value(vid).val {
74b04a01
XL
1336 ConstVariableValue::Known { value } => Ok(value),
1337 ConstVariableValue::Unknown { universe } => Err(universe),
1338 }
1339 }
1340
9ffffee4
FG
1341 /// Attempts to resolve all type/region/const variables in
1342 /// `value`. Region inference must have been run already (e.g.,
1343 /// by calling `resolve_regions_and_report_errors`). If some
1344 /// variable was never unified, an `Err` results.
1345 ///
1346 /// This method is idempotent, but it not typically not invoked
1347 /// except during the writeback phase.
1348 pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<'tcx, T> {
2b03887a
FG
1349 let value = resolve::fully_resolve(self, value);
1350 assert!(
49aad941 1351 value.as_ref().map_or(true, |value| !value.has_infer()),
2b03887a
FG
1352 "`{value:?}` is not fully resolved"
1353 );
1354 value
f9f354fc
XL
1355 }
1356
9ffffee4
FG
1357 // Instantiates the bound variables in a given binder with fresh inference
1358 // variables in the current universe.
1359 //
1360 // Use this method if you'd like to find some substitution of the binder's
1361 // variables (e.g. during a method call). If there isn't a [`LateBoundRegionConversionTime`]
1362 // that corresponds to your use case, consider whether or not you should
1363 // use [`InferCtxt::instantiate_binder_with_placeholders`] instead.
1364 pub fn instantiate_binder_with_fresh_vars<T>(
74b04a01
XL
1365 &self,
1366 span: Span,
1367 lbrct: LateBoundRegionConversionTime,
cdc7bbd5 1368 value: ty::Binder<'tcx, T>,
923072b8 1369 ) -> T
74b04a01 1370 where
9ffffee4 1371 T: TypeFoldable<TyCtxt<'tcx>> + Copy,
74b04a01 1372 {
923072b8
FG
1373 if let Some(inner) = value.no_bound_vars() {
1374 return inner;
1375 }
1376
064997fb 1377 struct ToFreshVars<'a, 'tcx> {
2b03887a 1378 infcx: &'a InferCtxt<'tcx>,
064997fb
FG
1379 span: Span,
1380 lbrct: LateBoundRegionConversionTime,
1381 map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>,
1382 }
923072b8 1383
064997fb
FG
1384 impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> {
1385 fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
1386 self.map
1387 .entry(br.var)
1388 .or_insert_with(|| {
1389 self.infcx
1390 .next_region_var(LateBoundRegion(self.span, br.kind, self.lbrct))
1391 .into()
1392 })
1393 .expect_region()
1394 }
1395 fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
1396 self.map
1397 .entry(bt.var)
1398 .or_insert_with(|| {
1399 self.infcx
1400 .next_ty_var(TypeVariableOrigin {
1401 kind: TypeVariableOriginKind::MiscVariable,
1402 span: self.span,
1403 })
1404 .into()
1405 })
1406 .expect_ty()
1407 }
1408 fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> {
1409 self.map
1410 .entry(bv)
1411 .or_insert_with(|| {
1412 self.infcx
1413 .next_const_var(
1414 ty,
1415 ConstVariableOrigin {
1416 kind: ConstVariableOriginKind::MiscVariable,
1417 span: self.span,
1418 },
1419 )
1420 .into()
1421 })
1422 .expect_const()
1423 }
1424 }
1425 let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() };
1426 self.tcx.replace_bound_vars_uncached(value, delegate)
74b04a01
XL
1427 }
1428
f9f354fc 1429 /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
74b04a01
XL
1430 pub fn verify_generic_bound(
1431 &self,
1432 origin: SubregionOrigin<'tcx>,
1433 kind: GenericKind<'tcx>,
1434 a: ty::Region<'tcx>,
1435 bound: VerifyBound<'tcx>,
1436 ) {
1437 debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
1438
1439 self.inner
1440 .borrow_mut()
1441 .unwrap_region_constraints()
1442 .verify_generic_bound(origin, kind, a, bound);
1443 }
1444
74b04a01
XL
1445 /// Obtains the latest type of the given closure; this may be a
1446 /// closure in the current function, in which case its
1447 /// `ClosureKind` may not yet be known.
