]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_lint/src/builtin.rs
New upstream version 1.64.0+dfsg1
[rustc.git] / compiler / rustc_lint / src / builtin.rs
CommitLineData
c34b1796
AL
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
ba9703b0
XL
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
c34b1796
AL
6//!
7//! To add a new lint to rustc, declare it here using `declare_lint!()`.
8//! Then add code to emit the new lint in the appropriate circumstances.
9//! You can do that in an existing `LintPass` if it makes sense, or in a
10//! new `LintPass`, or using `Session::add_lint` elsewhere in the
11//! compiler. Only do the latter if the check can't be written cleanly as a
12//! `LintPass` (also, note that such lints will need to be defined in
ba9703b0 13//! `rustc_session::lint::builtin`, not here).
c34b1796 14//!
9fa01778
XL
15//! If you define a new `EarlyLintPass`, you will also need to add it to the
16//! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17//! `lib.rs`. Use the former for unit-like structs and the latter for structs
18//! with a `pub fn new()`.
19//!
20//! If you define a new `LateLintPass`, you will also need to add it to the
21//! `late_lint_methods!` invocation in `lib.rs`.
c34b1796 22
3dfed10e 23use crate::{
1b1a35ee
XL
24 types::{transparent_newtype_field, CItemKind},
25 EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
3dfed10e 26};
6a06907d 27use rustc_ast::attr;
74b04a01
XL
28use rustc_ast::tokenstream::{TokenStream, TokenTree};
29use rustc_ast::visit::{FnCtxt, FnKind};
3dfed10e 30use rustc_ast::{self as ast, *};
74b04a01 31use rustc_ast_pretty::pprust::{self, expr_to_string};
f035d41b 32use rustc_data_structures::fx::{FxHashMap, FxHashSet};
3dfed10e 33use rustc_data_structures::stack::ensure_sufficient_stack;
064997fb
FG
34use rustc_errors::{
35 fluent, Applicability, Diagnostic, DiagnosticMessage, DiagnosticStyledString,
36 LintDiagnosticBuilder, MultiSpan,
37};
3c0e092e 38use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
dfeec247
XL
39use rustc_hir as hir;
40use rustc_hir::def::{DefKind, Res};
94222f64 41use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
04454e1e 42use rustc_hir::{ForeignItemKind, GenericParamKind, HirId, PatKind, PredicateOrigin};
1b1a35ee 43use rustc_index::vec::Idx;
064997fb 44use rustc_middle::lint::in_external_macro;
c295e0f8 45use rustc_middle::ty::layout::{LayoutError, LayoutOf};
1b1a35ee 46use rustc_middle::ty::print::with_no_trimmed_paths;
04454e1e 47use rustc_middle::ty::subst::GenericArgKind;
5869c6ff 48use rustc_middle::ty::Instance;
c295e0f8 49use rustc_middle::ty::{self, Ty, TyCtxt};
94222f64 50use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
dfeec247
XL
51use rustc_span::edition::Edition;
52use rustc_span::source_map::Spanned;
f9f354fc 53use rustc_span::symbol::{kw, sym, Ident, Symbol};
04454e1e 54use rustc_span::{BytePos, InnerSpan, Span};
c295e0f8 55use rustc_target::abi::VariantIdx;
5e7ed085 56use rustc_trait_selection::traits::{self, misc::can_type_implement_copy};
e9174d1e 57
dfeec247 58use crate::nonstandard_style::{method_context, MethodLateContext};
9fa01778 59
dfeec247 60use std::fmt::Write;
3dfed10e 61use tracing::{debug, trace};
c34b1796 62
ba9703b0 63// hardwired lints from librustc_middle
dfeec247 64pub use rustc_session::lint::builtin::*;
c34b1796 65
b039eaaf 66declare_lint! {
1b1a35ee
XL
67 /// The `while_true` lint detects `while true { }`.
68 ///
69 /// ### Example
70 ///
71 /// ```rust,no_run
72 /// while true {
73 ///
74 /// }
75 /// ```
76 ///
77 /// {{produces}}
78 ///
79 /// ### Explanation
80 ///
81 /// `while true` should be replaced with `loop`. A `loop` expression is
82 /// the preferred way to write an infinite loop because it more directly
83 /// expresses the intent of the loop.
b039eaaf
SL
84 WHILE_TRUE,
85 Warn,
86 "suggest using `loop { }` instead of `while true { }`"
87}
c34b1796 88
532ac7d7 89declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
c34b1796 90
416331ca
XL
91/// Traverse through any amount of parenthesis and return the first non-parens expression.
92fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
e74abb32 93 while let ast::ExprKind::Paren(sub) = &expr.kind {
416331ca
XL
94 expr = sub;
95 }
96 expr
97}
98
99impl EarlyLintPass for WhileTrue {
100 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
5869c6ff 101 if let ast::ExprKind::While(cond, _, label) = &e.kind {
e74abb32
XL
102 if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
103 if let ast::LitKind::Bool(true) = lit.kind {
e1599b0c 104 if !lit.span.from_expansion() {
5869c6ff 105 let condition_span = e.span.with_hi(cond.span.hi());
74b04a01 106 cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
064997fb 107 lint.build(fluent::lint::builtin_while_true)
74b04a01
XL
108 .span_suggestion_short(
109 condition_span,
064997fb 110 fluent::lint::suggestion,
5869c6ff
XL
111 format!(
112 "{}loop",
113 label.map_or_else(String::new, |label| format!(
114 "{}: ",
115 label.ident,
116 ))
117 ),
74b04a01
XL
118 Applicability::MachineApplicable,
119 )
120 .emit();
121 })
ea8adc8c 122 }
b039eaaf 123 }
c34b1796
AL
124 }
125 }
126 }
127}
128
129declare_lint! {
1b1a35ee
XL
130 /// The `box_pointers` lints use of the Box type.
131 ///
132 /// ### Example
133 ///
134 /// ```rust,compile_fail
135 /// #![deny(box_pointers)]
136 /// struct Foo {
137 /// x: Box<isize>,
138 /// }
139 /// ```
140 ///
141 /// {{produces}}
142 ///
143 /// ### Explanation
144 ///
145 /// This lint is mostly historical, and not particularly useful. `Box<T>`
146 /// used to be built into the language, and the only way to do heap
147 /// allocation. Today's Rust can call into other allocators, etc.
b039eaaf
SL
148 BOX_POINTERS,
149 Allow,
150 "use of owned (Box type) heap memory"
c34b1796
AL
151}
152
532ac7d7 153declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
b039eaaf
SL
154
155impl BoxPointers {
5099ac24
FG
156 fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
157 for leaf in ty.walk() {
ba9703b0
XL
158 if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
159 if leaf_ty.is_box() {
160 cx.struct_span_lint(BOX_POINTERS, span, |lint| {
064997fb 161 lint.build(fluent::lint::builtin_box_pointers).set_arg("ty", ty).emit();
ba9703b0
XL
162 });
163 }
c34b1796
AL
164 }
165 }
166 }
167}
168
f035d41b
XL
169impl<'tcx> LateLintPass<'tcx> for BoxPointers {
170 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 171 match it.kind {
dfeec247
XL
172 hir::ItemKind::Fn(..)
173 | hir::ItemKind::TyAlias(..)
174 | hir::ItemKind::Enum(..)
175 | hir::ItemKind::Struct(..)
176 | hir::ItemKind::Union(..) => {
6a06907d 177 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
c30ab7b3 178 }
dfeec247 179 _ => (),
d9579d0f 180 }
d9579d0f 181
b039eaaf 182 // If it's a struct, we also have to check the fields' types
e74abb32 183 match it.kind {
dfeec247 184 hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
b039eaaf 185 for struct_field in struct_def.fields() {
416331ca 186 let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
dfeec247 187 self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
b039eaaf 188 }
d9579d0f 189 }
c30ab7b3 190 _ => (),
d9579d0f
AL
191 }
192 }
193
f035d41b 194 fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
3dfed10e 195 let ty = cx.typeck_results().node_type(e.hir_id);
b039eaaf 196 self.check_heap_type(cx, e.span, ty);
c34b1796
AL
197 }
198}
199
c34b1796 200declare_lint! {
1b1a35ee
XL
201 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
202 /// instead of `Struct { x }` in a pattern.
203 ///
204 /// ### Example
205 ///
206 /// ```rust
207 /// struct Point {
208 /// x: i32,
209 /// y: i32,
210 /// }
211 ///
212 ///
213 /// fn main() {
214 /// let p = Point {
215 /// x: 5,
216 /// y: 5,
217 /// };
218 ///
219 /// match p {
220 /// Point { x: x, y: y } => (),
221 /// }
222 /// }
223 /// ```
224 ///
225 /// {{produces}}
226 ///
227 /// ### Explanation
228 ///
229 /// The preferred style is to avoid the repetition of specifying both the
230 /// field name and the binding name if both identifiers are the same.
c34b1796
AL
231 NON_SHORTHAND_FIELD_PATTERNS,
232 Warn,
abe05a73 233 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
c34b1796
AL
234}
235
532ac7d7 236declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
c34b1796 237
f035d41b
XL
238impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
239 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
dfeec247
XL
240 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
241 let variant = cx
3dfed10e 242 .typeck_results()
dfeec247
XL
243 .pat_ty(pat)
244 .ty_adt_def()
245 .expect("struct pattern type is not an ADT")
f035d41b 246 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
3157f602 247 for fieldpat in field_pats {
e1599b0c 248 if fieldpat.is_shorthand {
3157f602 249 continue;
b039eaaf 250 }
e1599b0c 251 if fieldpat.span.from_expansion() {
83c7162d
XL
252 // Don't lint if this is a macro expansion: macro authors
253 // shouldn't have to worry about this kind of style issue
254 // (Issue #49588)
255 continue;
256 }
dfeec247
XL
257 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
258 if cx.tcx.find_field_index(ident, &variant)
3dfed10e 259 == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
dfeec247 260 {
74b04a01 261 cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
74b04a01
XL
262 let binding = match binding_annot {
263 hir::BindingAnnotation::Unannotated => None,
264 hir::BindingAnnotation::Mutable => Some("mut"),
265 hir::BindingAnnotation::Ref => Some("ref"),
266 hir::BindingAnnotation::RefMut => Some("ref mut"),
267 };
064997fb 268 let suggested_ident = if let Some(binding) = binding {
74b04a01
XL
269 format!("{} {}", binding, ident)
270 } else {
271 ident.to_string()
272 };
064997fb
FG
273 lint.build(fluent::lint::builtin_non_shorthand_field_patterns)
274 .set_arg("ident", ident.clone())
275 .span_suggestion(
276 fieldpat.span,
277 fluent::lint::suggestion,
278 suggested_ident,
279 Applicability::MachineApplicable,
280 )
281 .emit();
74b04a01 282 });
c34b1796
AL
283 }
284 }
285 }
286 }
287 }
288}
289
c34b1796 290declare_lint! {
1b1a35ee
XL
291 /// The `unsafe_code` lint catches usage of `unsafe` code.
292 ///
293 /// ### Example
294 ///
295 /// ```rust,compile_fail
296 /// #![deny(unsafe_code)]
297 /// fn main() {
298 /// unsafe {
299 ///
300 /// }
301 /// }
302 /// ```
303 ///
304 /// {{produces}}
305 ///
306 /// ### Explanation
307 ///
308 /// This lint is intended to restrict the usage of `unsafe`, which can be
309 /// difficult to use correctly.
c34b1796
AL
310 UNSAFE_CODE,
311 Allow,
312 "usage of `unsafe` code"
313}
314
532ac7d7 315declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
c34b1796 316
3b2f2976 317impl UnsafeCode {
74b04a01
XL
318 fn report_unsafe(
319 &self,
320 cx: &EarlyContext<'_>,
321 span: Span,
5e7ed085 322 decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a, ()>),
74b04a01 323 ) {
dc9dc135 324 // This comes from a macro that has `#[allow_internal_unsafe]`.
3b2f2976
XL
325 if span.allows_unsafe() {
326 return;
327 }
328
74b04a01 329 cx.struct_span_lint(UNSAFE_CODE, span, decorate);
3b2f2976 330 }
6a06907d 331
064997fb
FG
332 fn report_overridden_symbol_name(
333 &self,
334 cx: &EarlyContext<'_>,
335 span: Span,
336 msg: DiagnosticMessage,
337 ) {
6a06907d 338 self.report_unsafe(cx, span, |lint| {
064997fb 339 lint.build(msg).note(fluent::lint::builtin_overridden_symbol_name).emit();
6a06907d
XL
340 })
341 }
923072b8 342
064997fb
FG
343 fn report_overridden_symbol_section(
344 &self,
345 cx: &EarlyContext<'_>,
346 span: Span,
347 msg: DiagnosticMessage,
348 ) {
923072b8 349 self.report_unsafe(cx, span, |lint| {
064997fb 350 lint.build(msg).note(fluent::lint::builtin_overridden_symbol_section).emit();
923072b8
FG
351 })
352 }
3b2f2976
XL
353}
354
0731742a 355impl EarlyLintPass for UnsafeCode {
9fa01778 356 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
94222f64 357 if attr.has_name(sym::allow_internal_unsafe) {
74b04a01 358 self.report_unsafe(cx, attr.span, |lint| {
064997fb 359 lint.build(fluent::lint::builtin_allow_internal_unsafe).emit();
74b04a01 360 });
0731742a
XL
361 }
362 }
363
9fa01778 364 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
e74abb32 365 if let ast::ExprKind::Block(ref blk, _) = e.kind {
dc9dc135 366 // Don't warn about generated blocks; that'll just pollute the output.
