]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_infer/src/infer/mod.rs
Merge tag 'debian/1.52.1+dfsg1-1_exp2' into proxmox/buster
[rustc.git] / compiler / rustc_infer / src / infer / mod.rs
CommitLineData
74b04a01
XL
1pub use self::freshen::TypeFreshener;
2pub use self::LateBoundRegionConversionTime::*;
3pub use self::RegionVariableOrigin::*;
4pub use self::SubregionOrigin::*;
5pub use self::ValuePairs::*;
74b04a01 6
f9f354fc
XL
7pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
8
74b04a01
XL
9use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine};
10
74b04a01
XL
11use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12use rustc_data_structures::sync::Lrc;
f9f354fc 13use rustc_data_structures::undo_log::Rollback;
74b04a01
XL
14use rustc_data_structures::unify as ut;
15use rustc_errors::DiagnosticBuilder;
16use rustc_hir as hir;
ba9703b0
XL
17use rustc_hir::def_id::{DefId, LocalDefId};
18use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
19use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
20use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
ba9703b0 21use rustc_middle::mir;
1b1a35ee 22use rustc_middle::mir::interpret::EvalToConstValueResult;
ba9703b0
XL
23use rustc_middle::traits::select;
24use rustc_middle::ty::error::{ExpectedFound, TypeError, UnconstrainedNumeric};
25use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
26use rustc_middle::ty::relate::RelateResult;
27use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
28pub use rustc_middle::ty::IntVarValue;
29use rustc_middle::ty::{self, GenericParamDefKind, InferConst, Ty, TyCtxt};
30use rustc_middle::ty::{ConstVid, FloatVid, IntVid, TyVid};
31use rustc_session::config::BorrowckMode;
74b04a01
XL
32use rustc_span::symbol::Symbol;
33use rustc_span::Span;
ba9703b0 34
74b04a01
XL
35use std::cell::{Cell, Ref, RefCell};
36use std::collections::BTreeMap;
37use std::fmt;
38
39use self::combine::CombineFields;
f9f354fc 40use self::free_regions::RegionRelations;
74b04a01
XL
41use self::lexical_region_resolve::LexicalRegionResolutions;
42use self::outlives::env::OutlivesEnvironment;
43use self::region_constraints::{GenericKind, RegionConstraintData, VarInfos, VerifyBound};
f9f354fc
XL
44use self::region_constraints::{
45 RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
46};
74b04a01
XL
47use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
48
49pub mod at;
50pub mod canonical;
51mod combine;
52mod equate;
53pub mod error_reporting;
f9f354fc 54pub mod free_regions;
74b04a01
XL
55mod freshen;
56mod fudge;
57mod glb;
58mod higher_ranked;
59pub mod lattice;
60mod lexical_region_resolve;
61mod lub;
62pub mod nll_relate;
74b04a01
XL
63pub mod outlives;
64pub mod region_constraints;
65pub mod resolve;
66mod sub;
67pub mod type_variable;
f9f354fc 68mod undo_log;
74b04a01
XL
69
70use crate::infer::canonical::OriginalQueryValues;
ba9703b0 71pub use rustc_middle::infer::unify_key;
74b04a01
XL
72
73#[must_use]
74#[derive(Debug)]
75pub struct InferOk<'tcx, T> {
76 pub value: T,
77 pub obligations: PredicateObligations<'tcx>,
78}
79pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
80
81pub type Bound<T> = Option<T>;
82pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
83pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
84
f9f354fc
XL
85pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
86 ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
87>;
88
ba9703b0
XL
89/// How we should handle region solving.
90///
91/// This is used so that the region values inferred by HIR region solving are
92/// not exposed, and so that we can avoid doing work in HIR typeck that MIR
93/// typeck will also do.
94#[derive(Copy, Clone, Debug)]
95pub enum RegionckMode {
96 /// The default mode: report region errors, don't erase regions.
97 Solve,
98 /// Erase the results of region after solving.
99 Erase {
100 /// A flag that is used to suppress region errors, when we are doing
101 /// region checks that the NLL borrow checker will also do -- it might
102 /// be set to true.
103 suppress_errors: bool,
104 },
105}
106
107impl Default for RegionckMode {
108 fn default() -> Self {
109 RegionckMode::Solve
110 }
74b04a01
XL
111}
112
ba9703b0 113impl RegionckMode {
74b04a01
XL
114 /// Indicates that the MIR borrowck will repeat these region
115 /// checks, so we should ignore errors if NLL is (unconditionally)
116 /// enabled.
ba9703b0 117 pub fn for_item_body(tcx: TyCtxt<'_>) -> Self {
74b04a01
XL
118 // FIXME(Centril): Once we actually remove `::Migrate` also make
119 // this always `true` and then proceed to eliminate the dead code.
120 match tcx.borrowck_mode() {
121 // If we're on Migrate mode, report AST region errors
ba9703b0 122 BorrowckMode::Migrate => RegionckMode::Erase { suppress_errors: false },
74b04a01
XL
123
124 // If we're on MIR, don't report AST region errors as they should be reported by NLL
ba9703b0 125 BorrowckMode::Mir => RegionckMode::Erase { suppress_errors: true },
74b04a01
XL
126 }
127 }
128}
129
130/// This type contains all the things within `InferCtxt` that sit within a
131/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
132/// operations are hot enough that we want only one call to `borrow_mut` per
133/// call to `start_snapshot` and `rollback_to`.
134pub struct InferCtxtInner<'tcx> {
135 /// Cache for projections. This cache is snapshotted along with the infcx.
136 ///
137 /// Public so that `traits::project` can use it.
f9f354fc 138 pub projection_cache: traits::ProjectionCacheStorage<'tcx>,
74b04a01
XL
139
140 /// We instantiate `UnificationTable` with `bounds<Ty>` because the types
141 /// that might instantiate a general type variable have an order,
142 /// represented by its upper and lower bounds.
f9f354fc 143 type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
74b04a01
XL
144
145 /// Map from const parameter variable to the kind of const it represents.
f9f354fc 146 const_unification_storage: ut::UnificationTableStorage<ty::ConstVid<'tcx>>,
74b04a01
XL
147
148 /// Map from integral variable to the kind of integer it represents.
f9f354fc 149 int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
74b04a01
XL
150
151 /// Map from floating variable to the kind of float it represents.
f9f354fc 152 float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
74b04a01
XL
153
154 /// Tracks the set of region variables and the constraints between them.
155 /// This is initially `Some(_)` but when
156 /// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
157 /// -- further attempts to perform unification, etc., may fail if new
158 /// region constraints would've been added.
f9f354fc 159 region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
74b04a01
XL
160
161 /// A set of constraints that regionck must validate. Each
162 /// constraint has the form `T:'a`, meaning "some type `T` must
163 /// outlive the lifetime 'a". These constraints derive from
164 /// instantiated type parameters. So if you had a struct defined
165 /// like
166 ///
167 /// struct Foo<T:'static> { ... }
168 ///
169 /// then in some expression `let x = Foo { ... }` it will
170 /// instantiate the type parameter `T` with a fresh type `$0`. At
171 /// the same time, it will record a region obligation of
172 /// `$0:'static`. This will get checked later by regionck. (We
173 /// can't generally check these things right away because we have
174 /// to wait until types are resolved.)
175 ///
176 /// These are stored in a map keyed to the id of the innermost
177 /// enclosing fn body / static initializer expression. This is
178 /// because the location where the obligation was incurred can be
179 /// relevant with respect to which sublifetime assumptions are in
180 /// place. The reason that we store under the fn-id, and not
181 /// something more fine-grained, is so that it is easier for
182 /// regionck to be sure that it has found *all* the region
183 /// obligations (otherwise, it's easy to fail to walk to a
184 /// particular node-id).
