]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_lint/src/builtin.rs
New upstream version 1.59.0+dfsg1
[rustc.git] / compiler / rustc_lint / src / builtin.rs
CommitLineData
c34b1796
AL
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
ba9703b0
XL
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
c34b1796
AL
6//!
7//! To add a new lint to rustc, declare it here using `declare_lint!()`.
8//! Then add code to emit the new lint in the appropriate circumstances.
9//! You can do that in an existing `LintPass` if it makes sense, or in a
10//! new `LintPass`, or using `Session::add_lint` elsewhere in the
11//! compiler. Only do the latter if the check can't be written cleanly as a
12//! `LintPass` (also, note that such lints will need to be defined in
ba9703b0 13//! `rustc_session::lint::builtin`, not here).
c34b1796 14//!
9fa01778
XL
15//! If you define a new `EarlyLintPass`, you will also need to add it to the
16//! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17//! `lib.rs`. Use the former for unit-like structs and the latter for structs
18//! with a `pub fn new()`.
19//!
20//! If you define a new `LateLintPass`, you will also need to add it to the
21//! `late_lint_methods!` invocation in `lib.rs`.
c34b1796 22
3dfed10e 23use crate::{
1b1a35ee
XL
24 types::{transparent_newtype_field, CItemKind},
25 EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
3dfed10e 26};
6a06907d 27use rustc_ast::attr;
74b04a01
XL
28use rustc_ast::tokenstream::{TokenStream, TokenTree};
29use rustc_ast::visit::{FnCtxt, FnKind};
3dfed10e 30use rustc_ast::{self as ast, *};
74b04a01 31use rustc_ast_pretty::pprust::{self, expr_to_string};
f035d41b 32use rustc_data_structures::fx::{FxHashMap, FxHashSet};
3dfed10e 33use rustc_data_structures::stack::ensure_sufficient_stack;
f035d41b 34use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
3c0e092e 35use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
dfeec247
XL
36use rustc_hir as hir;
37use rustc_hir::def::{DefKind, Res};
94222f64 38use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
f035d41b 39use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind};
6a06907d 40use rustc_hir::{HirId, Node};
1b1a35ee 41use rustc_index::vec::Idx;
ba9703b0 42use rustc_middle::lint::LintDiagnosticBuilder;
c295e0f8 43use rustc_middle::ty::layout::{LayoutError, LayoutOf};
1b1a35ee 44use rustc_middle::ty::print::with_no_trimmed_paths;
3dfed10e 45use rustc_middle::ty::subst::{GenericArgKind, Subst};
5869c6ff 46use rustc_middle::ty::Instance;
c295e0f8 47use rustc_middle::ty::{self, Ty, TyCtxt};
94222f64 48use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
dfeec247
XL
49use rustc_span::edition::Edition;
50use rustc_span::source_map::Spanned;
f9f354fc 51use rustc_span::symbol::{kw, sym, Ident, Symbol};
94222f64 52use rustc_span::{BytePos, InnerSpan, MultiSpan, Span};
c295e0f8 53use rustc_target::abi::VariantIdx;
ba9703b0 54use rustc_trait_selection::traits::misc::can_type_implement_copy;
e9174d1e 55
dfeec247 56use crate::nonstandard_style::{method_context, MethodLateContext};
9fa01778 57
dfeec247 58use std::fmt::Write;
3dfed10e 59use tracing::{debug, trace};
c34b1796 60
ba9703b0 61// hardwired lints from librustc_middle
dfeec247 62pub use rustc_session::lint::builtin::*;
c34b1796 63
b039eaaf 64declare_lint! {
1b1a35ee
XL
65 /// The `while_true` lint detects `while true { }`.