0731742a 367 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
74b04a01 368 self.report_unsafe(cx, blk.span, |lint| {
064997fb 369 lint.build(fluent::lint::builtin_unsafe_block).emit();
74b04a01 370 });
c34b1796
AL
371 }
372 }
373 }
374
9fa01778 375 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
e74abb32 376 match it.kind {
3c0e092e 377 ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => self
5869c6ff 378 .report_unsafe(cx, it.span, |lint| {
064997fb 379 lint.build(fluent::lint::builtin_unsafe_trait).emit();
5869c6ff 380 }),
c34b1796 381
3c0e092e 382 ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => self
5869c6ff 383 .report_unsafe(cx, it.span, |lint| {
064997fb 384 lint.build(fluent::lint::builtin_unsafe_impl).emit();
5869c6ff 385 }),
c34b1796 386
6a06907d
XL
387 ast::ItemKind::Fn(..) => {
388 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
5e7ed085 389 self.report_overridden_symbol_name(
6a06907d
XL
390 cx,
391 attr.span,
064997fb 392 fluent::lint::builtin_no_mangle_fn,
6a06907d
XL
393 );
394 }
923072b8 395
6a06907d 396 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
5e7ed085 397 self.report_overridden_symbol_name(
6a06907d
XL
398 cx,
399 attr.span,
064997fb 400 fluent::lint::builtin_export_name_fn,
6a06907d
XL
401 );
402 }
923072b8
FG
403
404 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
405 self.report_overridden_symbol_section(
406 cx,
407 attr.span,
064997fb 408 fluent::lint::builtin_link_section_fn,
923072b8
FG
409 );
410 }
6a06907d
XL
411 }
412
413 ast::ItemKind::Static(..) => {
414 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
5e7ed085 415 self.report_overridden_symbol_name(
6a06907d
XL
416 cx,
417 attr.span,
064997fb 418 fluent::lint::builtin_no_mangle_static,
6a06907d
XL
419 );
420 }
923072b8 421
6a06907d 422 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
5e7ed085 423 self.report_overridden_symbol_name(
6a06907d
XL
424 cx,
425 attr.span,
064997fb 426 fluent::lint::builtin_export_name_static,
6a06907d
XL
427 );
428 }
923072b8
FG
429
430 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
431 self.report_overridden_symbol_section(
432 cx,
433 attr.span,
064997fb 434 fluent::lint::builtin_link_section_static,
923072b8
FG
435 );
436 }
6a06907d
XL
437 }
438
ba9703b0 439 _ => {}
c34b1796
AL
440 }
441 }
442
94222f64
XL
443 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
444 if let ast::AssocItemKind::Fn(..) = it.kind {
445 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
5e7ed085 446 self.report_overridden_symbol_name(
94222f64
XL
447 cx,
448 attr.span,
064997fb 449 fluent::lint::builtin_no_mangle_method,
94222f64
XL
450 );
451 }
452 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
5e7ed085 453 self.report_overridden_symbol_name(
94222f64
XL
454 cx,
455 attr.span,
064997fb 456 fluent::lint::builtin_export_name_method,
94222f64
XL
457 );
458 }
459 }
460 }
461
74b04a01
XL
462 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
463 if let FnKind::Fn(
464 ctxt,
465 _,
466 ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
467 _,
04454e1e 468 _,
74b04a01
XL
469 body,
470 ) = fk
471 {
472 let msg = match ctxt {
473 FnCtxt::Foreign => return,
064997fb
FG
474 FnCtxt::Free => fluent::lint::builtin_decl_unsafe_fn,
475 FnCtxt::Assoc(_) if body.is_none() => fluent::lint::builtin_decl_unsafe_method,
476 FnCtxt::Assoc(_) => fluent::lint::builtin_impl_unsafe_method,
74b04a01 477 };
5e7ed085
FG
478 self.report_unsafe(cx, span, |lint| {
479 lint.build(msg).emit();
480 });
c34b1796
AL
481 }
482 }
483}
484
c34b1796 485declare_lint! {
1b1a35ee
XL
486 /// The `missing_docs` lint detects missing documentation for public items.
487 ///
488 /// ### Example
489 ///
490 /// ```rust,compile_fail
491 /// #![deny(missing_docs)]
492 /// pub fn foo() {}
493 /// ```
494 ///
495 /// {{produces}}
496 ///
497 /// ### Explanation
498 ///
499 /// This lint is intended to ensure that a library is well-documented.
500 /// Items without documentation can be difficult for users to understand
501 /// how to use properly.
502 ///
503 /// This lint is "allow" by default because it can be noisy, and not all
504 /// projects may want to enforce everything to be documented.
94b46f34 505 pub MISSING_DOCS,
c34b1796 506 Allow,
8faf50e0 507 "detects missing documentation for public members",
e74abb32 508 report_in_external_macro
c34b1796
AL
509}
510
511pub struct MissingDoc {
9fa01778 512 /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
c34b1796 513 doc_hidden_stack: Vec<bool>,
c34b1796
AL
514}
515
532ac7d7
XL
516impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
517
94222f64 518fn has_doc(attr: &ast::Attribute) -> bool {
dfeec247
XL
519 if attr.is_doc_comment() {
520 return true;
521 }
522
94222f64 523 if !attr.has_name(sym::doc) {
0731742a
XL
524 return false;
525 }
526
cdc7bbd5 527 if attr.value_str().is_some() {
0731742a
XL
528 return true;
529 }
530
531 if let Some(list) = attr.meta_item_list() {
532 for meta in list {
17df50a5 533 if meta.has_name(sym::hidden) {
0731742a
XL
534 return true;
535 }
536 }
537 }
538
539 false
540}
541
c34b1796
AL
542impl MissingDoc {
543 pub fn new() -> MissingDoc {
04454e1e 544 MissingDoc { doc_hidden_stack: vec![false] }
c34b1796
AL
545 }
546
547 fn doc_hidden(&self) -> bool {
548 *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
549 }
550
dfeec247
XL
551 fn check_missing_docs_attrs(
552 &self,
f035d41b 553 cx: &LateContext<'_>,
94222f64 554 def_id: LocalDefId,
ba9703b0 555 article: &'static str,
dfeec247
XL
556 desc: &'static str,
557 ) {
c34b1796
AL
558 // If we're building a test harness, then warning about
559 // documentation is probably not really relevant right now.
560 if cx.sess().opts.test {
561 return;
562 }
563
564 // `#[doc(hidden)]` disables missing_docs check.
565 if self.doc_hidden() {
566 return;
567 }
568
569 // Only check publicly-visible items, using the result from the privacy pass.
570 // It's an option so the crate root can also use this function (it doesn't
dc9dc135 571 // have a `NodeId`).
94222f64
XL
572 if def_id != CRATE_DEF_ID {
573 if !cx.access_levels.is_exported(def_id) {
c34b1796
AL
574 return;
575 }
576 }
577
04454e1e 578 let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
94222f64 579 let has_doc = attrs.iter().any(has_doc);
c34b1796 580 if !has_doc {
064997fb
FG
581 cx.struct_span_lint(MISSING_DOCS, cx.tcx.def_span(def_id), |lint| {
582 lint.build(fluent::lint::builtin_missing_doc)
583 .set_arg("article", article)
584 .set_arg("desc", desc)
585 .emit();
586 });
c34b1796
AL
587 }
588 }
589}
590
f035d41b 591impl<'tcx> LateLintPass<'tcx> for MissingDoc {
94222f64 592 fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
dfeec247
XL
593 let doc_hidden = self.doc_hidden()
594 || attrs.iter().any(|attr| {
94222f64 595 attr.has_name(sym::doc)
dfeec247
XL
596 && match attr.meta_item_list() {
597 None => false,
598 Some(l) => attr::list_contains_name(&l, sym::hidden),
599 }
600 });
c34b1796
AL
601 self.doc_hidden_stack.push(doc_hidden);
602 }
603
f035d41b 604 fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
c34b1796
AL
605 self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
606 }
607
c295e0f8 608 fn check_crate(&mut self, cx: &LateContext<'_>) {
064997fb 609 self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
c34b1796
AL
610 }
611
f035d41b 612 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
ba9703b0 613 match it.kind {
04454e1e 614 hir::ItemKind::Trait(..) => {
dc9dc135 615 // Issue #11592: traits are always considered exported, even when private.
04454e1e
FG
616 if cx.tcx.visibility(it.def_id)
617 == ty::Visibility::Restricted(
618 cx.tcx.parent_module_from_def_id(it.def_id).to_def_id(),
619 )
620 {
c30ab7b3 621 return;
c34b1796 622 }
c30ab7b3 623 }
ba9703b0
XL
624 hir::ItemKind::TyAlias(..)
625 | hir::ItemKind::Fn(..)
94222f64 626 | hir::ItemKind::Macro(..)
ba9703b0
XL
627 | hir::ItemKind::Mod(..)
628 | hir::ItemKind::Enum(..)
629 | hir::ItemKind::Struct(..)
630 | hir::ItemKind::Union(..)
631 | hir::ItemKind::Const(..)
632 | hir::ItemKind::Static(..) => {}
633
c30ab7b3 634 _ => return,
c34b1796
AL
635 };
636
6a06907d 637 let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
ba9703b0 638
064997fb 639 self.check_missing_docs_attrs(cx, it.def_id, article, desc);
c34b1796
AL
640 }
641
f035d41b 642 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
6a06907d 643 let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
c34b1796 644
064997fb 645 self.check_missing_docs_attrs(cx, trait_item.def_id, article, desc);
c34b1796
AL
646 }
647
f035d41b 648 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
c34b1796 649 // If the method is an impl for a trait, don't doc.
6a06907d 650 if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
c34b1796
AL
651 return;
652 }
653
3c0e092e
XL
654 // If the method is an impl for an item with docs_hidden, don't doc.
655 if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
5099ac24 656 let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
3c0e092e
XL
657 let impl_ty = cx.tcx.type_of(parent);
658 let outerdef = match impl_ty.kind() {
5e7ed085 659 ty::Adt(def, _) => Some(def.did()),
3c0e092e
XL
660 ty::Foreign(def_id) => Some(*def_id),
661 _ => None,
662 };
663 let is_hidden = match outerdef {
664 Some(id) => cx.tcx.is_doc_hidden(id),
665 None => false,
666 };
667 if is_hidden {
668 return;
669 }
670 }
671
6a06907d 672 let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
064997fb 673 self.check_missing_docs_attrs(cx, impl_item.def_id, article, desc);
c34b1796
AL
674 }
675
1b1a35ee 676 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
6a06907d 677 let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
064997fb 678 self.check_missing_docs_attrs(cx, foreign_item.def_id, article, desc);
1b1a35ee
XL
679 }
680
6a06907d 681 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
54a0048b 682 if !sf.is_positional() {
94222f64 683 let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
064997fb 684 self.check_missing_docs_attrs(cx, def_id, "a", "struct field")
c34b1796
AL
685 }
686 }
687
f035d41b 688 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
064997fb 689 self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), "a", "variant");
c34b1796
AL
690 }
691}
692
693declare_lint! {
1b1a35ee
XL
694 /// The `missing_copy_implementations` lint detects potentially-forgotten
695 /// implementations of [`Copy`].
696 ///
697 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
698 ///
699 /// ### Example
700 ///
701 /// ```rust,compile_fail
702 /// #![deny(missing_copy_implementations)]
703 /// pub struct Foo {
704 /// pub field: i32
705 /// }
706 /// # fn main() {}
707 /// ```
708 ///
709 /// {{produces}}
710 ///
711 /// ### Explanation
712 ///
713 /// Historically (before 1.0), types were automatically marked as `Copy`
714 /// if possible. This was changed so that it required an explicit opt-in
715 /// by implementing the `Copy` trait. As part of this change, a lint was
716 /// added to alert if a copyable type was not marked `Copy`.
717 ///
718 /// This lint is "allow" by default because this code isn't bad; it is
719 /// common to write newtypes like this specifically so that a `Copy` type
720 /// is no longer `Copy`. `Copy` types can result in unintended copies of
721 /// large data which can impact performance.
c34b1796
AL
722 pub MISSING_COPY_IMPLEMENTATIONS,
723 Allow,
724 "detects potentially-forgotten implementations of `Copy`"
725}
726
532ac7d7 727declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
c34b1796 728
f035d41b
XL
729impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
730 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
94222f64 731 if !cx.access_levels.is_reachable(item.def_id) {
c34b1796
AL
732 return;
733 }
e74abb32 734 let (def, ty) = match item.kind {
8faf50e0 735 hir::ItemKind::Struct(_, ref ast_generics) => {
ff7c6d11 736 if !ast_generics.params.is_empty() {
c34b1796
AL
737 return;
738 }
6a06907d 739 let def = cx.tcx.adt_def(item.def_id);
c30ab7b3 740 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
9e0c209e 741 }
8faf50e0 742 hir::ItemKind::Union(_, ref ast_generics) => {
ff7c6d11 743 if !ast_generics.params.is_empty() {
9e0c209e
SL
744 return;
745 }
6a06907d 746 let def = cx.tcx.adt_def(item.def_id);
c30ab7b3 747 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
c34b1796 748 }
8faf50e0 749 hir::ItemKind::Enum(_, ref ast_generics) => {
ff7c6d11 750 if !ast_generics.params.is_empty() {
c34b1796
AL
751 return;
752 }
6a06907d 753 let def = cx.tcx.adt_def(item.def_id);
c30ab7b3 754 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
c34b1796
AL
755 }
756 _ => return,
757 };
8bb4bdeb 758 if def.has_dtor(cx.tcx) {
c30ab7b3
SL
759 return;
760 }
0531ce1d 761 let param_env = ty::ParamEnv::empty();
f035d41b 762 if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
c34b1796
AL
763 return;
764 }
5e7ed085
FG
765 if can_type_implement_copy(
766 cx.tcx,
767 param_env,
768 ty,
769 traits::ObligationCause::misc(item.span, item.hir_id()),
770 )
771 .is_ok()
772 {
74b04a01 773 cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
064997fb 774 lint.build(fluent::lint::builtin_missing_copy_impl).emit();
74b04a01 775 })
c34b1796
AL
776 }
777 }
778}
779
780declare_lint! {
1b1a35ee
XL
781 /// The `missing_debug_implementations` lint detects missing
782 /// implementations of [`fmt::Debug`].
783 ///
784 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
785 ///
786 /// ### Example
787 ///
788 /// ```rust,compile_fail
789 /// #![deny(missing_debug_implementations)]
790 /// pub struct Foo;
791 /// # fn main() {}
792 /// ```
793 ///
794 /// {{produces}}
795 ///
796 /// ### Explanation
797 ///
798 /// Having a `Debug` implementation on all types can assist with
799 /// debugging, as it provides a convenient way to format and display a
800 /// value. Using the `#[derive(Debug)]` attribute will automatically
801 /// generate a typical implementation, or a custom implementation can be
802 /// added by manually implementing the `Debug` trait.