185 ///
186 /// Before running `resolve_regions_and_report_errors`, the creator
187 /// of the inference context is expected to invoke
188 /// `process_region_obligations` (defined in `self::region_obligations`)
189 /// for each body-id in this map, which will process the
190 /// obligations within. This is expected to be done 'late enough'
191 /// that all type inference variables have been bound and so forth.
f9f354fc
XL
192 region_obligations: Vec<(hir::HirId, RegionObligation<'tcx>)>,
193
194 undo_log: InferCtxtUndoLogs<'tcx>,
74b04a01
XL
195}
196
197impl<'tcx> InferCtxtInner<'tcx> {
198 fn new() -> InferCtxtInner<'tcx> {
199 InferCtxtInner {
200 projection_cache: Default::default(),
f9f354fc
XL
201 type_variable_storage: type_variable::TypeVariableStorage::new(),
202 undo_log: InferCtxtUndoLogs::default(),
203 const_unification_storage: ut::UnificationTableStorage::new(),
204 int_unification_storage: ut::UnificationTableStorage::new(),
205 float_unification_storage: ut::UnificationTableStorage::new(),
206 region_constraint_storage: Some(RegionConstraintStorage::new()),
74b04a01
XL
207 region_obligations: vec![],
208 }
209 }
210
f9f354fc
XL
211 #[inline]
212 pub fn region_obligations(&self) -> &[(hir::HirId, RegionObligation<'tcx>)] {
213 &self.region_obligations
214 }
215
216 #[inline]
217 pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
218 self.projection_cache.with_log(&mut self.undo_log)
219 }
220
221 #[inline]
222 fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
223 self.type_variable_storage.with_log(&mut self.undo_log)
224 }
225
226 #[inline]
227 fn int_unification_table(
228 &mut self,
229 ) -> ut::UnificationTable<
230 ut::InPlace<
231 ty::IntVid,
232 &mut ut::UnificationStorage<ty::IntVid>,
233 &mut InferCtxtUndoLogs<'tcx>,
234 >,
235 > {
236 self.int_unification_storage.with_log(&mut self.undo_log)
237 }
238
239 #[inline]
240 fn float_unification_table(
241 &mut self,
242 ) -> ut::UnificationTable<
243 ut::InPlace<
244 ty::FloatVid,
245 &mut ut::UnificationStorage<ty::FloatVid>,
246 &mut InferCtxtUndoLogs<'tcx>,
247 >,
248 > {
249 self.float_unification_storage.with_log(&mut self.undo_log)
250 }
251
252 #[inline]
253 fn const_unification_table(
254 &mut self,
255 ) -> ut::UnificationTable<
256 ut::InPlace<
257 ty::ConstVid<'tcx>,
258 &mut ut::UnificationStorage<ty::ConstVid<'tcx>>,
259 &mut InferCtxtUndoLogs<'tcx>,
260 >,
261 > {
262 self.const_unification_storage.with_log(&mut self.undo_log)
263 }
264
265 #[inline]
266 pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
267 self.region_constraint_storage
268 .as_mut()
269 .expect("region constraints already solved")
270 .with_log(&mut self.undo_log)
74b04a01
XL
271 }
272}
273
274pub struct InferCtxt<'a, 'tcx> {
275 pub tcx: TyCtxt<'tcx>,
276
3dfed10e
XL
277 /// During type-checking/inference of a body, `in_progress_typeck_results`
278 /// contains a reference to the typeck results being built up, which are
74b04a01
XL
279 /// used for reading closure kinds/signatures as they are inferred,
280 /// and for error reporting logic to read arbitrary node types.
3dfed10e 281 pub in_progress_typeck_results: Option<&'a RefCell<ty::TypeckResults<'tcx>>>,
74b04a01
XL
282
283 pub inner: RefCell<InferCtxtInner<'tcx>>,
284
285 /// If set, this flag causes us to skip the 'leak check' during
286 /// higher-ranked subtyping operations. This flag is a temporary one used
287 /// to manage the removal of the leak-check: for the time being, we still run the
288 /// leak-check, but we issue warnings. This flag can only be set to true
289 /// when entering a snapshot.
290 skip_leak_check: Cell<bool>,
291
292 /// Once region inference is done, the values for each variable.
293 lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
294
295 /// Caches the results of trait selection. This cache is used
296 /// for things that have to do with the parameters in scope.
ba9703b0 297 pub selection_cache: select::SelectionCache<'tcx>,
74b04a01
XL
298
299 /// Caches the results of trait evaluation.
ba9703b0 300 pub evaluation_cache: select::EvaluationCache<'tcx>,
74b04a01
XL
301
302 /// the set of predicates on which errors have been reported, to
303 /// avoid reporting the same error twice.
304 pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,
305
306 pub reported_closure_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
307
308 /// When an error occurs, we want to avoid reporting "derived"
309 /// errors that are due to this original failure. Normally, we
310 /// handle this with the `err_count_on_creation` count, which
311 /// basically just tracks how many errors were reported when we
312 /// started type-checking a fn and checks to see if any new errors
313 /// have been reported since then. Not great, but it works.
314 ///
315 /// However, when errors originated in other passes -- notably
316 /// resolve -- this heuristic breaks down. Therefore, we have this
317 /// auxiliary flag that one can set whenever one creates a
318 /// type-error that is due to an error in a prior pass.
319 ///
320 /// Don't read this flag directly, call `is_tainted_by_errors()`
321 /// and `set_tainted_by_errors()`.
322 tainted_by_errors_flag: Cell<bool>,
323
324 /// Track how many errors were reported when this infcx is created.
325 /// If the number of errors increases, that's also a sign (line
326 /// `tained_by_errors`) to avoid reporting certain kinds of errors.
327 // FIXME(matthewjasper) Merge into `tainted_by_errors_flag`
328 err_count_on_creation: usize,
329
330 /// This flag is true while there is an active snapshot.
331 in_snapshot: Cell<bool>,
332
333 /// What is the innermost universe we have created? Starts out as
334 /// `UniverseIndex::root()` but grows from there as we enter
335 /// universal quantifiers.
336 ///
337 /// N.B., at present, we exclude the universal quantifiers on the
338 /// item we are type-checking, and just consider those names as
339 /// part of the root universe. So this would only get incremented
340 /// when we enter into a higher-ranked (`for<..>`) type or trait
341 /// bound.
342 universe: Cell<ty::UniverseIndex>,
343}
344
74b04a01 345/// See the `error_reporting` module for more details.
fc512014 346#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable)]
74b04a01
XL
347pub enum ValuePairs<'tcx> {
348 Types(ExpectedFound<Ty<'tcx>>),
349 Regions(ExpectedFound<ty::Region<'tcx>>),
350 Consts(ExpectedFound<&'tcx ty::Const<'tcx>>),
351 TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
352 PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
353}
354
355/// The trace designates the path through inference that we took to
356/// encounter an error or subtyping constraint.
357///
358/// See the `error_reporting` module for more details.
359#[derive(Clone, Debug)]
360pub struct TypeTrace<'tcx> {
361 cause: ObligationCause<'tcx>,
362 values: ValuePairs<'tcx>,
363}
364
365/// The origin of a `r1 <= r2` constraint.
366///
367/// See `error_reporting` module for more details
368#[derive(Clone, Debug)]
369pub enum SubregionOrigin<'tcx> {
370 /// Arose from a subtyping relation
371 Subtype(Box<TypeTrace<'tcx>>),
372
74b04a01
XL
373 /// When casting `&'a T` to an `&'b Trait` object,
374 /// relating `'a` to `'b`
375 RelateObjectBound(Span),
376
377 /// Some type parameter was instantiated with the given type,
378 /// and that type must outlive some region.
379 RelateParamBound(Span, Ty<'tcx>),
380
381 /// The given region parameter was instantiated with a region
382 /// that must outlive some other region.
383 RelateRegionParamBound(Span),
384
74b04a01
XL
385 /// Creating a pointer `b` to contents of another reference
386 Reborrow(Span),
387
388 /// Creating a pointer `b` to contents of an upvar
389 ReborrowUpvar(Span, ty::UpvarId),
390
391 /// Data with type `Ty<'tcx>` was borrowed
392 DataBorrowed(Ty<'tcx>, Span),
393
394 /// (&'a &'b T) where a >= b
395 ReferenceOutlivesReferent(Ty<'tcx>, Span),
396
74b04a01
XL
397 /// Region in return type of invoked fn must enclose call
398 CallReturn(Span),
399
74b04a01
XL
400 /// Comparing the signature and requirements of an impl method against
401 /// the containing trait.
402 CompareImplMethodObligation {
403 span: Span,
f9f354fc 404 item_name: Symbol,
74b04a01
XL
405 impl_item_def_id: DefId,
406 trait_item_def_id: DefId,
407 },
408}
409
410// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
6a06907d 411#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
74b04a01
XL
412static_assert_size!(SubregionOrigin<'_>, 32);
413
74b04a01
XL
414/// Times when we replace late-bound regions with variables:
415#[derive(Clone, Copy, Debug)]
416pub enum LateBoundRegionConversionTime {
417 /// when a fn is called
418 FnCall,
419
420 /// when two higher-ranked types are compared
421 HigherRankedType,
422
423 /// when projecting an associated type
424 AssocTypeProjection(DefId),
425}
426
427/// Reasons to create a region inference variable
428///
429/// See `error_reporting` module for more details
430#[derive(Copy, Clone, Debug)]
431pub enum RegionVariableOrigin {
432 /// Region variables created for ill-categorized reasons,
433 /// mostly indicates places in need of refactoring
434 MiscVariable(Span),
435
436 /// Regions created by a `&P` or `[...]` pattern
437 PatternRegion(Span),
438
439 /// Regions created by `&` operator
440 AddrOfRegion(Span),
441
442 /// Regions created as part of an autoref of a method receiver
3dfed10e 443 Autoref(Span, ty::AssocItem),
74b04a01
XL
444
445 /// Regions created as part of an automatic coercion
446 Coercion(Span),
447
448 /// Region variables created as the values for early-bound regions
449 EarlyBoundRegion(Span, Symbol),
450
451 /// Region variables created for bound regions
452 /// in a function or method that is called
fc512014 453 LateBoundRegion(Span, ty::BoundRegionKind, LateBoundRegionConversionTime),
74b04a01
XL
454
455 UpvarRegion(ty::UpvarId, Span),
456
f9f354fc 457 BoundRegionInCoherence(Symbol),
74b04a01
XL
458
459 /// This origin is used for the inference variables that we create
460 /// during NLL region processing.