66 ///
67 /// ### Example
68 ///
69 /// ```rust,no_run
70 /// while true {
71 ///
72 /// }
73 /// ```
74 ///
75 /// {{produces}}
76 ///
77 /// ### Explanation
78 ///
79 /// `while true` should be replaced with `loop`. A `loop` expression is
80 /// the preferred way to write an infinite loop because it more directly
81 /// expresses the intent of the loop.
b039eaaf
SL
82 WHILE_TRUE,
83 Warn,
84 "suggest using `loop { }` instead of `while true { }`"
85}
c34b1796 86
532ac7d7 87declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
c34b1796 88
416331ca
XL
89/// Traverse through any amount of parenthesis and return the first non-parens expression.
90fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
e74abb32 91 while let ast::ExprKind::Paren(sub) = &expr.kind {
416331ca
XL
92 expr = sub;
93 }
94 expr
95}
96
97impl EarlyLintPass for WhileTrue {
98 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
5869c6ff 99 if let ast::ExprKind::While(cond, _, label) = &e.kind {
e74abb32
XL
100 if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
101 if let ast::LitKind::Bool(true) = lit.kind {
e1599b0c 102 if !lit.span.from_expansion() {
ea8adc8c 103 let msg = "denote infinite loops with `loop { ... }`";
5869c6ff 104 let condition_span = e.span.with_hi(cond.span.hi());
74b04a01
XL
105 cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
106 lint.build(msg)
107 .span_suggestion_short(
108 condition_span,
109 "use `loop`",
5869c6ff
XL
110 format!(
111 "{}loop",
112 label.map_or_else(String::new, |label| format!(
113 "{}: ",
114 label.ident,
115 ))
116 ),
74b04a01
XL
117 Applicability::MachineApplicable,
118 )
119 .emit();
120 })
ea8adc8c 121 }
b039eaaf 122 }
c34b1796
AL
123 }
124 }
125 }
126}
127
128declare_lint! {
1b1a35ee
XL
129 /// The `box_pointers` lints use of the Box type.
130 ///
131 /// ### Example
132 ///
133 /// ```rust,compile_fail
134 /// #![deny(box_pointers)]
135 /// struct Foo {
136 /// x: Box<isize>,
137 /// }
138 /// ```
139 ///
140 /// {{produces}}
141 ///
142 /// ### Explanation
143 ///
144 /// This lint is mostly historical, and not particularly useful. `Box<T>`
145 /// used to be built into the language, and the only way to do heap
146 /// allocation. Today's Rust can call into other allocators, etc.
b039eaaf
SL
147 BOX_POINTERS,
148 Allow,
149 "use of owned (Box type) heap memory"
c34b1796
AL
150}
151
532ac7d7 152declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
b039eaaf
SL
153
154impl BoxPointers {
94222f64
XL
155 fn check_heap_type<'tcx>(&self, cx: &LateContext<'tcx>, span: Span, ty: Ty<'tcx>) {
156 for leaf in ty.walk(cx.tcx) {
ba9703b0
XL
157 if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
158 if leaf_ty.is_box() {
159 cx.struct_span_lint(BOX_POINTERS, span, |lint| {
160 lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit()
161 });
162 }
c34b1796
AL
163 }
164 }
165 }
166}
167
f035d41b
XL
168impl<'tcx> LateLintPass<'tcx> for BoxPointers {
169 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 170 match it.kind {
dfeec247
XL
171 hir::ItemKind::Fn(..)
172 | hir::ItemKind::TyAlias(..)
173 | hir::ItemKind::Enum(..)
174 | hir::ItemKind::Struct(..)
175 | hir::ItemKind::Union(..) => {
6a06907d 176 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
c30ab7b3 177 }
dfeec247 178 _ => (),
d9579d0f 179 }
d9579d0f 180
b039eaaf 181 // If it's a struct, we also have to check the fields' types
e74abb32 182 match it.kind {
dfeec247 183 hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
b039eaaf 184 for struct_field in struct_def.fields() {
416331ca 185 let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
dfeec247 186 self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
b039eaaf 187 }
d9579d0f 188 }
c30ab7b3 189 _ => (),
d9579d0f
AL
190 }
191 }
192
f035d41b 193 fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
3dfed10e 194 let ty = cx.typeck_results().node_type(e.hir_id);
b039eaaf 195 self.check_heap_type(cx, e.span, ty);
c34b1796
AL
196 }
197}
198
c34b1796 199declare_lint! {
1b1a35ee
XL
200 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
201 /// instead of `Struct { x }` in a pattern.