803 ///
804 /// This lint is "allow" by default because adding `Debug` to all types can
805 /// have a negative impact on compile time and code size. It also requires
806 /// boilerplate to be added to every type, which can be an impediment.
c34b1796
AL
807 MISSING_DEBUG_IMPLEMENTATIONS,
808 Allow,
74b04a01 809 "detects missing implementations of Debug"
c34b1796
AL
810}
811
48663c56 812#[derive(Default)]
c34b1796 813pub struct MissingDebugImplementations {
6a06907d 814 impling_types: Option<LocalDefIdSet>,
c34b1796
AL
815}
816
532ac7d7
XL
817impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
818
f035d41b
XL
819impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
820 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
94222f64 821 if !cx.access_levels.is_reachable(item.def_id) {
c34b1796
AL
822 return;
823 }
824
e74abb32 825 match item.kind {
dfeec247 826 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
c34b1796
AL
827 _ => return,
828 }
829
a2a8927a
XL
830 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
831 return
c34b1796
AL
832 };
833
834 if self.impling_types.is_none() {
6a06907d 835 let mut impls = LocalDefIdSet::default();
041b39d2 836 cx.tcx.for_each_impl(debug, |d| {
8faf50e0 837 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
5e7ed085 838 if let Some(def_id) = ty_def.did().as_local() {
6a06907d 839 impls.insert(def_id);
d9579d0f 840 }
c34b1796 841 }
d9579d0f
AL
842 });
843
c34b1796
AL
844 self.impling_types = Some(impls);
845 debug!("{:?}", self.impling_types);
846 }
847
6a06907d 848 if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
74b04a01 849 cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
064997fb
FG
850 lint.build(fluent::lint::builtin_missing_debug_impl)
851 .set_arg("debug", cx.tcx.def_path_str(debug))
852 .emit();
74b04a01 853 });
c34b1796
AL
854 }
855 }
856}
857
7cac9316 858declare_lint! {
1b1a35ee
XL
859 /// The `anonymous_parameters` lint detects anonymous parameters in trait
860 /// definitions.
861 ///
862 /// ### Example
863 ///
864 /// ```rust,edition2015,compile_fail
865 /// #![deny(anonymous_parameters)]
866 /// // edition 2015
867 /// pub trait Foo {
868 /// fn foo(usize);
869 /// }
870 /// fn main() {}
871 /// ```
872 ///
873 /// {{produces}}
874 ///
875 /// ### Explanation
876 ///
877 /// This syntax is mostly a historical accident, and can be worked around
878 /// quite easily by adding an `_` pattern or a descriptive identifier:
879 ///
880 /// ```rust
881 /// trait Foo {
882 /// fn foo(_: usize);
883 /// }
884 /// ```
885 ///
886 /// This syntax is now a hard error in the 2018 edition. In the 2015
cdc7bbd5 887 /// edition, this lint is "warn" by default. This lint
1b1a35ee
XL
888 /// enables the [`cargo fix`] tool with the `--edition` flag to
889 /// automatically transition old code from the 2015 edition to 2018. The
cdc7bbd5 890 /// tool will run this lint and automatically apply the
1b1a35ee
XL
891 /// suggested fix from the compiler (which is to add `_` to each
892 /// parameter). This provides a completely automated way to update old
893 /// code for a new edition. See [issue #41686] for more details.
894 ///
895 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
896 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
7cac9316 897 pub ANONYMOUS_PARAMETERS,
cdc7bbd5 898 Warn,
e74abb32
XL
899 "detects anonymous parameters",
900 @future_incompatible = FutureIncompatibleInfo {
901 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
136023e0 902 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
e74abb32 903 };
7cac9316
XL
904}
905
532ac7d7
XL
906declare_lint_pass!(
907 /// Checks for use of anonymous parameters (RFC 1685).
908 AnonymousParameters => [ANONYMOUS_PARAMETERS]
909);
7cac9316
XL
910
911impl EarlyLintPass for AnonymousParameters {
dfeec247 912 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
5099ac24 913 if cx.sess().edition() != Edition::Edition2015 {
cdc7bbd5
XL
914 // This is a hard error in future editions; avoid linting and erroring
915 return;
916 }
3c0e092e 917 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
ba9703b0
XL
918 for arg in sig.decl.inputs.iter() {
919 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
5869c6ff 920 if ident.name == kw::Empty {
ba9703b0 921 cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
5099ac24 922 let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
ba9703b0
XL
923
924 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
925 (snip.as_str(), Applicability::MachineApplicable)
926 } else {
927 ("<type>", Applicability::HasPlaceholders)
928 };
94b46f34 929
064997fb
FG
930 lint.build(fluent::lint::builtin_anonymous_params)
931 .span_suggestion(
932 arg.pat.span,
933 fluent::lint::suggestion,
934 format!("_: {}", ty_snip),
935 appl,
936 )
937 .emit();
ba9703b0 938 })
7cac9316
XL
939 }
940 }
dfeec247 941 }
7cac9316
XL
942 }
943 }
944}
945
9fa01778 946/// Check for use of attributes which have been deprecated.
c30ab7b3
SL
947#[derive(Clone)]
948pub struct DeprecatedAttr {
949 // This is not free to compute, so we want to keep it around, rather than
950 // compute it for every attribute.
3c0e092e 951 depr_attrs: Vec<&'static BuiltinAttribute>,
c30ab7b3
SL
952}
953
532ac7d7
XL
954impl_lint_pass!(DeprecatedAttr => []);
955
c30ab7b3
SL
956impl DeprecatedAttr {
957 pub fn new() -> DeprecatedAttr {
dfeec247 958 DeprecatedAttr { depr_attrs: deprecated_attributes() }
c30ab7b3
SL
959 }
960}
961
c30ab7b3 962impl EarlyLintPass for DeprecatedAttr {
9fa01778 963 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
3c0e092e
XL
964 for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
965 if attr.ident().map(|ident| ident.name) == Some(*name) {
dfeec247
XL
966 if let &AttributeGate::Gated(
967 Stability::Deprecated(link, suggestion),
5869c6ff
XL
968 name,
969 reason,
dfeec247 970 _,
3c0e092e 971 ) = gate
dfeec247 972 {
064997fb
FG
973 cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
974 // FIXME(davidtwco) translatable deprecated attr
975 lint.build(fluent::lint::builtin_deprecated_attr_link)
976 .set_arg("name", name)
977 .set_arg("reason", reason)
978 .set_arg("link", link)
979 .span_suggestion_short(
980 attr.span,
981 suggestion.map(|s| s.into()).unwrap_or(
982 fluent::lint::builtin_deprecated_attr_default_suggestion,
983 ),
984 "",
985 Applicability::MachineApplicable,
986 )
987 .emit();
988 });
c30ab7b3
SL
989 }
990 return;
991 }
992 }
94222f64 993 if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
064997fb
FG
994 cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
995 lint.build(fluent::lint::builtin_deprecated_attr_used)
996 .set_arg("name", pprust::path_to_string(&attr.get_normal_item().path))
997 .span_suggestion_short(
998 attr.span,
999 fluent::lint::builtin_deprecated_attr_default_suggestion,
1000 "",
1001 Applicability::MachineApplicable,
1002 )
1003 .emit();
1004 });
e1599b0c 1005 }
c30ab7b3
SL
1006 }
1007}
1008
74b04a01 1009fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
136023e0
XL
1010 use rustc_ast::token::CommentKind;
1011
74b04a01 1012 let mut attrs = attrs.iter().peekable();
3b2f2976 1013
74b04a01
XL
1014 // Accumulate a single span for sugared doc comments.
1015 let mut sugared_span: Option<Span> = None;
3b2f2976 1016
74b04a01 1017 while let Some(attr) = attrs.next() {
136023e0
XL
1018 let is_doc_comment = attr.is_doc_comment();
1019 if is_doc_comment {
74b04a01 1020 sugared_span =
29967ef6 1021 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
74b04a01 1022 }
3b2f2976 1023
cdc7bbd5 1024 if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
74b04a01
XL
1025 continue;
1026 }
532ac7d7 1027
1b1a35ee 1028 let span = sugared_span.take().unwrap_or(attr.span);
532ac7d7 1029
94222f64 1030 if is_doc_comment || attr.has_name(sym::doc) {
74b04a01 1031 cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
064997fb
FG
1032 let mut err = lint.build(fluent::lint::builtin_unused_doc_comment);
1033 err.set_arg("kind", node_kind);
1034 err.span_label(node_span, fluent::lint::label);
136023e0
XL
1035 match attr.kind {
1036 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
064997fb 1037 err.help(fluent::lint::plain_help);
136023e0
XL
1038 }
1039 AttrKind::DocComment(CommentKind::Block, _) => {
064997fb 1040 err.help(fluent::lint::block_help);
136023e0
XL
1041 }
1042 }
532ac7d7 1043 err.emit();
74b04a01 1044 });
3b2f2976
XL
1045 }
1046 }
1047}
1048
1049impl EarlyLintPass for UnusedDocComment {
532ac7d7 1050 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
74b04a01
XL
1051 let kind = match stmt.kind {
1052 ast::StmtKind::Local(..) => "statements",
29967ef6
XL
1053 // Disabled pending discussion in #78306
1054 ast::StmtKind::Item(..) => return,
532ac7d7 1055 // expressions will be reported by `check_expr`.
74b04a01
XL
1056 ast::StmtKind::Empty
1057 | ast::StmtKind::Semi(_)
1058 | ast::StmtKind::Expr(_)
ba9703b0 1059 | ast::StmtKind::MacCall(_) => return,
532ac7d7
XL
1060 };
1061
74b04a01 1062 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
3b2f2976
XL
1063 }
1064
9fa01778 1065 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
e1599b0c 1066 let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
74b04a01 1067 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
3b2f2976
XL
1068 }
1069
9fa01778 1070 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
74b04a01 1071 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
3b2f2976 1072 }
a2a8927a
XL
1073
1074 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1075 warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1076 }
5e7ed085
FG
1077
1078 fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
064997fb 1079 warn_if_doc(cx, block.span, "blocks", &block.attrs());
5e7ed085
FG
1080 }
1081
1082 fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1083 if let ast::ItemKind::ForeignMod(_) = item.kind {
064997fb 1084 warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
5e7ed085
FG
1085 }
1086 }
3b2f2976
XL
1087}
1088
c34b1796 1089declare_lint! {
1b1a35ee
XL
1090 /// The `no_mangle_const_items` lint detects any `const` items with the
1091 /// [`no_mangle` attribute].
1092 ///
1093 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1094 ///
1095 /// ### Example
1096 ///
1097 /// ```rust,compile_fail
1098 /// #[no_mangle]
1099 /// const FOO: i32 = 5;
1100 /// ```
1101 ///
1102 /// {{produces}}
1103 ///
1104 /// ### Explanation
1105 ///
1106 /// Constants do not have their symbols exported, and therefore, this
1107 /// probably means you meant to use a [`static`], not a [`const`].
1108 ///
1109 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1110 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
c34b1796
AL
1111 NO_MANGLE_CONST_ITEMS,
1112 Deny,
1113 "const items will not have their symbols exported"
1114}
1115
9cc50fc6 1116declare_lint! {
1b1a35ee
XL
1117 /// The `no_mangle_generic_items` lint detects generic items that must be
1118 /// mangled.
1119 ///
1120 /// ### Example
1121 ///
1122 /// ```rust
1123 /// #[no_mangle]
1124 /// fn foo<T>(t: T) {
1125 ///
1126 /// }
1127 /// ```
1128 ///
1129 /// {{produces}}
1130 ///
1131 /// ### Explanation
1132 ///
136023e0 1133 /// A function with generics must have its symbol mangled to accommodate
1b1a35ee
XL
1134 /// the generic parameter. The [`no_mangle` attribute] has no effect in
1135 /// this situation, and should be removed.
1136 ///
1137 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
9cc50fc6
SL
1138 NO_MANGLE_GENERIC_ITEMS,
1139 Warn,
1140 "generic items must be mangled"
1141}
1142
532ac7d7 1143declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
c34b1796 1144
f035d41b
XL
1145impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1146 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
6a06907d 1147 let attrs = cx.tcx.hir().attrs(it.hir_id());
94222f64
XL
1148 let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1149 impl_generics: Option<&hir::Generics<'_>>,
1150 generics: &hir::Generics<'_>,
1151 span| {
1152 for param in
1153 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1154 {
1155 match param.kind {
1156 GenericParamKind::Lifetime { .. } => {}
1157 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1158 cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| {
064997fb 1159 lint.build(fluent::lint::builtin_no_mangle_generic)
94222f64
XL
1160 .span_suggestion_short(
1161 no_mangle_attr.span,
064997fb 1162 fluent::lint::suggestion,
923072b8 1163 "",
94222f64
XL
1164 // Use of `#[no_mangle]` suggests FFI intent; correct
1165 // fix may be to monomorphize source by hand
1166 Applicability::MaybeIncorrect,
1167 )
1168 .emit();
1169 });
1170 break;
1171 }
1172 }
1173 }
1174 };
e74abb32 1175 match it.kind {
8faf50e0 1176 hir::ItemKind::Fn(.., ref generics, _) => {
6a06907d 1177 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
94222f64 1178 check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
c34b1796 1179 }
c30ab7b3 1180 }
8faf50e0 1181 hir::ItemKind::Const(..) => {
6a06907d 1182 if cx.sess().contains_name(attrs, sym::no_mangle) {
c34b1796
AL
1183 // Const items do not refer to a particular location in memory, and therefore
1184 // don't have anything to attach a symbol to
74b04a01 1185 cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
064997fb 1186 let mut err = lint.build(fluent::lint::builtin_const_no_mangle);
74b04a01
XL
1187
1188 // account for "pub const" (#45562)
1189 let start = cx
1190 .tcx
1191 .sess
1192 .source_map()
1193 .span_to_snippet(it.span)
1194 .map(|snippet| snippet.find("const").unwrap_or(0))
1195 .unwrap_or(0) as u32;
1196 // `const` is 5 chars
1197 let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1198 err.span_suggestion(
1199 const_span,
064997fb 1200 fluent::lint::suggestion,
923072b8 1201 "pub static",
74b04a01
XL
1202 Applicability::MachineApplicable,
1203 );
1204 err.emit();
1205 });
c34b1796
AL
1206 }
1207 }
04454e1e
FG
1208 hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1209 for it in *items {
94222f64
XL
1210 if let hir::AssocItemKind::Fn { .. } = it.kind {
1211 if let Some(no_mangle_attr) = cx
1212 .sess()
1213 .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1214 {
1215 check_no_mangle_on_generic_fn(
1216 no_mangle_attr,
1217 Some(generics),
5099ac24 1218 cx.tcx.hir().get_generics(it.id.def_id).unwrap(),
94222f64
XL
1219 it.span,
1220 );
1221 }
1222 }
1223 }
1224 }
c30ab7b3 1225 _ => {}
c34b1796
AL
1226 }
1227 }
1228}
1229
bd371182 1230declare_lint! {
1b1a35ee
XL
1231 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1232 /// T` because it is [undefined behavior].