5869c6ff 461 Nll(NllRegionVariableOrigin),
74b04a01
XL
462}
463
464#[derive(Copy, Clone, Debug)]
5869c6ff 465pub enum NllRegionVariableOrigin {
74b04a01
XL
466 /// During NLL region processing, we create variables for free
467 /// regions that we encounter in the function signature and
468 /// elsewhere. This origin indices we've got one of those.
469 FreeRegion,
470
471 /// "Universal" instantiation of a higher-ranked region (e.g.,
472 /// from a `for<'a> T` binder). Meant to represent "any region".
473 Placeholder(ty::PlaceholderRegion),
474
f9f354fc
XL
475 /// The variable we create to represent `'empty(U0)`.
476 RootEmptyRegion,
477
74b04a01
XL
478 Existential {
479 /// If this is true, then this variable was created to represent a lifetime
480 /// bound in a `for` binder. For example, it might have been created to
481 /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
482 /// Such variables are created when we are trying to figure out if there
483 /// is any valid instantiation of `'a` that could fit into some scenario.
484 ///
485 /// This is used to inform error reporting: in the case that we are trying to
486 /// determine whether there is any valid instantiation of a `'a` variable that meets
487 /// some constraint C, we want to blame the "source" of that `for` type,
488 /// rather than blaming the source of the constraint C.
489 from_forall: bool,
490 },
491}
492
ba9703b0 493// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
74b04a01
XL
494#[derive(Copy, Clone, Debug)]
495pub enum FixupError<'tcx> {
496 UnresolvedIntTy(IntVid),
497 UnresolvedFloatTy(FloatVid),
498 UnresolvedTy(TyVid),
499 UnresolvedConst(ConstVid<'tcx>),
500}
501
502/// See the `region_obligations` field for more information.
503#[derive(Clone)]
504pub struct RegionObligation<'tcx> {
505 pub sub_region: ty::Region<'tcx>,
506 pub sup_type: Ty<'tcx>,
507 pub origin: SubregionOrigin<'tcx>,
508}
509
510impl<'tcx> fmt::Display for FixupError<'tcx> {
511 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
512 use self::FixupError::*;
513
514 match *self {
515 UnresolvedIntTy(_) => write!(
516 f,
517 "cannot determine the type of this integer; \
518 add a suffix to specify the type explicitly"
519 ),
520 UnresolvedFloatTy(_) => write!(
521 f,
522 "cannot determine the type of this number; \
523 add a suffix to specify the type explicitly"
524 ),
525 UnresolvedTy(_) => write!(f, "unconstrained type"),
526 UnresolvedConst(_) => write!(f, "unconstrained const value"),
527 }
528 }
529}
530
531/// Helper type of a temporary returned by `tcx.infer_ctxt()`.
532/// Necessary because we can't write the following bound:
533/// `F: for<'b, 'tcx> where 'tcx FnOnce(InferCtxt<'b, 'tcx>)`.
534pub struct InferCtxtBuilder<'tcx> {
f035d41b 535 tcx: TyCtxt<'tcx>,
3dfed10e 536 fresh_typeck_results: Option<RefCell<ty::TypeckResults<'tcx>>>,
74b04a01
XL
537}
538
539pub trait TyCtxtInferExt<'tcx> {
540 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
541}
542
543impl TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
544 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
3dfed10e 545 InferCtxtBuilder { tcx: self, fresh_typeck_results: None }
74b04a01
XL
546 }
547}
548
549impl<'tcx> InferCtxtBuilder<'tcx> {
550 /// Used only by `rustc_typeck` during body type-checking/inference,
3dfed10e
XL
551 /// will initialize `in_progress_typeck_results` with fresh `TypeckResults`.
552 pub fn with_fresh_in_progress_typeck_results(mut self, table_owner: LocalDefId) -> Self {
553 self.fresh_typeck_results = Some(RefCell::new(ty::TypeckResults::new(table_owner)));
74b04a01
XL
554 self
555 }
556
557 /// Given a canonical value `C` as a starting point, create an
558 /// inference context that contains each of the bound values
559 /// within instantiated as a fresh variable. The `f` closure is
560 /// invoked with the new infcx, along with the instantiated value
561 /// `V` and a substitution `S`. This substitution `S` maps from
562 /// the bound values in `C` to their instantiated values in `V`
563 /// (in other words, `S(C) = V`).
564 pub fn enter_with_canonical<T, R>(
565 &mut self,
566 span: Span,
567 canonical: &Canonical<'tcx, T>,
568 f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>, T, CanonicalVarValues<'tcx>) -> R,
569 ) -> R
570 where
571 T: TypeFoldable<'tcx>,
572 {
573 self.enter(|infcx| {
574 let (value, subst) =
575 infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
576 f(infcx, value, subst)
577 })
578 }
579
580 pub fn enter<R>(&mut self, f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>) -> R) -> R {
3dfed10e
XL
581 let InferCtxtBuilder { tcx, ref fresh_typeck_results } = *self;
582 let in_progress_typeck_results = fresh_typeck_results.as_ref();
f035d41b
XL
583 f(InferCtxt {
584 tcx,
3dfed10e 585 in_progress_typeck_results,
f035d41b
XL
586 inner: RefCell::new(InferCtxtInner::new()),
587 lexical_region_resolutions: RefCell::new(None),
588 selection_cache: Default::default(),
589 evaluation_cache: Default::default(),
590 reported_trait_errors: Default::default(),
591 reported_closure_mismatch: Default::default(),
592 tainted_by_errors_flag: Cell::new(false),
593 err_count_on_creation: tcx.sess.err_count(),
594 in_snapshot: Cell::new(false),
595 skip_leak_check: Cell::new(false),
596 universe: Cell::new(ty::UniverseIndex::ROOT),
74b04a01
XL
597 })
598 }
599}
600
601impl<'tcx, T> InferOk<'tcx, T> {
602 pub fn unit(self) -> InferOk<'tcx, ()> {
603 InferOk { value: (), obligations: self.obligations }
604 }
605
606 /// Extracts `value`, registering any obligations into `fulfill_cx`.
607 pub fn into_value_registering_obligations(
608 self,
609 infcx: &InferCtxt<'_, 'tcx>,
610 fulfill_cx: &mut dyn TraitEngine<'tcx>,
611 ) -> T {
612 let InferOk { value, obligations } = self;
613 for obligation in obligations {
614 fulfill_cx.register_predicate_obligation(infcx, obligation);
615 }
616 value
617 }
618}
619
620impl<'tcx> InferOk<'tcx, ()> {
621 pub fn into_obligations(self) -> PredicateObligations<'tcx> {
622 self.obligations
623 }
624}
625
626#[must_use = "once you start a snapshot, you should always consume it"]
627pub struct CombinedSnapshot<'a, 'tcx> {
f9f354fc 628 undo_snapshot: Snapshot<'tcx>,
74b04a01 629 region_constraints_snapshot: RegionSnapshot,
74b04a01
XL
630 universe: ty::UniverseIndex,
631 was_in_snapshot: bool,
3dfed10e 632 _in_progress_typeck_results: Option<Ref<'a, ty::TypeckResults<'tcx>>>,
74b04a01
XL
633}
634
635impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
636 pub fn is_in_snapshot(&self) -> bool {
637 self.in_snapshot.get()
638 }
639
640 pub fn freshen<T: TypeFoldable<'tcx>>(&self, t: T) -> T {
641 t.fold_with(&mut self.freshener())
642 }
643
644 pub fn type_var_diverges(&'a self, ty: Ty<'_>) -> bool {
1b1a35ee 645 match *ty.kind() {
f9f354fc 646 ty::Infer(ty::TyVar(vid)) => self.inner.borrow_mut().type_variables().var_diverges(vid),
74b04a01
XL
647 _ => false,
648 }
649 }
650
651 pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
652 freshen::TypeFreshener::new(self)
653 }
654
655 pub fn type_is_unconstrained_numeric(&'a self, ty: Ty<'_>) -> UnconstrainedNumeric {
ba9703b0
XL
656 use rustc_middle::ty::error::UnconstrainedNumeric::Neither;
657 use rustc_middle::ty::error::UnconstrainedNumeric::{UnconstrainedFloat, UnconstrainedInt};
1b1a35ee 658 match *ty.kind() {
74b04a01 659 ty::Infer(ty::IntVar(vid)) => {
f9f354fc 660 if self.inner.borrow_mut().int_unification_table().probe_value(vid).is_some() {
74b04a01
XL
661 Neither
662 } else {
663 UnconstrainedInt
664 }
665 }
666 ty::Infer(ty::FloatVar(vid)) => {
f9f354fc 667 if self.inner.borrow_mut().float_unification_table().probe_value(vid).is_some() {
74b04a01
XL
668 Neither
669 } else {
670 UnconstrainedFloat
671 }
672 }
673 _ => Neither,
674 }
675 }
676
677 pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
678 let mut inner = self.inner.borrow_mut();
74b04a01 679 let mut vars: Vec<Ty<'_>> = inner
f9f354fc 680 .type_variables()
74b04a01
XL
681 .unsolved_variables()
682 .into_iter()
683 .map(|t| self.tcx.mk_ty_var(t))
684 .collect();
685 vars.extend(
f9f354fc 686 (0..inner.int_unification_table().len())
74b04a01 687 .map(|i| ty::IntVid { index: i as u32 })
f9f354fc 688 .filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
74b04a01
XL
689 .map(|v| self.tcx.mk_int_var(v)),
690 );
691 vars.extend(
f9f354fc 692 (0..inner.float_unification_table().len())
74b04a01 693 .map(|i| ty::FloatVid { index: i as u32 })
f9f354fc 694 .filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
74b04a01
XL
695 .map(|v| self.tcx.mk_float_var(v)),
696 );
697 vars
698 }
699
700 fn combine_fields(
701 &'a self,
702 trace: TypeTrace<'tcx>,
703 param_env: ty::ParamEnv<'tcx>,
704 ) -> CombineFields<'a, 'tcx> {
705 CombineFields {
706 infcx: self,
707 trace,
708 cause: None,
709 param_env,
710 obligations: PredicateObligations::new(),
711 }
712 }
713
714 /// Clear the "currently in a snapshot" flag, invoke the closure,
715 /// then restore the flag to its original value. This flag is a
716 /// debugging measure designed to detect cases where we start a
717 /// snapshot, create type variables, and register obligations
718 /// which may involve those type variables in the fulfillment cx,
719 /// potentially leaving "dangling type variables" behind.
