]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_lint/src/builtin.rs
New upstream version 1.71.1+dfsg1
[rustc.git] / compiler / rustc_lint / src / builtin.rs
CommitLineData
c34b1796
AL
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
ba9703b0
XL
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
c34b1796
AL
6//!
7//! To add a new lint to rustc, declare it here using `declare_lint!()`.
8//! Then add code to emit the new lint in the appropriate circumstances.
9//! You can do that in an existing `LintPass` if it makes sense, or in a
10//! new `LintPass`, or using `Session::add_lint` elsewhere in the
11//! compiler. Only do the latter if the check can't be written cleanly as a
12//! `LintPass` (also, note that such lints will need to be defined in
ba9703b0 13//! `rustc_session::lint::builtin`, not here).
c34b1796 14//!
9fa01778
XL
15//! If you define a new `EarlyLintPass`, you will also need to add it to the
16//! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17//! `lib.rs`. Use the former for unit-like structs and the latter for structs
18//! with a `pub fn new()`.
19//!
20//! If you define a new `LateLintPass`, you will also need to add it to the
21//! `late_lint_methods!` invocation in `lib.rs`.
c34b1796 22
9ffffee4 23use crate::fluent_generated as fluent;
3dfed10e 24use crate::{
49aad941 25 errors::BuiltinEllipsisInclusiveRangePatterns,
9c376795
FG
26 lints::{
27 BuiltinAnonymousParams, BuiltinBoxPointers, BuiltinClashingExtern,
28 BuiltinClashingExternSub, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink,
29 BuiltinDeprecatedAttrLinkSuggestion, BuiltinDeprecatedAttrUsed, BuiltinDerefNullptr,
30 BuiltinEllipsisInclusiveRangePatternsLint, BuiltinExplicitOutlives,
31 BuiltinExplicitOutlivesSuggestion, BuiltinIncompleteFeatures,
32 BuiltinIncompleteFeaturesHelp, BuiltinIncompleteFeaturesNote, BuiltinKeywordIdents,
33 BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
34 BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
35 BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasGenericBounds,
36 BuiltinTypeAliasGenericBoundsSuggestion, BuiltinTypeAliasWhereClause,
37 BuiltinUnexpectedCliConfigName, BuiltinUnexpectedCliConfigValue,
38 BuiltinUngatedAsyncFnTrackCaller, BuiltinUnnameableTestItems, BuiltinUnpermittedTypeInit,
39 BuiltinUnpermittedTypeInitSub, BuiltinUnreachablePub, BuiltinUnsafe,
40 BuiltinUnstableFeatures, BuiltinUnusedDocComment, BuiltinUnusedDocCommentSub,
41 BuiltinWhileTrue, SuggestChangingAssocTypes,
42 },
1b1a35ee
XL
43 types::{transparent_newtype_field, CItemKind},
44 EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
3dfed10e 45};
487cf647 46use hir::IsAsync;
6a06907d 47use rustc_ast::attr;
74b04a01
XL
48use rustc_ast::tokenstream::{TokenStream, TokenTree};
49use rustc_ast::visit::{FnCtxt, FnKind};
3dfed10e 50use rustc_ast::{self as ast, *};
74b04a01 51use rustc_ast_pretty::pprust::{self, expr_to_string};
f035d41b 52use rustc_data_structures::fx::{FxHashMap, FxHashSet};
3dfed10e 53use rustc_data_structures::stack::ensure_sufficient_stack;
9ffffee4 54use rustc_errors::{Applicability, DecorateLint, MultiSpan};
3c0e092e 55use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
dfeec247
XL
56use rustc_hir as hir;
57use rustc_hir::def::{DefKind, Res};
94222f64 58use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
487cf647 59use rustc_hir::intravisit::FnKind as HirFnKind;
9ffffee4 60use rustc_hir::{Body, FnDecl, ForeignItemKind, GenericParamKind, Node, PatKind, PredicateOrigin};
064997fb 61use rustc_middle::lint::in_external_macro;
c295e0f8 62use rustc_middle::ty::layout::{LayoutError, LayoutOf};
1b1a35ee 63use rustc_middle::ty::print::with_no_trimmed_paths;
04454e1e 64use rustc_middle::ty::subst::GenericArgKind;
49aad941 65use rustc_middle::ty::TypeVisitableExt;
2b03887a 66use rustc_middle::ty::{self, Instance, Ty, TyCtxt, VariantDef};
49aad941 67use rustc_session::config::ExpectedValues;
94222f64 68use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
dfeec247
XL
69use rustc_span::edition::Edition;
70use rustc_span::source_map::Spanned;
f9f354fc 71use rustc_span::symbol::{kw, sym, Ident, Symbol};
04454e1e 72use rustc_span::{BytePos, InnerSpan, Span};
353b0b11 73use rustc_target::abi::{Abi, FIRST_VARIANT};
9c376795
FG
74use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
75use rustc_trait_selection::traits::{self, misc::type_allowed_to_implement_copy};
e9174d1e 76
dfeec247 77use crate::nonstandard_style::{method_context, MethodLateContext};
9fa01778 78
dfeec247 79use std::fmt::Write;
c34b1796 80
ba9703b0 81// hardwired lints from librustc_middle
dfeec247 82pub use rustc_session::lint::builtin::*;
c34b1796 83
b039eaaf 84declare_lint! {
1b1a35ee
XL
85 /// The `while_true` lint detects `while true { }`.
86 ///
87 /// ### Example
88 ///
89 /// ```rust,no_run
90 /// while true {
91 ///
92 /// }
93 /// ```
94 ///
95 /// {{produces}}
96 ///
97 /// ### Explanation
98 ///
99 /// `while true` should be replaced with `loop`. A `loop` expression is
100 /// the preferred way to write an infinite loop because it more directly
101 /// expresses the intent of the loop.
b039eaaf
SL
102 WHILE_TRUE,
103 Warn,
104 "suggest using `loop { }` instead of `while true { }`"
105}
c34b1796 106
532ac7d7 107declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
c34b1796 108
416331ca
XL
109/// Traverse through any amount of parenthesis and return the first non-parens expression.
110fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
e74abb32 111 while let ast::ExprKind::Paren(sub) = &expr.kind {
416331ca
XL
112 expr = sub;
113 }
114 expr
115}
116
117impl EarlyLintPass for WhileTrue {
9c376795 118 #[inline]
416331ca 119 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
2b03887a 120 if let ast::ExprKind::While(cond, _, label) = &e.kind
49aad941 121 && let ast::ExprKind::Lit(token_lit) = pierce_parens(cond).kind
487cf647
FG
122 && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
123 && !cond.span.from_expansion()
2b03887a
FG
124 {
125 let condition_span = e.span.with_hi(cond.span.hi());
9c376795 126 let replace = format!(
2b03887a
FG
127 "{}loop",
128 label.map_or_else(String::new, |label| format!(
129 "{}: ",
130 label.ident,
131 ))
9c376795
FG
132 );
133 cx.emit_spanned_lint(WHILE_TRUE, condition_span, BuiltinWhileTrue {
134 suggestion: condition_span,
135 replace,
136 });
c34b1796
AL
137 }
138 }
139}
140
141declare_lint! {
1b1a35ee
XL
142 /// The `box_pointers` lints use of the Box type.
143 ///
144 /// ### Example
145 ///
146 /// ```rust,compile_fail
147 /// #![deny(box_pointers)]
148 /// struct Foo {
149 /// x: Box<isize>,
150 /// }
151 /// ```
152 ///
153 /// {{produces}}
154 ///
155 /// ### Explanation
156 ///
157 /// This lint is mostly historical, and not particularly useful. `Box<T>`
158 /// used to be built into the language, and the only way to do heap
159 /// allocation. Today's Rust can call into other allocators, etc.
b039eaaf
SL
160 BOX_POINTERS,
161 Allow,
162 "use of owned (Box type) heap memory"
c34b1796
AL
163}
164
532ac7d7 165declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
b039eaaf
SL
166
167impl BoxPointers {
5099ac24
FG
168 fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
169 for leaf in ty.walk() {
49aad941
FG
170 if let GenericArgKind::Type(leaf_ty) = leaf.unpack() && leaf_ty.is_box() {
171 cx.emit_spanned_lint(BOX_POINTERS, span, BuiltinBoxPointers { ty });
c34b1796
AL
172 }
173 }
174 }
175}
176
f035d41b
XL
177impl<'tcx> LateLintPass<'tcx> for BoxPointers {
178 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 179 match it.kind {
dfeec247
XL
180 hir::ItemKind::Fn(..)
181 | hir::ItemKind::TyAlias(..)
182 | hir::ItemKind::Enum(..)
183 | hir::ItemKind::Struct(..)
184 | hir::ItemKind::Union(..) => {
9ffffee4 185 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.owner_id).subst_identity())
c30ab7b3 186 }
dfeec247 187 _ => (),
d9579d0f 188 }
d9579d0f 189
b039eaaf 190 // If it's a struct, we also have to check the fields' types
e74abb32 191 match it.kind {
dfeec247 192 hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
487cf647 193 for field in struct_def.fields() {
9ffffee4
FG
194 self.check_heap_type(
195 cx,
196 field.span,
197 cx.tcx.type_of(field.def_id).subst_identity(),
198 );
b039eaaf 199 }
d9579d0f 200 }
c30ab7b3 201 _ => (),
d9579d0f
AL
202 }
203 }
204
f035d41b 205 fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
3dfed10e 206 let ty = cx.typeck_results().node_type(e.hir_id);
b039eaaf 207 self.check_heap_type(cx, e.span, ty);
c34b1796
AL
208 }
209}
210
c34b1796 211declare_lint! {
1b1a35ee
XL
212 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
213 /// instead of `Struct { x }` in a pattern.
214 ///
215 /// ### Example
216 ///
217 /// ```rust
218 /// struct Point {
219 /// x: i32,
220 /// y: i32,
221 /// }
222 ///
223 ///
224 /// fn main() {
225 /// let p = Point {
226 /// x: 5,
227 /// y: 5,
228 /// };
229 ///
230 /// match p {
231 /// Point { x: x, y: y } => (),
232 /// }
233 /// }
234 /// ```
235 ///
236 /// {{produces}}
237 ///
238 /// ### Explanation
239 ///
240 /// The preferred style is to avoid the repetition of specifying both the
241 /// field name and the binding name if both identifiers are the same.
c34b1796
AL
242 NON_SHORTHAND_FIELD_PATTERNS,
243 Warn,
abe05a73 244 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
c34b1796
AL
245}
246
532ac7d7 247declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
c34b1796 248
f035d41b
XL
249impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
250 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
dfeec247
XL
251 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
252 let variant = cx
3dfed10e 253 .typeck_results()
dfeec247
XL
254 .pat_ty(pat)
255 .ty_adt_def()
256 .expect("struct pattern type is not an ADT")
f035d41b 257 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
3157f602 258 for fieldpat in field_pats {
e1599b0c 259 if fieldpat.is_shorthand {
3157f602 260 continue;
b039eaaf 261 }
e1599b0c 262 if fieldpat.span.from_expansion() {
83c7162d
XL
263 // Don't lint if this is a macro expansion: macro authors
264 // shouldn't have to worry about this kind of style issue
265 // (Issue #49588)
266 continue;
267 }
dfeec247
XL
268 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
269 if cx.tcx.find_field_index(ident, &variant)
487cf647 270 == Some(cx.typeck_results().field_index(fieldpat.hir_id))
dfeec247 271 {
9c376795 272 cx.emit_spanned_lint(
2b03887a
FG
273 NON_SHORTHAND_FIELD_PATTERNS,
274 fieldpat.span,
9c376795
FG
275 BuiltinNonShorthandFieldPatterns {
276 ident,
277 suggestion: fieldpat.span,
278 prefix: binding_annot.prefix_str(),
2b03887a
FG
279 },
280 );
c34b1796
AL
281 }
282 }
283 }
284 }
285 }
286}
287
c34b1796 288declare_lint! {
1b1a35ee
XL
289 /// The `unsafe_code` lint catches usage of `unsafe` code.
290 ///
291 /// ### Example
292 ///
293 /// ```rust,compile_fail
294 /// #![deny(unsafe_code)]
295 /// fn main() {
296 /// unsafe {
297 ///
298 /// }
299 /// }
300 /// ```
301 ///
302 /// {{produces}}
303 ///
304 /// ### Explanation
305 ///
306 /// This lint is intended to restrict the usage of `unsafe`, which can be
307 /// difficult to use correctly.
c34b1796
AL
308 UNSAFE_CODE,
309 Allow,
310 "usage of `unsafe` code"
311}
312
532ac7d7 313declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
c34b1796 314
3b2f2976 315impl UnsafeCode {
74b04a01
XL
316 fn report_unsafe(
317 &self,
318 cx: &EarlyContext<'_>,
319 span: Span,
9c376795 320 decorate: impl for<'a> DecorateLint<'a, ()>,
74b04a01 321 ) {
dc9dc135 322 // This comes from a macro that has `#[allow_internal_unsafe]`.
3b2f2976
XL
323 if span.allows_unsafe() {
324 return;
325 }
326
9c376795 327 cx.emit_spanned_lint(UNSAFE_CODE, span, decorate);
923072b8 328 }
3b2f2976
XL
329}
330
0731742a 331impl EarlyLintPass for UnsafeCode {
9fa01778 332 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
94222f64 333 if attr.has_name(sym::allow_internal_unsafe) {
9c376795 334 self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe);
0731742a
XL
335 }
336 }
337
9c376795 338 #[inline]
9fa01778 339 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
e74abb32 340 if let ast::ExprKind::Block(ref blk, _) = e.kind {
dc9dc135 341 // Don't warn about generated blocks; that'll just pollute the output.
0731742a 342 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
9c376795 343 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
c34b1796
AL
344 }
345 }
346 }
347
9fa01778 348 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
e74abb32 349 match it.kind {
2b03887a 350 ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => {
9c376795 351 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
2b03887a 352 }
c34b1796 353
2b03887a 354 ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => {
9c376795 355 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
2b03887a 356 }
c34b1796 357
6a06907d 358 ast::ItemKind::Fn(..) => {
353b0b11 359 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
9c376795 360 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
6a06907d 361 }
923072b8 362
353b0b11 363 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
9c376795 364 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
6a06907d 365 }
923072b8 366
353b0b11 367 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
9c376795 368 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
923072b8 369 }
6a06907d
XL
370 }
371
372 ast::ItemKind::Static(..) => {
353b0b11 373 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
9c376795 374 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
6a06907d 375 }
923072b8 376
353b0b11 377 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
9c376795 378 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
6a06907d 379 }
923072b8 380
353b0b11 381 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
9c376795 382 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
923072b8 383 }
6a06907d
XL
384 }
385
ba9703b0 386 _ => {}
c34b1796
AL
387 }
388 }
389
94222f64
XL
390 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
391 if let ast::AssocItemKind::Fn(..) = it.kind {
353b0b11 392 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
9c376795 393 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
94222f64 394 }
353b0b11 395 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
9c376795 396 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
94222f64
XL
397 }
398 }
399 }
400
74b04a01
XL
401 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
402 if let FnKind::Fn(
403 ctxt,
404 _,
405 ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
406 _,
04454e1e 407 _,
74b04a01
XL
408 body,
409 ) = fk
410 {
9c376795 411 let decorator = match ctxt {
74b04a01 412 FnCtxt::Foreign => return,
9c376795
FG
413 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
414 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
415 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
74b04a01 416 };
9c376795 417 self.report_unsafe(cx, span, decorator);
c34b1796
AL
418 }
419 }
420}
421
c34b1796 422declare_lint! {
1b1a35ee
XL
423 /// The `missing_docs` lint detects missing documentation for public items.