1233 ///
1234 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1235 ///
1236 /// ### Example
1237 ///
1238 /// ```rust,compile_fail
1239 /// unsafe {
1240 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1241 /// }
1242 /// ```
1243 ///
1244 /// {{produces}}
1245 ///
1246 /// ### Explanation
1247 ///
1248 /// Certain assumptions are made about aliasing of data, and this transmute
1249 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1250 ///
1251 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
bd371182
AL
1252 MUTABLE_TRANSMUTES,
1253 Deny,
5099ac24 1254 "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
bd371182
AL
1255}
1256
532ac7d7 1257declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
bd371182 1258
f035d41b
XL
1259impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1260 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
ba9703b0 1261 if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1b1a35ee 1262 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
ba9703b0
XL
1263 {
1264 if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
5e7ed085 1265 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| {
064997fb 1266 lint.build(fluent::lint::builtin_mutable_transmutes).emit();
5e7ed085 1267 });
bd371182 1268 }
bd371182
AL
1269 }
1270
f035d41b
XL
1271 fn get_transmute_from_to<'tcx>(
1272 cx: &LateContext<'tcx>,
dfeec247
XL
1273 expr: &hir::Expr<'_>,
1274 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
e74abb32 1275 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
f035d41b 1276 cx.qpath_res(qpath, expr.hir_id)
476ff2be
SL
1277 } else {
1278 return None;
1279 };
48663c56 1280 if let Res::Def(DefKind::Fn, did) = def {
bd371182
AL
1281 if !def_id_is_transmute(cx, did) {
1282 return None;
1283 }
3dfed10e 1284 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
041b39d2 1285 let from = sig.inputs().skip_binder()[0];
f035d41b 1286 let to = sig.output().skip_binder();
532ac7d7 1287 return Some((from, to));
bd371182
AL
1288 }
1289 None
1290 }
1291
f035d41b 1292 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
923072b8 1293 cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
bd371182
AL
1294 }
1295 }
1296}
1297
c34b1796 1298declare_lint! {
1b1a35ee 1299 /// The `unstable_features` is deprecated and should no longer be used.
c34b1796
AL
1300 UNSTABLE_FEATURES,
1301 Allow,
62682a34 1302 "enabling unstable features (deprecated. do not use)"
c34b1796
AL
1303}
1304
532ac7d7
XL
1305declare_lint_pass!(
1306 /// Forbids using the `#[feature(...)]` attribute
1307 UnstableFeatures => [UNSTABLE_FEATURES]
1308);
b039eaaf 1309
f035d41b 1310impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
3dfed10e 1311 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
94222f64 1312 if attr.has_name(sym::feature) {
cc61c64b 1313 if let Some(items) = attr.meta_item_list() {
62682a34 1314 for item in items {
3dfed10e 1315 cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
064997fb 1316 lint.build(fluent::lint::builtin_unstable_features).emit();
74b04a01 1317 });
62682a34
SL
1318 }
1319 }
c34b1796
AL
1320 }
1321 }
1322}
bd371182 1323
abe05a73 1324declare_lint! {
1b1a35ee
XL
1325 /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1326 /// the crate root.
1327 ///
1328 /// ### Example
1329 ///
1330 /// ```rust,compile_fail
1331 /// #![deny(unreachable_pub)]
1332 /// mod foo {
1333 /// pub mod bar {
1334 ///
1335 /// }
1336 /// }
1337 /// ```
1338 ///
1339 /// {{produces}}
1340 ///
1341 /// ### Explanation
1342 ///
1343 /// A bare `pub` visibility may be misleading if the item is not actually
1344 /// publicly exported from the crate. The `pub(crate)` visibility is
1345 /// recommended to be used instead, which more clearly expresses the intent
1346 /// that the item is only visible within its own crate.
1347 ///
1348 /// This lint is "allow" by default because it will trigger for a large
1349 /// amount existing Rust code, and has some false-positives. Eventually it
1350 /// is desired for this to become warn-by-default.
0531ce1d 1351 pub UNREACHABLE_PUB,
abe05a73
XL
1352 Allow,
1353 "`pub` items not reachable from crate root"
1354}
1355
532ac7d7
XL
1356declare_lint_pass!(
1357 /// Lint for items marked `pub` that aren't reachable from other crates.
1358 UnreachablePub => [UNREACHABLE_PUB]
1359);
abe05a73
XL
1360
1361impl UnreachablePub {
dfeec247
XL
1362 fn perform_lint(
1363 &self,
f035d41b 1364 cx: &LateContext<'_>,
dfeec247 1365 what: &str,
94222f64 1366 def_id: LocalDefId,
04454e1e 1367 vis_span: Span,
dfeec247
XL
1368 exportable: bool,
1369 ) {
8faf50e0 1370 let mut applicability = Applicability::MachineApplicable;
04454e1e
FG
1371 if cx.tcx.visibility(def_id).is_public() && !cx.access_levels.is_reachable(def_id) {
1372 if vis_span.from_expansion() {
1373 applicability = Applicability::MaybeIncorrect;
1374 }
064997fb 1375 let def_span = cx.tcx.def_span(def_id);
04454e1e 1376 cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
064997fb
FG
1377 let mut err = lint.build(fluent::lint::builtin_unreachable_pub);
1378 err.set_arg("what", what);
8faf50e0 1379
04454e1e
FG
1380 err.span_suggestion(
1381 vis_span,
064997fb 1382 fluent::lint::suggestion,
923072b8 1383 "pub(crate)",
04454e1e
FG
1384 applicability,
1385 );
1386 if exportable {
064997fb 1387 err.help(fluent::lint::help);
04454e1e
FG
1388 }
1389 err.emit();
1390 });
abe05a73
XL
1391 }
1392 }
1393}
1394
f035d41b
XL
1395impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1396 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
04454e1e
FG
1397 // Do not warn for fake `use` statements.
1398 if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1399 return;
1400 }
064997fb 1401 self.perform_lint(cx, "item", item.def_id, item.vis_span, true);
abe05a73
XL
1402 }
1403
f035d41b 1404 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
064997fb 1405 self.perform_lint(cx, "item", foreign_item.def_id, foreign_item.vis_span, true);
abe05a73
XL
1406 }
1407
6a06907d 1408 fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
94222f64 1409 let def_id = cx.tcx.hir().local_def_id(field.hir_id);
064997fb 1410 self.perform_lint(cx, "field", def_id, field.vis_span, false);
abe05a73
XL
1411 }
1412
f035d41b 1413 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
04454e1e
FG
1414 // Only lint inherent impl items.
1415 if cx.tcx.associated_item(impl_item.def_id).trait_item_def_id.is_none() {
064997fb 1416 self.perform_lint(cx, "item", impl_item.def_id, impl_item.vis_span, false);
04454e1e 1417 }
abe05a73
XL
1418 }
1419}
0531ce1d 1420
0531ce1d 1421declare_lint! {
1b1a35ee
XL
1422 /// The `type_alias_bounds` lint detects bounds in type aliases.
1423 ///
1424 /// ### Example
1425 ///
1426 /// ```rust
1427 /// type SendVec<T: Send> = Vec<T>;
1428 /// ```
1429 ///
1430 /// {{produces}}
1431 ///
1432 /// ### Explanation
1433 ///
1434 /// The trait bounds in a type alias are currently ignored, and should not
1435 /// be included to avoid confusion. This was previously allowed
1436 /// unintentionally; this may become a hard error in the future.
0531ce1d
XL
1437 TYPE_ALIAS_BOUNDS,
1438 Warn,
1439 "bounds in type aliases are not enforced"
1440}
1441
532ac7d7
XL
1442declare_lint_pass!(
1443 /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1444 /// They are relevant when using associated types, but otherwise neither checked
1445 /// at definition site nor enforced at use site.
1446 TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1447);
0531ce1d
XL
1448
1449impl TypeAliasBounds {
dfeec247 1450 fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
0531ce1d
XL
1451 match *qpath {
1452 hir::QPath::TypeRelative(ref ty, _) => {
1453 // If this is a type variable, we found a `T::Assoc`.
e74abb32 1454 match ty.kind {
29967ef6
XL
1455 hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1456 matches!(path.res, Res::Def(DefKind::TyParam, _))
1457 }
dfeec247 1458 _ => false,
0531ce1d
XL
1459 }
1460 }
3dfed10e 1461 hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
0531ce1d
XL
1462 }
1463 }
1464
5e7ed085 1465 fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut Diagnostic) {
0531ce1d
XL
1466 // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1467 // bound. Let's see if this type does that.
1468
1469 // We use a HIR visitor to walk the type.
dfeec247 1470 use rustc_hir::intravisit::{self, Visitor};
5e7ed085
FG
1471 struct WalkAssocTypes<'a> {
1472 err: &'a mut Diagnostic,
0531ce1d 1473 }
5e7ed085
FG
1474 impl Visitor<'_> for WalkAssocTypes<'_> {
1475 fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) {
0531ce1d 1476 if TypeAliasBounds::is_type_variable_assoc(qpath) {
064997fb 1477 self.err.span_help(span, fluent::lint::builtin_type_alias_bounds_help);
0531ce1d
XL
1478 }
1479 intravisit::walk_qpath(self, qpath, id, span)
1480 }
1481 }
1482
1483 // Let's go for a walk!
1484 let mut visitor = WalkAssocTypes { err };
1485 visitor.visit_ty(ty);
1486 }
1487}
1488
f035d41b
XL
1489impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1490 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
a2a8927a
XL
1491 let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1492 return
0531ce1d 1493 };
f035d41b
XL
1494 if let hir::TyKind::OpaqueDef(..) = ty.kind {
1495 // Bounds are respected for `type X = impl Trait`
1496 return;
1497 }
0531ce1d 1498 // There must not be a where clause
04454e1e
FG
1499 if type_alias_generics.predicates.is_empty() {
1500 return;
0531ce1d 1501 }
04454e1e
FG
1502
1503 let mut where_spans = Vec::new();
1504 let mut inline_spans = Vec::new();
1505 let mut inline_sugg = Vec::new();
1506 for p in type_alias_generics.predicates {
1507 let span = p.span();
1508 if p.in_where_clause() {
1509 where_spans.push(span);
1510 } else {
1511 for b in p.bounds() {
1512 inline_spans.push(b.span());
1513 }
1514 inline_sugg.push((span, String::new()));
0531ce1d
XL
1515 }
1516 }
04454e1e
FG
1517
1518 let mut suggested_changing_assoc_types = false;
1519 if !where_spans.is_empty() {
1520 cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
064997fb 1521 let mut err = lint.build(fluent::lint::builtin_type_alias_where_clause);
04454e1e
FG
1522 err.set_span(where_spans);
1523 err.span_suggestion(
1524 type_alias_generics.where_clause_span,
064997fb 1525 fluent::lint::suggestion,
923072b8 1526 "",
04454e1e
FG
1527 Applicability::MachineApplicable,
1528 );
1529 if !suggested_changing_assoc_types {
1530 TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1531 suggested_changing_assoc_types = true;
1532 }
1533 err.emit();
1534 });
1535 }
1536
1537 if !inline_spans.is_empty() {
1538 cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
064997fb 1539 let mut err = lint.build(fluent::lint::builtin_type_alias_generic_bounds);
04454e1e
FG
1540 err.set_span(inline_spans);
1541 err.multipart_suggestion(
064997fb 1542 fluent::lint::suggestion,
04454e1e
FG
1543 inline_sugg,
1544 Applicability::MachineApplicable,
1545 );
1546 if !suggested_changing_assoc_types {
1547 TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1548 }
1549 err.emit();
1550 });
1551 }
0531ce1d
XL
1552 }
1553}
1554
532ac7d7
XL
1555declare_lint_pass!(
1556 /// Lint constants that are erroneous.
1557 /// Without this lint, we might not get any diagnostic if the constant is
1558 /// unused within this crate, even though downstream crates can't use it
1559 /// without producing an error.
1560 UnusedBrokenConst => []
1561);
9fa01778 1562
f035d41b
XL
1563impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1564 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 1565 match it.kind {
8faf50e0 1566 hir::ItemKind::Const(_, body_id) => {
1b1a35ee
XL
1567 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1568 // trigger the query once for all constants since that will already report the errors
923072b8 1569 cx.tcx.ensure().const_eval_poly(def_id);
dfeec247 1570 }
8faf50e0 1571 hir::ItemKind::Static(_, _, body_id) => {
1b1a35ee 1572 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
923072b8 1573 cx.tcx.ensure().eval_static_initializer(def_id);
dfeec247
XL
1574 }
1575 _ => {}
0531ce1d
XL
1576 }
1577 }
1578}
94b46f34 1579
94b46f34 1580declare_lint! {
1b1a35ee
XL
1581 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1582 /// any type parameters.
1583 ///
1584 /// ### Example
1585 ///
1586 /// ```rust
1587 /// #![feature(trivial_bounds)]
1588 /// pub struct A where i32: Copy;
1589 /// ```
1590 ///
1591 /// {{produces}}
1592 ///
1593 /// ### Explanation
1594 ///
1595 /// Usually you would not write a trait bound that you know is always
1596 /// true, or never true. However, when using macros, the macro may not
1597 /// know whether or not the constraint would hold or not at the time when
1598 /// generating the code. Currently, the compiler does not alert you if the
1599 /// constraint is always true, and generates an error if it is never true.
1600 /// The `trivial_bounds` feature changes this to be a warning in both
1601 /// cases, giving macros more freedom and flexibility to generate code,
1602 /// while still providing a signal when writing non-macro code that
1603 /// something is amiss.
1604 ///
1605 /// See [RFC 2056] for more details. This feature is currently only
1606 /// available on the nightly channel, see [tracking issue #48214].