720 /// In such cases, an assertion will fail when attempting to
721 /// register obligations, within a snapshot. Very useful, much
722 /// better than grovelling through megabytes of `RUSTC_LOG` output.
723 ///
724 /// HOWEVER, in some cases the flag is unhelpful. In particular, we
725 /// sometimes create a "mini-fulfilment-cx" in which we enroll
726 /// obligations. As long as this fulfillment cx is fully drained
727 /// before we return, this is not a problem, as there won't be any
728 /// escaping obligations in the main cx. In those cases, you can
729 /// use this function.
730 pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
731 where
732 F: FnOnce(&Self) -> R,
733 {
734 let flag = self.in_snapshot.replace(false);
735 let result = func(self);
736 self.in_snapshot.set(flag);
737 result
738 }
739
740 fn start_snapshot(&self) -> CombinedSnapshot<'a, 'tcx> {
741 debug!("start_snapshot()");
742
743 let in_snapshot = self.in_snapshot.replace(true);
744
745 let mut inner = self.inner.borrow_mut();
f9f354fc 746
74b04a01 747 CombinedSnapshot {
f9f354fc 748 undo_snapshot: inner.undo_log.start_snapshot(),
74b04a01 749 region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
74b04a01
XL
750 universe: self.universe(),
751 was_in_snapshot: in_snapshot,
3dfed10e 752 // Borrow typeck results "in progress" (i.e., during typeck)
74b04a01 753 // to ban writes from within a snapshot to them.
3dfed10e
XL
754 _in_progress_typeck_results: self
755 .in_progress_typeck_results
756 .map(|typeck_results| typeck_results.borrow()),
74b04a01
XL
757 }
758 }
759
760 fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'a, 'tcx>) {
761 debug!("rollback_to(cause={})", cause);
762 let CombinedSnapshot {
f9f354fc 763 undo_snapshot,
74b04a01 764 region_constraints_snapshot,
74b04a01
XL
765 universe,
766 was_in_snapshot,
3dfed10e 767 _in_progress_typeck_results,
74b04a01
XL
768 } = snapshot;
769
770 self.in_snapshot.set(was_in_snapshot);
771 self.universe.set(universe);
74b04a01
XL
772
773 let mut inner = self.inner.borrow_mut();
f9f354fc 774 inner.rollback_to(undo_snapshot);
74b04a01 775 inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
74b04a01
XL
776 }
777
778 fn commit_from(&self, snapshot: CombinedSnapshot<'a, 'tcx>) {
779 debug!("commit_from()");
780 let CombinedSnapshot {
f9f354fc
XL
781 undo_snapshot,
782 region_constraints_snapshot: _,
74b04a01
XL
783 universe: _,
784 was_in_snapshot,
3dfed10e 785 _in_progress_typeck_results,
74b04a01
XL
786 } = snapshot;
787
788 self.in_snapshot.set(was_in_snapshot);
74b04a01 789
f9f354fc 790 self.inner.borrow_mut().commit(undo_snapshot);
74b04a01
XL
791 }
792
793 /// Executes `f` and commit the bindings.
794 pub fn commit_unconditionally<R, F>(&self, f: F) -> R
795 where
796 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
797 {
798 debug!("commit_unconditionally()");
799 let snapshot = self.start_snapshot();
800 let r = f(&snapshot);
801 self.commit_from(snapshot);
802 r
803 }
804
805 /// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
806 pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
807 where
808 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> Result<T, E>,
809 {
810 debug!("commit_if_ok()");
811 let snapshot = self.start_snapshot();
812 let r = f(&snapshot);
813 debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
814 match r {
815 Ok(_) => {
816 self.commit_from(snapshot);
817 }
818 Err(_) => {
819 self.rollback_to("commit_if_ok -- error", snapshot);
820 }
821 }
822 r
823 }
824
825 /// Execute `f` then unroll any bindings it creates.
826 pub fn probe<R, F>(&self, f: F) -> R
827 where
828 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
829 {
830 debug!("probe()");
831 let snapshot = self.start_snapshot();
832 let r = f(&snapshot);
833 self.rollback_to("probe", snapshot);
834 r
835 }
836
837 /// If `should_skip` is true, then execute `f` then unroll any bindings it creates.
838 pub fn probe_maybe_skip_leak_check<R, F>(&self, should_skip: bool, f: F) -> R
839 where
840 F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
841 {
842 debug!("probe()");
843 let snapshot = self.start_snapshot();
f9f354fc
XL
844 let was_skip_leak_check = self.skip_leak_check.get();
845 if should_skip {
846 self.skip_leak_check.set(true);
847 }
74b04a01
XL
848 let r = f(&snapshot);
849 self.rollback_to("probe", snapshot);
f9f354fc 850 self.skip_leak_check.set(was_skip_leak_check);
74b04a01
XL
851 r
852 }
853
854 /// Scan the constraints produced since `snapshot` began and returns:
855 ///
856 /// - `None` -- if none of them involve "region outlives" constraints
857 /// - `Some(true)` -- if there are `'a: 'b` constraints where `'a` or `'b` is a placeholder
858 /// - `Some(false)` -- if there are `'a: 'b` constraints but none involve placeholders
859 pub fn region_constraints_added_in_snapshot(
860 &self,
861 snapshot: &CombinedSnapshot<'a, 'tcx>,
862 ) -> Option<bool> {
863 self.inner
864 .borrow_mut()
865 .unwrap_region_constraints()
f9f354fc 866 .region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
74b04a01
XL
867 }
868
869 pub fn add_given(&self, sub: ty::Region<'tcx>, sup: ty::RegionVid) {
870 self.inner.borrow_mut().unwrap_region_constraints().add_given(sub, sup);
871 }
872
873 pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
874 where
875 T: at::ToTrace<'tcx>,
876 {
877 let origin = &ObligationCause::dummy();
878 self.probe(|_| {
879 self.at(origin, param_env).sub(a, b).map(|InferOk { obligations: _, .. }| {
880 // Ignore obligations, since we are unrolling
881 // everything anyway.
882 })
883 })
884 }
885
886 pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
887 where
888 T: at::ToTrace<'tcx>,
889 {
890 let origin = &ObligationCause::dummy();
891 self.probe(|_| {
892 self.at(origin, param_env).eq(a, b).map(|InferOk { obligations: _, .. }| {
893 // Ignore obligations, since we are unrolling
894 // everything anyway.
895 })
896 })
897 }
898
899 pub fn sub_regions(
900 &self,
901 origin: SubregionOrigin<'tcx>,
902 a: ty::Region<'tcx>,
903 b: ty::Region<'tcx>,
904 ) {
905 debug!("sub_regions({:?} <: {:?})", a, b);
906 self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
907 }
908
909 /// Require that the region `r` be equal to one of the regions in
910 /// the set `regions`.