ba9703b0
XL
1448 pub fn closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind> {
1449 let closure_kind_ty = closure_substs.as_closure().kind_ty();
74b04a01
XL
1450 let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
1451 closure_kind_ty.to_opt_closure_kind()
1452 }
1453
74b04a01
XL
1454 /// Clears the selection, evaluation, and projection caches. This is useful when
1455 /// repeatedly attempting to select an `Obligation` while changing only
1456 /// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
1457 pub fn clear_caches(&self) {
1458 self.selection_cache.clear();
1459 self.evaluation_cache.clear();
f9f354fc 1460 self.inner.borrow_mut().projection_cache().clear();
74b04a01
XL
1461 }
1462
94222f64 1463 pub fn universe(&self) -> ty::UniverseIndex {
74b04a01
XL
1464 self.universe.get()
1465 }
1466
1467 /// Creates and return a fresh universe that extends all previous
1468 /// universes. Updates `self.universe` to that new universe.
1469 pub fn create_next_universe(&self) -> ty::UniverseIndex {
1470 let u = self.universe.get().next_universe();
1471 self.universe.set(u);
1472 u
1473 }
1474
923072b8
FG
1475 pub fn try_const_eval_resolve(
1476 &self,
1477 param_env: ty::ParamEnv<'tcx>,
2b03887a 1478 unevaluated: ty::UnevaluatedConst<'tcx>,
923072b8
FG
1479 ty: Ty<'tcx>,
1480 span: Option<Span>,
1481 ) -> Result<ty::Const<'tcx>, ErrorHandled> {
1482 match self.const_eval_resolve(param_env, unevaluated, span) {
487cf647 1483 Ok(Some(val)) => Ok(self.tcx.mk_const(val, ty)),
923072b8
FG
1484 Ok(None) => {
1485 let tcx = self.tcx;
49aad941 1486 let def_id = unevaluated.def;
923072b8
FG
1487 span_bug!(
1488 tcx.def_span(def_id),
1489 "unable to construct a constant value for the unevaluated constant {:?}",
1490 unevaluated
1491 );
1492 }
1493 Err(err) => Err(err),
1494 }
1495 }
1496
74b04a01
XL
1497 /// Resolves and evaluates a constant.
1498 ///
1499 /// The constant can be located on a trait like `<A as B>::C`, in which case the given
1500 /// substitutions and environment are used to resolve the constant. Alternatively if the
1501 /// constant has generic parameters in scope the substitutions are used to evaluate the value of
1502 /// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
1503 /// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
1504 /// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
1505 /// returned.
1506 ///
1507 /// This handles inferences variables within both `param_env` and `substs` by
1508 /// performing the operation on their respective canonical forms.
5e7ed085 1509 #[instrument(skip(self), level = "debug")]
74b04a01
XL
1510 pub fn const_eval_resolve(
1511 &self,
064997fb 1512 mut param_env: ty::ParamEnv<'tcx>,
2b03887a 1513 unevaluated: ty::UnevaluatedConst<'tcx>,
74b04a01 1514 span: Option<Span>,
923072b8 1515 ) -> EvalToValTreeResult<'tcx> {
064997fb 1516 let mut substs = self.resolve_vars_if_possible(unevaluated.substs);
5e7ed085 1517 debug!(?substs);
a2a8927a
XL
1518
1519 // Postpone the evaluation of constants whose substs depend on inference
1520 // variables
487cf647 1521 let tcx = self.tcx;
2b03887a 1522 if substs.has_non_region_infer() {
49aad941 1523 if let Some(ct) = tcx.thir_abstract_const(unevaluated.def)? {
487cf647
FG
1524 let ct = tcx.expand_abstract_consts(ct.subst(tcx, substs));
1525 if let Err(e) = ct.error_reported() {
49aad941 1526 return Err(ErrorHandled::Reported(e.into()));
487cf647
FG
1527 } else if ct.has_non_region_infer() || ct.has_non_region_param() {
1528 return Err(ErrorHandled::TooGeneric);
1529 } else {
1530 substs = replace_param_and_infer_substs_with_placeholder(tcx, substs);
064997fb 1531 }
487cf647 1532 } else {
49aad941
FG
1533 substs = InternalSubsts::identity_for_item(tcx, unevaluated.def);
1534 param_env = tcx.param_env(unevaluated.def);
064997fb 1535 }
a2a8927a
XL
1536 }
1537
487cf647
FG
1538 let param_env_erased = tcx.erase_regions(param_env);
1539 let substs_erased = tcx.erase_regions(substs);
5e7ed085
FG
1540 debug!(?param_env_erased);
1541 debug!(?substs_erased);
a2a8927a 1542
2b03887a 1543 let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, substs: substs_erased };
74b04a01 1544
74b04a01
XL
1545 // The return value is the evaluated value which doesn't contain any reference to inference
1546 // variables, thus we don't need to substitute back the original values.