424 ///
425 /// ### Example
426 ///
427 /// ```rust,compile_fail
428 /// #![deny(missing_docs)]
429 /// pub fn foo() {}
430 /// ```
431 ///
432 /// {{produces}}
433 ///
434 /// ### Explanation
435 ///
436 /// This lint is intended to ensure that a library is well-documented.
437 /// Items without documentation can be difficult for users to understand
438 /// how to use properly.
439 ///
440 /// This lint is "allow" by default because it can be noisy, and not all
441 /// projects may want to enforce everything to be documented.
94b46f34 442 pub MISSING_DOCS,
c34b1796 443 Allow,
8faf50e0 444 "detects missing documentation for public members",
e74abb32 445 report_in_external_macro
c34b1796
AL
446}
447
448pub struct MissingDoc {
9fa01778 449 /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
c34b1796 450 doc_hidden_stack: Vec<bool>,
c34b1796
AL
451}
452
532ac7d7
XL
453impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
454
94222f64 455fn has_doc(attr: &ast::Attribute) -> bool {
dfeec247
XL
456 if attr.is_doc_comment() {
457 return true;
458 }
459
94222f64 460 if !attr.has_name(sym::doc) {
0731742a
XL
461 return false;
462 }
463
cdc7bbd5 464 if attr.value_str().is_some() {
0731742a
XL
465 return true;
466 }
467
468 if let Some(list) = attr.meta_item_list() {
469 for meta in list {
17df50a5 470 if meta.has_name(sym::hidden) {
0731742a
XL
471 return true;
472 }
473 }
474 }
475
476 false
477}
478
c34b1796
AL
479impl MissingDoc {
480 pub fn new() -> MissingDoc {
04454e1e 481 MissingDoc { doc_hidden_stack: vec![false] }
c34b1796
AL
482 }
483
484 fn doc_hidden(&self) -> bool {
485 *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
486 }
487
dfeec247
XL
488 fn check_missing_docs_attrs(
489 &self,
f035d41b 490 cx: &LateContext<'_>,
94222f64 491 def_id: LocalDefId,
ba9703b0 492 article: &'static str,
dfeec247
XL
493 desc: &'static str,
494 ) {
c34b1796
AL
495 // If we're building a test harness, then warning about
496 // documentation is probably not really relevant right now.
497 if cx.sess().opts.test {
498 return;
499 }
500
501 // `#[doc(hidden)]` disables missing_docs check.
502 if self.doc_hidden() {
503 return;
504 }
505
506 // Only check publicly-visible items, using the result from the privacy pass.
507 // It's an option so the crate root can also use this function (it doesn't
dc9dc135 508 // have a `NodeId`).
94222f64 509 if def_id != CRATE_DEF_ID {
2b03887a 510 if !cx.effective_visibilities.is_exported(def_id) {
c34b1796
AL
511 return;
512 }
513 }
514
04454e1e 515 let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
94222f64 516 let has_doc = attrs.iter().any(has_doc);
c34b1796 517 if !has_doc {
9c376795 518 cx.emit_spanned_lint(
2b03887a
FG
519 MISSING_DOCS,
520 cx.tcx.def_span(def_id),
9c376795 521 BuiltinMissingDoc { article, desc },
2b03887a 522 );
c34b1796
AL
523 }
524 }
525}
526
f035d41b 527impl<'tcx> LateLintPass<'tcx> for MissingDoc {
9c376795 528 #[inline]
94222f64 529 fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
dfeec247
XL
530 let doc_hidden = self.doc_hidden()
531 || attrs.iter().any(|attr| {
94222f64 532 attr.has_name(sym::doc)
dfeec247
XL
533 && match attr.meta_item_list() {
534 None => false,
535 Some(l) => attr::list_contains_name(&l, sym::hidden),
536 }
537 });
c34b1796
AL
538 self.doc_hidden_stack.push(doc_hidden);
539 }
540
f035d41b 541 fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
c34b1796
AL
542 self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
543 }
544
c295e0f8 545 fn check_crate(&mut self, cx: &LateContext<'_>) {
064997fb 546 self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
c34b1796
AL
547 }
548
f035d41b 549 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
49aad941
FG
550 // Previously the Impl and Use types have been excluded from missing docs,
551 // so we will continue to exclude them for compatibility.
552 //
553 // The documentation on `ExternCrate` is not used at the moment so no need to warn for it.
554 if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(_) =
555 it.kind
556 {
557 return;
558 }
c34b1796 559
2b03887a 560 let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
2b03887a 561 self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
c34b1796
AL
562 }
563
f035d41b 564 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
2b03887a 565 let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
c34b1796 566
2b03887a 567 self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
c34b1796
AL
568 }
569
f035d41b 570 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
9ffffee4
FG
571 let context = method_context(cx, impl_item.owner_id.def_id);
572
573 match context {
574 // If the method is an impl for a trait, don't doc.
575 MethodLateContext::TraitImpl => return,
576 MethodLateContext::TraitAutoImpl => {}
577 // If the method is an impl for an item with docs_hidden, don't doc.
578 MethodLateContext::PlainImpl => {
579 let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
580 let impl_ty = cx.tcx.type_of(parent).subst_identity();
581 let outerdef = match impl_ty.kind() {
582 ty::Adt(def, _) => Some(def.did()),
583 ty::Foreign(def_id) => Some(*def_id),
584 _ => None,
585 };
586 let is_hidden = match outerdef {
587 Some(id) => cx.tcx.is_doc_hidden(id),
588 None => false,
589 };
590 if is_hidden {
591 return;
592 }
3c0e092e
XL
593 }
594 }
595
2b03887a
FG
596 let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
597 self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
c34b1796
AL
598 }
599
1b1a35ee 600 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
2b03887a
FG
601 let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
602 self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
1b1a35ee
XL
603 }
604
6a06907d 605 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
54a0048b 606 if !sf.is_positional() {
487cf647 607 self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
c34b1796
AL
608 }
609 }
610
f035d41b 611 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
487cf647 612 self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
c34b1796
AL
613 }
614}
615
616declare_lint! {
1b1a35ee 617 /// The `missing_copy_implementations` lint detects potentially-forgotten
49aad941 618 /// implementations of [`Copy`] for public types.
1b1a35ee
XL
619 ///
620 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
621 ///
622 /// ### Example
623 ///
624 /// ```rust,compile_fail
625 /// #![deny(missing_copy_implementations)]
626 /// pub struct Foo {
627 /// pub field: i32
628 /// }
629 /// # fn main() {}
630 /// ```
631 ///
632 /// {{produces}}
633 ///
634 /// ### Explanation
635 ///
636 /// Historically (before 1.0), types were automatically marked as `Copy`
637 /// if possible. This was changed so that it required an explicit opt-in
638 /// by implementing the `Copy` trait. As part of this change, a lint was
639 /// added to alert if a copyable type was not marked `Copy`.
640 ///
641 /// This lint is "allow" by default because this code isn't bad; it is
642 /// common to write newtypes like this specifically so that a `Copy` type
643 /// is no longer `Copy`. `Copy` types can result in unintended copies of
644 /// large data which can impact performance.
c34b1796
AL
645 pub MISSING_COPY_IMPLEMENTATIONS,
646 Allow,
647 "detects potentially-forgotten implementations of `Copy`"
648}
649
532ac7d7 650declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
c34b1796 651
f035d41b
XL
652impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
653 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
49aad941
FG
654 if !(cx.effective_visibilities.is_reachable(item.owner_id.def_id)
655 && cx.tcx.local_visibility(item.owner_id.def_id).is_public())
656 {
c34b1796
AL
657 return;
658 }
e74abb32 659 let (def, ty) = match item.kind {
8faf50e0 660 hir::ItemKind::Struct(_, ref ast_generics) => {
ff7c6d11 661 if !ast_generics.params.is_empty() {
c34b1796
AL
662 return;
663 }
2b03887a 664 let def = cx.tcx.adt_def(item.owner_id);
9ffffee4 665 (def, cx.tcx.mk_adt(def, ty::List::empty()))
9e0c209e 666 }
8faf50e0 667 hir::ItemKind::Union(_, ref ast_generics) => {
ff7c6d11 668 if !ast_generics.params.is_empty() {
9e0c209e
SL
669 return;
670 }
2b03887a 671 let def = cx.tcx.adt_def(item.owner_id);
9ffffee4 672 (def, cx.tcx.mk_adt(def, ty::List::empty()))
c34b1796 673 }
8faf50e0 674 hir::ItemKind::Enum(_, ref ast_generics) => {
ff7c6d11 675 if !ast_generics.params.is_empty() {
c34b1796
AL
676 return;
677 }
2b03887a 678 let def = cx.tcx.adt_def(item.owner_id);
9ffffee4 679 (def, cx.tcx.mk_adt(def, ty::List::empty()))
c34b1796
AL
680 }
681 _ => return,
682 };
8bb4bdeb 683 if def.has_dtor(cx.tcx) {
c30ab7b3
SL
684 return;
685 }
9c376795
FG
686
687 // If the type contains a raw pointer, it may represent something like a handle,
688 // and recommending Copy might be a bad idea.
689 for field in def.all_fields() {
690 let did = field.did;
9ffffee4 691 if cx.tcx.type_of(did).subst_identity().is_unsafe_ptr() {
9c376795
FG
692 return;
693 }
694 }
0531ce1d 695 let param_env = ty::ParamEnv::empty();
2b03887a 696 if ty.is_copy_modulo_regions(cx.tcx, param_env) {
c34b1796
AL
697 return;
698 }
9c376795
FG
699
700 // We shouldn't recommend implementing `Copy` on stateful things,
701 // such as iterators.
702 if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
703 && cx.tcx
704 .infer_ctxt()
705 .build()
706 .type_implements_trait(iter_trait, [ty], param_env)
707 .must_apply_modulo_regions()
708 {
709 return;
710 }
711
712 // Default value of clippy::trivially_copy_pass_by_ref
713 const MAX_SIZE: u64 = 256;
714
715 if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
716 if size > MAX_SIZE {
717 return;
718 }
719 }
720
721 if type_allowed_to_implement_copy(
5e7ed085
FG
722 cx.tcx,
723 param_env,
724 ty,
9ffffee4 725 traits::ObligationCause::misc(item.span, item.owner_id.def_id),
5e7ed085
FG
726 )
727 .is_ok()
728 {
9c376795 729 cx.emit_spanned_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
c34b1796
AL
730 }
731 }
732}
733
734declare_lint! {
1b1a35ee 735 /// The `missing_debug_implementations` lint detects missing
49aad941 736 /// implementations of [`fmt::Debug`] for public types.
1b1a35ee
XL
737 ///
738 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
739 ///
740 /// ### Example
741 ///
742 /// ```rust,compile_fail
743 /// #![deny(missing_debug_implementations)]
744 /// pub struct Foo;
745 /// # fn main() {}
746 /// ```
747 ///
748 /// {{produces}}
749 ///
750 /// ### Explanation
751 ///
752 /// Having a `Debug` implementation on all types can assist with
753 /// debugging, as it provides a convenient way to format and display a
754 /// value. Using the `#[derive(Debug)]` attribute will automatically
755 /// generate a typical implementation, or a custom implementation can be
756 /// added by manually implementing the `Debug` trait.
757 ///
758 /// This lint is "allow" by default because adding `Debug` to all types can
759 /// have a negative impact on compile time and code size. It also requires
760 /// boilerplate to be added to every type, which can be an impediment.
c34b1796
AL
761 MISSING_DEBUG_IMPLEMENTATIONS,
762 Allow,
74b04a01 763 "detects missing implementations of Debug"
c34b1796
AL
764}
765
48663c56 766#[derive(Default)]
c34b1796 767pub struct MissingDebugImplementations {
6a06907d 768 impling_types: Option<LocalDefIdSet>,
c34b1796
AL
769}
770
532ac7d7
XL
771impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
772
f035d41b
XL
773impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
774 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
49aad941
FG
775 if !(cx.effective_visibilities.is_reachable(item.owner_id.def_id)
776 && cx.tcx.local_visibility(item.owner_id.def_id).is_public())
777 {
c34b1796
AL
778 return;
779 }
780
e74abb32 781 match item.kind {
dfeec247 782 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
c34b1796
AL
783 _ => return,
784 }
785
a2a8927a
XL
786 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
787 return
c34b1796
AL
788 };
789
790 if self.impling_types.is_none() {
6a06907d 791 let mut impls = LocalDefIdSet::default();
041b39d2 792 cx.tcx.for_each_impl(debug, |d| {
9ffffee4 793 if let Some(ty_def) = cx.tcx.type_of(d).subst_identity().ty_adt_def() {
5e7ed085 794 if let Some(def_id) = ty_def.did().as_local() {
6a06907d 795 impls.insert(def_id);
d9579d0f 796 }
c34b1796 797 }
d9579d0f
AL
798 });
799
c34b1796
AL
800 self.impling_types = Some(impls);
801 debug!("{:?}", self.impling_types);
802 }
803
2b03887a 804 if !self.impling_types.as_ref().unwrap().contains(&item.owner_id.def_id) {
9c376795 805 cx.emit_spanned_lint(
2b03887a
FG
806 MISSING_DEBUG_IMPLEMENTATIONS,
807 item.span,
9c376795 808 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
2b03887a 809 );
c34b1796
AL
810 }
811 }
812}
813
7cac9316 814declare_lint! {
1b1a35ee
XL
815 /// The `anonymous_parameters` lint detects anonymous parameters in trait
816 /// definitions.
817 ///
818 /// ### Example
819 ///
820 /// ```rust,edition2015,compile_fail
821 /// #![deny(anonymous_parameters)]
822 /// // edition 2015
823 /// pub trait Foo {
824 /// fn foo(usize);
825 /// }
826 /// fn main() {}
827 /// ```
828 ///
829 /// {{produces}}
830 ///
831 /// ### Explanation
832 ///
833 /// This syntax is mostly a historical accident, and can be worked around
834 /// quite easily by adding an `_` pattern or a descriptive identifier:
835 ///
836 /// ```rust
837 /// trait Foo {
838 /// fn foo(_: usize);
839 /// }
840 /// ```
841 ///
842 /// This syntax is now a hard error in the 2018 edition. In the 2015
cdc7bbd5 843 /// edition, this lint is "warn" by default. This lint
1b1a35ee
XL
844 /// enables the [`cargo fix`] tool with the `--edition` flag to
845 /// automatically transition old code from the 2015 edition to 2018. The
cdc7bbd5 846 /// tool will run this lint and automatically apply the
1b1a35ee
XL
847 /// suggested fix from the compiler (which is to add `_` to each
848 /// parameter). This provides a completely automated way to update old
849 /// code for a new edition. See [issue #41686] for more details.