911 pub fn member_constraint(
912 &self,
913 opaque_type_def_id: DefId,
914 definition_span: Span,
915 hidden_ty: Ty<'tcx>,
916 region: ty::Region<'tcx>,
917 in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
918 ) {
919 debug!("member_constraint({:?} <: {:?})", region, in_regions);
920 self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
921 opaque_type_def_id,
922 definition_span,
923 hidden_ty,
924 region,
925 in_regions,
926 );
927 }
928
929 pub fn subtype_predicate(
930 &self,
931 cause: &ObligationCause<'tcx>,
932 param_env: ty::ParamEnv<'tcx>,
f9f354fc 933 predicate: ty::PolySubtypePredicate<'tcx>,
74b04a01
XL
934 ) -> Option<InferResult<'tcx, ()>> {
935 // Subtle: it's ok to skip the binder here and resolve because
936 // `shallow_resolve` just ignores anything that is not a type
937 // variable, and because type variable's can't (at present, at
938 // least) capture any of the things bound by this binder.
939 //
940 // NOTE(nmatsakis): really, there is no *particular* reason to do this
941 // `shallow_resolve` here except as a micro-optimization.
942 // Naturally I could not resist.
943 let two_unbound_type_vars = {
944 let a = self.shallow_resolve(predicate.skip_binder().a);
945 let b = self.shallow_resolve(predicate.skip_binder().b);
946 a.is_ty_var() && b.is_ty_var()
947 };
948
949 if two_unbound_type_vars {
950 // Two unbound type variables? Can't make progress.
951 return None;
952 }
953
f035d41b 954 Some(self.commit_if_ok(|_snapshot| {
29967ef6 955 let ty::SubtypePredicate { a_is_expected, a, b } =
fc512014 956 self.replace_bound_vars_with_placeholders(predicate);
74b04a01
XL
957
958 let ok = self.at(cause, param_env).sub_exp(a_is_expected, a, b)?;
959
74b04a01
XL
960 Ok(ok.unit())
961 }))
962 }
963
964 pub fn region_outlives_predicate(
965 &self,
966 cause: &traits::ObligationCause<'tcx>,
f9f354fc 967 predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
74b04a01 968 ) -> UnitResult<'tcx> {
f035d41b 969 self.commit_if_ok(|_snapshot| {
29967ef6 970 let ty::OutlivesPredicate(r_a, r_b) =
fc512014 971 self.replace_bound_vars_with_placeholders(predicate);
74b04a01
XL
972 let origin = SubregionOrigin::from_obligation_cause(cause, || {
973 RelateRegionParamBound(cause.span)
974 });
975 self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
74b04a01
XL
976 Ok(())
977 })
978 }
979
980 pub fn next_ty_var_id(&self, diverging: bool, origin: TypeVariableOrigin) -> TyVid {
f9f354fc 981 self.inner.borrow_mut().type_variables().new_var(self.universe(), diverging, origin)
74b04a01
XL
982 }
983
984 pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
985 self.tcx.mk_ty_var(self.next_ty_var_id(false, origin))
986 }
987
988 pub fn next_ty_var_in_universe(
989 &self,
990 origin: TypeVariableOrigin,
991 universe: ty::UniverseIndex,
992 ) -> Ty<'tcx> {
f9f354fc 993 let vid = self.inner.borrow_mut().type_variables().new_var(universe, false, origin);
74b04a01
XL
994 self.tcx.mk_ty_var(vid)
995 }
996
997 pub fn next_diverging_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
998 self.tcx.mk_ty_var(self.next_ty_var_id(true, origin))
999 }
1000
1001 pub fn next_const_var(
1002 &self,
1003 ty: Ty<'tcx>,
1004 origin: ConstVariableOrigin,
1005 ) -> &'tcx ty::Const<'tcx> {
1006 self.tcx.mk_const_var(self.next_const_var_id(origin), ty)
1007 }
1008
1009 pub fn next_const_var_in_universe(
1010 &self,
1011 ty: Ty<'tcx>,
1012 origin: ConstVariableOrigin,
1013 universe: ty::UniverseIndex,
1014 ) -> &'tcx ty::Const<'tcx> {
1015 let vid = self
1016 .inner
1017 .borrow_mut()
f9f354fc 1018 .const_unification_table()
74b04a01
XL
1019 .new_key(ConstVarValue { origin, val: ConstVariableValue::Unknown { universe } });
1020 self.tcx.mk_const_var(vid, ty)
1021 }
1022
1023 pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
f9f354fc 1024 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
74b04a01
XL
1025 origin,
1026 val: ConstVariableValue::Unknown { universe: self.universe() },
1027 })
1028 }
1029
1030 fn next_int_var_id(&self) -> IntVid {
f9f354fc 1031 self.inner.borrow_mut().int_unification_table().new_key(None)
74b04a01
XL
1032 }
1033
1034 pub fn next_int_var(&self) -> Ty<'tcx> {
1035 self.tcx.mk_int_var(self.next_int_var_id())
1036 }
1037
1038 fn next_float_var_id(&self) -> FloatVid {
f9f354fc 1039 self.inner.borrow_mut().float_unification_table().new_key(None)
74b04a01
XL
1040 }
1041
1042 pub fn next_float_var(&self) -> Ty<'tcx> {
1043 self.tcx.mk_float_var(self.next_float_var_id())
1044 }
1045
1046 /// Creates a fresh region variable with the next available index.
1047 /// The variable will be created in the maximum universe created
1048 /// thus far, allowing it to name any region created thus far.
1049 pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
1050 self.next_region_var_in_universe(origin, self.universe())
1051 }
1052
1053 /// Creates a fresh region variable with the next available index
1054 /// in the given universe; typically, you can use
1055 /// `next_region_var` and just use the maximal universe.
1056 pub fn next_region_var_in_universe(
1057 &self,
1058 origin: RegionVariableOrigin,
1059 universe: ty::UniverseIndex,
1060 ) -> ty::Region<'tcx> {
1061 let region_var =
1062 self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
1063 self.tcx.mk_region(ty::ReVar(region_var))
1064 }
1065
1066 /// Return the universe that the region `r` was created in. For
1067 /// most regions (e.g., `'static`, named regions from the user,
1068 /// etc) this is the root universe U0. For inference variables or
1069 /// placeholders, however, it will return the universe which which
1070 /// they are associated.
1071 fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
1072 self.inner.borrow_mut().unwrap_region_constraints().universe(r)
1073 }
1074
1075 /// Number of region variables created so far.
1076 pub fn num_region_vars(&self) -> usize {
1077 self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
1078 }
1079
1080 /// Just a convenient wrapper of `next_region_var` for using during NLL.
5869c6ff
XL
1081 pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
1082 self.next_region_var(RegionVariableOrigin::Nll(origin))
74b04a01
XL
1083 }
1084
1085 /// Just a convenient wrapper of `next_region_var` for using during NLL.
1086 pub fn next_nll_region_var_in_universe(
1087 &self,
5869c6ff 1088 origin: NllRegionVariableOrigin,
74b04a01
XL
1089 universe: ty::UniverseIndex,
1090 ) -> ty::Region<'tcx> {
5869c6ff 1091 self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
74b04a01
XL
1092 }
1093
1094 pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
1095 match param.kind {
1096 GenericParamDefKind::Lifetime => {
1097 // Create a region inference variable for the given
1098 // region parameter definition.
1099 self.next_region_var(EarlyBoundRegion(span, param.name)).into()
1100 }
1101 GenericParamDefKind::Type { .. } => {
1102 // Create a type inference variable for the given
1103 // type parameter definition. The substitutions are
1104 // for actual parameters that may be referred to by
1105 // the default of this type parameter, if it exists.
1106 // e.g., `struct Foo<A, B, C = (A, B)>(...);` when
1107 // used in a path such as `Foo::<T, U>::new()` will
1108 // use an inference variable for `C` with `[T, U]`
1109 // as the substitutions for the default, `(T, U)`.
f9f354fc 1110 let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
74b04a01
XL
1111 self.universe(),
1112 false,
1113 TypeVariableOrigin {
1114 kind: TypeVariableOriginKind::TypeParameterDefinition(
1115 param.name,
1116 Some(param.def_id),
1117 ),
1118 span,
1119 },
1120 );
1121
1122 self.tcx.mk_ty_var(ty_var_id).into()
1123 }
1124 GenericParamDefKind::Const { .. } => {
1125 let origin = ConstVariableOrigin {
1b1a35ee
XL
1126 kind: ConstVariableOriginKind::ConstParameterDefinition(
1127 param.name,
1128 param.def_id,
1129 ),
74b04a01
XL
1130 span,
1131 };
1132 let const_var_id =
f9f354fc 1133 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
74b04a01
XL
1134 origin,
1135 val: ConstVariableValue::Unknown { universe: self.universe() },
1136 });
1137 self.tcx.mk_const_var(const_var_id, self.tcx.type_of(param.def_id)).into()
1138 }
1139 }
1140 }
1141
1142 /// Given a set of generics defined on a type or impl, returns a substitution mapping each
1143 /// type/region parameter to a fresh inference variable.