487cf647 1547 tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
74b04a01 1548 }
74b04a01 1549
353b0b11
FG
1550 /// The returned function is used in a fast path. If it returns `true` the variable is
1551 /// unchanged, `false` indicates that the status is unknown.
1552 #[inline]
1553 pub fn is_ty_infer_var_definitely_unchanged<'a>(
1554 &'a self,
1555 ) -> (impl Fn(TyOrConstInferVar<'tcx>) -> bool + 'a) {
1556 // This hoists the borrow/release out of the loop body.
1557 let inner = self.inner.try_borrow();
1558
1559 return move |infer_var: TyOrConstInferVar<'tcx>| match (infer_var, &inner) {
1560 (TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
1561 use self::type_variable::TypeVariableValue;
1562
49aad941
FG
1563 matches!(
1564 inner.try_type_variables_probe_ref(ty_var),
1565 Some(TypeVariableValue::Unknown { .. })
1566 )
353b0b11
FG
1567 }
1568 _ => false,
1569 };
1570 }
1571
ba9703b0
XL
1572 /// `ty_or_const_infer_var_changed` is equivalent to one of these two:
1573 /// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
1574 /// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
1575 ///
1576 /// However, `ty_or_const_infer_var_changed` is more efficient. It's always
1577 /// inlined, despite being large, because it has only two call sites that
1578 /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
1579 /// inference variables), and it handles both `Ty` and `ty::Const` without
1580 /// having to resort to storing full `GenericArg`s in `stalled_on`.
74b04a01 1581 #[inline(always)]
ba9703b0
XL
1582 pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool {
1583 match infer_var {
1584 TyOrConstInferVar::Ty(v) => {
74b04a01
XL
1585 use self::type_variable::TypeVariableValue;
1586
ba9703b0
XL
1587 // If `inlined_probe` returns a `Known` value, it never equals
1588 // `ty::Infer(ty::TyVar(v))`.
f9f354fc 1589 match self.inner.borrow_mut().type_variables().inlined_probe(v) {
74b04a01
XL
1590 TypeVariableValue::Unknown { .. } => false,
1591 TypeVariableValue::Known { .. } => true,
1592 }
1593 }
1594
ba9703b0
XL
1595 TyOrConstInferVar::TyInt(v) => {
1596 // If `inlined_probe_value` returns a value it's always a
74b04a01
XL
1597 // `ty::Int(_)` or `ty::UInt(_)`, which never matches a
1598 // `ty::Infer(_)`.
f9f354fc 1599 self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
74b04a01
XL
1600 }
1601
ba9703b0
XL
1602 TyOrConstInferVar::TyFloat(v) => {
1603 // If `probe_value` returns a value it's always a
74b04a01
XL
1604 // `ty::Float(_)`, which never matches a `ty::Infer(_)`.
1605 //
1606 // Not `inlined_probe_value(v)` because this call site is colder.
f9f354fc 1607 self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
74b04a01
XL
1608 }
1609
ba9703b0
XL
1610 TyOrConstInferVar::Const(v) => {
1611 // If `probe_value` returns a `Known` value, it never equals
1612 // `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
1613 //
1614 // Not `inlined_probe_value(v)` because this call site is colder.
f9f354fc 1615 match self.inner.borrow_mut().const_unification_table().probe_value(v).val {
ba9703b0
XL
1616 ConstVariableValue::Unknown { .. } => false,
1617 ConstVariableValue::Known { .. } => true,
1618 }
1619 }
1620 }
1621 }
353b0b11 1622}
2b03887a 1623
353b0b11 1624impl<'tcx> TypeErrCtxt<'_, 'tcx> {
2b03887a
FG
1625 // [Note-Type-error-reporting]
1626 // An invariant is that anytime the expected or actual type is Error (the special
1627 // error type, meaning that an error occurred when typechecking this expression),
1628 // this is a derived error. The error cascaded from another error (that was already
1629 // reported), so it's not useful to display it to the user.
1630 // The following methods implement this logic.
1631 // They check if either the actual or expected type is Error, and don't print the error
1632 // in this case. The typechecker should only ever report type errors involving mismatched
1633 // types using one of these methods, and should not call span_err directly for such
1634 // errors.