1607 ///
1608 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1609 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
94b46f34
XL
1610 TRIVIAL_BOUNDS,
1611 Warn,
1612 "these bounds don't depend on an type parameters"
1613}
1614
532ac7d7
XL
1615declare_lint_pass!(
1616 /// Lint for trait and lifetime bounds that don't depend on type parameters
1617 /// which either do nothing, or stop the item from being used.
1618 TrivialConstraints => [TRIVIAL_BOUNDS]
1619);
94b46f34 1620
f035d41b
XL
1621impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1622 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
064997fb 1623 use rustc_middle::ty::visit::TypeVisitable;
5869c6ff 1624 use rustc_middle::ty::PredicateKind::*;
94b46f34 1625
94b46f34 1626 if cx.tcx.features().trivial_bounds {
6a06907d 1627 let predicates = cx.tcx.predicates_of(item.def_id);
e74abb32 1628 for &(predicate, span) in predicates.predicates {
5869c6ff 1629 let predicate_kind_name = match predicate.kind().skip_binder() {
c295e0f8 1630 Trait(..) => "trait",
94b46f34 1631 TypeOutlives(..) |
c295e0f8 1632 RegionOutlives(..) => "lifetime",
94b46f34
XL
1633
1634 // Ignore projections, as they can only be global
1635 // if the trait bound is global
1636 Projection(..) |
1637 // Ignore bounds that a user can't type
1638 WellFormed(..) |
1639 ObjectSafe(..) |
1640 ClosureKind(..) |
1641 Subtype(..) |
94222f64 1642 Coerce(..) |
f9f354fc 1643 ConstEvaluatable(..) |
1b1a35ee
XL
1644 ConstEquate(..) |
1645 TypeWellFormedFromEnv(..) => continue,
94b46f34 1646 };
5099ac24 1647 if predicate.is_global() {
74b04a01 1648 cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
064997fb
FG
1649 lint.build(fluent::lint::builtin_trivial_bounds)
1650 .set_arg("predicate_kind_name", predicate_kind_name)
1651 .set_arg("predicate", predicate)
1652 .emit();
74b04a01 1653 });
94b46f34
XL
1654 }
1655 }
1656 }
1657 }
1658}
1659
532ac7d7
XL
1660declare_lint_pass!(
1661 /// Does nothing as a lint pass, but registers some `Lint`s
1662 /// which are used by other parts of the compiler.
1663 SoftLints => [
1664 WHILE_TRUE,
1665 BOX_POINTERS,
1666 NON_SHORTHAND_FIELD_PATTERNS,
1667 UNSAFE_CODE,
1668 MISSING_DOCS,
1669 MISSING_COPY_IMPLEMENTATIONS,
1670 MISSING_DEBUG_IMPLEMENTATIONS,
1671 ANONYMOUS_PARAMETERS,
1672 UNUSED_DOC_COMMENTS,
532ac7d7
XL
1673 NO_MANGLE_CONST_ITEMS,
1674 NO_MANGLE_GENERIC_ITEMS,
1675 MUTABLE_TRANSMUTES,
1676 UNSTABLE_FEATURES,
532ac7d7
XL
1677 UNREACHABLE_PUB,
1678 TYPE_ALIAS_BOUNDS,
1679 TRIVIAL_BOUNDS
1680 ]
1681);
8faf50e0
XL
1682
1683declare_lint! {
1b1a35ee
XL
1684 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1685 /// pattern], which is deprecated.
1686 ///
1687 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1688 ///
1689 /// ### Example
1690 ///
c295e0f8 1691 /// ```rust,edition2018
1b1a35ee
XL
1692 /// let x = 123;
1693 /// match x {
1694 /// 0...100 => {}
1695 /// _ => {}
1696 /// }
1697 /// ```
1698 ///
1699 /// {{produces}}
1700 ///
1701 /// ### Explanation
1702 ///
1703 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1704 /// confusion with the [`..` range expression]. Use the new form instead.
1705 ///
1706 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
8faf50e0 1707 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
dc9dc135 1708 Warn,
17df50a5
XL
1709 "`...` range patterns are deprecated",
1710 @future_incompatible = FutureIncompatibleInfo {
94222f64 1711 reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
136023e0 1712 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
17df50a5 1713 };
8faf50e0
XL
1714}
1715
48663c56
XL
1716#[derive(Default)]
1717pub struct EllipsisInclusiveRangePatterns {
1718 /// If `Some(_)`, suppress all subsequent pattern
1719 /// warnings for better diagnostics.
1720 node_id: Option<ast::NodeId>,
1721}
1722
1723impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
8faf50e0
XL
1724
1725impl EarlyLintPass for EllipsisInclusiveRangePatterns {
48663c56
XL
1726 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1727 if self.node_id.is_some() {
1728 // Don't recursively warn about patterns inside range endpoints.
dfeec247 1729 return;
48663c56
XL
1730 }
1731
3dfed10e 1732 use self::ast::{PatKind, RangeSyntax::DotDotDot};
13cf67c4
XL
1733
1734 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1735 /// corresponding to the ellipsis.
dfeec247 1736 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
e74abb32 1737 match &pat.kind {
dfeec247
XL
1738 PatKind::Range(
1739 a,
1740 Some(b),
1741 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1742 ) => Some((a.as_deref(), b, *span)),
13cf67c4
XL
1743 _ => None,
1744 }
1745 }
8faf50e0 1746
e74abb32 1747 let (parenthesise, endpoints) = match &pat.kind {
13cf67c4
XL
1748 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1749 _ => (false, matches_ellipsis_pat(pat)),
1750 };
1751
1752 if let Some((start, end, join)) = endpoints {
064997fb
FG
1753 let msg = fluent::lint::builtin_ellipsis_inclusive_range_patterns;
1754 let suggestion = fluent::lint::suggestion;
13cf67c4 1755 if parenthesise {
48663c56 1756 self.node_id = Some(pat.id);
17df50a5
XL
1757 let end = expr_to_string(&end);
1758 let replace = match start {
1759 Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1760 None => format!("&(..={})", end),
1761 };
1762 if join.edition() >= Edition::Edition2021 {
064997fb
FG
1763 let mut err = cx.sess().struct_span_err_with_code(
1764 pat.span,
1765 msg,
1766 rustc_errors::error_code!(E0783),
1767 );
17df50a5
XL
1768 err.span_suggestion(
1769 pat.span,
1770 suggestion,
1771 replace,
1772 Applicability::MachineApplicable,
1773 )
1774 .emit();
1775 } else {
1776 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1777 lint.build(msg)
1778 .span_suggestion(
1779 pat.span,
1780 suggestion,
1781 replace,
1782 Applicability::MachineApplicable,
1783 )
1784 .emit();
1785 });
1786 }
13cf67c4 1787 } else {
923072b8 1788 let replace = "..=";
17df50a5 1789 if join.edition() >= Edition::Edition2021 {
064997fb
FG
1790 let mut err = cx.sess().struct_span_err_with_code(
1791 pat.span,
1792 msg,
1793 rustc_errors::error_code!(E0783),
1794 );
17df50a5
XL
1795 err.span_suggestion_short(
1796 join,
1797 suggestion,
1798 replace,
1799 Applicability::MachineApplicable,
1800 )
1801 .emit();
1802 } else {
1803 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1804 lint.build(msg)
1805 .span_suggestion_short(
1806 join,
1807 suggestion,
1808 replace,
1809 Applicability::MachineApplicable,
1810 )
1811 .emit();
1812 });
1813 }
13cf67c4 1814 };
8faf50e0
XL
1815 }
1816 }
48663c56
XL
1817
1818 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1819 if let Some(node_id) = self.node_id {
1820 if pat.id == node_id {
1821 self.node_id = None
1822 }
1823 }
1824 }
8faf50e0
XL
1825}
1826
1827declare_lint! {
1b1a35ee
XL
1828 /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1829 /// that are not able to be run by the test harness because they are in a
1830 /// position where they are not nameable.
1831 ///
1832 /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1833 ///
1834 /// ### Example
1835 ///
1836 /// ```rust,test
1837 /// fn main() {
1838 /// #[test]
1839 /// fn foo() {
1840 /// // This test will not fail because it does not run.
1841 /// assert_eq!(1, 2);
1842 /// }
1843 /// }
1844 /// ```
1845 ///
1846 /// {{produces}}
1847 ///
1848 /// ### Explanation
1849 ///
1850 /// In order for the test harness to run a test, the test function must be
1851 /// located in a position where it can be accessed from the crate root.
1852 /// This generally means it must be defined in a module, and not anywhere
1853 /// else such as inside another function. The compiler previously allowed
1854 /// this without an error, so a lint was added as an alert that a test is
1855 /// not being used. Whether or not this should be allowed has not yet been
1856 /// decided, see [RFC 2471] and [issue #36629].
1857 ///
1858 /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1859 /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
b7449926 1860 UNNAMEABLE_TEST_ITEMS,
8faf50e0 1861 Warn,
416331ca 1862 "detects an item that cannot be named being marked as `#[test_case]`",
e74abb32 1863 report_in_external_macro
8faf50e0
XL
1864}
1865
b7449926 1866pub struct UnnameableTestItems {
6a06907d 1867 boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
b7449926
XL
1868 items_nameable: bool,
1869}
8faf50e0 1870
532ac7d7
XL
1871impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1872
b7449926
XL
1873impl UnnameableTestItems {
1874 pub fn new() -> Self {
ba9703b0 1875 Self { boundary: None, items_nameable: true }
b7449926
XL
1876 }
1877}
1878
f035d41b
XL
1879impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1880 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
b7449926 1881 if self.items_nameable {
dfeec247
XL
1882 if let hir::ItemKind::Mod(..) = it.kind {
1883 } else {
b7449926 1884 self.items_nameable = false;
6a06907d 1885 self.boundary = Some(it.def_id);
8faf50e0 1886 }
b7449926
XL
1887 return;
1888 }
1889
6a06907d
XL
1890 let attrs = cx.tcx.hir().attrs(it.hir_id());
1891 if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
74b04a01 1892 cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
064997fb 1893 lint.build(fluent::lint::builtin_unnameable_test_items).emit();
74b04a01 1894 });
b7449926
XL
1895 }
1896 }
1897
f035d41b 1898 fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
6a06907d 1899 if !self.items_nameable && self.boundary == Some(it.def_id) {
b7449926
XL
1900 self.items_nameable = true;
1901 }
8faf50e0
XL
1902 }
1903}
1904
1905declare_lint! {
1b1a35ee
XL
1906 /// The `keyword_idents` lint detects edition keywords being used as an
1907 /// identifier.
1908 ///
1909 /// ### Example
1910 ///
1911 /// ```rust,edition2015,compile_fail
1912 /// #![deny(keyword_idents)]
1913 /// // edition 2015
1914 /// fn dyn() {}
1915 /// ```
1916 ///
1917 /// {{produces}}
1918 ///
1919 /// ### Explanation
1920 ///
1921 /// Rust [editions] allow the language to evolve without breaking
1922 /// backwards compatibility. This lint catches code that uses new keywords
1923 /// that are added to the language that are used as identifiers (such as a
1924 /// variable name, function name, etc.). If you switch the compiler to a
1925 /// new edition without updating the code, then it will fail to compile if
1926 /// you are using a new keyword as an identifier.
1927 ///
1928 /// You can manually change the identifiers to a non-keyword, or use a
1929 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1930 ///
1931 /// This lint solves the problem automatically. It is "allow" by default
1932 /// because the code is perfectly valid in older editions. The [`cargo
1933 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1934 /// and automatically apply the suggested fix from the compiler (which is
1935 /// to use a raw identifier). This provides a completely automated way to
1936 /// update old code for a new edition.
1937 ///
1938 /// [editions]: https://doc.rust-lang.org/edition-guide/
1939 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1940 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
b7449926 1941 pub KEYWORD_IDENTS,
8faf50e0 1942 Allow,
e74abb32
XL
1943 "detects edition keywords being used as an identifier",
1944 @future_incompatible = FutureIncompatibleInfo {
1945 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
136023e0 1946 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
e74abb32 1947 };
8faf50e0
XL
1948}
1949
532ac7d7
XL
1950declare_lint_pass!(
1951 /// Check for uses of edition keywords used as an identifier.
1952 KeywordIdents => [KEYWORD_IDENTS]
1953);
8faf50e0 1954
532ac7d7 1955struct UnderMacro(bool);
8faf50e0 1956
b7449926 1957impl KeywordIdents {
9fa01778 1958 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
8faf50e0
XL
1959 for tt in tokens.into_trees() {
1960 match tt {
dc9dc135 1961 // Only report non-raw idents.
064997fb 1962 TokenTree::Token(token, _) => {
dfeec247
XL
1963 if let Some((ident, false)) = token.ident() {
1964 self.check_ident_token(cx, UnderMacro(true), ident);
1965 }
8faf50e0 1966 }
dfeec247 1967 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
8faf50e0
XL
1968 }
1969 }
1970 }
8faf50e0 1971
dfeec247
XL
1972 fn check_ident_token(
1973 &mut self,
1974 cx: &EarlyContext<'_>,
1975 UnderMacro(under_macro): UnderMacro,
f9f354fc 1976 ident: Ident,
dfeec247 1977 ) {
5099ac24 1978 let next_edition = match cx.sess().edition() {
b7449926 1979 Edition::Edition2015 => {
dc9dc135
XL
1980 match ident.name {
1981 kw::Async | kw::Await | kw::Try => Edition::Edition2018,
532ac7d7
XL
1982
1983 // rust-lang/rust#56327: Conservatively do not
1984 // attempt to report occurrences of `dyn` within
1985 // macro definitions or invocations, because `dyn`
1986 // can legitimately occur as a contextual keyword
1987 // in 2015 code denoting its 2018 meaning, and we
1988 // do not want rustfix to inject bugs into working
1989 // code by rewriting such occurrences.
1990 //
1991 // But if we see `dyn` outside of a macro, we know
1992 // its precise role in the parsed AST and thus are
1993 // assured this is truly an attempt to use it as
1994 // an identifier.
dc9dc135 1995 kw::Dyn if !under_macro => Edition::Edition2018,
532ac7d7 1996
b7449926
XL
1997 _ => return,
1998 }
1999 }
2000
0731742a 2001 // There are no new keywords yet for the 2018 edition and beyond.
48663c56 2002 _ => return,
b7449926
XL
2003 };
2004
dc9dc135 2005 // Don't lint `r#foo`.