202 ///
203 /// ### Example
204 ///
205 /// ```rust
206 /// struct Point {
207 /// x: i32,
208 /// y: i32,
209 /// }
210 ///
211 ///
212 /// fn main() {
213 /// let p = Point {
214 /// x: 5,
215 /// y: 5,
216 /// };
217 ///
218 /// match p {
219 /// Point { x: x, y: y } => (),
220 /// }
221 /// }
222 /// ```
223 ///
224 /// {{produces}}
225 ///
226 /// ### Explanation
227 ///
228 /// The preferred style is to avoid the repetition of specifying both the
229 /// field name and the binding name if both identifiers are the same.
c34b1796
AL
230 NON_SHORTHAND_FIELD_PATTERNS,
231 Warn,
abe05a73 232 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
c34b1796
AL
233}
234
532ac7d7 235declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
c34b1796 236
f035d41b
XL
237impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
238 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
dfeec247
XL
239 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
240 let variant = cx
3dfed10e 241 .typeck_results()
dfeec247
XL
242 .pat_ty(pat)
243 .ty_adt_def()
244 .expect("struct pattern type is not an ADT")
f035d41b 245 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
3157f602 246 for fieldpat in field_pats {
e1599b0c 247 if fieldpat.is_shorthand {
3157f602 248 continue;
b039eaaf 249 }
e1599b0c 250 if fieldpat.span.from_expansion() {
83c7162d
XL
251 // Don't lint if this is a macro expansion: macro authors
252 // shouldn't have to worry about this kind of style issue
253 // (Issue #49588)
254 continue;
255 }
dfeec247
XL
256 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
257 if cx.tcx.find_field_index(ident, &variant)
3dfed10e 258 == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
dfeec247 259 {
74b04a01
XL
260 cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
261 let mut err = lint
262 .build(&format!("the `{}:` in this pattern is redundant", ident));
263 let binding = match binding_annot {
264 hir::BindingAnnotation::Unannotated => None,
265 hir::BindingAnnotation::Mutable => Some("mut"),
266 hir::BindingAnnotation::Ref => Some("ref"),
267 hir::BindingAnnotation::RefMut => Some("ref mut"),
268 };
269 let ident = if let Some(binding) = binding {
270 format!("{} {}", binding, ident)
271 } else {
272 ident.to_string()
273 };
274 err.span_suggestion(
275 fieldpat.span,
276 "use shorthand field pattern",
277 ident,
278 Applicability::MachineApplicable,
279 );
280 err.emit();
281 });
c34b1796
AL
282 }
283 }
284 }
285 }
286 }
287}
288
c34b1796 289declare_lint! {
1b1a35ee
XL
290 /// The `unsafe_code` lint catches usage of `unsafe` code.
291 ///
292 /// ### Example
293 ///
294 /// ```rust,compile_fail
295 /// #![deny(unsafe_code)]
296 /// fn main() {
297 /// unsafe {
298 ///
299 /// }
300 /// }
301 /// ```
302 ///
303 /// {{produces}}
304 ///
305 /// ### Explanation
306 ///
307 /// This lint is intended to restrict the usage of `unsafe`, which can be
308 /// difficult to use correctly.
c34b1796
AL
309 UNSAFE_CODE,
310 Allow,
311 "usage of `unsafe` code"
312}
313
532ac7d7 314declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
c34b1796 315
3b2f2976 316impl UnsafeCode {
74b04a01
XL
317 fn report_unsafe(
318 &self,
319 cx: &EarlyContext<'_>,
320 span: Span,
321 decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>),
322 ) {
dc9dc135 323 // This comes from a macro that has `#[allow_internal_unsafe]`.