850 ///
851 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
852 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
7cac9316 853 pub ANONYMOUS_PARAMETERS,
cdc7bbd5 854 Warn,
e74abb32
XL
855 "detects anonymous parameters",
856 @future_incompatible = FutureIncompatibleInfo {
857 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
136023e0 858 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
e74abb32 859 };
7cac9316
XL
860}
861
532ac7d7
XL
862declare_lint_pass!(
863 /// Checks for use of anonymous parameters (RFC 1685).
864 AnonymousParameters => [ANONYMOUS_PARAMETERS]
865);
7cac9316
XL
866
867impl EarlyLintPass for AnonymousParameters {
dfeec247 868 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
5099ac24 869 if cx.sess().edition() != Edition::Edition2015 {
cdc7bbd5
XL
870 // This is a hard error in future editions; avoid linting and erroring
871 return;
872 }
3c0e092e 873 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
ba9703b0
XL
874 for arg in sig.decl.inputs.iter() {
875 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
5869c6ff 876 if ident.name == kw::Empty {
2b03887a 877 let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
94b46f34 878
2b03887a
FG
879 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
880 (snip.as_str(), Applicability::MachineApplicable)
881 } else {
882 ("<type>", Applicability::HasPlaceholders)
883 };
9c376795 884 cx.emit_spanned_lint(
2b03887a
FG
885 ANONYMOUS_PARAMETERS,
886 arg.pat.span,
9c376795
FG
887 BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
888 );
7cac9316
XL
889 }
890 }
dfeec247 891 }
7cac9316
XL
892 }
893 }
894}
895
9fa01778 896/// Check for use of attributes which have been deprecated.
c30ab7b3
SL
897#[derive(Clone)]
898pub struct DeprecatedAttr {
899 // This is not free to compute, so we want to keep it around, rather than
900 // compute it for every attribute.
3c0e092e 901 depr_attrs: Vec<&'static BuiltinAttribute>,
c30ab7b3
SL
902}
903
532ac7d7
XL
904impl_lint_pass!(DeprecatedAttr => []);
905
c30ab7b3
SL
906impl DeprecatedAttr {
907 pub fn new() -> DeprecatedAttr {
dfeec247 908 DeprecatedAttr { depr_attrs: deprecated_attributes() }
c30ab7b3
SL
909 }
910}
911
c30ab7b3 912impl EarlyLintPass for DeprecatedAttr {
9fa01778 913 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
3c0e092e
XL
914 for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
915 if attr.ident().map(|ident| ident.name) == Some(*name) {
dfeec247
XL
916 if let &AttributeGate::Gated(
917 Stability::Deprecated(link, suggestion),
5869c6ff
XL
918 name,
919 reason,
dfeec247 920 _,
3c0e092e 921 ) = gate
dfeec247 922 {
9c376795
FG
923 let suggestion = match suggestion {
924 Some(msg) => {
925 BuiltinDeprecatedAttrLinkSuggestion::Msg { suggestion: attr.span, msg }
926 }
927 None => {
928 BuiltinDeprecatedAttrLinkSuggestion::Default { suggestion: attr.span }
929 }
930 };
931 cx.emit_spanned_lint(
2b03887a
FG
932 DEPRECATED,
933 attr.span,
9c376795 934 BuiltinDeprecatedAttrLink { name, reason, link, suggestion },
2b03887a 935 );
c30ab7b3
SL
936 }
937 return;
938 }
939 }
94222f64 940 if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
9c376795 941 cx.emit_spanned_lint(
2b03887a
FG
942 DEPRECATED,
943 attr.span,
9c376795
FG
944 BuiltinDeprecatedAttrUsed {
945 name: pprust::path_to_string(&attr.get_normal_item().path),
946 suggestion: attr.span,
2b03887a
FG
947 },
948 );
e1599b0c 949 }
c30ab7b3
SL
950 }
951}
952
74b04a01 953fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
136023e0
XL
954 use rustc_ast::token::CommentKind;
955
74b04a01 956 let mut attrs = attrs.iter().peekable();
3b2f2976 957
74b04a01
XL
958 // Accumulate a single span for sugared doc comments.
959 let mut sugared_span: Option<Span> = None;
3b2f2976 960
74b04a01 961 while let Some(attr) = attrs.next() {
136023e0
XL
962 let is_doc_comment = attr.is_doc_comment();
963 if is_doc_comment {
74b04a01 964 sugared_span =
29967ef6 965 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
74b04a01 966 }
3b2f2976 967
49aad941 968 if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) {
74b04a01
XL
969 continue;
970 }
532ac7d7 971
1b1a35ee 972 let span = sugared_span.take().unwrap_or(attr.span);
532ac7d7 973
94222f64 974 if is_doc_comment || attr.has_name(sym::doc) {
9c376795
FG
975 let sub = match attr.kind {
976 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
977 BuiltinUnusedDocCommentSub::PlainHelp
978 }
979 AttrKind::DocComment(CommentKind::Block, _) => {
980 BuiltinUnusedDocCommentSub::BlockHelp
981 }
982 };
983 cx.emit_spanned_lint(
2b03887a
FG
984 UNUSED_DOC_COMMENTS,
985 span,
9c376795 986 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
2b03887a 987 );
3b2f2976
XL
988 }
989 }
990}
991
992impl EarlyLintPass for UnusedDocComment {
532ac7d7 993 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
74b04a01
XL
994 let kind = match stmt.kind {
995 ast::StmtKind::Local(..) => "statements",
29967ef6
XL
996 // Disabled pending discussion in #78306
997 ast::StmtKind::Item(..) => return,
532ac7d7 998 // expressions will be reported by `check_expr`.
74b04a01
XL
999 ast::StmtKind::Empty
1000 | ast::StmtKind::Semi(_)
1001 | ast::StmtKind::Expr(_)
ba9703b0 1002 | ast::StmtKind::MacCall(_) => return,
532ac7d7
XL
1003 };
1004
74b04a01 1005 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
3b2f2976
XL
1006 }
1007
9fa01778 1008 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
e1599b0c 1009 let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
74b04a01 1010 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
3b2f2976
XL
1011 }
1012
9fa01778 1013 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
74b04a01 1014 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
3b2f2976 1015 }
a2a8927a
XL
1016
1017 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1018 warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1019 }
5e7ed085
FG
1020
1021 fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
064997fb 1022 warn_if_doc(cx, block.span, "blocks", &block.attrs());
5e7ed085
FG
1023 }
1024
1025 fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1026 if let ast::ItemKind::ForeignMod(_) = item.kind {
064997fb 1027 warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
5e7ed085
FG
1028 }
1029 }
3b2f2976
XL
1030}
1031
c34b1796 1032declare_lint! {
1b1a35ee
XL
1033 /// The `no_mangle_const_items` lint detects any `const` items with the
1034 /// [`no_mangle` attribute].
1035 ///
1036 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1037 ///
1038 /// ### Example
1039 ///
1040 /// ```rust,compile_fail
1041 /// #[no_mangle]
1042 /// const FOO: i32 = 5;
1043 /// ```
1044 ///
1045 /// {{produces}}
1046 ///
1047 /// ### Explanation
1048 ///
1049 /// Constants do not have their symbols exported, and therefore, this
1050 /// probably means you meant to use a [`static`], not a [`const`].
1051 ///
1052 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1053 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
c34b1796
AL
1054 NO_MANGLE_CONST_ITEMS,
1055 Deny,
1056 "const items will not have their symbols exported"
1057}
1058
9cc50fc6 1059declare_lint! {
1b1a35ee
XL
1060 /// The `no_mangle_generic_items` lint detects generic items that must be
1061 /// mangled.
1062 ///
1063 /// ### Example
1064 ///
1065 /// ```rust
1066 /// #[no_mangle]
1067 /// fn foo<T>(t: T) {
1068 ///
1069 /// }
1070 /// ```
1071 ///
1072 /// {{produces}}
1073 ///
1074 /// ### Explanation
1075 ///
136023e0 1076 /// A function with generics must have its symbol mangled to accommodate
1b1a35ee
XL
1077 /// the generic parameter. The [`no_mangle` attribute] has no effect in
1078 /// this situation, and should be removed.
1079 ///
1080 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
9cc50fc6
SL
1081 NO_MANGLE_GENERIC_ITEMS,
1082 Warn,
1083 "generic items must be mangled"
1084}
1085
532ac7d7 1086declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
c34b1796 1087
f035d41b
XL
1088impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1089 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
6a06907d 1090 let attrs = cx.tcx.hir().attrs(it.hir_id());
94222f64
XL
1091 let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1092 impl_generics: Option<&hir::Generics<'_>>,
1093 generics: &hir::Generics<'_>,
1094 span| {
1095 for param in
1096 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1097 {
1098 match param.kind {
1099 GenericParamKind::Lifetime { .. } => {}
1100 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
9c376795 1101 cx.emit_spanned_lint(
2b03887a
FG
1102 NO_MANGLE_GENERIC_ITEMS,
1103 span,
9c376795 1104 BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span },
2b03887a 1105 );
94222f64
XL
1106 break;
1107 }
1108 }
1109 }
1110 };
e74abb32 1111 match it.kind {
8faf50e0 1112 hir::ItemKind::Fn(.., ref generics, _) => {
353b0b11 1113 if let Some(no_mangle_attr) = attr::find_by_name(attrs, sym::no_mangle) {
94222f64 1114 check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
c34b1796 1115 }
c30ab7b3 1116 }
8faf50e0 1117 hir::ItemKind::Const(..) => {
353b0b11 1118 if attr::contains_name(attrs, sym::no_mangle) {
9c376795
FG
1119 // account for "pub const" (#45562)
1120 let start = cx
1121 .tcx
1122 .sess
1123 .source_map()
1124 .span_to_snippet(it.span)
1125 .map(|snippet| snippet.find("const").unwrap_or(0))
1126 .unwrap_or(0) as u32;
1127 // `const` is 5 chars
1128 let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1129
c34b1796
AL
1130 // Const items do not refer to a particular location in memory, and therefore
1131 // don't have anything to attach a symbol to
9c376795 1132 cx.emit_spanned_lint(
2b03887a
FG
1133 NO_MANGLE_CONST_ITEMS,
1134 it.span,
9c376795 1135 BuiltinConstNoMangle { suggestion },
2b03887a 1136 );
c34b1796
AL
1137 }
1138 }
04454e1e
FG
1139 hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1140 for it in *items {
94222f64 1141 if let hir::AssocItemKind::Fn { .. } = it.kind {
353b0b11
FG
1142 if let Some(no_mangle_attr) =
1143 attr::find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
94222f64
XL
1144 {
1145 check_no_mangle_on_generic_fn(
1146 no_mangle_attr,
1147 Some(generics),
2b03887a 1148 cx.tcx.hir().get_generics(it.id.owner_id.def_id).unwrap(),
94222f64
XL
1149 it.span,
1150 );
1151 }
1152 }
1153 }
1154 }
c30ab7b3 1155 _ => {}
c34b1796
AL
1156 }
1157 }
1158}
1159
bd371182 1160declare_lint! {
1b1a35ee
XL
1161 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1162 /// T` because it is [undefined behavior].
1163 ///
1164 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1165 ///
1166 /// ### Example
1167 ///
1168 /// ```rust,compile_fail
1169 /// unsafe {
1170 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1171 /// }
1172 /// ```
1173 ///
1174 /// {{produces}}
1175 ///
1176 /// ### Explanation
1177 ///
1178 /// Certain assumptions are made about aliasing of data, and this transmute
1179 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1180 ///
1181 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
bd371182
AL
1182 MUTABLE_TRANSMUTES,
1183 Deny,
5099ac24 1184 "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
bd371182
AL
1185}
1186
532ac7d7 1187declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
bd371182 1188
f035d41b
XL
1189impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1190 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
487cf647 1191 if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1b1a35ee 1192 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
ba9703b0 1193 {
487cf647 1194 if from_mutbl < to_mutbl {
9c376795 1195 cx.emit_spanned_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
bd371182 1196 }
bd371182
AL
1197 }
1198
f035d41b
XL
1199 fn get_transmute_from_to<'tcx>(
1200 cx: &LateContext<'tcx>,
dfeec247
XL
1201 expr: &hir::Expr<'_>,
1202 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
e74abb32 1203 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
f035d41b 1204 cx.qpath_res(qpath, expr.hir_id)
476ff2be
SL
1205 } else {
1206 return None;
1207 };
48663c56 1208 if let Res::Def(DefKind::Fn, did) = def {
bd371182
AL
1209 if !def_id_is_transmute(cx, did) {
1210 return None;
1211 }
3dfed10e 1212 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
041b39d2 1213 let from = sig.inputs().skip_binder()[0];
f035d41b 1214 let to = sig.output().skip_binder();
532ac7d7 1215 return Some((from, to));
bd371182
AL
1216 }
1217 None
1218 }
1219
f035d41b 1220 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
923072b8 1221 cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
bd371182
AL
1222 }
1223 }
1224}
1225
c34b1796 1226declare_lint! {
1b1a35ee 1227 /// The `unstable_features` is deprecated and should no longer be used.
c34b1796
AL
1228 UNSTABLE_FEATURES,
1229 Allow,
62682a34 1230 "enabling unstable features (deprecated. do not use)"
c34b1796
AL
1231}
1232
532ac7d7
XL
1233declare_lint_pass!(
1234 /// Forbids using the `#[feature(...)]` attribute
1235 UnstableFeatures => [UNSTABLE_FEATURES]
1236);
b039eaaf 1237
f035d41b 1238impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
3dfed10e 1239 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
94222f64 1240 if attr.has_name(sym::feature) {
cc61c64b 1241 if let Some(items) = attr.meta_item_list() {
62682a34 1242 for item in items {
9c376795 1243 cx.emit_spanned_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
62682a34
SL
1244 }
1245 }
c34b1796
AL
1246 }
1247 }
1248}
bd371182 1249
487cf647
FG
1250declare_lint! {
1251 /// The `ungated_async_fn_track_caller` lint warns when the
1252 /// `#[track_caller]` attribute is used on an async function, method, or
1253 /// closure, without enabling the corresponding unstable feature flag.
1254 ///
1255 /// ### Example
1256 ///
1257 /// ```rust
1258 /// #[track_caller]
1259 /// async fn foo() {}
1260 /// ```
1261 ///
1262 /// {{produces}}
1263 ///
1264 /// ### Explanation
1265 ///
1266 /// The attribute must be used in conjunction with the
1267 /// [`closure_track_caller` feature flag]. Otherwise, the `#[track_caller]`
9c376795 1268 /// annotation will function as a no-op.