1144 pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
1145 InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
1146 }
1147
1148 /// Returns `true` if errors have been reported since this infcx was
1149 /// created. This is sometimes used as a heuristic to skip
1150 /// reporting errors that often occur as a result of earlier
1151 /// errors, but where it's hard to be 100% sure (e.g., unresolved
1152 /// inference variables, regionck errors).
1153 pub fn is_tainted_by_errors(&self) -> bool {
1154 debug!(
1155 "is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
1156 tainted_by_errors_flag={})",
1157 self.tcx.sess.err_count(),
1158 self.err_count_on_creation,
1159 self.tainted_by_errors_flag.get()
1160 );
1161
1162 if self.tcx.sess.err_count() > self.err_count_on_creation {
1163 return true; // errors reported since this infcx was made
1164 }
1165 self.tainted_by_errors_flag.get()
1166 }
1167
1168 /// Set the "tainted by errors" flag to true. We call this when we
1169 /// observe an error from a prior pass.
1170 pub fn set_tainted_by_errors(&self) {
1171 debug!("set_tainted_by_errors()");
1172 self.tainted_by_errors_flag.set(true)
1173 }
1174
1175 /// Process the region constraints and report any errors that
1176 /// result. After this, no more unification operations should be
1177 /// done -- or the compiler will panic -- but it is legal to use
1178 /// `resolve_vars_if_possible` as well as `fully_resolve`.
1179 pub fn resolve_regions_and_report_errors(
1180 &self,
1181 region_context: DefId,
74b04a01 1182 outlives_env: &OutlivesEnvironment<'tcx>,
ba9703b0 1183 mode: RegionckMode,
74b04a01 1184 ) {
f9f354fc
XL
1185 let (var_infos, data) = {
1186 let mut inner = self.inner.borrow_mut();
1187 let inner = &mut *inner;
1188 assert!(
1189 self.is_tainted_by_errors() || inner.region_obligations.is_empty(),
1190 "region_obligations not empty: {:#?}",
1191 inner.region_obligations
1192 );
1193 inner
1194 .region_constraint_storage
1195 .take()
1196 .expect("regions already resolved")
1197 .with_log(&mut inner.undo_log)
1198 .into_infos_and_data()
1199 };
ba9703b0 1200
f9f354fc
XL
1201 let region_rels =
1202 &RegionRelations::new(self.tcx, region_context, outlives_env.free_region_map());
ba9703b0 1203
74b04a01 1204 let (lexical_region_resolutions, errors) =
ba9703b0 1205 lexical_region_resolve::resolve(region_rels, var_infos, data, mode);
74b04a01
XL
1206
1207 let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
1208 assert!(old_value.is_none());
1209
1210 if !self.is_tainted_by_errors() {
1211 // As a heuristic, just skip reporting region errors
1212 // altogether if other errors have been reported while
1213 // this infcx was in use. This is totally hokey but
1214 // otherwise we have a hard time separating legit region
1215 // errors from silly ones.
f9f354fc 1216 self.report_region_errors(&errors);
74b04a01
XL
1217 }
1218 }
1219
1220 /// Obtains (and clears) the current set of region
1221 /// constraints. The inference context is still usable: further
1222 /// unifications will simply add new constraints.
1223 ///
1224 /// This method is not meant to be used with normal lexical region
1225 /// resolution. Rather, it is used in the NLL mode as a kind of
1226 /// interim hack: basically we run normal type-check and generate
1227 /// region constraints as normal, but then we take them and
1228 /// translate them into the form that the NLL solver
1229 /// understands. See the NLL module for mode details.
1230 pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
1231 assert!(
1232 self.inner.borrow().region_obligations.is_empty(),
1233 "region_obligations not empty: {:#?}",
1234 self.inner.borrow().region_obligations
1235 );
1236
1237 self.inner.borrow_mut().unwrap_region_constraints().take_and_reset_data()
1238 }
1239
1240 /// Gives temporary access to the region constraint data.
74b04a01
XL
1241 pub fn with_region_constraints<R>(
1242 &self,
1243 op: impl FnOnce(&RegionConstraintData<'tcx>) -> R,
1244 ) -> R {
1245 let mut inner = self.inner.borrow_mut();
1246 op(inner.unwrap_region_constraints().data())
1247 }
1248
1249 /// Takes ownership of the list of variable regions. This implies
1250 /// that all the region constraints have already been taken, and
1251 /// hence that `resolve_regions_and_report_errors` can never be
1252 /// called. This is used only during NLL processing to "hand off" ownership
1253 /// of the set of region variables into the NLL region context.
1254 pub fn take_region_var_origins(&self) -> VarInfos {
f9f354fc
XL
1255 let mut inner = self.inner.borrow_mut();
1256 let (var_infos, data) = inner
1257 .region_constraint_storage
74b04a01
XL
1258 .take()
1259 .expect("regions already resolved")
f9f354fc 1260 .with_log(&mut inner.undo_log)
74b04a01
XL
1261 .into_infos_and_data();
1262 assert!(data.is_empty());
1263 var_infos
1264 }
1265
1266 pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
fc512014 1267 self.resolve_vars_if_possible(t).to_string()
74b04a01
XL
1268 }
1269
1270 pub fn tys_to_string(&self, ts: &[Ty<'tcx>]) -> String {
1271 let tstrs: Vec<String> = ts.iter().map(|t| self.ty_to_string(*t)).collect();
1272 format!("({})", tstrs.join(", "))
1273 }
1274
fc512014 1275 pub fn trait_ref_to_string(&self, t: ty::TraitRef<'tcx>) -> String {
74b04a01
XL
1276 self.resolve_vars_if_possible(t).print_only_trait_path().to_string()
1277 }
1278
1279 /// If `TyVar(vid)` resolves to a type, return that type. Else, return the
1280 /// universe index of `TyVar(vid)`.
1281 pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
1282 use self::type_variable::TypeVariableValue;
1283
f9f354fc 1284 match self.inner.borrow_mut().type_variables().probe(vid) {
74b04a01
XL
1285 TypeVariableValue::Known { value } => Ok(value),
1286 TypeVariableValue::Unknown { universe } => Err(universe),
1287 }
1288 }
1289
1290 /// Resolve any type variables found in `value` -- but only one
1291 /// level. So, if the variable `?X` is bound to some type
1292 /// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
1293 /// itself be bound to a type).
1294 ///
1295 /// Useful when you only need to inspect the outermost level of
1296 /// the type and don't care about nested types (or perhaps you
1297 /// will be resolving them as well, e.g. in a loop).
1298 pub fn shallow_resolve<T>(&self, value: T) -> T
1299 where
1300 T: TypeFoldable<'tcx>,
1301 {
ba9703b0 1302 value.fold_with(&mut ShallowResolver { infcx: self })
74b04a01
XL
1303 }
1304
1305 pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
f9f354fc 1306 self.inner.borrow_mut().type_variables().root_var(var)
74b04a01
XL
1307 }
1308
1309 /// Where possible, replaces type/const variables in
1310 /// `value` with their final value. Note that region variables
1311 /// are unaffected. If a type/const variable has not been unified, it
1312 /// is left as is. This is an idempotent operation that does
1313 /// not affect inference state in any way and so you can do it
1314 /// at will.
fc512014 1315 pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
74b04a01
XL
1316 where
1317 T: TypeFoldable<'tcx>,
1318 {
1319 if !value.needs_infer() {
5869c6ff 1320 return value; // Avoid duplicated subst-folding.
74b04a01
XL
1321 }
1322 let mut r = resolve::OpportunisticVarResolver::new(self);
1323 value.fold_with(&mut r)
1324 }
1325
1326 /// Returns the first unresolved variable contained in `T`. In the
1327 /// process of visiting `T`, this will resolve (where possible)
1328 /// type variables in `T`, but it never constructs the final,
1329 /// resolved type, so it's more efficient than
1330 /// `resolve_vars_if_possible()`.
1331 pub fn unresolved_type_vars<T>(&self, value: &T) -> Option<(Ty<'tcx>, Option<Span>)>
1332 where
1333 T: TypeFoldable<'tcx>,
1334 {
fc512014 1335 value.visit_with(&mut resolve::UnresolvedTypeFinder::new(self)).break_value()
74b04a01
XL
1336 }
1337
1338 pub fn probe_const_var(
1339 &self,
1340 vid: ty::ConstVid<'tcx>,
1341 ) -> Result<&'tcx ty::Const<'tcx>, ty::UniverseIndex> {
f9f354fc 1342 match self.inner.borrow_mut().const_unification_table().probe_value(vid).val {
74b04a01
XL
1343 ConstVariableValue::Known { value } => Ok(value),
1344 ConstVariableValue::Unknown { universe } => Err(universe),
1345 }
1346 }
1347
fc512014 1348 pub fn fully_resolve<T: TypeFoldable<'tcx>>(&self, value: T) -> FixupResult<'tcx, T> {
74b04a01
XL
1349 /*!