3b2f2976
XL
324 if span.allows_unsafe() {
325 return;
326 }
327
74b04a01 328 cx.struct_span_lint(UNSAFE_CODE, span, decorate);
3b2f2976 329 }
6a06907d
XL
330
331 fn report_overriden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) {
332 self.report_unsafe(cx, span, |lint| {
333 lint.build(msg)
334 .note(
335 "the linker's behavior with multiple libraries exporting duplicate symbol \
336 names is undefined and Rust cannot provide guarantees when you manually \
337 override them",
338 )
339 .emit();
340 })
341 }
3b2f2976
XL
342}
343
0731742a 344impl EarlyLintPass for UnsafeCode {
9fa01778 345 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
94222f64 346 if attr.has_name(sym::allow_internal_unsafe) {
74b04a01
XL
347 self.report_unsafe(cx, attr.span, |lint| {
348 lint.build(
349 "`allow_internal_unsafe` allows defining \
0731742a 350 macros using unsafe without triggering \
dfeec247 351 the `unsafe_code` lint at their call site",
74b04a01
XL
352 )
353 .emit()
354 });
0731742a
XL
355 }
356 }
357
9fa01778 358 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
e74abb32 359 if let ast::ExprKind::Block(ref blk, _) = e.kind {
dc9dc135 360 // Don't warn about generated blocks; that'll just pollute the output.
0731742a 361 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
74b04a01
XL
362 self.report_unsafe(cx, blk.span, |lint| {
363 lint.build("usage of an `unsafe` block").emit()
364 });
c34b1796
AL
365 }
366 }
367 }
368
9fa01778 369 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
e74abb32 370 match it.kind {
3c0e092e 371 ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => self
5869c6ff 372 .report_unsafe(cx, it.span, |lint| {
74b04a01 373 lint.build("declaration of an `unsafe` trait").emit()
5869c6ff 374 }),
c34b1796 375
3c0e092e 376 ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => self
5869c6ff 377 .report_unsafe(cx, it.span, |lint| {
74b04a01 378 lint.build("implementation of an `unsafe` trait").emit()
5869c6ff 379 }),
c34b1796 380
6a06907d
XL
381 ast::ItemKind::Fn(..) => {
382 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
383 self.report_overriden_symbol_name(
384 cx,
385 attr.span,
386 "declaration of a `no_mangle` function",
387 );
388 }
389 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
390 self.report_overriden_symbol_name(
391 cx,
392 attr.span,
393 "declaration of a function with `export_name`",
394 );
395 }
396 }
397
398 ast::ItemKind::Static(..) => {
399 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
400 self.report_overriden_symbol_name(
401 cx,
402 attr.span,
403 "declaration of a `no_mangle` static",
404 );
405 }
406 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
407 self.report_overriden_symbol_name(
408 cx,
409 attr.span,
410 "declaration of a static with `export_name`",
411 );
412 }
413 }
414
ba9703b0 415 _ => {}
c34b1796
AL
416 }
417 }
418
94222f64
XL
419 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
420 if let ast::AssocItemKind::Fn(..) = it.kind {
421 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
422 self.report_overriden_symbol_name(
423 cx,
424 attr.span,
425 "declaration of a `no_mangle` method",
426 );
427 }
428 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
429 self.report_overriden_symbol_name(
430 cx,
431 attr.span,
432 "declaration of a method with `export_name`",
433 );
434 }
435 }
436 }
437
74b04a01
XL
438 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
439 if let FnKind::Fn(
440 ctxt,
441 _,
442 ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
443 _,
444 body,
445 ) = fk
446 {
447 let msg = match ctxt {
448 FnCtxt::Foreign => return,
449 FnCtxt::Free => "declaration of an `unsafe` function",
450 FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method",
451 FnCtxt::Assoc(_) => "implementation of an `unsafe` method",
452 };
453 self.report_unsafe(cx, span, |lint| lint.build(msg).emit());
c34b1796
AL
454 }
455 }
456}
457
c34b1796 458declare_lint! {
1b1a35ee
XL
459 /// The `missing_docs` lint detects missing documentation for public items.