2b03887a
FG
1635 pub fn type_error_struct_with_diag<M>(
1636 &self,
1637 sp: Span,
1638 mk_diag: M,
1639 actual_ty: Ty<'tcx>,
1640 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>
1641 where
1642 M: FnOnce(String) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,
1643 {
1644 let actual_ty = self.resolve_vars_if_possible(actual_ty);
1645 debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
1646
1647 let mut err = mk_diag(self.ty_to_string(actual_ty));
1648
1649 // Don't report an error if actual type is `Error`.
1650 if actual_ty.references_error() {
1651 err.downgrade_to_delayed_bug();
1652 }
1653
1654 err
1655 }
1656
1657 pub fn report_mismatched_types(
1658 &self,
1659 cause: &ObligationCause<'tcx>,
1660 expected: Ty<'tcx>,
1661 actual: Ty<'tcx>,
1662 err: TypeError<'tcx>,
1663 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
1664 self.report_and_explain_type_error(TypeTrace::types(cause, true, expected, actual), err)
1665 }
1666
1667 pub fn report_mismatched_consts(
1668 &self,
1669 cause: &ObligationCause<'tcx>,
1670 expected: ty::Const<'tcx>,
1671 actual: ty::Const<'tcx>,
1672 err: TypeError<'tcx>,
1673 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
1674 self.report_and_explain_type_error(TypeTrace::consts(cause, true, expected, actual), err)
1675 }
1676}
1677
353b0b11 1678/// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
ba9703b0
XL
1679/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
1680#[derive(Copy, Clone, Debug)]
1681pub enum TyOrConstInferVar<'tcx> {
1682 /// Equivalent to `ty::Infer(ty::TyVar(_))`.
1683 Ty(TyVid),
1684 /// Equivalent to `ty::Infer(ty::IntVar(_))`.
1685 TyInt(IntVid),
1686 /// Equivalent to `ty::Infer(ty::FloatVar(_))`.
1687 TyFloat(FloatVid),
1688
1689 /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
1690 Const(ConstVid<'tcx>),
1691}
1692
a2a8927a 1693impl<'tcx> TyOrConstInferVar<'tcx> {
ba9703b0
XL
1694 /// Tries to extract an inference variable from a type or a constant, returns `None`
1695 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
1696 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1697 pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
1698 match arg.unpack() {
1699 GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
1700 GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
1701 GenericArgKind::Lifetime(_) => None,
74b04a01
XL
1702 }
1703 }
ba9703b0
XL
1704
1705 /// Tries to extract an inference variable from a type, returns `None`
1706 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
f2b60f7d 1707 fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
1b1a35ee 1708 match *ty.kind() {
ba9703b0
XL
1709 ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
1710 ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
1711 ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
1712 _ => None,
1713 }
1714 }
1715
1716 /// Tries to extract an inference variable from a constant, returns `None`
1717 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
f2b60f7d 1718 fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
923072b8 1719 match ct.kind() {
ba9703b0
XL
1720 ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
1721 _ => None,
1722 }
1723 }
1724}
1725
5e7ed085
FG
1726/// Replace `{integer}` with `i32` and `{float}` with `f64`.
1727/// Used only for diagnostics.
1728struct InferenceLiteralEraser<'tcx> {
1729 tcx: TyCtxt<'tcx>,
1730}
1731
9ffffee4
FG
1732impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
1733 fn interner(&self) -> TyCtxt<'tcx> {
5e7ed085
FG
1734 self.tcx
1735 }
1736
1737 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1738 match ty.kind() {
1739 ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
1740 ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
1741 _ => ty.super_fold_with(self),
1742 }
1743 }
1744}
1745
ba9703b0 1746struct ShallowResolver<'a, 'tcx> {
2b03887a 1747 infcx: &'a InferCtxt<'tcx>,
74b04a01
XL
1748}
1749
9ffffee4
FG
1750impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ShallowResolver<'a, 'tcx> {
1751 fn interner(&self) -> TyCtxt<'tcx> {
74b04a01
XL
1752 self.infcx.tcx
1753 }
1754
04454e1e
FG
1755 /// If `ty` is a type variable of some kind, resolve it one level
1756 /// (but do not resolve types found in the result). If `typ` is
1757 /// not a type variable, just return it unmodified.