487cf647
FG
1269 ///
1270 /// [`closure_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/closure-track-caller.html
1271 UNGATED_ASYNC_FN_TRACK_CALLER,
1272 Warn,
1273 "enabling track_caller on an async fn is a no-op unless the closure_track_caller feature is enabled"
1274}
1275
1276declare_lint_pass!(
9ffffee4 1277 /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to
487cf647
FG
1278 /// do anything
1279 UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1280);
1281
1282impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1283 fn check_fn(
1284 &mut self,
1285 cx: &LateContext<'_>,
1286 fn_kind: HirFnKind<'_>,
1287 _: &'tcx FnDecl<'_>,
1288 _: &'tcx Body<'_>,
1289 span: Span,
9ffffee4 1290 def_id: LocalDefId,
487cf647
FG
1291 ) {
1292 if fn_kind.asyncness() == IsAsync::Async
1293 && !cx.tcx.features().closure_track_caller
487cf647 1294 // Now, check if the function has the `#[track_caller]` attribute
353b0b11 1295 && let Some(attr) = cx.tcx.get_attr(def_id, sym::track_caller)
9ffffee4
FG
1296 {
1297 cx.emit_spanned_lint(UNGATED_ASYNC_FN_TRACK_CALLER, attr.span, BuiltinUngatedAsyncFnTrackCaller {
1298 label: span,
1299 parse_sess: &cx.tcx.sess.parse_sess,
1300 });
1301 }
487cf647
FG
1302 }
1303}
1304
abe05a73 1305declare_lint! {
1b1a35ee
XL
1306 /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1307 /// the crate root.
1308 ///
1309 /// ### Example
1310 ///
1311 /// ```rust,compile_fail
1312 /// #![deny(unreachable_pub)]
1313 /// mod foo {
1314 /// pub mod bar {
1315 ///
1316 /// }
1317 /// }
1318 /// ```
1319 ///
1320 /// {{produces}}
1321 ///
1322 /// ### Explanation
1323 ///
1324 /// A bare `pub` visibility may be misleading if the item is not actually
1325 /// publicly exported from the crate. The `pub(crate)` visibility is
1326 /// recommended to be used instead, which more clearly expresses the intent
1327 /// that the item is only visible within its own crate.
1328 ///
1329 /// This lint is "allow" by default because it will trigger for a large
1330 /// amount existing Rust code, and has some false-positives. Eventually it
1331 /// is desired for this to become warn-by-default.
0531ce1d 1332 pub UNREACHABLE_PUB,
abe05a73
XL
1333 Allow,
1334 "`pub` items not reachable from crate root"
1335}
1336
532ac7d7
XL
1337declare_lint_pass!(
1338 /// Lint for items marked `pub` that aren't reachable from other crates.
1339 UnreachablePub => [UNREACHABLE_PUB]
1340);
abe05a73
XL
1341
1342impl UnreachablePub {
dfeec247
XL
1343 fn perform_lint(
1344 &self,
f035d41b 1345 cx: &LateContext<'_>,
dfeec247 1346 what: &str,
94222f64 1347 def_id: LocalDefId,
04454e1e 1348 vis_span: Span,
dfeec247
XL
1349 exportable: bool,
1350 ) {
8faf50e0 1351 let mut applicability = Applicability::MachineApplicable;
2b03887a
FG
1352 if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1353 {
04454e1e
FG
1354 if vis_span.from_expansion() {
1355 applicability = Applicability::MaybeIncorrect;
1356 }
064997fb 1357 let def_span = cx.tcx.def_span(def_id);
9c376795 1358 cx.emit_spanned_lint(
2b03887a
FG
1359 UNREACHABLE_PUB,
1360 def_span,
9c376795
FG
1361 BuiltinUnreachablePub {
1362 what,
1363 suggestion: (vis_span, applicability),
1364 help: exportable.then_some(()),
2b03887a
FG
1365 },
1366 );
abe05a73
XL
1367 }
1368 }
1369}
1370
f035d41b
XL
1371impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1372 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
04454e1e
FG
1373 // Do not warn for fake `use` statements.
1374 if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1375 return;
1376 }
2b03887a 1377 self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
abe05a73
XL
1378 }
1379
f035d41b 1380 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
2b03887a 1381 self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
abe05a73
XL
1382 }
1383
6a06907d 1384 fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
487cf647 1385 let map = cx.tcx.hir();
9c376795 1386 if matches!(map.get_parent(field.hir_id), Node::Variant(_)) {
487cf647
FG
1387 return;
1388 }
1389 self.perform_lint(cx, "field", field.def_id, field.vis_span, false);
abe05a73
XL
1390 }
1391
f035d41b 1392 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
04454e1e 1393 // Only lint inherent impl items.
2b03887a
FG
1394 if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() {
1395 self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false);
04454e1e 1396 }
abe05a73
XL
1397 }
1398}
0531ce1d 1399
0531ce1d 1400declare_lint! {
1b1a35ee
XL
1401 /// The `type_alias_bounds` lint detects bounds in type aliases.
1402 ///
1403 /// ### Example
1404 ///
1405 /// ```rust
1406 /// type SendVec<T: Send> = Vec<T>;
1407 /// ```
1408 ///
1409 /// {{produces}}
1410 ///
1411 /// ### Explanation
1412 ///
1413 /// The trait bounds in a type alias are currently ignored, and should not
1414 /// be included to avoid confusion. This was previously allowed
1415 /// unintentionally; this may become a hard error in the future.
0531ce1d
XL
1416 TYPE_ALIAS_BOUNDS,
1417 Warn,
1418 "bounds in type aliases are not enforced"
1419}
1420
532ac7d7
XL
1421declare_lint_pass!(
1422 /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1423 /// They are relevant when using associated types, but otherwise neither checked
1424 /// at definition site nor enforced at use site.
1425 TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1426);
0531ce1d
XL
1427
1428impl TypeAliasBounds {
9c376795 1429 pub(crate) fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
0531ce1d
XL
1430 match *qpath {
1431 hir::QPath::TypeRelative(ref ty, _) => {
1432 // If this is a type variable, we found a `T::Assoc`.
e74abb32 1433 match ty.kind {
29967ef6
XL
1434 hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1435 matches!(path.res, Res::Def(DefKind::TyParam, _))
1436 }
dfeec247 1437 _ => false,
0531ce1d
XL
1438 }
1439 }
3dfed10e 1440 hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
0531ce1d
XL
1441 }
1442 }
0531ce1d
XL
1443}
1444
f035d41b
XL
1445impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1446 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
a2a8927a
XL
1447 let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1448 return
0531ce1d 1449 };
f035d41b
XL
1450 if let hir::TyKind::OpaqueDef(..) = ty.kind {
1451 // Bounds are respected for `type X = impl Trait`
1452 return;
1453 }
49aad941
FG
1454 if cx.tcx.type_of(item.owner_id).skip_binder().has_inherent_projections() {
1455 // Bounds are respected for `type X = … Type::Inherent …`
1456 return;
1457 }
0531ce1d 1458 // There must not be a where clause
04454e1e
FG
1459 if type_alias_generics.predicates.is_empty() {
1460 return;
0531ce1d 1461 }
04454e1e
FG
1462
1463 let mut where_spans = Vec::new();
1464 let mut inline_spans = Vec::new();
1465 let mut inline_sugg = Vec::new();
1466 for p in type_alias_generics.predicates {
1467 let span = p.span();
1468 if p.in_where_clause() {
1469 where_spans.push(span);
1470 } else {
1471 for b in p.bounds() {
1472 inline_spans.push(b.span());
1473 }
1474 inline_sugg.push((span, String::new()));
0531ce1d
XL
1475 }
1476 }
04454e1e
FG
1477
1478 let mut suggested_changing_assoc_types = false;
1479 if !where_spans.is_empty() {
9c376795
FG
1480 let sub = (!suggested_changing_assoc_types).then(|| {
1481 suggested_changing_assoc_types = true;
1482 SuggestChangingAssocTypes { ty }
04454e1e 1483 });
9c376795
FG
1484 cx.emit_spanned_lint(
1485 TYPE_ALIAS_BOUNDS,
1486 where_spans,
1487 BuiltinTypeAliasWhereClause {
1488 suggestion: type_alias_generics.where_clause_span,
1489 sub,
1490 },
1491 );
04454e1e
FG
1492 }
1493
1494 if !inline_spans.is_empty() {
9c376795
FG
1495 let suggestion = BuiltinTypeAliasGenericBoundsSuggestion { suggestions: inline_sugg };
1496 let sub = (!suggested_changing_assoc_types).then(|| {
1497 suggested_changing_assoc_types = true;
1498 SuggestChangingAssocTypes { ty }
04454e1e 1499 });
9c376795
FG
1500 cx.emit_spanned_lint(
1501 TYPE_ALIAS_BOUNDS,
1502 inline_spans,
1503 BuiltinTypeAliasGenericBounds { suggestion, sub },
1504 );
04454e1e 1505 }
0531ce1d
XL
1506 }
1507}
1508
532ac7d7
XL
1509declare_lint_pass!(
1510 /// Lint constants that are erroneous.
1511 /// Without this lint, we might not get any diagnostic if the constant is
1512 /// unused within this crate, even though downstream crates can't use it
1513 /// without producing an error.
1514 UnusedBrokenConst => []
1515);
9fa01778 1516
f035d41b
XL
1517impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1518 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 1519 match it.kind {
8faf50e0 1520 hir::ItemKind::Const(_, body_id) => {
1b1a35ee
XL
1521 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1522 // trigger the query once for all constants since that will already report the errors
923072b8 1523 cx.tcx.ensure().const_eval_poly(def_id);
dfeec247 1524 }
8faf50e0 1525 hir::ItemKind::Static(_, _, body_id) => {
1b1a35ee 1526 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
923072b8 1527 cx.tcx.ensure().eval_static_initializer(def_id);
dfeec247
XL
1528 }
1529 _ => {}
0531ce1d
XL
1530 }
1531 }
1532}
94b46f34 1533
94b46f34 1534declare_lint! {
1b1a35ee
XL
1535 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1536 /// any type parameters.
1537 ///
1538 /// ### Example
1539 ///
1540 /// ```rust
1541 /// #![feature(trivial_bounds)]
1542 /// pub struct A where i32: Copy;
1543 /// ```
1544 ///
1545 /// {{produces}}
1546 ///
1547 /// ### Explanation
1548 ///
1549 /// Usually you would not write a trait bound that you know is always
1550 /// true, or never true. However, when using macros, the macro may not
1551 /// know whether or not the constraint would hold or not at the time when
1552 /// generating the code. Currently, the compiler does not alert you if the
1553 /// constraint is always true, and generates an error if it is never true.
1554 /// The `trivial_bounds` feature changes this to be a warning in both
1555 /// cases, giving macros more freedom and flexibility to generate code,
1556 /// while still providing a signal when writing non-macro code that
1557 /// something is amiss.
1558 ///
1559 /// See [RFC 2056] for more details. This feature is currently only
1560 /// available on the nightly channel, see [tracking issue #48214].
1561 ///
1562 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1563 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
94b46f34
XL
1564 TRIVIAL_BOUNDS,
1565 Warn,
1566 "these bounds don't depend on an type parameters"
1567}
1568
532ac7d7
XL
1569declare_lint_pass!(
1570 /// Lint for trait and lifetime bounds that don't depend on type parameters
1571 /// which either do nothing, or stop the item from being used.
1572 TrivialConstraints => [TRIVIAL_BOUNDS]
1573);
94b46f34 1574
f035d41b
XL
1575impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1576 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
487cf647 1577 use rustc_middle::ty::Clause;
5869c6ff 1578 use rustc_middle::ty::PredicateKind::*;
94b46f34 1579
94b46f34 1580 if cx.tcx.features().trivial_bounds {
2b03887a 1581 let predicates = cx.tcx.predicates_of(item.owner_id);
e74abb32 1582 for &(predicate, span) in predicates.predicates {
5869c6ff 1583 let predicate_kind_name = match predicate.kind().skip_binder() {
487cf647
FG
1584 Clause(Clause::Trait(..)) => "trait",
1585 Clause(Clause::TypeOutlives(..)) |
1586 Clause(Clause::RegionOutlives(..)) => "lifetime",
94b46f34 1587
9ffffee4
FG
1588 // `ConstArgHasType` is never global as `ct` is always a param
1589 Clause(Clause::ConstArgHasType(..)) |
94b46f34
XL
1590 // Ignore projections, as they can only be global
1591 // if the trait bound is global
487cf647 1592 Clause(Clause::Projection(..)) |
353b0b11 1593 AliasRelate(..) |
94b46f34
XL
1594 // Ignore bounds that a user can't type
1595 WellFormed(..) |
1596 ObjectSafe(..) |
1597 ClosureKind(..) |
1598 Subtype(..) |
94222f64 1599 Coerce(..) |
9ffffee4 1600 // FIXME(generic_const_exprs): `ConstEvaluatable` can be written
f9f354fc 1601 ConstEvaluatable(..) |
1b1a35ee 1602 ConstEquate(..) |
487cf647 1603 Ambiguous |
1b1a35ee 1604 TypeWellFormedFromEnv(..) => continue,
94b46f34 1605 };
5099ac24 1606 if predicate.is_global() {
9c376795 1607 cx.emit_spanned_lint(
2b03887a
FG
1608 TRIVIAL_BOUNDS,
1609 span,
9c376795 1610 BuiltinTrivialBounds { predicate_kind_name, predicate },
2b03887a 1611 );
94b46f34
XL
1612 }
1613 }
1614 }
1615 }
1616}
1617
532ac7d7
XL
1618declare_lint_pass!(
1619 /// Does nothing as a lint pass, but registers some `Lint`s
1620 /// which are used by other parts of the compiler.
1621 SoftLints => [
1622 WHILE_TRUE,
1623 BOX_POINTERS,
1624 NON_SHORTHAND_FIELD_PATTERNS,
1625 UNSAFE_CODE,
1626 MISSING_DOCS,
1627 MISSING_COPY_IMPLEMENTATIONS,
1628 MISSING_DEBUG_IMPLEMENTATIONS,
1629 ANONYMOUS_PARAMETERS,
1630 UNUSED_DOC_COMMENTS,
532ac7d7
XL
1631 NO_MANGLE_CONST_ITEMS,
1632 NO_MANGLE_GENERIC_ITEMS,
1633 MUTABLE_TRANSMUTES,
1634 UNSTABLE_FEATURES,
532ac7d7
XL
1635 UNREACHABLE_PUB,
1636 TYPE_ALIAS_BOUNDS,
1637 TRIVIAL_BOUNDS
1638 ]
1639);
8faf50e0
XL
1640
1641declare_lint! {
1b1a35ee
XL
1642 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1643 /// pattern], which is deprecated.
1644 ///
1645 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1646 ///
1647 /// ### Example
1648 ///
c295e0f8 1649 /// ```rust,edition2018
1b1a35ee
XL
1650 /// let x = 123;
1651 /// match x {
1652 /// 0...100 => {}
1653 /// _ => {}
1654 /// }
1655 /// ```
1656 ///
1657 /// {{produces}}
1658 ///
1659 /// ### Explanation
1660 ///
1661 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1662 /// confusion with the [`..` range expression]. Use the new form instead.