5099ac24 2006 if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
b7449926 2007 return;
8faf50e0 2008 }
b7449926 2009
74b04a01 2010 cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
064997fb
FG
2011 lint.build(fluent::lint::builtin_keyword_idents)
2012 .set_arg("kw", ident.clone())
2013 .set_arg("next", next_edition)
74b04a01
XL
2014 .span_suggestion(
2015 ident.span,
064997fb 2016 fluent::lint::suggestion,
74b04a01
XL
2017 format!("r#{}", ident),
2018 Applicability::MachineApplicable,
2019 )
5e7ed085 2020 .emit();
74b04a01 2021 });
8faf50e0
XL
2022 }
2023}
0bf4aa26 2024
532ac7d7
XL
2025impl EarlyLintPass for KeywordIdents {
2026 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
60c5eb7d 2027 self.check_tokens(cx, mac_def.body.inner_tokens());
9fa01778 2028 }
ba9703b0 2029 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
60c5eb7d 2030 self.check_tokens(cx, mac.args.inner_tokens());
532ac7d7 2031 }
f9f354fc 2032 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
532ac7d7 2033 self.check_ident_token(cx, UnderMacro(false), ident);
0bf4aa26
XL
2034 }
2035}
2036
532ac7d7
XL
2037declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
2038
0bf4aa26 2039impl ExplicitOutlivesRequirements {
dc9dc135 2040 fn lifetimes_outliving_lifetime<'tcx>(
e74abb32 2041 inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
dc9dc135
XL
2042 index: u32,
2043 ) -> Vec<ty::Region<'tcx>> {
dfeec247
XL
2044 inferred_outlives
2045 .iter()
5869c6ff 2046 .filter_map(|(pred, _)| match pred.kind().skip_binder() {
5099ac24 2047 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
3dfed10e
XL
2048 ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
2049 _ => None,
2050 },
dfeec247
XL
2051 _ => None,
2052 })
2053 .collect()
dc9dc135 2054 }
0bf4aa26 2055
dc9dc135 2056 fn lifetimes_outliving_type<'tcx>(
e74abb32 2057 inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
dc9dc135
XL
2058 index: u32,
2059 ) -> Vec<ty::Region<'tcx>> {
dfeec247
XL
2060 inferred_outlives
2061 .iter()
5869c6ff
XL
2062 .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2063 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
3dfed10e 2064 a.is_param(index).then_some(b)
0bf4aa26 2065 }
dfeec247
XL
2066 _ => None,
2067 })
2068 .collect()
dc9dc135
XL
2069 }
2070
dc9dc135
XL
2071 fn collect_outlives_bound_spans<'tcx>(
2072 &self,
2073 tcx: TyCtxt<'tcx>,
dfeec247 2074 bounds: &hir::GenericBounds<'_>,
dc9dc135 2075 inferred_outlives: &[ty::Region<'tcx>],
dc9dc135 2076 ) -> Vec<(usize, Span)> {
ba9703b0 2077 use rustc_middle::middle::resolve_lifetime::Region;
dc9dc135
XL
2078
2079 bounds
2080 .iter()
2081 .enumerate()
2082 .filter_map(|(i, bound)| {
2083 if let hir::GenericBound::Outlives(lifetime) = bound {
2084 let is_inferred = match tcx.named_region(lifetime.hir_id) {
dfeec247 2085 Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
5099ac24 2086 if let ty::ReEarlyBound(ebr) = **r { ebr.index == index } else { false }
dfeec247 2087 }),
dc9dc135
XL
2088 _ => false,
2089 };
60c5eb7d 2090 is_inferred.then_some((i, bound.span()))
dc9dc135
XL
2091 } else {
2092 None
2093 }
2094 })
04454e1e 2095 .filter(|(_, span)| !in_external_macro(tcx.sess, *span))
dc9dc135 2096 .collect()
0bf4aa26
XL
2097 }
2098
2099 fn consolidate_outlives_bound_spans(
2100 &self,
2101 lo: Span,
dfeec247
XL
2102 bounds: &hir::GenericBounds<'_>,
2103 bound_spans: Vec<(usize, Span)>,
0bf4aa26
XL
2104 ) -> Vec<Span> {
2105 if bounds.is_empty() {
2106 return Vec::new();
2107 }
2108 if bound_spans.len() == bounds.len() {
dfeec247 2109 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
0bf4aa26
XL
2110 // If all bounds are inferable, we want to delete the colon, so
2111 // start from just after the parameter (span passed as argument)
2112 vec![lo.to(last_bound_span)]
2113 } else {
2114 let mut merged = Vec::new();
2115 let mut last_merged_i = None;
2116
2117 let mut from_start = true;
2118 for (i, bound_span) in bound_spans {
2119 match last_merged_i {
dc9dc135 2120 // If the first bound is inferable, our span should also eat the leading `+`.
0bf4aa26
XL
2121 None if i == 0 => {
2122 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2123 last_merged_i = Some(0);
dfeec247 2124 }
0bf4aa26 2125 // If consecutive bounds are inferable, merge their spans
dfeec247 2126 Some(h) if i == h + 1 => {
0bf4aa26
XL
2127 if let Some(tail) = merged.last_mut() {
2128 // Also eat the trailing `+` if the first
2129 // more-than-one bound is inferable
2130 let to_span = if from_start && i < bounds.len() {
dfeec247 2131 bounds[i + 1].span().shrink_to_lo()
0bf4aa26
XL
2132 } else {
2133 bound_span
2134 };
2135 *tail = tail.to(to_span);
2136 last_merged_i = Some(i);
2137 } else {
2138 bug!("another bound-span visited earlier");
2139 }
dfeec247 2140 }
0bf4aa26
XL
2141 _ => {
2142 // When we find a non-inferable bound, subsequent inferable bounds
2143 // won't be consecutive from the start (and we'll eat the leading
2144 // `+` rather than the trailing one)
2145 from_start = false;
dfeec247 2146 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
0bf4aa26
XL
2147 last_merged_i = Some(i);
2148 }
2149 }
2150 }
2151 merged
2152 }
2153 }
2154}
2155
f035d41b
XL
2156impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2157 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
ba9703b0 2158 use rustc_middle::middle::resolve_lifetime::Region;
dc9dc135 2159
6a06907d 2160 let def_id = item.def_id;
dc9dc135 2161 if let hir::ItemKind::Struct(_, ref hir_generics)
dfeec247
XL
2162 | hir::ItemKind::Enum(_, ref hir_generics)
2163 | hir::ItemKind::Union(_, ref hir_generics) = item.kind
dc9dc135
XL
2164 {
2165 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2166 if inferred_outlives.is_empty() {
2167 return;
2168 }
2169
2170 let ty_generics = cx.tcx.generics_of(def_id);
2171
0bf4aa26
XL
2172 let mut bound_count = 0;
2173 let mut lint_spans = Vec::new();
0bf4aa26
XL
2174 let mut where_lint_spans = Vec::new();
2175 let mut dropped_predicate_count = 0;
04454e1e
FG
2176 let num_predicates = hir_generics.predicates.len();
2177 for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2178 let (relevant_lifetimes, bounds, span, in_where_clause) = match where_predicate {
dc9dc135 2179 hir::WherePredicate::RegionPredicate(predicate) => {
dfeec247
XL
2180 if let Some(Region::EarlyBound(index, ..)) =
2181 cx.tcx.named_region(predicate.lifetime.hir_id)
dc9dc135
XL
2182 {
2183 (
2184 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
0bf4aa26 2185 &predicate.bounds,
dc9dc135 2186 predicate.span,
04454e1e 2187 predicate.in_where_clause,
0bf4aa26 2188 )
dc9dc135
XL
2189 } else {
2190 continue;
2191 }
0bf4aa26 2192 }
dc9dc135
XL
2193 hir::WherePredicate::BoundPredicate(predicate) => {
2194 // FIXME we can also infer bounds on associated types,
2195 // and should check for them here.
e74abb32 2196 match predicate.bounded_ty.kind {
dfeec247 2197 hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
a2a8927a
XL
2198 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2199 continue
2200 };
2201 let index = ty_generics.param_def_id_to_index[&def_id];
2202 (
2203 Self::lifetimes_outliving_type(inferred_outlives, index),
2204 &predicate.bounds,
2205 predicate.span,
04454e1e 2206 predicate.origin == PredicateOrigin::WhereClause,
a2a8927a 2207 )
dfeec247
XL
2208 }
2209 _ => {
2210 continue;
2211 }
dc9dc135
XL
2212 }
2213 }
2214 _ => continue,
2215 };
2216 if relevant_lifetimes.is_empty() {
2217 continue;
2218 }
2219
923072b8
FG
2220 let bound_spans =
2221 self.collect_outlives_bound_spans(cx.tcx, bounds, &relevant_lifetimes);
dc9dc135
XL
2222 bound_count += bound_spans.len();
2223
2224 let drop_predicate = bound_spans.len() == bounds.len();
2225 if drop_predicate {
2226 dropped_predicate_count += 1;
2227 }
2228
04454e1e
FG
2229 if drop_predicate && !in_where_clause {
2230 lint_spans.push(span);
2231 } else if drop_predicate && i + 1 < num_predicates {
2232 // If all the bounds on a predicate were inferable and there are
2233 // further predicates, we want to eat the trailing comma.
2234 let next_predicate_span = hir_generics.predicates[i + 1].span();
dfeec247 2235 where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
dc9dc135 2236 } else {
dfeec247
XL
2237 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2238 span.shrink_to_lo(),
2239 bounds,
2240 bound_spans,
2241 ));
0bf4aa26
XL
2242 }
2243 }
2244
2245 // If all predicates are inferable, drop the entire clause
2246 // (including the `where`)
923072b8
FG
2247 if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
2248 {
2249 let where_span = hir_generics.where_clause_span;
dc9dc135
XL
2250 // Extend the where clause back to the closing `>` of the
2251 // generics, except for tuple struct, which have the `where`
2252 // after the fields of the struct.
dfeec247
XL
2253 let full_where_span =
2254 if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2255 where_span
2256 } else {
2257 hir_generics.span.shrink_to_hi().to(where_span)
2258 };
2259 lint_spans.push(full_where_span);
0bf4aa26
XL
2260 } else {
2261 lint_spans.extend(where_lint_spans);
2262 }
2263
2264 if !lint_spans.is_empty() {
74b04a01 2265 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
064997fb
FG
2266 lint.build(fluent::lint::builtin_explicit_outlives)
2267 .set_arg("count", bound_count)
74b04a01 2268 .multipart_suggestion(
064997fb 2269 fluent::lint::suggestion,
74b04a01
XL
2270 lint_spans
2271 .into_iter()
04454e1e 2272 .map(|span| (span, String::new()))
74b04a01
XL
2273 .collect::<Vec<_>>(),
2274 Applicability::MachineApplicable,
2275 )
2276 .emit();
2277 });
0bf4aa26 2278 }
0bf4aa26
XL
2279 }
2280 }
0bf4aa26 2281}
416331ca
XL
2282
2283declare_lint! {
1b1a35ee
XL
2284 /// The `incomplete_features` lint detects unstable features enabled with
2285 /// the [`feature` attribute] that may function improperly in some or all
2286 /// cases.
2287 ///
2288 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2289 ///
2290 /// ### Example
2291 ///
2292 /// ```rust
94222f64 2293 /// #![feature(generic_const_exprs)]
1b1a35ee
XL
2294 /// ```
2295 ///
2296 /// {{produces}}
2297 ///
2298 /// ### Explanation
2299 ///
2300 /// Although it is encouraged for people to experiment with unstable
2301 /// features, some of them are known to be incomplete or faulty. This lint
2302 /// is a signal that the feature has not yet been finished, and you may
2303 /// experience problems with it.
416331ca
XL
2304 pub INCOMPLETE_FEATURES,
2305 Warn,
2306 "incomplete features that may function improperly in some or all cases"
2307}
2308
2309declare_lint_pass!(
cdc7bbd5 2310 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
416331ca
XL
2311 IncompleteFeatures => [INCOMPLETE_FEATURES]
2312);
2313
2314impl EarlyLintPass for IncompleteFeatures {
2315 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
5099ac24 2316 let features = cx.sess().features_untracked();
dfeec247
XL
2317 features
2318 .declared_lang_features
2319 .iter()
2320 .map(|(name, span, _)| (name, span))
416331ca 2321 .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
136023e0 2322 .filter(|(&name, _)| features.incomplete(name))
f9f354fc 2323 .for_each(|(&name, &span)| {
74b04a01 2324 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
064997fb
FG
2325 let mut builder = lint.build(fluent::lint::builtin_incomplete_features);
2326 builder.set_arg("name", name);
f9f354fc 2327 if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
064997fb
FG
2328 builder.set_arg("n", n);
2329 builder.note(fluent::lint::note);
f9f354fc 2330 }
29967ef6 2331 if HAS_MIN_FEATURES.contains(&name) {
064997fb 2332 builder.help(fluent::lint::help);
29967ef6 2333 }
f9f354fc 2334 builder.emit();
74b04a01 2335 })
416331ca
XL
2336 });
2337 }
2338}
2339
5869c6ff 2340const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
29967ef6 2341
416331ca 2342declare_lint! {
1b1a35ee 2343 /// The `invalid_value` lint detects creating a value that is not valid,
17df50a5 2344 /// such as a null reference.
1b1a35ee
XL
2345 ///
2346 /// ### Example
2347 ///
2348 /// ```rust,no_run
2349 /// # #![allow(unused)]
2350 /// unsafe {
2351 /// let x: &'static i32 = std::mem::zeroed();
2352 /// }
2353 /// ```
2354 ///
2355 /// {{produces}}
2356 ///
2357 /// ### Explanation
2358 ///
2359 /// In some situations the compiler can detect that the code is creating
2360 /// an invalid value, which should be avoided.
2361 ///
2362 /// In particular, this lint will check for improper use of
2363 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2364 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2365 /// lint should provide extra information to indicate what the problem is
2366 /// and a possible solution.
2367 ///
2368 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2369 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2370 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2371 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2372 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
416331ca
XL
2373 pub INVALID_VALUE,
2374 Warn,
17df50a5 2375 "an invalid value is being created (such as a null reference)"
416331ca
XL
2376}
2377
2378declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2379
f035d41b
XL
2380impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2381 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
e1599b0c 2382 #[derive(Debug, Copy, Clone, PartialEq)]
dfeec247
XL
2383 enum InitKind {
2384 Zeroed,
2385 Uninit,
fc512014 2386 }
416331ca
XL
2387
2388 /// Information about why a type cannot be initialized this way.