9ffffee4 1758 #[inline]
74b04a01 1759 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
9ffffee4
FG
1760 if let ty::Infer(v) = ty.kind() { self.fold_infer_ty(*v).unwrap_or(ty) } else { ty }
1761 }
1762
1763 fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
1764 if let ty::ConstKind::Infer(InferConst::Var(vid)) = ct.kind() {
1765 self.infcx
1766 .inner
1767 .borrow_mut()
1768 .const_unification_table()
1769 .probe_value(vid)
1770 .val
1771 .known()
1772 .unwrap_or(ct)
1773 } else {
1774 ct
1775 }
1776 }
1777}
1778
1779impl<'a, 'tcx> ShallowResolver<'a, 'tcx> {
1780 // This is separate from `fold_ty` to keep that method small and inlinable.
1781 #[inline(never)]
1782 fn fold_infer_ty(&mut self, v: InferTy) -> Option<Ty<'tcx>> {
1783 match v {
1784 ty::TyVar(v) => {
04454e1e
FG
1785 // Not entirely obvious: if `typ` is a type variable,
1786 // it can be resolved to an int/float variable, which
1787 // can then be recursively resolved, hence the
1788 // recursion. Note though that we prevent type
1789 // variables from unifying to other type variables
1790 // directly (though they may be embedded
1791 // structurally), and we prevent cycles in any case,
1792 // so this recursion should always be of very limited
1793 // depth.
1794 //
1795 // Note: if these two lines are combined into one we get
1796 // dynamic borrow errors on `self.inner`.
1797 let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
9ffffee4 1798 known.map(|t| self.fold_ty(t))
04454e1e
FG
1799 }
1800
9ffffee4 1801 ty::IntVar(v) => self
04454e1e
FG
1802 .infcx
1803 .inner
1804 .borrow_mut()
1805 .int_unification_table()
1806 .probe_value(v)
9ffffee4 1807 .map(|v| v.to_type(self.infcx.tcx)),
04454e1e 1808
9ffffee4 1809 ty::FloatVar(v) => self
04454e1e
FG
1810 .infcx
1811 .inner
1812 .borrow_mut()
1813 .float_unification_table()
1814 .probe_value(v)
9ffffee4 1815 .map(|v| v.to_type(self.infcx.tcx)),
74b04a01 1816
9ffffee4 1817 ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => None,
74b04a01
XL
1818 }
1819 }
1820}
1821
1822impl<'tcx> TypeTrace<'tcx> {
1823 pub fn span(&self) -> Span {
1824 self.cause.span
1825 }
1826
1827 pub fn types(
1828 cause: &ObligationCause<'tcx>,
1829 a_is_expected: bool,
1830 a: Ty<'tcx>,
1831 b: Ty<'tcx>,
1832 ) -> TypeTrace<'tcx> {
5099ac24
FG
1833 TypeTrace {
1834 cause: cause.clone(),
1835 values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
1836 }
74b04a01
XL
1837 }
1838
f2b60f7d
FG
1839 pub fn poly_trait_refs(
1840 cause: &ObligationCause<'tcx>,
1841 a_is_expected: bool,
1842 a: ty::PolyTraitRef<'tcx>,
1843 b: ty::PolyTraitRef<'tcx>,
1844 ) -> TypeTrace<'tcx> {
1845 TypeTrace {
1846 cause: cause.clone(),
9c376795 1847 values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)),
f2b60f7d
FG
1848 }
1849 }
1850
f9f354fc
XL
1851 pub fn consts(
1852 cause: &ObligationCause<'tcx>,
1853 a_is_expected: bool,
5099ac24
FG
1854 a: ty::Const<'tcx>,
1855 b: ty::Const<'tcx>,
f9f354fc 1856 ) -> TypeTrace<'tcx> {
5099ac24
FG
1857 TypeTrace {
1858 cause: cause.clone(),
1859 values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
1860 }
f9f354fc 1861 }
74b04a01
XL
1862}
1863
1864impl<'tcx> SubregionOrigin<'tcx> {
1865 pub fn span(&self) -> Span {
1866 match *self {
1867 Subtype(ref a) => a.span(),
74b04a01 1868 RelateObjectBound(a) => a,
94222f64 1869 RelateParamBound(a, ..) => a,
74b04a01 1870 RelateRegionParamBound(a) => a,
74b04a01 1871 Reborrow(a) => a,
74b04a01 1872 ReferenceOutlivesReferent(_, a) => a,
064997fb 1873 CompareImplItemObligation { span, .. } => span,
f2b60f7d 1874 AscribeUserTypeProvePredicate(span) => span,