1663 ///
1664 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
8faf50e0 1665 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
dc9dc135 1666 Warn,
17df50a5
XL
1667 "`...` range patterns are deprecated",
1668 @future_incompatible = FutureIncompatibleInfo {
94222f64 1669 reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
136023e0 1670 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
17df50a5 1671 };
8faf50e0
XL
1672}
1673
48663c56
XL
1674#[derive(Default)]
1675pub struct EllipsisInclusiveRangePatterns {
1676 /// If `Some(_)`, suppress all subsequent pattern
1677 /// warnings for better diagnostics.
1678 node_id: Option<ast::NodeId>,
1679}
1680
1681impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
8faf50e0
XL
1682
1683impl EarlyLintPass for EllipsisInclusiveRangePatterns {
48663c56
XL
1684 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1685 if self.node_id.is_some() {
1686 // Don't recursively warn about patterns inside range endpoints.
dfeec247 1687 return;
48663c56
XL
1688 }
1689
3dfed10e 1690 use self::ast::{PatKind, RangeSyntax::DotDotDot};
13cf67c4
XL
1691
1692 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1693 /// corresponding to the ellipsis.
dfeec247 1694 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
e74abb32 1695 match &pat.kind {
dfeec247
XL
1696 PatKind::Range(
1697 a,
1698 Some(b),
1699 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1700 ) => Some((a.as_deref(), b, *span)),
13cf67c4
XL
1701 _ => None,
1702 }
1703 }
8faf50e0 1704
49aad941 1705 let (parentheses, endpoints) = match &pat.kind {
13cf67c4
XL
1706 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1707 _ => (false, matches_ellipsis_pat(pat)),
1708 };
1709
1710 if let Some((start, end, join)) = endpoints {
49aad941 1711 if parentheses {
48663c56 1712 self.node_id = Some(pat.id);
17df50a5
XL
1713 let end = expr_to_string(&end);
1714 let replace = match start {
1715 Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1716 None => format!("&(..={})", end),
1717 };
1718 if join.edition() >= Edition::Edition2021 {
49aad941 1719 cx.sess().emit_err(BuiltinEllipsisInclusiveRangePatterns {
f2b60f7d
FG
1720 span: pat.span,
1721 suggestion: pat.span,
17df50a5 1722 replace,
f2b60f7d 1723 });
17df50a5 1724 } else {
9c376795
FG
1725 cx.emit_spanned_lint(
1726 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1727 pat.span,
1728 BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1729 suggestion: pat.span,
2b03887a 1730 replace,
9c376795
FG
1731 },
1732 );
17df50a5 1733 }
13cf67c4 1734 } else {
923072b8 1735 let replace = "..=";
17df50a5 1736 if join.edition() >= Edition::Edition2021 {
49aad941 1737 cx.sess().emit_err(BuiltinEllipsisInclusiveRangePatterns {
f2b60f7d
FG
1738 span: pat.span,
1739 suggestion: join,
1740 replace: replace.to_string(),
1741 });
17df50a5 1742 } else {
9c376795
FG
1743 cx.emit_spanned_lint(
1744 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1745 join,
1746 BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1747 suggestion: join,
1748 },
1749 );
17df50a5 1750 }
13cf67c4 1751 };
8faf50e0
XL
1752 }
1753 }
48663c56
XL
1754
1755 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1756 if let Some(node_id) = self.node_id {
1757 if pat.id == node_id {
1758 self.node_id = None
1759 }
1760 }
1761 }
8faf50e0
XL
1762}
1763
1764declare_lint! {
1b1a35ee
XL
1765 /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1766 /// that are not able to be run by the test harness because they are in a
1767 /// position where they are not nameable.
1768 ///
1769 /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1770 ///
1771 /// ### Example
1772 ///
1773 /// ```rust,test
1774 /// fn main() {
1775 /// #[test]
1776 /// fn foo() {
1777 /// // This test will not fail because it does not run.
1778 /// assert_eq!(1, 2);
1779 /// }
1780 /// }
1781 /// ```
1782 ///
1783 /// {{produces}}
1784 ///
1785 /// ### Explanation
1786 ///
1787 /// In order for the test harness to run a test, the test function must be
1788 /// located in a position where it can be accessed from the crate root.
1789 /// This generally means it must be defined in a module, and not anywhere
1790 /// else such as inside another function. The compiler previously allowed
1791 /// this without an error, so a lint was added as an alert that a test is
1792 /// not being used. Whether or not this should be allowed has not yet been
1793 /// decided, see [RFC 2471] and [issue #36629].
1794 ///
1795 /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1796 /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
b7449926 1797 UNNAMEABLE_TEST_ITEMS,
8faf50e0 1798 Warn,
416331ca 1799 "detects an item that cannot be named being marked as `#[test_case]`",
e74abb32 1800 report_in_external_macro
8faf50e0
XL
1801}
1802
b7449926 1803pub struct UnnameableTestItems {
2b03887a 1804 boundary: Option<hir::OwnerId>, // Id of the item under which things are not nameable
b7449926
XL
1805 items_nameable: bool,
1806}
8faf50e0 1807
532ac7d7
XL
1808impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1809
b7449926
XL
1810impl UnnameableTestItems {
1811 pub fn new() -> Self {
ba9703b0 1812 Self { boundary: None, items_nameable: true }
b7449926
XL
1813 }
1814}
1815
f035d41b
XL
1816impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1817 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
b7449926 1818 if self.items_nameable {
dfeec247
XL
1819 if let hir::ItemKind::Mod(..) = it.kind {
1820 } else {
b7449926 1821 self.items_nameable = false;
2b03887a 1822 self.boundary = Some(it.owner_id);
8faf50e0 1823 }
b7449926
XL
1824 return;
1825 }
1826
6a06907d 1827 let attrs = cx.tcx.hir().attrs(it.hir_id());
353b0b11 1828 if let Some(attr) = attr::find_by_name(attrs, sym::rustc_test_marker) {
9c376795 1829 cx.emit_spanned_lint(UNNAMEABLE_TEST_ITEMS, attr.span, BuiltinUnnameableTestItems);
b7449926
XL
1830 }
1831 }
1832
f035d41b 1833 fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
2b03887a 1834 if !self.items_nameable && self.boundary == Some(it.owner_id) {
b7449926
XL
1835 self.items_nameable = true;
1836 }
8faf50e0
XL
1837 }
1838}
1839
1840declare_lint! {
1b1a35ee
XL
1841 /// The `keyword_idents` lint detects edition keywords being used as an
1842 /// identifier.
1843 ///
1844 /// ### Example
1845 ///
1846 /// ```rust,edition2015,compile_fail
1847 /// #![deny(keyword_idents)]
1848 /// // edition 2015
1849 /// fn dyn() {}
1850 /// ```
1851 ///
1852 /// {{produces}}
1853 ///
1854 /// ### Explanation
1855 ///
1856 /// Rust [editions] allow the language to evolve without breaking
1857 /// backwards compatibility. This lint catches code that uses new keywords
1858 /// that are added to the language that are used as identifiers (such as a
1859 /// variable name, function name, etc.). If you switch the compiler to a
1860 /// new edition without updating the code, then it will fail to compile if
1861 /// you are using a new keyword as an identifier.
1862 ///
1863 /// You can manually change the identifiers to a non-keyword, or use a
1864 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1865 ///
1866 /// This lint solves the problem automatically. It is "allow" by default
1867 /// because the code is perfectly valid in older editions. The [`cargo
1868 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1869 /// and automatically apply the suggested fix from the compiler (which is
1870 /// to use a raw identifier). This provides a completely automated way to
1871 /// update old code for a new edition.
1872 ///
1873 /// [editions]: https://doc.rust-lang.org/edition-guide/
1874 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1875 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
b7449926 1876 pub KEYWORD_IDENTS,
8faf50e0 1877 Allow,
e74abb32
XL
1878 "detects edition keywords being used as an identifier",
1879 @future_incompatible = FutureIncompatibleInfo {
1880 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
136023e0 1881 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
e74abb32 1882 };
8faf50e0
XL
1883}
1884
532ac7d7
XL
1885declare_lint_pass!(
1886 /// Check for uses of edition keywords used as an identifier.
1887 KeywordIdents => [KEYWORD_IDENTS]
1888);
8faf50e0 1889
532ac7d7 1890struct UnderMacro(bool);
8faf50e0 1891
b7449926 1892impl KeywordIdents {
49aad941
FG
1893 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) {
1894 for tt in tokens.trees() {
8faf50e0 1895 match tt {
dc9dc135 1896 // Only report non-raw idents.
064997fb 1897 TokenTree::Token(token, _) => {
dfeec247
XL
1898 if let Some((ident, false)) = token.ident() {
1899 self.check_ident_token(cx, UnderMacro(true), ident);
1900 }
8faf50e0 1901 }
dfeec247 1902 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
8faf50e0
XL
1903 }
1904 }
1905 }
8faf50e0 1906
dfeec247
XL
1907 fn check_ident_token(
1908 &mut self,
1909 cx: &EarlyContext<'_>,
1910 UnderMacro(under_macro): UnderMacro,
f9f354fc 1911 ident: Ident,
dfeec247 1912 ) {
5099ac24 1913 let next_edition = match cx.sess().edition() {
b7449926 1914 Edition::Edition2015 => {
dc9dc135
XL
1915 match ident.name {
1916 kw::Async | kw::Await | kw::Try => Edition::Edition2018,
532ac7d7
XL
1917
1918 // rust-lang/rust#56327: Conservatively do not
1919 // attempt to report occurrences of `dyn` within
1920 // macro definitions or invocations, because `dyn`
1921 // can legitimately occur as a contextual keyword
1922 // in 2015 code denoting its 2018 meaning, and we
1923 // do not want rustfix to inject bugs into working
1924 // code by rewriting such occurrences.
1925 //
1926 // But if we see `dyn` outside of a macro, we know
1927 // its precise role in the parsed AST and thus are
1928 // assured this is truly an attempt to use it as
1929 // an identifier.
dc9dc135 1930 kw::Dyn if !under_macro => Edition::Edition2018,
532ac7d7 1931
b7449926
XL
1932 _ => return,
1933 }
1934 }
1935
0731742a 1936 // There are no new keywords yet for the 2018 edition and beyond.
48663c56 1937 _ => return,
b7449926
XL
1938 };
1939
dc9dc135 1940 // Don't lint `r#foo`.
353b0b11 1941 if cx.sess().parse_sess.raw_identifier_spans.contains(ident.span) {
b7449926 1942 return;
8faf50e0 1943 }
b7449926 1944
9c376795 1945 cx.emit_spanned_lint(
2b03887a
FG
1946 KEYWORD_IDENTS,
1947 ident.span,
9c376795 1948 BuiltinKeywordIdents { kw: ident, next: next_edition, suggestion: ident.span },
2b03887a 1949 );
8faf50e0
XL
1950 }
1951}
0bf4aa26 1952
532ac7d7 1953impl EarlyLintPass for KeywordIdents {
f2b60f7d 1954 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
49aad941 1955 self.check_tokens(cx, &mac_def.body.tokens);
9fa01778 1956 }
ba9703b0 1957 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
49aad941 1958 self.check_tokens(cx, &mac.args.tokens);
532ac7d7 1959 }
f9f354fc 1960 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
532ac7d7 1961 self.check_ident_token(cx, UnderMacro(false), ident);
0bf4aa26
XL
1962 }
1963}
1964
532ac7d7
XL
1965declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1966
0bf4aa26 1967impl ExplicitOutlivesRequirements {
dc9dc135 1968 fn lifetimes_outliving_lifetime<'tcx>(
487cf647 1969 inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
f2b60f7d 1970 def_id: DefId,
dc9dc135 1971 ) -> Vec<ty::Region<'tcx>> {
dfeec247
XL
1972 inferred_outlives
1973 .iter()
487cf647
FG
1974 .filter_map(|(clause, _)| match *clause {
1975 ty::Clause::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
f2b60f7d 1976 ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b),
3dfed10e
XL
1977 _ => None,
1978 },
dfeec247
XL
1979 _ => None,
1980 })
1981 .collect()
dc9dc135 1982 }
0bf4aa26 1983
dc9dc135 1984 fn lifetimes_outliving_type<'tcx>(
487cf647 1985 inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
dc9dc135
XL
1986 index: u32,
1987 ) -> Vec<ty::Region<'tcx>> {
dfeec247
XL
1988 inferred_outlives
1989 .iter()
487cf647
FG
1990 .filter_map(|(clause, _)| match *clause {
1991 ty::Clause::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
3dfed10e 1992 a.is_param(index).then_some(b)
0bf4aa26 1993 }
dfeec247
XL
1994 _ => None,
1995 })
1996 .collect()
dc9dc135
XL
1997 }
1998
dc9dc135
XL
1999 fn collect_outlives_bound_spans<'tcx>(
2000 &self,
2001 tcx: TyCtxt<'tcx>,
dfeec247 2002 bounds: &hir::GenericBounds<'_>,
dc9dc135 2003 inferred_outlives: &[ty::Region<'tcx>],
9c376795 2004 predicate_span: Span,
dc9dc135 2005 ) -> Vec<(usize, Span)> {
9ffffee4 2006 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
dc9dc135
XL
2007
2008 bounds
2009 .iter()
2010 .enumerate()
2011 .filter_map(|(i, bound)| {
9c376795
FG
2012 let hir::GenericBound::Outlives(lifetime) = bound else {
2013 return None;
2014 };
2015
9ffffee4
FG
2016 let is_inferred = match tcx.named_bound_var(lifetime.hir_id) {
2017 Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives
9c376795
FG
2018 .iter()
2019 .any(|r| matches!(**r, ty::ReEarlyBound(ebr) if { ebr.def_id == def_id })),
2020 _ => false,
2021 };
2022
2023 if !is_inferred {
2024 return None;
dc9dc135 2025 }
9c376795
FG
2026
2027 let span = bound.span().find_ancestor_inside(predicate_span)?;
2028 if in_external_macro(tcx.sess, span) {
2029 return None;
2030 }
2031
2032 Some((i, span))
dc9dc135
XL
2033 })
2034 .collect()
0bf4aa26
XL
2035 }
2036
2037 fn consolidate_outlives_bound_spans(
2038 &self,
2039 lo: Span,
dfeec247
XL
2040 bounds: &hir::GenericBounds<'_>,
2041 bound_spans: Vec<(usize, Span)>,
0bf4aa26
XL
2042 ) -> Vec<Span> {
2043 if bounds.is_empty() {
2044 return Vec::new();
2045 }
2046 if bound_spans.len() == bounds.len() {
dfeec247 2047 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
0bf4aa26
XL
2048 // If all bounds are inferable, we want to delete the colon, so
2049 // start from just after the parameter (span passed as argument)
2050 vec![lo.to(last_bound_span)]
2051 } else {
2052 let mut merged = Vec::new();
2053 let mut last_merged_i = None;
2054
2055 let mut from_start = true;
2056 for (i, bound_span) in bound_spans {
2057 match last_merged_i {
dc9dc135 2058 // If the first bound is inferable, our span should also eat the leading `+`.