1350 * Attempts to resolve all type/region/const variables in
1351 * `value`. Region inference must have been run already (e.g.,
1352 * by calling `resolve_regions_and_report_errors`). If some
1353 * variable was never unified, an `Err` results.
1354 *
1355 * This method is idempotent, but it not typically not invoked
1356 * except during the writeback phase.
1357 */
1358
1359 resolve::fully_resolve(self, value)
1360 }
1361
1362 // [Note-Type-error-reporting]
1363 // An invariant is that anytime the expected or actual type is Error (the special
1364 // error type, meaning that an error occurred when typechecking this expression),
1365 // this is a derived error. The error cascaded from another error (that was already
1366 // reported), so it's not useful to display it to the user.
1367 // The following methods implement this logic.
1368 // They check if either the actual or expected type is Error, and don't print the error
1369 // in this case. The typechecker should only ever report type errors involving mismatched
1370 // types using one of these methods, and should not call span_err directly for such
1371 // errors.
1372
1373 pub fn type_error_struct_with_diag<M>(
1374 &self,
1375 sp: Span,
1376 mk_diag: M,
1377 actual_ty: Ty<'tcx>,
1378 ) -> DiagnosticBuilder<'tcx>
1379 where
1380 M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
1381 {
fc512014 1382 let actual_ty = self.resolve_vars_if_possible(actual_ty);
74b04a01
XL
1383 debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
1384
1385 // Don't report an error if actual type is `Error`.
1386 if actual_ty.references_error() {
1387 return self.tcx.sess.diagnostic().struct_dummy();
1388 }
1389
1390 mk_diag(self.ty_to_string(actual_ty))
1391 }
1392
1393 pub fn report_mismatched_types(
1394 &self,
1395 cause: &ObligationCause<'tcx>,
1396 expected: Ty<'tcx>,
1397 actual: Ty<'tcx>,
1398 err: TypeError<'tcx>,
1399 ) -> DiagnosticBuilder<'tcx> {
1400 let trace = TypeTrace::types(cause, true, expected, actual);
1401 self.report_and_explain_type_error(trace, &err)
1402 }
1403
f9f354fc
XL
1404 pub fn report_mismatched_consts(
1405 &self,
1406 cause: &ObligationCause<'tcx>,
1407 expected: &'tcx ty::Const<'tcx>,
1408 actual: &'tcx ty::Const<'tcx>,
1409 err: TypeError<'tcx>,
1410 ) -> DiagnosticBuilder<'tcx> {
1411 let trace = TypeTrace::consts(cause, true, expected, actual);
1412 self.report_and_explain_type_error(trace, &err)
1413 }
1414
74b04a01
XL
1415 pub fn replace_bound_vars_with_fresh_vars<T>(
1416 &self,
1417 span: Span,
1418 lbrct: LateBoundRegionConversionTime,
fc512014 1419 value: ty::Binder<T>,
74b04a01
XL
1420 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
1421 where
1422 T: TypeFoldable<'tcx>,
1423 {
fc512014
XL
1424 let fld_r =
1425 |br: ty::BoundRegion| self.next_region_var(LateBoundRegion(span, br.kind, lbrct));
74b04a01
XL
1426 let fld_t = |_| {
1427 self.next_ty_var(TypeVariableOrigin {
1428 kind: TypeVariableOriginKind::MiscVariable,
1429 span,
1430 })
1431 };
1432 let fld_c = |_, ty| {
1433 self.next_const_var(
1434 ty,
1435 ConstVariableOrigin { kind: ConstVariableOriginKind::MiscVariable, span },
1436 )
1437 };
1438 self.tcx.replace_bound_vars(value, fld_r, fld_t, fld_c)
1439 }
1440
f9f354fc 1441 /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
74b04a01
XL
1442 pub fn verify_generic_bound(
1443 &self,
1444 origin: SubregionOrigin<'tcx>,
1445 kind: GenericKind<'tcx>,
1446 a: ty::Region<'tcx>,
1447 bound: VerifyBound<'tcx>,
1448 ) {
1449 debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
1450
1451 self.inner
1452 .borrow_mut()
1453 .unwrap_region_constraints()
1454 .verify_generic_bound(origin, kind, a, bound);
1455 }
1456
74b04a01
XL
1457 /// Obtains the latest type of the given closure; this may be a
1458 /// closure in the current function, in which case its
1459 /// `ClosureKind` may not yet be known.
ba9703b0
XL
1460 pub fn closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind> {
1461 let closure_kind_ty = closure_substs.as_closure().kind_ty();
74b04a01
XL
1462 let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
1463 closure_kind_ty.to_opt_closure_kind()
1464 }
1465
74b04a01
XL
1466 /// Clears the selection, evaluation, and projection caches. This is useful when
1467 /// repeatedly attempting to select an `Obligation` while changing only
1468 /// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
1469 pub fn clear_caches(&self) {
1470 self.selection_cache.clear();
1471 self.evaluation_cache.clear();
f9f354fc 1472 self.inner.borrow_mut().projection_cache().clear();
74b04a01
XL
1473 }
1474
1475 fn universe(&self) -> ty::UniverseIndex {
1476 self.universe.get()
1477 }
1478
1479 /// Creates and return a fresh universe that extends all previous
1480 /// universes. Updates `self.universe` to that new universe.
1481 pub fn create_next_universe(&self) -> ty::UniverseIndex {
1482 let u = self.universe.get().next_universe();
1483 self.universe.set(u);
1484 u
1485 }
1486
1487 /// Resolves and evaluates a constant.
1488 ///
1489 /// The constant can be located on a trait like `<A as B>::C`, in which case the given
1490 /// substitutions and environment are used to resolve the constant. Alternatively if the
1491 /// constant has generic parameters in scope the substitutions are used to evaluate the value of
1492 /// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
1493 /// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
1494 /// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
1495 /// returned.
1496 ///
1497 /// This handles inferences variables within both `param_env` and `substs` by
1498 /// performing the operation on their respective canonical forms.
1499 pub fn const_eval_resolve(
1500 &self,
1501 param_env: ty::ParamEnv<'tcx>,
3dfed10e 1502 def: ty::WithOptConstParam<DefId>,
74b04a01
XL
1503 substs: SubstsRef<'tcx>,
1504 promoted: Option<mir::Promoted>,
1505 span: Option<Span>,
1b1a35ee 1506 ) -> EvalToConstValueResult<'tcx> {
74b04a01 1507 let mut original_values = OriginalQueryValues::default();
fc512014 1508 let canonical = self.canonicalize_query((param_env, substs), &mut original_values);
74b04a01
XL
1509
1510 let (param_env, substs) = canonical.value;
1511 // The return value is the evaluated value which doesn't contain any reference to inference
1512 // variables, thus we don't need to substitute back the original values.
3dfed10e 1513 self.tcx.const_eval_resolve(param_env, def, substs, promoted, span)
74b04a01 1514 }
74b04a01
XL
1515
1516 /// If `typ` is a type variable of some kind, resolve it one level
1517 /// (but do not resolve types found in the result). If `typ` is
1518 /// not a type variable, just return it unmodified.
ba9703b0
XL
1519 // FIXME(eddyb) inline into `ShallowResolver::visit_ty`.
1520 fn shallow_resolve_ty(&self, typ: Ty<'tcx>) -> Ty<'tcx> {
1b1a35ee 1521 match *typ.kind() {
74b04a01
XL
1522 ty::Infer(ty::TyVar(v)) => {
1523 // Not entirely obvious: if `typ` is a type variable,
1524 // it can be resolved to an int/float variable, which
1525 // can then be recursively resolved, hence the
1526 // recursion. Note though that we prevent type
1527 // variables from unifying to other type variables
1528 // directly (though they may be embedded
1529 // structurally), and we prevent cycles in any case,
1530 // so this recursion should always be of very limited
1531 // depth.
1532 //
1533 // Note: if these two lines are combined into one we get
ba9703b0 1534 // dynamic borrow errors on `self.inner`.
f9f354fc 1535 let known = self.inner.borrow_mut().type_variables().probe(v).known();
5869c6ff 1536 known.map_or(typ, |t| self.shallow_resolve_ty(t))
74b04a01
XL
1537 }
1538
1539 ty::Infer(ty::IntVar(v)) => self
74b04a01
XL
1540 .inner
1541 .borrow_mut()
f9f354fc 1542 .int_unification_table()
74b04a01 1543 .probe_value(v)
ba9703b0 1544 .map(|v| v.to_type(self.tcx))
74b04a01
XL
1545 .unwrap_or(typ),
1546
1547 ty::Infer(ty::FloatVar(v)) => self
74b04a01
XL
1548 .inner
1549 .borrow_mut()
f9f354fc 1550 .float_unification_table()
74b04a01 1551 .probe_value(v)
ba9703b0 1552 .map(|v| v.to_type(self.tcx))
74b04a01
XL
1553 .unwrap_or(typ),
1554
1555 _ => typ,
1556 }
1557 }
1558
ba9703b0
XL
1559 /// `ty_or_const_infer_var_changed` is equivalent to one of these two:
1560 /// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
1561 /// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
1562 ///
1563 /// However, `ty_or_const_infer_var_changed` is more efficient. It's always
1564 /// inlined, despite being large, because it has only two call sites that
1565 /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
1566 /// inference variables), and it handles both `Ty` and `ty::Const` without
1567 /// having to resort to storing full `GenericArg`s in `stalled_on`.