5099ac24 1875 CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
74b04a01
XL
1876 }
1877 }
1878
1879 pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
1880 where
1881 F: FnOnce() -> Self,
1882 {
a2a8927a 1883 match *cause.code() {
74b04a01
XL
1884 traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
1885 SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
1886 }
1887
064997fb 1888 traits::ObligationCauseCode::CompareImplItemObligation {
c295e0f8
XL
1889 impl_item_def_id,
1890 trait_item_def_id,
064997fb
FG
1891 kind: _,
1892 } => SubregionOrigin::CompareImplItemObligation {
c295e0f8 1893 span: cause.span,
c295e0f8
XL
1894 impl_item_def_id,
1895 trait_item_def_id,
1896 },
1897
5099ac24
FG
1898 traits::ObligationCauseCode::CheckAssociatedTypeBounds {
1899 impl_item_def_id,
1900 trait_item_def_id,
1901 } => SubregionOrigin::CheckAssociatedTypeBounds {
1902 impl_item_def_id,
1903 trait_item_def_id,
1904 parent: Box::new(default()),
1905 },
1906
f2b60f7d
FG
1907 traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
1908 SubregionOrigin::AscribeUserTypeProvePredicate(span)
1909 }
1910
74b04a01
XL
1911 _ => default(),
1912 }
1913 }
1914}
1915
1916impl RegionVariableOrigin {
1917 pub fn span(&self) -> Span {
1918 match *self {
3dfed10e
XL
1919 MiscVariable(a)
1920 | PatternRegion(a)
1921 | AddrOfRegion(a)
3c0e092e 1922 | Autoref(a)
3dfed10e
XL
1923 | Coercion(a)
1924 | EarlyBoundRegion(a, ..)
1925 | LateBoundRegion(a, ..)
1926 | UpvarRegion(_, a) => a,
5869c6ff 1927 Nll(..) => bug!("NLL variable used with `span`"),
74b04a01
XL
1928 }
1929 }
1930}
1931
064997fb
FG
1932/// Replaces substs that reference param or infer variables with suitable
1933/// placeholders. This function is meant to remove these param and infer
1934/// substs when they're not actually needed to evaluate a constant.
1935fn replace_param_and_infer_substs_with_placeholder<'tcx>(
1936 tcx: TyCtxt<'tcx>,
1937 substs: SubstsRef<'tcx>,
1938) -> SubstsRef<'tcx> {
9c376795
FG
1939 struct ReplaceParamAndInferWithPlaceholder<'tcx> {
1940 tcx: TyCtxt<'tcx>,
9ffffee4 1941 idx: u32,
9c376795
FG
1942 }
1943
9ffffee4
FG
1944 impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
1945 fn interner(&self) -> TyCtxt<'tcx> {
9c376795
FG
1946 self.tcx
1947 }
1948
1949 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
1950 if let ty::Infer(_) = t.kind() {
353b0b11
FG
1951 let idx = {
1952 let idx = self.idx;
1953 self.idx += 1;
1954 idx
1955 };
9ffffee4 1956 self.tcx.mk_placeholder(ty::PlaceholderType {
064997fb 1957 universe: ty::UniverseIndex::ROOT,
353b0b11
FG
1958 bound: ty::BoundTy {
1959 var: ty::BoundVar::from_u32(idx),
1960 kind: ty::BoundTyKind::Anon,
1961 },
9ffffee4 1962 })
9c376795
FG
1963 } else {
1964 t.super_fold_with(self)
064997fb 1965 }
9c376795
FG
1966 }
1967
1968 fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
1969 if let ty::ConstKind::Infer(_) = c.kind() {
1970 let ty = c.ty();
1971 // If the type references param or infer then ICE ICE ICE
2b03887a 1972 if ty.has_non_region_param() || ty.has_non_region_infer() {
9c376795 1973 bug!("const `{c}`'s type should not reference params or types");
064997fb 1974 }
9c376795 1975 self.tcx.mk_const(
487cf647 1976 ty::PlaceholderConst {
064997fb 1977 universe: ty::UniverseIndex::ROOT,
353b0b11 1978 bound: ty::BoundVar::from_u32({
9c376795
FG
1979 let idx = self.idx;
1980 self.idx += 1;
1981 idx
1982 }),
487cf647
FG
1983 },
1984 ty,
1985 )
9c376795
FG
1986 } else {
1987 c.super_fold_with(self)
064997fb 1988 }
064997fb 1989 }
9c376795
FG
1990 }
1991
1992 substs.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 })
064997fb 1993}