0bf4aa26
XL
2059 None if i == 0 => {
2060 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2061 last_merged_i = Some(0);
dfeec247 2062 }
0bf4aa26 2063 // If consecutive bounds are inferable, merge their spans
dfeec247 2064 Some(h) if i == h + 1 => {
0bf4aa26
XL
2065 if let Some(tail) = merged.last_mut() {
2066 // Also eat the trailing `+` if the first
2067 // more-than-one bound is inferable
2068 let to_span = if from_start && i < bounds.len() {
dfeec247 2069 bounds[i + 1].span().shrink_to_lo()
0bf4aa26
XL
2070 } else {
2071 bound_span
2072 };
2073 *tail = tail.to(to_span);
2074 last_merged_i = Some(i);
2075 } else {
2076 bug!("another bound-span visited earlier");
2077 }
dfeec247 2078 }
0bf4aa26
XL
2079 _ => {
2080 // When we find a non-inferable bound, subsequent inferable bounds
2081 // won't be consecutive from the start (and we'll eat the leading
2082 // `+` rather than the trailing one)
2083 from_start = false;
dfeec247 2084 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
0bf4aa26
XL
2085 last_merged_i = Some(i);
2086 }
2087 }
2088 }
2089 merged
2090 }
2091 }
2092}
2093
f035d41b
XL
2094impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2095 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
9ffffee4 2096 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
dc9dc135 2097
2b03887a 2098 let def_id = item.owner_id.def_id;
9c376795
FG
2099 if let hir::ItemKind::Struct(_, hir_generics)
2100 | hir::ItemKind::Enum(_, hir_generics)
2101 | hir::ItemKind::Union(_, hir_generics) = item.kind
dc9dc135
XL
2102 {
2103 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2104 if inferred_outlives.is_empty() {
2105 return;
2106 }
2107
2108 let ty_generics = cx.tcx.generics_of(def_id);
2109
0bf4aa26
XL
2110 let mut bound_count = 0;
2111 let mut lint_spans = Vec::new();
0bf4aa26
XL
2112 let mut where_lint_spans = Vec::new();
2113 let mut dropped_predicate_count = 0;
04454e1e
FG
2114 let num_predicates = hir_generics.predicates.len();
2115 for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
9c376795
FG
2116 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2117 match where_predicate {
2118 hir::WherePredicate::RegionPredicate(predicate) => {
9ffffee4
FG
2119 if let Some(ResolvedArg::EarlyBound(region_def_id)) =
2120 cx.tcx.named_bound_var(predicate.lifetime.hir_id)
9c376795 2121 {
a2a8927a 2122 (
9c376795
FG
2123 Self::lifetimes_outliving_lifetime(
2124 inferred_outlives,
2125 region_def_id,
2126 ),
a2a8927a
XL
2127 &predicate.bounds,
2128 predicate.span,
9c376795 2129 predicate.in_where_clause,
a2a8927a 2130 )
9c376795 2131 } else {
dfeec247
XL
2132 continue;
2133 }
dc9dc135 2134 }
9c376795
FG
2135 hir::WherePredicate::BoundPredicate(predicate) => {
2136 // FIXME we can also infer bounds on associated types,
2137 // and should check for them here.
2138 match predicate.bounded_ty.kind {
2139 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2140 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2141 continue;
2142 };
2143 let index = ty_generics.param_def_id_to_index[&def_id];
2144 (
2145 Self::lifetimes_outliving_type(inferred_outlives, index),
2146 &predicate.bounds,
2147 predicate.span,
2148 predicate.origin == PredicateOrigin::WhereClause,
2149 )
2150 }
2151 _ => {
2152 continue;
2153 }
2154 }
2155 }
2156 _ => continue,
2157 };
dc9dc135
XL
2158 if relevant_lifetimes.is_empty() {
2159 continue;
2160 }
2161
9c376795
FG
2162 let bound_spans = self.collect_outlives_bound_spans(
2163 cx.tcx,
2164 bounds,
2165 &relevant_lifetimes,
2166 predicate_span,
2167 );
dc9dc135
XL
2168 bound_count += bound_spans.len();
2169
2170 let drop_predicate = bound_spans.len() == bounds.len();
2171 if drop_predicate {
2172 dropped_predicate_count += 1;
2173 }
2174
9ffffee4
FG
2175 if drop_predicate {
2176 if !in_where_clause {
2177 lint_spans.push(predicate_span);
2178 } else if predicate_span.from_expansion() {
2179 // Don't try to extend the span if it comes from a macro expansion.
2180 where_lint_spans.push(predicate_span);
2181 } else if i + 1 < num_predicates {
2182 // If all the bounds on a predicate were inferable and there are
2183 // further predicates, we want to eat the trailing comma.
2184 let next_predicate_span = hir_generics.predicates[i + 1].span();
2185 if next_predicate_span.from_expansion() {
2186 where_lint_spans.push(predicate_span);
2187 } else {
2188 where_lint_spans
2189 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2190 }
2191 } else {
2192 // Eat the optional trailing comma after the last predicate.
2193 let where_span = hir_generics.where_clause_span;
2194 if where_span.from_expansion() {
2195 where_lint_spans.push(predicate_span);
2196 } else {
2197 where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2198 }
2199 }
dc9dc135 2200 } else {
dfeec247 2201 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
9c376795 2202 predicate_span.shrink_to_lo(),
dfeec247
XL
2203 bounds,
2204 bound_spans,
2205 ));
0bf4aa26
XL
2206 }
2207 }
2208
2209 // If all predicates are inferable, drop the entire clause
2210 // (including the `where`)
923072b8
FG
2211 if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
2212 {
2213 let where_span = hir_generics.where_clause_span;
dc9dc135
XL
2214 // Extend the where clause back to the closing `>` of the
2215 // generics, except for tuple struct, which have the `where`
2216 // after the fields of the struct.
dfeec247
XL
2217 let full_where_span =
2218 if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2219 where_span
2220 } else {
2221 hir_generics.span.shrink_to_hi().to(where_span)
2222 };
9c376795
FG
2223
2224 // Due to macro expansions, the `full_where_span` might not actually contain all predicates.
2225 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2226 lint_spans.push(full_where_span);
2227 } else {
2228 lint_spans.extend(where_lint_spans);
2229 }
0bf4aa26
XL
2230 } else {
2231 lint_spans.extend(where_lint_spans);
2232 }
2233
2234 if !lint_spans.is_empty() {
9c376795
FG
2235 // Do not automatically delete outlives requirements from macros.
2236 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2237 {
2238 Applicability::MachineApplicable
2239 } else {
2240 Applicability::MaybeIncorrect
2241 };
2242
9ffffee4
FG
2243 // Due to macros, there might be several predicates with the same span
2244 // and we only want to suggest removing them once.
2245 lint_spans.sort_unstable();
2246 lint_spans.dedup();
2247
9c376795 2248 cx.emit_spanned_lint(
2b03887a
FG
2249 EXPLICIT_OUTLIVES_REQUIREMENTS,
2250 lint_spans.clone(),
9c376795
FG
2251 BuiltinExplicitOutlives {
2252 count: bound_count,
2253 suggestion: BuiltinExplicitOutlivesSuggestion {
2254 spans: lint_spans,
2255 applicability,
2256 },
2b03887a
FG
2257 },
2258 );
0bf4aa26 2259 }
0bf4aa26
XL
2260 }
2261 }
0bf4aa26 2262}
416331ca
XL
2263
2264declare_lint! {
1b1a35ee
XL
2265 /// The `incomplete_features` lint detects unstable features enabled with
2266 /// the [`feature` attribute] that may function improperly in some or all
2267 /// cases.
2268 ///
2269 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2270 ///
2271 /// ### Example
2272 ///
2273 /// ```rust
94222f64 2274 /// #![feature(generic_const_exprs)]
1b1a35ee
XL
2275 /// ```
2276 ///
2277 /// {{produces}}
2278 ///
2279 /// ### Explanation
2280 ///
2281 /// Although it is encouraged for people to experiment with unstable
2282 /// features, some of them are known to be incomplete or faulty. This lint
2283 /// is a signal that the feature has not yet been finished, and you may
2284 /// experience problems with it.
416331ca
XL
2285 pub INCOMPLETE_FEATURES,
2286 Warn,
2287 "incomplete features that may function improperly in some or all cases"
2288}
2289
2290declare_lint_pass!(
cdc7bbd5 2291 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
416331ca
XL
2292 IncompleteFeatures => [INCOMPLETE_FEATURES]
2293);
2294
2295impl EarlyLintPass for IncompleteFeatures {
2296 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
5099ac24 2297 let features = cx.sess().features_untracked();
dfeec247
XL
2298 features
2299 .declared_lang_features
2300 .iter()
2301 .map(|(name, span, _)| (name, span))
416331ca 2302 .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
136023e0 2303 .filter(|(&name, _)| features.incomplete(name))
f9f354fc 2304 .for_each(|(&name, &span)| {
9c376795
FG
2305 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2306 .map(|n| BuiltinIncompleteFeaturesNote { n });
9ffffee4
FG
2307 let help =
2308 HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp);
9c376795 2309 cx.emit_spanned_lint(
2b03887a
FG
2310 INCOMPLETE_FEATURES,
2311 span,
9c376795
FG
2312 BuiltinIncompleteFeatures { name, note, help },
2313 );
416331ca
XL
2314 });
2315 }
2316}
2317
5869c6ff 2318const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
29967ef6 2319
416331ca 2320declare_lint! {
1b1a35ee 2321 /// The `invalid_value` lint detects creating a value that is not valid,
17df50a5 2322 /// such as a null reference.
1b1a35ee
XL
2323 ///
2324 /// ### Example
2325 ///
2326 /// ```rust,no_run
2327 /// # #![allow(unused)]
2328 /// unsafe {
2329 /// let x: &'static i32 = std::mem::zeroed();
2330 /// }
2331 /// ```
2332 ///
2333 /// {{produces}}
2334 ///
2335 /// ### Explanation
2336 ///
2337 /// In some situations the compiler can detect that the code is creating
2338 /// an invalid value, which should be avoided.
2339 ///
2340 /// In particular, this lint will check for improper use of
2341 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2342 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2343 /// lint should provide extra information to indicate what the problem is
2344 /// and a possible solution.
2345 ///
2346 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2347 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2348 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2349 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2350 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
416331ca
XL
2351 pub INVALID_VALUE,
2352 Warn,
17df50a5 2353 "an invalid value is being created (such as a null reference)"
416331ca
XL
2354}
2355
2356declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2357
9c376795
FG
2358/// Information about why a type cannot be initialized this way.
2359pub struct InitError {
2360 pub(crate) message: String,
2361 /// Spans from struct fields and similar that can be obtained from just the type.
2362 pub(crate) span: Option<Span>,
2363 /// Used to report a trace through adts.
2364 pub(crate) nested: Option<Box<InitError>>,
2365}
2366impl InitError {
2367 fn spanned(self, span: Span) -> InitError {
2368 Self { span: Some(span), ..self }
2369 }
2370
2371 fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2372 assert!(self.nested.is_none());
2373 Self { nested: nested.into().map(Box::new), ..self }
2374 }
2375}
2376
2377impl<'a> From<&'a str> for InitError {
2378 fn from(s: &'a str) -> Self {
2379 s.to_owned().into()
2380 }
2381}
2382impl From<String> for InitError {
2383 fn from(message: String) -> Self {
2384 Self { message, span: None, nested: None }
2385 }
2386}
2387
f035d41b
XL
2388impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2389 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
e1599b0c 2390 #[derive(Debug, Copy, Clone, PartialEq)]
dfeec247
XL
2391 enum InitKind {
2392 Zeroed,
2393 Uninit,
fc512014 2394 }
416331ca 2395
e1599b0c 2396 /// Test if this constant is all-0.
dfeec247 2397 fn is_zero(expr: &hir::Expr<'_>) -> bool {
e1599b0c 2398 use hir::ExprKind::*;
3dfed10e 2399 use rustc_ast::LitKind::*;
e74abb32 2400 match &expr.kind {
dfeec247 2401 Lit(lit) => {
e1599b0c
XL
2402 if let Int(i, _) = lit.node {
2403 i == 0
2404 } else {
2405 false
dfeec247
XL
2406 }
2407 }
2408 Tup(tup) => tup.iter().all(is_zero),
2409 _ => false,
e1599b0c
XL
2410 }
2411 }
2412
2413 /// Determine if this expression is a "dangerous initialization".
f035d41b 2414 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
e74abb32 2415 if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
60c5eb7d 2416 // Find calls to `mem::{uninitialized,zeroed}` methods.
e74abb32 2417 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
f035d41b 2418 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
c295e0f8
XL
2419 match cx.tcx.get_diagnostic_name(def_id) {
2420 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2421 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2422 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2423 _ => {}
e1599b0c 2424 }
60c5eb7d 2425 }
f2b60f7d 2426 } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
60c5eb7d 2427 // Find problematic calls to `MaybeUninit::assume_init`.
3dfed10e 2428 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
60c5eb7d
XL
2429 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2430 // This is a call to *some* method named `assume_init`.
2431 // See if the `self` parameter is one of the dangerous constructors.
f2b60f7d 2432 if let hir::ExprKind::Call(ref path_expr, _) = receiver.kind {
60c5eb7d 2433 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
f035d41b 2434 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
c295e0f8
XL
2435 match cx.tcx.get_diagnostic_name(def_id) {
2436 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2437 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2438 _ => {}
60c5eb7d
XL
2439 }
2440 }
2441 }
e1599b0c
XL
2442 }
2443 }
2444
2445 None
2446 }
2447
2b03887a
FG
2448 fn variant_find_init_error<'tcx>(
2449 cx: &LateContext<'tcx>,
487cf647 2450 ty: Ty<'tcx>,
2b03887a
FG
2451 variant: &VariantDef,
2452 substs: ty::SubstsRef<'tcx>,
2453 descr: &str,
2454 init: InitKind,
2455 ) -> Option<InitError> {
487cf647
FG
2456 let mut field_err = variant.fields.iter().find_map(|field| {
2457 ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(|mut err| {
2458 if !field.did.is_local() {
2459 err
2460 } else if err.span.is_none() {
2461 err.span = Some(cx.tcx.def_span(field.did));
2462 write!(&mut err.message, " (in this {descr})").unwrap();
2463 err
2b03887a 2464 } else {
487cf647
FG
2465 InitError::from(format!("in this {descr}"))
2466 .spanned(cx.tcx.def_span(field.did))
2467 .nested(err)
2b03887a
FG
2468 }
2469 })
487cf647
FG
2470 });
2471
2472 // Check if this ADT has a constrained layout (like `NonNull` and friends).
2473 if let Ok(layout) = cx.tcx.layout_of(cx.param_env.and(ty)) {
2474 if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &layout.abi {
2475 let range = scalar.valid_range(cx);
2476 let msg = if !range.contains(0) {
2477 "must be non-null"
2478 } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2479 // Prefer reporting on the fields over the entire struct for uninit,
2480 // as the information bubbles out and it may be unclear why the type can't
2481 // be null from just its outside signature.
2482
2483 "must be initialized inside its custom valid range"
2484 } else {
2485 return field_err;
2486 };
2487 if let Some(field_err) = &mut field_err {
2488 // Most of the time, if the field error is the same as the struct error,
2489 // the struct error only happens because of the field error.