2389 /// Contains an error message and optionally a span to point at.
2390 type InitError = (String, Option<Span>);
2391
e1599b0c 2392 /// Test if this constant is all-0.
dfeec247 2393 fn is_zero(expr: &hir::Expr<'_>) -> bool {
e1599b0c 2394 use hir::ExprKind::*;
3dfed10e 2395 use rustc_ast::LitKind::*;
e74abb32 2396 match &expr.kind {
dfeec247 2397 Lit(lit) => {
e1599b0c
XL
2398 if let Int(i, _) = lit.node {
2399 i == 0
2400 } else {
2401 false
dfeec247
XL
2402 }
2403 }
2404 Tup(tup) => tup.iter().all(is_zero),
2405 _ => false,
e1599b0c
XL
2406 }
2407 }
2408
2409 /// Determine if this expression is a "dangerous initialization".
f035d41b 2410 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
e74abb32 2411 if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
60c5eb7d 2412 // Find calls to `mem::{uninitialized,zeroed}` methods.
e74abb32 2413 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
f035d41b 2414 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
c295e0f8
XL
2415 match cx.tcx.get_diagnostic_name(def_id) {
2416 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2417 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2418 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2419 _ => {}
e1599b0c 2420 }
60c5eb7d 2421 }
5099ac24 2422 } else if let hir::ExprKind::MethodCall(_, ref args, _) = expr.kind {
60c5eb7d 2423 // Find problematic calls to `MaybeUninit::assume_init`.
3dfed10e 2424 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
60c5eb7d
XL
2425 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2426 // This is a call to *some* method named `assume_init`.
2427 // See if the `self` parameter is one of the dangerous constructors.
2428 if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
2429 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
f035d41b 2430 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
c295e0f8
XL
2431 match cx.tcx.get_diagnostic_name(def_id) {
2432 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2433 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2434 _ => {}
60c5eb7d
XL
2435 }
2436 }
2437 }
e1599b0c
XL
2438 }
2439 }
2440
2441 None
2442 }
2443
3dfed10e
XL
2444 /// Test if this enum has several actually "existing" variants.
2445 /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
5e7ed085 2446 fn is_multi_variant<'tcx>(adt: ty::AdtDef<'tcx>) -> bool {
3dfed10e 2447 // As an approximation, we only count dataless variants. Those are definitely inhabited.
5e7ed085 2448 let existing_variants = adt.variants().iter().filter(|v| v.fields.is_empty()).count();
3dfed10e
XL
2449 existing_variants > 1
2450 }
2451
416331ca
XL
2452 /// Return `Some` only if we are sure this type does *not*
2453 /// allow zero initialization.
e1599b0c 2454 fn ty_find_init_error<'tcx>(
5e7ed085 2455 cx: &LateContext<'tcx>,
e1599b0c
XL
2456 ty: Ty<'tcx>,
2457 init: InitKind,
2458 ) -> Option<InitError> {
923072b8 2459 use rustc_type_ir::sty::TyKind::*;
1b1a35ee 2460 match ty.kind() {
416331ca 2461 // Primitive types that don't like 0 as a value.
74b04a01
XL
2462 Ref(..) => Some(("references must be non-null".to_string(), None)),
2463 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2464 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2465 Never => Some(("the `!` type has no valid value".to_string(), None)),
1b1a35ee 2466 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
dfeec247
XL
2467 // raw ptr to dyn Trait
2468 {
74b04a01 2469 Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
dfeec247 2470 }
e1599b0c 2471 // Primitive types with other constraints.
dfeec247 2472 Bool if init == InitKind::Uninit => {
74b04a01 2473 Some(("booleans must be either `true` or `false`".to_string(), None))
dfeec247
XL
2474 }
2475 Char if init == InitKind::Uninit => {
74b04a01 2476 Some(("characters must be a valid Unicode codepoint".to_string(), None))
dfeec247 2477 }
e1599b0c 2478 // Recurse and checks for some compound types.
416331ca 2479 Adt(adt_def, substs) if !adt_def.is_union() => {
3dfed10e 2480 // First check if this ADT has a layout attribute (like `NonNull` and friends).
e1599b0c 2481 use std::ops::Bound;
5e7ed085 2482 match cx.tcx.layout_scalar_valid_range(adt_def.did()) {
e1599b0c
XL
2483 // We exploit here that `layout_scalar_valid_range` will never
2484 // return `Bound::Excluded`. (And we have tests checking that we
2485 // handle the attribute correctly.)
dfeec247
XL
2486 (Bound::Included(lo), _) if lo > 0 => {
2487 return Some((format!("`{}` must be non-null", ty), None));
2488 }
e1599b0c 2489 (Bound::Included(_), _) | (_, Bound::Included(_))
dfeec247
XL
2490 if init == InitKind::Uninit =>
2491 {
e1599b0c 2492 return Some((
dfeec247
XL
2493 format!(
2494 "`{}` must be initialized inside its custom valid range",
2495 ty,
2496 ),
e1599b0c 2497 None,
dfeec247
XL
2498 ));
2499 }
e1599b0c
XL
2500 _ => {}
2501 }
2502 // Now, recurse.
5e7ed085 2503 match adt_def.variants().len() {
74b04a01 2504 0 => Some(("enums with no variants have no valid value".to_string(), None)),
416331ca
XL
2505 1 => {
2506 // Struct, or enum with exactly one variant.
2507 // Proceed recursively, check all fields.
5e7ed085 2508 let variant = &adt_def.variant(VariantIdx::from_u32(0));
416331ca 2509 variant.fields.iter().find_map(|field| {
5e7ed085 2510 ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(
dfeec247
XL
2511 |(mut msg, span)| {
2512 if span.is_none() {
2513 // Point to this field, should be helpful for figuring
2514 // out where the source of the error is.
5e7ed085 2515 let span = cx.tcx.def_span(field.did);
dfeec247
XL
2516 write!(
2517 &mut msg,
2518 " (in this {} field)",
2519 adt_def.descr()
2520 )
2521 .unwrap();
2522 (msg, Some(span))
2523 } else {
2524 // Just forward.
2525 (msg, span)
2526 }
2527 },
2528 )
416331ca
XL
2529 })
2530 }
3dfed10e
XL
2531 // Multi-variant enum.
2532 _ => {
5e7ed085
FG
2533 if init == InitKind::Uninit && is_multi_variant(*adt_def) {
2534 let span = cx.tcx.def_span(adt_def.did());
3dfed10e
XL
2535 Some((
2536 "enums have to be initialized to a variant".to_string(),
2537 Some(span),
2538 ))
2539 } else {
2540 // In principle, for zero-initialization we could figure out which variant corresponds
2541 // to tag 0, and check that... but for now we just accept all zero-initializations.
2542 None
2543 }
2544 }
416331ca
XL
2545 }
2546 }
2547 Tuple(..) => {
2548 // Proceed recursively, check all fields.
5e7ed085
FG
2549 ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2550 }
2551 Array(ty, len) => {
2552 if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
2553 // Array length known at array non-empty -- recurse.
2554 ty_find_init_error(cx, *ty, init)
2555 } else {
2556 // Empty array or size unknown.
2557 None
2558 }
416331ca 2559 }
416331ca
XL
2560 // Conservative fallback.
2561 _ => None,
2562 }
2563 }
2564
e1599b0c
XL
2565 if let Some(init) = is_dangerous_init(cx, expr) {
2566 // This conjures an instance of a type out of nothing,
2567 // using zeroed or uninitialized memory.
2568 // We are extremely conservative with what we warn about.
3dfed10e 2569 let conjured_ty = cx.typeck_results().expr_ty(expr);
1b1a35ee 2570 if let Some((msg, span)) =
5e7ed085 2571 with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init))
1b1a35ee 2572 {
064997fb 2573 // FIXME(davidtwco): make translatable
74b04a01
XL
2574 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2575 let mut err = lint.build(&format!(
e1599b0c
XL
2576 "the type `{}` does not permit {}",
2577 conjured_ty,
2578 match init {
2579 InitKind::Zeroed => "zero-initialization",
2580 InitKind::Uninit => "being left uninitialized",
2581 },
74b04a01
XL
2582 ));
2583 err.span_label(expr.span, "this code causes undefined behavior when executed");
2584 err.span_label(
2585 expr.span,
2586 "help: use `MaybeUninit<T>` instead, \
2587 and only call `assume_init` after initialization is done",
2588 );
2589 if let Some(span) = span {
2590 err.span_note(span, &msg);
2591 } else {
2592 err.note(&msg);
2593 }
2594 err.emit();
2595 });
416331ca
XL
2596 }
2597 }
2598 }
2599}
f035d41b
XL
2600
2601declare_lint! {
1b1a35ee
XL
2602 /// The `clashing_extern_declarations` lint detects when an `extern fn`
2603 /// has been declared with the same name but different types.
2604 ///
2605 /// ### Example
2606 ///
2607 /// ```rust
2608 /// mod m {
2609 /// extern "C" {
2610 /// fn foo();
2611 /// }
2612 /// }
2613 ///
2614 /// extern "C" {
2615 /// fn foo(_: u32);
2616 /// }
2617 /// ```
2618 ///
2619 /// {{produces}}
2620 ///
2621 /// ### Explanation
2622 ///
2623 /// Because two symbols of the same name cannot be resolved to two
2624 /// different functions at link time, and one function cannot possibly
2625 /// have two types, a clashing extern declaration is almost certainly a
2626 /// mistake. Check to make sure that the `extern` definitions are correct
2627 /// and equivalent, and possibly consider unifying them in one location.
2628 ///
2629 /// This lint does not run between crates because a project may have
2630 /// dependencies which both rely on the same extern function, but declare
2631 /// it in a different (but valid) way. For example, they may both declare
2632 /// an opaque type for one or more of the arguments (which would end up
2633 /// distinct types), or use types that are valid conversions in the
2634 /// language the `extern fn` is defined in. In these cases, the compiler
2635 /// can't say that the clashing declaration is incorrect.
f035d41b 2636 pub CLASHING_EXTERN_DECLARATIONS,
3dfed10e 2637 Warn,
f035d41b
XL
2638 "detects when an extern fn has been declared with the same name but different types"
2639}
2640
2641pub struct ClashingExternDeclarations {
5869c6ff
XL
2642 /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2643 /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2644 /// the symbol should be reported as a clashing declaration.
2645 // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2646 // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
f035d41b
XL
2647 seen_decls: FxHashMap<Symbol, HirId>,
2648}
2649
2650/// Differentiate between whether the name for an extern decl came from the link_name attribute or
2651/// just from declaration itself. This is important because we don't want to report clashes on
2652/// symbol name if they don't actually clash because one or the other links against a symbol with a
2653/// different name.
2654enum SymbolName {
2655 /// The name of the symbol + the span of the annotation which introduced the link name.
2656 Link(Symbol, Span),
2657 /// No link name, so just the name of the symbol.
2658 Normal(Symbol),
2659}
2660
2661impl SymbolName {
2662 fn get_name(&self) -> Symbol {
2663 match self {
2664 SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2665 }
2666 }
2667}
2668
2669impl ClashingExternDeclarations {
923072b8 2670 pub(crate) fn new() -> Self {
f035d41b
XL
2671 ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2672 }
2673 /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2674 /// for the item, return its HirId without updating the set.
2675 fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
6a06907d 2676 let did = fi.def_id.to_def_id();
5869c6ff
XL
2677 let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2678 let name = Symbol::intern(tcx.symbol_name(instance).name);
2679 if let Some(&hir_id) = self.seen_decls.get(&name) {
f035d41b
XL
2680 // Avoid updating the map with the new entry when we do find a collision. We want to
2681 // make sure we're always pointing to the first definition as the previous declaration.
2682 // This lets us avoid emitting "knock-on" diagnostics.
5869c6ff 2683 Some(hir_id)
f035d41b 2684 } else {
6a06907d 2685 self.seen_decls.insert(name, fi.hir_id())
f035d41b
XL
2686 }
2687 }
2688
2689 /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2690 /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2691 /// symbol's name.
2692 fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
f035d41b 2693 if let Some((overridden_link_name, overridden_link_name_span)) =
6a06907d 2694 tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
f035d41b
XL
2695 // FIXME: Instead of searching through the attributes again to get span
2696 // information, we could have codegen_fn_attrs also give span information back for
2697 // where the attribute was defined. However, until this is found to be a
2698 // bottleneck, this does just fine.
2699 (
2700 overridden_link_name,
04454e1e 2701 tcx.get_attr(fi.def_id.to_def_id(), sym::link_name).unwrap().span,
f035d41b
XL
2702 )
2703 })
2704 {
2705 SymbolName::Link(overridden_link_name, overridden_link_name_span)
2706 } else {
2707 SymbolName::Normal(fi.ident.name)
2708 }
2709 }
2710
2711 /// Checks whether two types are structurally the same enough that the declarations shouldn't
2712 /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2713 /// with the same members (as the declarations shouldn't clash).
3dfed10e
XL
2714 fn structurally_same_type<'tcx>(
2715 cx: &LateContext<'tcx>,
2716 a: Ty<'tcx>,
2717 b: Ty<'tcx>,
2718 ckind: CItemKind,
2719 ) -> bool {
2720 fn structurally_same_type_impl<'tcx>(
2721 seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2722 cx: &LateContext<'tcx>,
2723 a: Ty<'tcx>,
2724 b: Ty<'tcx>,
2725 ckind: CItemKind,
2726 ) -> bool {
2727 debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
1b1a35ee
XL
2728 let tcx = cx.tcx;
2729
2730 // Given a transparent newtype, reach through and grab the inner
2731 // type unless the newtype makes the type non-null.