74b04a01 1568 #[inline(always)]
ba9703b0
XL
1569 pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool {
1570 match infer_var {
1571 TyOrConstInferVar::Ty(v) => {
74b04a01
XL
1572 use self::type_variable::TypeVariableValue;
1573
ba9703b0
XL
1574 // If `inlined_probe` returns a `Known` value, it never equals
1575 // `ty::Infer(ty::TyVar(v))`.
f9f354fc 1576 match self.inner.borrow_mut().type_variables().inlined_probe(v) {
74b04a01
XL
1577 TypeVariableValue::Unknown { .. } => false,
1578 TypeVariableValue::Known { .. } => true,
1579 }
1580 }
1581
ba9703b0
XL
1582 TyOrConstInferVar::TyInt(v) => {
1583 // If `inlined_probe_value` returns a value it's always a
74b04a01
XL
1584 // `ty::Int(_)` or `ty::UInt(_)`, which never matches a
1585 // `ty::Infer(_)`.
f9f354fc 1586 self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
74b04a01
XL
1587 }
1588
ba9703b0
XL
1589 TyOrConstInferVar::TyFloat(v) => {
1590 // If `probe_value` returns a value it's always a
74b04a01
XL
1591 // `ty::Float(_)`, which never matches a `ty::Infer(_)`.
1592 //
1593 // Not `inlined_probe_value(v)` because this call site is colder.
f9f354fc 1594 self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
74b04a01
XL
1595 }
1596
ba9703b0
XL
1597 TyOrConstInferVar::Const(v) => {
1598 // If `probe_value` returns a `Known` value, it never equals
1599 // `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
1600 //
1601 // Not `inlined_probe_value(v)` because this call site is colder.
f9f354fc 1602 match self.inner.borrow_mut().const_unification_table().probe_value(v).val {
ba9703b0
XL
1603 ConstVariableValue::Unknown { .. } => false,
1604 ConstVariableValue::Known { .. } => true,
1605 }
1606 }
1607 }
1608 }
1609}
1610
1611/// Helper for `ty_or_const_infer_var_changed` (see comment on that), currently
1612/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
1613#[derive(Copy, Clone, Debug)]
1614pub enum TyOrConstInferVar<'tcx> {
1615 /// Equivalent to `ty::Infer(ty::TyVar(_))`.
1616 Ty(TyVid),
1617 /// Equivalent to `ty::Infer(ty::IntVar(_))`.
1618 TyInt(IntVid),
1619 /// Equivalent to `ty::Infer(ty::FloatVar(_))`.
1620 TyFloat(FloatVid),
1621
1622 /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
1623 Const(ConstVid<'tcx>),
1624}
1625
1626impl TyOrConstInferVar<'tcx> {
1627 /// Tries to extract an inference variable from a type or a constant, returns `None`
1628 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
1629 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1630 pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
1631 match arg.unpack() {
1632 GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
1633 GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
1634 GenericArgKind::Lifetime(_) => None,
74b04a01
XL
1635 }
1636 }
ba9703b0
XL
1637
1638 /// Tries to extract an inference variable from a type, returns `None`
1639 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
1640 pub fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
1b1a35ee 1641 match *ty.kind() {
ba9703b0
XL
1642 ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
1643 ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
1644 ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
1645 _ => None,
1646 }
1647 }
1648
1649 /// Tries to extract an inference variable from a constant, returns `None`
1650 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1651 pub fn maybe_from_const(ct: &'tcx ty::Const<'tcx>) -> Option<Self> {
1652 match ct.val {
1653 ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
1654 _ => None,
1655 }
1656 }
1657}
1658
1659struct ShallowResolver<'a, 'tcx> {
1660 infcx: &'a InferCtxt<'a, 'tcx>,
74b04a01
XL
1661}
1662
1663impl<'a, 'tcx> TypeFolder<'tcx> for ShallowResolver<'a, 'tcx> {
1664 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
1665 self.infcx.tcx
1666 }
1667
1668 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
ba9703b0 1669 self.infcx.shallow_resolve_ty(ty)
74b04a01
XL
1670 }
1671
1672 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
1673 if let ty::Const { val: ty::ConstKind::Infer(InferConst::Var(vid)), .. } = ct {
1674 self.infcx
1675 .inner
1676 .borrow_mut()
f9f354fc 1677 .const_unification_table()
74b04a01
XL
1678 .probe_value(*vid)
1679 .val
1680 .known()
1681 .unwrap_or(ct)
1682 } else {
1683 ct
1684 }
1685 }
1686}
1687
1688impl<'tcx> TypeTrace<'tcx> {
1689 pub fn span(&self) -> Span {
1690 self.cause.span
1691 }
1692
1693 pub fn types(
1694 cause: &ObligationCause<'tcx>,
1695 a_is_expected: bool,
1696 a: Ty<'tcx>,
1697 b: Ty<'tcx>,
1698 ) -> TypeTrace<'tcx> {
1699 TypeTrace { cause: cause.clone(), values: Types(ExpectedFound::new(a_is_expected, a, b)) }
1700 }
1701
f9f354fc
XL
1702 pub fn consts(
1703 cause: &ObligationCause<'tcx>,
1704 a_is_expected: bool,
1705 a: &'tcx ty::Const<'tcx>,
1706 b: &'tcx ty::Const<'tcx>,
1707 ) -> TypeTrace<'tcx> {
1708 TypeTrace { cause: cause.clone(), values: Consts(ExpectedFound::new(a_is_expected, a, b)) }
1709 }
1710
74b04a01 1711 pub fn dummy(tcx: TyCtxt<'tcx>) -> TypeTrace<'tcx> {
f035d41b 1712 let err = tcx.ty_error();
74b04a01
XL
1713 TypeTrace {
1714 cause: ObligationCause::dummy(),
f035d41b 1715 values: Types(ExpectedFound { expected: err, found: err }),
74b04a01
XL
1716 }
1717 }
1718}
1719
1720impl<'tcx> SubregionOrigin<'tcx> {
1721 pub fn span(&self) -> Span {
1722 match *self {
1723 Subtype(ref a) => a.span(),
74b04a01
XL
1724 RelateObjectBound(a) => a,
1725 RelateParamBound(a, _) => a,
1726 RelateRegionParamBound(a) => a,
74b04a01
XL
1727 Reborrow(a) => a,
1728 ReborrowUpvar(a, _) => a,
1729 DataBorrowed(_, a) => a,
1730 ReferenceOutlivesReferent(_, a) => a,
74b04a01 1731 CallReturn(a) => a,
74b04a01
XL
1732 CompareImplMethodObligation { span, .. } => span,
1733 }
1734 }
1735
1736 pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
1737 where
1738 F: FnOnce() -> Self,
1739 {
1740 match cause.code {
1741 traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
1742 SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
1743 }
1744
1745 traits::ObligationCauseCode::CompareImplMethodObligation {
1746 item_name,
1747 impl_item_def_id,
1748 trait_item_def_id,
1749 } => SubregionOrigin::CompareImplMethodObligation {
1750 span: cause.span,
1751 item_name,
1752 impl_item_def_id,
1753 trait_item_def_id,
1754 },
1755
1756 _ => default(),
1757 }
1758 }
1759}
1760
1761impl RegionVariableOrigin {
1762 pub fn span(&self) -> Span {
1763 match *self {
3dfed10e
XL
1764 MiscVariable(a)
1765 | PatternRegion(a)
1766 | AddrOfRegion(a)
1767 | Autoref(a, _)
1768 | Coercion(a)
1769 | EarlyBoundRegion(a, ..)
1770 | LateBoundRegion(a, ..)
1771 | UpvarRegion(_, a) => a,
74b04a01 1772 BoundRegionInCoherence(_) => rustc_span::DUMMY_SP,
5869c6ff 1773 Nll(..) => bug!("NLL variable used with `span`"),
74b04a01
XL
1774 }
1775 }
1776}
1777
1778impl<'tcx> fmt::Debug for RegionObligation<'tcx> {
1779 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1780 write!(
1781 f,
1782 "RegionObligation(sub_region={:?}, sup_type={:?})",
1783 self.sub_region, self.sup_type
1784 )
1785 }
1786}