2490 if field_err.message.contains(msg) {
2491 field_err.message = format!("because {}", field_err.message);
2492 }
2493 }
2494 return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2495 }
2496 }
2497 field_err
3dfed10e
XL
2498 }
2499
416331ca
XL
2500 /// Return `Some` only if we are sure this type does *not*
2501 /// allow zero initialization.
e1599b0c 2502 fn ty_find_init_error<'tcx>(
5e7ed085 2503 cx: &LateContext<'tcx>,
e1599b0c
XL
2504 ty: Ty<'tcx>,
2505 init: InitKind,
2506 ) -> Option<InitError> {
923072b8 2507 use rustc_type_ir::sty::TyKind::*;
1b1a35ee 2508 match ty.kind() {
416331ca 2509 // Primitive types that don't like 0 as a value.
487cf647
FG
2510 Ref(..) => Some("references must be non-null".into()),
2511 Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2512 FnPtr(..) => Some("function pointers must be non-null".into()),
2513 Never => Some("the `!` type has no valid value".into()),
1b1a35ee 2514 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
dfeec247
XL
2515 // raw ptr to dyn Trait
2516 {
487cf647 2517 Some("the vtable of a wide raw pointer must be non-null".into())
dfeec247 2518 }
e1599b0c 2519 // Primitive types with other constraints.
dfeec247 2520 Bool if init == InitKind::Uninit => {
487cf647 2521 Some("booleans must be either `true` or `false`".into())
dfeec247
XL
2522 }
2523 Char if init == InitKind::Uninit => {
487cf647 2524 Some("characters must be a valid Unicode codepoint".into())
dfeec247 2525 }
f2b60f7d 2526 Int(_) | Uint(_) if init == InitKind::Uninit => {
487cf647 2527 Some("integers must be initialized".into())
f2b60f7d 2528 }
487cf647 2529 Float(_) if init == InitKind::Uninit => Some("floats must be initialized".into()),
f2b60f7d 2530 RawPtr(_) if init == InitKind::Uninit => {
487cf647 2531 Some("raw pointers must be initialized".into())
f2b60f7d 2532 }
2b03887a 2533 // Recurse and checks for some compound types. (but not unions)
416331ca 2534 Adt(adt_def, substs) if !adt_def.is_union() => {
2b03887a
FG
2535 // Handle structs.
2536 if adt_def.is_struct() {
2537 return variant_find_init_error(
2538 cx,
487cf647 2539 ty,
2b03887a
FG
2540 adt_def.non_enum_variant(),
2541 substs,
2542 "struct field",
2543 init,
2544 );
2545 }
2546 // And now, enums.
2547 let span = cx.tcx.def_span(adt_def.did());
2548 let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2549 let definitely_inhabited = match variant
2550 .inhabited_predicate(cx.tcx, *adt_def)
2551 .subst(cx.tcx, substs)
2552 .apply_any_module(cx.tcx, cx.param_env)
2553 {
49aad941 2554 // Entirely skip uninhabited variants.
2b03887a
FG
2555 Some(false) => return None,
2556 // Forward the others, but remember which ones are definitely inhabited.
2557 Some(true) => true,
2558 None => false,
2559 };
2560 Some((variant, definitely_inhabited))
2561 });
2562 let Some(first_variant) = potential_variants.next() else {
487cf647 2563 return Some(InitError::from("enums with no inhabited variants have no valid value").spanned(span));
2b03887a
FG
2564 };
2565 // So we have at least one potentially inhabited variant. Might we have two?
2566 let Some(second_variant) = potential_variants.next() else {
2567 // There is only one potentially inhabited variant. So we can recursively check that variant!
2568 return variant_find_init_error(
2569 cx,
487cf647 2570 ty,
2b03887a
FG
2571 &first_variant.0,
2572 substs,
2573 "field of the only potentially inhabited enum variant",
2574 init,
2575 );
2576 };
2577 // So we have at least two potentially inhabited variants.
2578 // If we can prove that we have at least two *definitely* inhabited variants,
2579 // then we have a tag and hence leaving this uninit is definitely disallowed.
2580 // (Leaving it zeroed could be okay, depending on which variant is encoded as zero tag.)
2581 if init == InitKind::Uninit {
2582 let definitely_inhabited = (first_variant.1 as usize)
2583 + (second_variant.1 as usize)
2584 + potential_variants
2585 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2586 .count();
2587 if definitely_inhabited > 1 {
487cf647
FG
2588 return Some(InitError::from(
2589 "enums with multiple inhabited variants have to be initialized to a variant",
2590 ).spanned(span));
3dfed10e 2591 }
416331ca 2592 }
2b03887a
FG
2593 // We couldn't find anything wrong here.
2594 None
416331ca
XL
2595 }
2596 Tuple(..) => {
2597 // Proceed recursively, check all fields.
5e7ed085
FG
2598 ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2599 }
2600 Array(ty, len) => {
9ffffee4 2601 if matches!(len.try_eval_target_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
5e7ed085
FG
2602 // Array length known at array non-empty -- recurse.
2603 ty_find_init_error(cx, *ty, init)
2604 } else {
2605 // Empty array or size unknown.
2606 None
2607 }
416331ca 2608 }
416331ca
XL
2609 // Conservative fallback.
2610 _ => None,
2611 }
2612 }
2613
e1599b0c
XL
2614 if let Some(init) = is_dangerous_init(cx, expr) {
2615 // This conjures an instance of a type out of nothing,
2616 // using zeroed or uninitialized memory.
2617 // We are extremely conservative with what we warn about.
3dfed10e 2618 let conjured_ty = cx.typeck_results().expr_ty(expr);
9c376795
FG
2619 if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2620 let msg = match init {
2621 InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
49aad941 2622 InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit,
9c376795
FG
2623 };
2624 let sub = BuiltinUnpermittedTypeInitSub { err };
2625 cx.emit_spanned_lint(
2b03887a
FG
2626 INVALID_VALUE,
2627 expr.span,
9ffffee4
FG
2628 BuiltinUnpermittedTypeInit {
2629 msg,
2630 ty: conjured_ty,
2631 label: expr.span,
2632 sub,
2633 tcx: cx.tcx,
2634 },
2b03887a 2635 );
416331ca
XL
2636 }
2637 }
2638 }
2639}
f035d41b
XL
2640
2641declare_lint! {
1b1a35ee
XL
2642 /// The `clashing_extern_declarations` lint detects when an `extern fn`
2643 /// has been declared with the same name but different types.
2644 ///
2645 /// ### Example
2646 ///
2647 /// ```rust
2648 /// mod m {
2649 /// extern "C" {
2650 /// fn foo();
2651 /// }
2652 /// }
2653 ///
2654 /// extern "C" {
2655 /// fn foo(_: u32);
2656 /// }
2657 /// ```
2658 ///
2659 /// {{produces}}
2660 ///
2661 /// ### Explanation
2662 ///
2663 /// Because two symbols of the same name cannot be resolved to two
2664 /// different functions at link time, and one function cannot possibly
2665 /// have two types, a clashing extern declaration is almost certainly a
2666 /// mistake. Check to make sure that the `extern` definitions are correct
2667 /// and equivalent, and possibly consider unifying them in one location.
2668 ///
2669 /// This lint does not run between crates because a project may have
2670 /// dependencies which both rely on the same extern function, but declare
2671 /// it in a different (but valid) way. For example, they may both declare
2672 /// an opaque type for one or more of the arguments (which would end up
2673 /// distinct types), or use types that are valid conversions in the
2674 /// language the `extern fn` is defined in. In these cases, the compiler
2675 /// can't say that the clashing declaration is incorrect.
f035d41b 2676 pub CLASHING_EXTERN_DECLARATIONS,
3dfed10e 2677 Warn,
f035d41b
XL
2678 "detects when an extern fn has been declared with the same name but different types"
2679}
2680
2681pub struct ClashingExternDeclarations {
5869c6ff
XL
2682 /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2683 /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2684 /// the symbol should be reported as a clashing declaration.
2685 // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2686 // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
9ffffee4 2687 seen_decls: FxHashMap<Symbol, hir::OwnerId>,
f035d41b
XL
2688}
2689
2690/// Differentiate between whether the name for an extern decl came from the link_name attribute or
2691/// just from declaration itself. This is important because we don't want to report clashes on
2692/// symbol name if they don't actually clash because one or the other links against a symbol with a
2693/// different name.
2694enum SymbolName {
2695 /// The name of the symbol + the span of the annotation which introduced the link name.
2696 Link(Symbol, Span),
2697 /// No link name, so just the name of the symbol.
2698 Normal(Symbol),
2699}
2700
2701impl SymbolName {
2702 fn get_name(&self) -> Symbol {
2703 match self {
2704 SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2705 }
2706 }
2707}
2708
2709impl ClashingExternDeclarations {
923072b8 2710 pub(crate) fn new() -> Self {
f035d41b
XL
2711 ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2712 }
9ffffee4 2713
f035d41b
XL
2714 /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2715 /// for the item, return its HirId without updating the set.
9ffffee4 2716 fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<hir::OwnerId> {
2b03887a 2717 let did = fi.owner_id.to_def_id();
5869c6ff
XL
2718 let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2719 let name = Symbol::intern(tcx.symbol_name(instance).name);
9ffffee4 2720 if let Some(&existing_id) = self.seen_decls.get(&name) {
f035d41b
XL
2721 // Avoid updating the map with the new entry when we do find a collision. We want to
2722 // make sure we're always pointing to the first definition as the previous declaration.
2723 // This lets us avoid emitting "knock-on" diagnostics.
9ffffee4 2724 Some(existing_id)
f035d41b 2725 } else {
9ffffee4 2726 self.seen_decls.insert(name, fi.owner_id)
f035d41b
XL
2727 }
2728 }
2729
2730 /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2731 /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2732 /// symbol's name.
2733 fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
f035d41b 2734 if let Some((overridden_link_name, overridden_link_name_span)) =
2b03887a 2735 tcx.codegen_fn_attrs(fi.owner_id).link_name.map(|overridden_link_name| {
f035d41b
XL
2736 // FIXME: Instead of searching through the attributes again to get span
2737 // information, we could have codegen_fn_attrs also give span information back for
2738 // where the attribute was defined. However, until this is found to be a
2739 // bottleneck, this does just fine.
353b0b11 2740 (overridden_link_name, tcx.get_attr(fi.owner_id, sym::link_name).unwrap().span)
f035d41b
XL
2741 })
2742 {
2743 SymbolName::Link(overridden_link_name, overridden_link_name_span)
2744 } else {
2745 SymbolName::Normal(fi.ident.name)
2746 }
2747 }
2748
2749 /// Checks whether two types are structurally the same enough that the declarations shouldn't
2750 /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2751 /// with the same members (as the declarations shouldn't clash).
3dfed10e
XL
2752 fn structurally_same_type<'tcx>(
2753 cx: &LateContext<'tcx>,
2754 a: Ty<'tcx>,
2755 b: Ty<'tcx>,
2756 ckind: CItemKind,
2757 ) -> bool {
2758 fn structurally_same_type_impl<'tcx>(
2759 seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2760 cx: &LateContext<'tcx>,
2761 a: Ty<'tcx>,
2762 b: Ty<'tcx>,
2763 ckind: CItemKind,
2764 ) -> bool {
2765 debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
1b1a35ee
XL
2766 let tcx = cx.tcx;
2767
2768 // Given a transparent newtype, reach through and grab the inner
2769 // type unless the newtype makes the type non-null.
353b0b11 2770 let non_transparent_ty = |mut ty: Ty<'tcx>| -> Ty<'tcx> {
1b1a35ee
XL
2771 loop {
2772 if let ty::Adt(def, substs) = *ty.kind() {
04454e1e 2773 let is_transparent = def.repr().transparent();
5e7ed085 2774 let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
1b1a35ee
XL
2775 debug!(
2776 "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2777 ty, is_transparent, is_non_null
2778 );
2779 if is_transparent && !is_non_null {
353b0b11
FG
2780 debug_assert_eq!(def.variants().len(), 1);
2781 let v = &def.variant(FIRST_VARIANT);
2782 // continue with `ty`'s non-ZST field,
2783 // otherwise `ty` is a ZST and we can return
2784 if let Some(field) = transparent_newtype_field(tcx, v) {
2785 ty = field.ty(tcx, substs);
2786 continue;
2787 }
1b1a35ee
XL
2788 }
2789 }
2790 debug!("non_transparent_ty -> {:?}", ty);
2791 return ty;
2792 }
2793 };
2794
2795 let a = non_transparent_ty(a);
2796 let b = non_transparent_ty(b);
2797
3dfed10e
XL
2798 if !seen_types.insert((a, b)) {
2799 // We've encountered a cycle. There's no point going any further -- the types are
2800 // structurally the same.
353b0b11
FG
2801 true
2802 } else if a == b {
3dfed10e
XL
2803 // All nominally-same types are structurally same, too.
2804 true
2805 } else {
2806 // Do a full, depth-first comparison between the two.
923072b8 2807 use rustc_type_ir::sty::TyKind::*;
1b1a35ee
XL
2808 let a_kind = a.kind();
2809 let b_kind = b.kind();
2810
2811 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2812 debug!("compare_layouts({:?}, {:?})", a, b);
5e7ed085
FG
2813 let a_layout = &cx.layout_of(a)?.layout.abi();
2814 let b_layout = &cx.layout_of(b)?.layout.abi();
1b1a35ee
XL
2815 debug!(
2816 "comparing layouts: {:?} == {:?} = {}",
2817 a_layout,
2818 b_layout,
2819 a_layout == b_layout
2820 );
2821 Ok(a_layout == b_layout)
3dfed10e
XL
2822 };
2823
2824 #[allow(rustc::usage_of_ty_tykind)]
2825 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2826 kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2827 };
2828
2829 ensure_sufficient_stack(|| {
2830 match (a_kind, b_kind) {
04454e1e 2831 (Adt(a_def, _), Adt(b_def, _)) => {
1b1a35ee
XL
2832 // We can immediately rule out these types as structurally same if
2833 // their layouts differ.
2834 match compare_layouts(a, b) {
2835 Ok(false) => return false,
2836 _ => (), // otherwise, continue onto the full, fields comparison
2837 }
2838
3dfed10e 2839 // Grab a flattened representation of all fields.
5e7ed085
FG
2840 let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2841 let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
1b1a35ee
XL
2842
2843 // Perform a structural comparison for each field.
2844 a_fields.eq_by(
3dfed10e
XL
2845 b_fields,
2846 |&ty::FieldDef { did: a_did, .. },
2847 &ty::FieldDef { did: b_did, .. }| {
2848 structurally_same_type_impl(
2849 seen_types,
2850 cx,
9ffffee4
FG
2851 tcx.type_of(a_did).subst_identity(),
2852 tcx.type_of(b_did).subst_identity(),
3dfed10e
XL
2853 ckind,
2854 )
2855 },
2856 )
2857 }
2858 (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2859 // For arrays, we also check the constness of the type.