2732 let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2733 let mut ty = ty;
2734 loop {
2735 if let ty::Adt(def, substs) = *ty.kind() {
04454e1e 2736 let is_transparent = def.repr().transparent();
5e7ed085 2737 let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
1b1a35ee
XL
2738 debug!(
2739 "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2740 ty, is_transparent, is_non_null
2741 );
2742 if is_transparent && !is_non_null {
5e7ed085
FG
2743 debug_assert!(def.variants().len() == 1);
2744 let v = &def.variant(VariantIdx::new(0));
1b1a35ee
XL
2745 ty = transparent_newtype_field(tcx, v)
2746 .expect(
2747 "single-variant transparent structure with zero-sized field",
2748 )
2749 .ty(tcx, substs);
2750 continue;
2751 }
2752 }
2753 debug!("non_transparent_ty -> {:?}", ty);
2754 return ty;
2755 }
2756 };
2757
2758 let a = non_transparent_ty(a);
2759 let b = non_transparent_ty(b);
2760
3dfed10e
XL
2761 if !seen_types.insert((a, b)) {
2762 // We've encountered a cycle. There's no point going any further -- the types are
2763 // structurally the same.
2764 return true;
2765 }
2766 let tcx = cx.tcx;
5099ac24 2767 if a == b {
3dfed10e
XL
2768 // All nominally-same types are structurally same, too.
2769 true
2770 } else {
2771 // Do a full, depth-first comparison between the two.
923072b8 2772 use rustc_type_ir::sty::TyKind::*;
1b1a35ee
XL
2773 let a_kind = a.kind();
2774 let b_kind = b.kind();
2775
2776 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2777 debug!("compare_layouts({:?}, {:?})", a, b);
5e7ed085
FG
2778 let a_layout = &cx.layout_of(a)?.layout.abi();
2779 let b_layout = &cx.layout_of(b)?.layout.abi();
1b1a35ee
XL
2780 debug!(
2781 "comparing layouts: {:?} == {:?} = {}",
2782 a_layout,
2783 b_layout,
2784 a_layout == b_layout
2785 );
2786 Ok(a_layout == b_layout)
3dfed10e
XL
2787 };
2788
2789 #[allow(rustc::usage_of_ty_tykind)]
2790 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2791 kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2792 };
2793
2794 ensure_sufficient_stack(|| {
2795 match (a_kind, b_kind) {
04454e1e 2796 (Adt(a_def, _), Adt(b_def, _)) => {
1b1a35ee
XL
2797 // We can immediately rule out these types as structurally same if
2798 // their layouts differ.
2799 match compare_layouts(a, b) {
2800 Ok(false) => return false,
2801 _ => (), // otherwise, continue onto the full, fields comparison
2802 }
2803
3dfed10e 2804 // Grab a flattened representation of all fields.
5e7ed085
FG
2805 let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2806 let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
1b1a35ee
XL
2807
2808 // Perform a structural comparison for each field.
2809 a_fields.eq_by(
3dfed10e
XL
2810 b_fields,
2811 |&ty::FieldDef { did: a_did, .. },
2812 &ty::FieldDef { did: b_did, .. }| {
2813 structurally_same_type_impl(
2814 seen_types,
2815 cx,
2816 tcx.type_of(a_did),
2817 tcx.type_of(b_did),
2818 ckind,
2819 )
2820 },
2821 )
2822 }
2823 (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2824 // For arrays, we also check the constness of the type.
923072b8 2825 a_const.kind() == b_const.kind()
5099ac24 2826 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
3dfed10e
XL
2827 }
2828 (Slice(a_ty), Slice(b_ty)) => {
5099ac24 2829 structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
3dfed10e
XL
2830 }
2831 (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2832 a_tymut.mutbl == b_tymut.mutbl
2833 && structurally_same_type_impl(
5099ac24 2834 seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
3dfed10e
XL
2835 )
2836 }
2837 (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2838 // For structural sameness, we don't need the region to be same.
2839 a_mut == b_mut
5099ac24 2840 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
3dfed10e
XL
2841 }
2842 (FnDef(..), FnDef(..)) => {
2843 let a_poly_sig = a.fn_sig(tcx);
2844 let b_poly_sig = b.fn_sig(tcx);
2845
064997fb
FG
2846 // We don't compare regions, but leaving bound regions around ICEs, so
2847 // we erase them.
2848 let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
2849 let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
3dfed10e
XL
2850
2851 (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2852 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2853 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
5099ac24 2854 structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
3dfed10e
XL
2855 })
2856 && structurally_same_type_impl(
2857 seen_types,
2858 cx,
2859 a_sig.output(),
2860 b_sig.output(),
2861 ckind,
2862 )
2863 }
2864 (Tuple(a_substs), Tuple(b_substs)) => {
5e7ed085 2865 a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
3dfed10e
XL
2866 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2867 })
2868 }
2869 // For these, it's not quite as easy to define structural-sameness quite so easily.
2870 // For the purposes of this lint, take the conservative approach and mark them as
2871 // not structurally same.
2872 (Dynamic(..), Dynamic(..))
2873 | (Error(..), Error(..))
2874 | (Closure(..), Closure(..))
2875 | (Generator(..), Generator(..))
2876 | (GeneratorWitness(..), GeneratorWitness(..))
2877 | (Projection(..), Projection(..))
2878 | (Opaque(..), Opaque(..)) => false,
2879
2880 // These definitely should have been caught above.
2881 (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2882
2883 // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2884 // enum layout optimisation is being applied.
2885 (Adt(..), other_kind) | (other_kind, Adt(..))
2886 if is_primitive_or_pointer(other_kind) =>
2887 {
2888 let (primitive, adt) =
1b1a35ee 2889 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
3dfed10e
XL
2890 if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2891 ty == primitive
2892 } else {
1b1a35ee 2893 compare_layouts(a, b).unwrap_or(false)
3dfed10e
XL
2894 }
2895 }
2896 // Otherwise, just compare the layouts. This may fail to lint for some
2897 // incompatible types, but at the very least, will stop reads into
2898 // uninitialised memory.
1b1a35ee 2899 _ => compare_layouts(a, b).unwrap_or(false),
3dfed10e
XL
2900 }
2901 })
f035d41b
XL
2902 }
2903 }
3dfed10e
XL
2904 let mut seen_types = FxHashSet::default();
2905 structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
f035d41b
XL
2906 }
2907}
2908
2909impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2910
2911impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2912 fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2913 trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2914 if let ForeignItemKind::Fn(..) = this_fi.kind {
29967ef6 2915 let tcx = cx.tcx;
f035d41b
XL
2916 if let Some(existing_hid) = self.insert(tcx, this_fi) {
2917 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
6a06907d 2918 let this_decl_ty = tcx.type_of(this_fi.def_id);
f035d41b
XL
2919 debug!(
2920 "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
6a06907d 2921 existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
f035d41b
XL
2922 );
2923 // Check that the declarations match.
3dfed10e
XL
2924 if !Self::structurally_same_type(
2925 cx,
2926 existing_decl_ty,
2927 this_decl_ty,
2928 CItemKind::Declaration,
2929 ) {
a2a8927a 2930 let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
f035d41b
XL
2931 let orig = Self::name_of_extern_decl(tcx, orig_fi);
2932
2933 // We want to ensure that we use spans for both decls that include where the
2934 // name was defined, whether that was from the link_name attribute or not.
2935 let get_relevant_span =
2936 |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2937 SymbolName::Normal(_) => fi.span,
2938 SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2939 };
2940 // Finally, emit the diagnostic.
2941 tcx.struct_span_lint_hir(
2942 CLASHING_EXTERN_DECLARATIONS,
6a06907d 2943 this_fi.hir_id(),
f035d41b
XL
2944 get_relevant_span(this_fi),
2945 |lint| {
2946 let mut expected_str = DiagnosticStyledString::new();
2947 expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
2948 let mut found_str = DiagnosticStyledString::new();
2949 found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
2950
064997fb
FG
2951 lint.build(if orig.get_name() == this_fi.ident.name {
2952 fluent::lint::builtin_clashing_extern_same_name
2953 } else {
2954 fluent::lint::builtin_clashing_extern_diff_name
2955 })
2956 .set_arg("this_fi", this_fi.ident.name)
2957 .set_arg("orig", orig.get_name())
f035d41b
XL
2958 .span_label(
2959 get_relevant_span(orig_fi),
064997fb 2960 fluent::lint::previous_decl_label,
f035d41b 2961 )
064997fb
FG
2962 .span_label(get_relevant_span(this_fi), fluent::lint::mismatch_label)
2963 // FIXME(davidtwco): translatable expected/found
f035d41b 2964 .note_expected_found(&"", expected_str, &"", found_str)
5e7ed085 2965 .emit();
f035d41b
XL
2966 },
2967 );
2968 }
2969 }
2970 }
2971 }
2972}
cdc7bbd5
XL
2973
2974declare_lint! {
2975 /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
2976 /// which causes [undefined behavior].
2977 ///
2978 /// ### Example
2979 ///
2980 /// ```rust,no_run
2981 /// # #![allow(unused)]
2982 /// use std::ptr;
2983 /// unsafe {
2984 /// let x = &*ptr::null::<i32>();
2985 /// let x = ptr::addr_of!(*ptr::null::<i32>());
2986 /// let x = *(0 as *const i32);
2987 /// }
2988 /// ```
2989 ///
2990 /// {{produces}}
2991 ///
2992 /// ### Explanation
2993 ///
2994 /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
2995 /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
2996 ///
2997 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2998 pub DEREF_NULLPTR,
2999 Warn,
3000 "detects when an null pointer is dereferenced"
3001}
3002
3003declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3004
3005impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3006 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3007 /// test if expression is a null ptr
3008 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3009 match &expr.kind {
3010 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3011 if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3012 return is_zero(expr) || is_null_ptr(cx, expr);
3013 }
3014 }
3015 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3016 rustc_hir::ExprKind::Call(ref path, _) => {
3017 if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3018 if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
c295e0f8
XL
3019 return matches!(
3020 cx.tcx.get_diagnostic_name(def_id),
3021 Some(sym::ptr_null | sym::ptr_null_mut)
3022 );
cdc7bbd5
XL
3023 }
3024 }
3025 }
3026 _ => {}
3027 }
3028 false
3029 }
3030
3031 /// test if expression is the literal `0`
3032 fn is_zero(expr: &hir::Expr<'_>) -> bool {
3033 match &expr.kind {
3034 rustc_hir::ExprKind::Lit(ref lit) => {
3035 if let LitKind::Int(a, _) = lit.node {
3036 return a == 0;
3037 }
3038 }
3039 _ => {}
3040 }
3041 false
3042 }
3043
3c0e092e
XL
3044 if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3045 if is_null_ptr(cx, expr_deref) {
3046 cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
064997fb
FG
3047 let mut err = lint.build(fluent::lint::builtin_deref_nullptr);
3048 err.span_label(expr.span, fluent::lint::label);
3c0e092e
XL
3049 err.emit();
3050 });
cdc7bbd5
XL
3051 }
3052 }
3053 }
3054}
94222f64
XL
3055
3056declare_lint! {
3057 /// The `named_asm_labels` lint detects the use of named labels in the
3058 /// inline `asm!` macro.
3059 ///
3060 /// ### Example
3061 ///
3062 /// ```rust,compile_fail
a2a8927a
XL
3063 /// use std::arch::asm;
3064 ///
94222f64
XL
3065 /// fn main() {
3066 /// unsafe {
3067 /// asm!("foo: bar");
3068 /// }
3069 /// }
3070 /// ```
3071 ///
3072 /// {{produces}}
3073 ///
3074 /// ### Explanation
3075 ///
3076 /// LLVM is allowed to duplicate inline assembly blocks for any
3077 /// reason, for example when it is in a function that gets inlined. Because
3078 /// of this, GNU assembler [local labels] *must* be used instead of labels
3079 /// with a name. Using named labels might cause assembler or linker errors.
3080 ///
a2a8927a 3081 /// See the explanation in [Rust By Example] for more details.
94222f64
XL
3082 ///
3083 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
a2a8927a 3084 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
94222f64
XL
3085 pub NAMED_ASM_LABELS,
3086 Deny,
3087 "named labels in inline assembly",
3088}
3089
3090declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3091
3092impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3093 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3094 if let hir::Expr {
3095 kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3096 ..
3097 } = expr
3098 {
3099 for (template_sym, template_snippet, template_span) in template_strs.iter() {
a2a8927a 3100 let template_str = template_sym.as_str();
94222f64
XL
3101 let find_label_span = |needle: &str| -> Option<Span> {
3102 if let Some(template_snippet) = template_snippet {
3103 let snippet = template_snippet.as_str();
3104 if let Some(pos) = snippet.find(needle) {
3105 let end = pos
3c0e092e 3106 + snippet[pos..]
94222f64
XL
3107 .find(|c| c == ':')
3108 .unwrap_or(snippet[pos..].len() - 1);
3109 let inner = InnerSpan::new(pos, end);
3110 return Some(template_span.from_inner(inner));
3111 }
3112 }
3113
3114 None
3115 };
3116
3117 let mut found_labels = Vec::new();
3118
3119 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3120 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3121 for statement in statements {
3122 // If there's a comment, trim it from the statement
3123 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3124 let mut start_idx = 0;
3125 for (idx, _) in statement.match_indices(':') {
3126 let possible_label = statement[start_idx..idx].trim();
3127 let mut chars = possible_label.chars();
a2a8927a 3128 let Some(c) = chars.next() else {
94222f64 3129 // Empty string means a leading ':' in this section, which is not a label
a2a8927a
XL
3130 break
3131 };
3132 // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3133 if (c.is_alphabetic() || matches!(c, '.' | '_'))
3134 && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3135 {
3136 found_labels.push(possible_label);
3137 } else {
3138 // If we encounter a non-label, there cannot be any further labels, so stop checking
94222f64
XL
3139 break;
3140 }
3141
3142 start_idx = idx + 1;
3143 }
3144 }
3145
3146 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3147
3148 if found_labels.len() > 0 {
3149 let spans = found_labels
3150 .into_iter()
3151 .filter_map(|label| find_label_span(label))
3152 .collect::<Vec<Span>>();
3153 // If there were labels but we couldn't find a span, combine the warnings and use the template span
3154 let target_spans: MultiSpan =
3155 if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3156
3157 cx.lookup_with_diagnostics(
3158 NAMED_ASM_LABELS,
3159 Some(target_spans),
3160 |diag| {
064997fb 3161 diag.build(fluent::lint::builtin_asm_labels).emit();
94222f64
XL
3162 },
3163 BuiltinLintDiagnostics::NamedAsmLabel(
3164 "only local labels of the form `<number>:` should be used in inline asm"
3165 .to_string(),
3166 ),
3167 );
3168 }
3169 }
3170 }
3171 }
3172}