923072b8 2860 a_const.kind() == b_const.kind()
5099ac24 2861 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
3dfed10e
XL
2862 }
2863 (Slice(a_ty), Slice(b_ty)) => {
5099ac24 2864 structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
3dfed10e
XL
2865 }
2866 (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2867 a_tymut.mutbl == b_tymut.mutbl
2868 && structurally_same_type_impl(
5099ac24 2869 seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
3dfed10e
XL
2870 )
2871 }
2872 (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2873 // For structural sameness, we don't need the region to be same.
2874 a_mut == b_mut
5099ac24 2875 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
3dfed10e
XL
2876 }
2877 (FnDef(..), FnDef(..)) => {
2878 let a_poly_sig = a.fn_sig(tcx);
2879 let b_poly_sig = b.fn_sig(tcx);
2880
064997fb
FG
2881 // We don't compare regions, but leaving bound regions around ICEs, so
2882 // we erase them.
2883 let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
2884 let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
3dfed10e
XL
2885
2886 (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2887 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2888 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
5099ac24 2889 structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
3dfed10e
XL
2890 })
2891 && structurally_same_type_impl(
2892 seen_types,
2893 cx,
2894 a_sig.output(),
2895 b_sig.output(),
2896 ckind,
2897 )
2898 }
2899 (Tuple(a_substs), Tuple(b_substs)) => {
5e7ed085 2900 a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
3dfed10e
XL
2901 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2902 })
2903 }
2904 // For these, it's not quite as easy to define structural-sameness quite so easily.
2905 // For the purposes of this lint, take the conservative approach and mark them as
2906 // not structurally same.
2907 (Dynamic(..), Dynamic(..))
2908 | (Error(..), Error(..))
2909 | (Closure(..), Closure(..))
2910 | (Generator(..), Generator(..))
2911 | (GeneratorWitness(..), GeneratorWitness(..))
9c376795 2912 | (Alias(ty::Projection, ..), Alias(ty::Projection, ..))
49aad941 2913 | (Alias(ty::Inherent, ..), Alias(ty::Inherent, ..))
9c376795 2914 | (Alias(ty::Opaque, ..), Alias(ty::Opaque, ..)) => false,
3dfed10e
XL
2915
2916 // These definitely should have been caught above.
2917 (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2918
2919 // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2920 // enum layout optimisation is being applied.
2921 (Adt(..), other_kind) | (other_kind, Adt(..))
2922 if is_primitive_or_pointer(other_kind) =>
2923 {
2924 let (primitive, adt) =
1b1a35ee 2925 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
3dfed10e
XL
2926 if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2927 ty == primitive
2928 } else {
1b1a35ee 2929 compare_layouts(a, b).unwrap_or(false)
3dfed10e
XL
2930 }
2931 }
2932 // Otherwise, just compare the layouts. This may fail to lint for some
2933 // incompatible types, but at the very least, will stop reads into
2934 // uninitialised memory.
1b1a35ee 2935 _ => compare_layouts(a, b).unwrap_or(false),
3dfed10e
XL
2936 }
2937 })
f035d41b
XL
2938 }
2939 }
3dfed10e
XL
2940 let mut seen_types = FxHashSet::default();
2941 structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
f035d41b
XL
2942 }
2943}
2944
2945impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2946
2947impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
9ffffee4 2948 #[instrument(level = "trace", skip(self, cx))]
f035d41b 2949 fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
f035d41b 2950 if let ForeignItemKind::Fn(..) = this_fi.kind {
29967ef6 2951 let tcx = cx.tcx;
9ffffee4
FG
2952 if let Some(existing_did) = self.insert(tcx, this_fi) {
2953 let existing_decl_ty = tcx.type_of(existing_did).skip_binder();
2954 let this_decl_ty = tcx.type_of(this_fi.owner_id).subst_identity();
f035d41b
XL
2955 debug!(
2956 "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
9ffffee4 2957 existing_did, existing_decl_ty, this_fi.owner_id, this_decl_ty
f035d41b
XL
2958 );
2959 // Check that the declarations match.
3dfed10e
XL
2960 if !Self::structurally_same_type(
2961 cx,
2962 existing_decl_ty,
2963 this_decl_ty,
2964 CItemKind::Declaration,
2965 ) {
9ffffee4 2966 let orig_fi = tcx.hir().expect_foreign_item(existing_did);
f035d41b
XL
2967 let orig = Self::name_of_extern_decl(tcx, orig_fi);
2968
2969 // We want to ensure that we use spans for both decls that include where the
2970 // name was defined, whether that was from the link_name attribute or not.
2971 let get_relevant_span =
2972 |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2973 SymbolName::Normal(_) => fi.span,
2974 SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2975 };
2b03887a 2976
9c376795
FG
2977 // Finally, emit the diagnostic.
2978 let this = this_fi.ident.name;
2979 let orig = orig.get_name();
2980 let previous_decl_label = get_relevant_span(orig_fi);
2981 let mismatch_label = get_relevant_span(this_fi);
2982 let sub = BuiltinClashingExternSub {
2983 tcx,
2984 expected: existing_decl_ty,
2985 found: this_decl_ty,
2986 };
2987 let decorator = if orig == this {
2988 BuiltinClashingExtern::SameName {
2989 this,
2990 orig,
2991 previous_decl_label,
2992 mismatch_label,
2993 sub,
2994 }
2b03887a 2995 } else {
9c376795
FG
2996 BuiltinClashingExtern::DiffName {
2997 this,
2998 orig,
2999 previous_decl_label,
3000 mismatch_label,
3001 sub,
3002 }
2b03887a 3003 };
9c376795 3004 tcx.emit_spanned_lint(
f035d41b 3005 CLASHING_EXTERN_DECLARATIONS,
6a06907d 3006 this_fi.hir_id(),
f035d41b 3007 get_relevant_span(this_fi),
9c376795 3008 decorator,
f035d41b
XL
3009 );
3010 }
3011 }
3012 }
3013 }
3014}
cdc7bbd5
XL
3015
3016declare_lint! {
3017 /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3018 /// which causes [undefined behavior].
3019 ///
3020 /// ### Example
3021 ///
3022 /// ```rust,no_run
3023 /// # #![allow(unused)]
3024 /// use std::ptr;
3025 /// unsafe {
3026 /// let x = &*ptr::null::<i32>();
3027 /// let x = ptr::addr_of!(*ptr::null::<i32>());
3028 /// let x = *(0 as *const i32);
3029 /// }
3030 /// ```
3031 ///
3032 /// {{produces}}
3033 ///
3034 /// ### Explanation
3035 ///
3036 /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3037 /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3038 ///
3039 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3040 pub DEREF_NULLPTR,
3041 Warn,
3042 "detects when an null pointer is dereferenced"
3043}
3044
3045declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3046
3047impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3048 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3049 /// test if expression is a null ptr
3050 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3051 match &expr.kind {
3052 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3053 if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3054 return is_zero(expr) || is_null_ptr(cx, expr);
3055 }
3056 }
3057 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3058 rustc_hir::ExprKind::Call(ref path, _) => {
3059 if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3060 if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
c295e0f8
XL
3061 return matches!(
3062 cx.tcx.get_diagnostic_name(def_id),
3063 Some(sym::ptr_null | sym::ptr_null_mut)
3064 );
cdc7bbd5
XL
3065 }
3066 }
3067 }
3068 _ => {}
3069 }
3070 false
3071 }
3072
3073 /// test if expression is the literal `0`
3074 fn is_zero(expr: &hir::Expr<'_>) -> bool {
3075 match &expr.kind {
3076 rustc_hir::ExprKind::Lit(ref lit) => {
3077 if let LitKind::Int(a, _) = lit.node {
3078 return a == 0;
3079 }
3080 }
3081 _ => {}
3082 }
3083 false
3084 }
3085
3c0e092e
XL
3086 if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3087 if is_null_ptr(cx, expr_deref) {
9c376795 3088 cx.emit_spanned_lint(
2b03887a
FG
3089 DEREF_NULLPTR,
3090 expr.span,
9c376795 3091 BuiltinDerefNullptr { label: expr.span },
2b03887a 3092 );
cdc7bbd5
XL
3093 }
3094 }
3095 }
3096}
94222f64
XL
3097
3098declare_lint! {
3099 /// The `named_asm_labels` lint detects the use of named labels in the
3100 /// inline `asm!` macro.
3101 ///
3102 /// ### Example
3103 ///
3104 /// ```rust,compile_fail
2b03887a 3105 /// # #![feature(asm_experimental_arch)]
a2a8927a
XL
3106 /// use std::arch::asm;
3107 ///
94222f64
XL
3108 /// fn main() {
3109 /// unsafe {
3110 /// asm!("foo: bar");
3111 /// }
3112 /// }
3113 /// ```
3114 ///
3115 /// {{produces}}
3116 ///
3117 /// ### Explanation
3118 ///
3119 /// LLVM is allowed to duplicate inline assembly blocks for any
3120 /// reason, for example when it is in a function that gets inlined. Because
3121 /// of this, GNU assembler [local labels] *must* be used instead of labels
3122 /// with a name. Using named labels might cause assembler or linker errors.
3123 ///
a2a8927a 3124 /// See the explanation in [Rust By Example] for more details.
94222f64
XL
3125 ///
3126 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
a2a8927a 3127 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
94222f64
XL
3128 pub NAMED_ASM_LABELS,
3129 Deny,
3130 "named labels in inline assembly",
3131}
3132
3133declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3134
3135impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
9c376795 3136 #[allow(rustc::diagnostic_outside_of_impl)]
94222f64
XL
3137 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3138 if let hir::Expr {
3139 kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3140 ..
3141 } = expr
3142 {
3143 for (template_sym, template_snippet, template_span) in template_strs.iter() {
a2a8927a 3144 let template_str = template_sym.as_str();
94222f64
XL
3145 let find_label_span = |needle: &str| -> Option<Span> {
3146 if let Some(template_snippet) = template_snippet {
3147 let snippet = template_snippet.as_str();
3148 if let Some(pos) = snippet.find(needle) {
3149 let end = pos
3c0e092e 3150 + snippet[pos..]
94222f64
XL
3151 .find(|c| c == ':')
3152 .unwrap_or(snippet[pos..].len() - 1);
3153 let inner = InnerSpan::new(pos, end);
3154 return Some(template_span.from_inner(inner));
3155 }
3156 }
3157
3158 None
3159 };
3160
3161 let mut found_labels = Vec::new();
3162
3163 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3164 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3165 for statement in statements {
3166 // If there's a comment, trim it from the statement
3167 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3168 let mut start_idx = 0;
3169 for (idx, _) in statement.match_indices(':') {
3170 let possible_label = statement[start_idx..idx].trim();
3171 let mut chars = possible_label.chars();
a2a8927a 3172 let Some(c) = chars.next() else {
94222f64 3173 // Empty string means a leading ':' in this section, which is not a label
a2a8927a
XL
3174 break
3175 };
3176 // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3177 if (c.is_alphabetic() || matches!(c, '.' | '_'))
3178 && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3179 {
3180 found_labels.push(possible_label);
3181 } else {
3182 // If we encounter a non-label, there cannot be any further labels, so stop checking
94222f64
XL
3183 break;
3184 }
3185
3186 start_idx = idx + 1;
3187 }
3188 }
3189
3190 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3191
3192 if found_labels.len() > 0 {
3193 let spans = found_labels
3194 .into_iter()
3195 .filter_map(|label| find_label_span(label))
3196 .collect::<Vec<Span>>();
3197 // If there were labels but we couldn't find a span, combine the warnings and use the template span
3198 let target_spans: MultiSpan =
3199 if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3200
3201 cx.lookup_with_diagnostics(
3202 NAMED_ASM_LABELS,
3203 Some(target_spans),
2b03887a
FG
3204 fluent::lint_builtin_asm_labels,
3205 |lint| lint,
94222f64
XL
3206 BuiltinLintDiagnostics::NamedAsmLabel(
3207 "only local labels of the form `<number>:` should be used in inline asm"
3208 .to_string(),
3209 ),
3210 );
3211 }
3212 }
3213 }
3214 }
3215}
f2b60f7d
FG
3216
3217declare_lint! {
3218 /// The `special_module_name` lint detects module
3219 /// declarations for files that have a special meaning.
3220 ///
3221 /// ### Example
3222 ///
3223 /// ```rust,compile_fail
3224 /// mod lib;
3225 ///
3226 /// fn main() {
3227 /// lib::run();
3228 /// }
3229 /// ```
3230 ///
3231 /// {{produces}}
3232 ///
3233 /// ### Explanation
3234 ///
3235 /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3236 /// library or binary crate, so declaring them as modules
3237 /// will lead to miscompilation of the crate unless configured
3238 /// explicitly.
3239 ///
3240 /// To access a library from a binary target within the same crate,
2b03887a 3241 /// use `your_crate_name::` as the path instead of `lib::`:
f2b60f7d
FG
3242 ///
3243 /// ```rust,compile_fail
3244 /// // bar/src/lib.rs
3245 /// fn run() {
3246 /// // ...
3247 /// }
3248 ///
3249 /// // bar/src/main.rs
3250 /// fn main() {
3251 /// bar::run();
3252 /// }
3253 /// ```
3254 ///
3255 /// Binary targets cannot be used as libraries and so declaring
3256 /// one as a module is not allowed.
3257 pub SPECIAL_MODULE_NAME,
3258 Warn,
3259 "module declarations for files with a special meaning",
3260}
3261
3262declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3263
3264impl EarlyLintPass for SpecialModuleName {
3265 fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3266 for item in &krate.items {
3267 if let ast::ItemKind::Mod(
3268 _,
3269 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _),
3270 ) = item.kind
3271 {
3272 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3273 continue;
3274 }
3275
3276 match item.ident.name.as_str() {
9c376795
FG
3277 "lib" => cx.emit_spanned_lint(
3278 SPECIAL_MODULE_NAME,
3279 item.span,
3280 BuiltinSpecialModuleNameUsed::Lib,
3281 ),
3282 "main" => cx.emit_spanned_lint(
3283 SPECIAL_MODULE_NAME,
3284 item.span,
3285 BuiltinSpecialModuleNameUsed::Main,
3286 ),
3287 _ => continue,
f2b60f7d
FG
3288 }
3289 }
3290 }
3291 }
3292}
3293
3294pub use rustc_session::lint::builtin::UNEXPECTED_CFGS;
3295
3296declare_lint_pass!(UnexpectedCfgs => [UNEXPECTED_CFGS]);
3297
3298impl EarlyLintPass for UnexpectedCfgs {
3299 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
3300 let cfg = &cx.sess().parse_sess.config;
3301 let check_cfg = &cx.sess().parse_sess.check_config;
3302 for &(name, value) in cfg {
49aad941
FG
3303 match check_cfg.expecteds.get(&name) {
3304 Some(ExpectedValues::Some(values)) if !values.contains(&value) => {
3305 let value = value.unwrap_or(kw::Empty);
3306 cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigValue { name, value });
3307 }
3308 None if check_cfg.exhaustive_names => {
3309 cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigName { name });
3310 }
3311 _ => { /* expected */ }
f2b60f7d
FG
3312 }
3313 }
3314 }
3315}