460 ///
461 /// ### Example
462 ///
463 /// ```rust,compile_fail
464 /// #![deny(missing_docs)]
465 /// pub fn foo() {}
466 /// ```
467 ///
468 /// {{produces}}
469 ///
470 /// ### Explanation
471 ///
472 /// This lint is intended to ensure that a library is well-documented.
473 /// Items without documentation can be difficult for users to understand
474 /// how to use properly.
475 ///
476 /// This lint is "allow" by default because it can be noisy, and not all
477 /// projects may want to enforce everything to be documented.
94b46f34 478 pub MISSING_DOCS,
c34b1796 479 Allow,
8faf50e0 480 "detects missing documentation for public members",
e74abb32 481 report_in_external_macro
c34b1796
AL
482}
483
484pub struct MissingDoc {
9fa01778 485 /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
c34b1796
AL
486 doc_hidden_stack: Vec<bool>,
487
488 /// Private traits or trait items that leaked through. Don't check their methods.
532ac7d7 489 private_traits: FxHashSet<hir::HirId>,
c34b1796
AL
490}
491
532ac7d7
XL
492impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
493
94222f64 494fn has_doc(attr: &ast::Attribute) -> bool {
dfeec247
XL
495 if attr.is_doc_comment() {
496 return true;
497 }
498
94222f64 499 if !attr.has_name(sym::doc) {
0731742a
XL
500 return false;
501 }
502
cdc7bbd5 503 if attr.value_str().is_some() {
0731742a
XL
504 return true;
505 }
506
507 if let Some(list) = attr.meta_item_list() {
508 for meta in list {
17df50a5 509 if meta.has_name(sym::hidden) {
0731742a
XL
510 return true;
511 }
512 }
513 }
514
515 false
516}
517
c34b1796
AL
518impl MissingDoc {
519 pub fn new() -> MissingDoc {
dfeec247 520 MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() }
c34b1796
AL
521 }
522
523 fn doc_hidden(&self) -> bool {
524 *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
525 }
526
dfeec247
XL
527 fn check_missing_docs_attrs(
528 &self,
f035d41b 529 cx: &LateContext<'_>,
94222f64 530 def_id: LocalDefId,
dfeec247 531 sp: Span,
ba9703b0 532 article: &'static str,
dfeec247
XL
533 desc: &'static str,
534 ) {
c34b1796
AL
535 // If we're building a test harness, then warning about
536 // documentation is probably not really relevant right now.
537 if cx.sess().opts.test {
538 return;
539 }
540
541 // `#[doc(hidden)]` disables missing_docs check.
542 if self.doc_hidden() {
543 return;
544 }
545
546 // Only check publicly-visible items, using the result from the privacy pass.
547 // It's an option so the crate root can also use this function (it doesn't
dc9dc135 548 // have a `NodeId`).
94222f64
XL
549 if def_id != CRATE_DEF_ID {
550 if !cx.access_levels.is_exported(def_id) {
c34b1796
AL
551 return;
552 }
553 }
554
94222f64
XL
555 let attrs = cx.tcx.get_attrs(def_id.to_def_id());
556 let has_doc = attrs.iter().any(has_doc);
c34b1796 557 if !has_doc {
ba9703b0
XL
558 cx.struct_span_lint(
559 MISSING_DOCS,
560 cx.tcx.sess.source_map().guess_head_span(sp),
561 |lint| {
562 lint.build(&format!("missing documentation for {} {}", article, desc)).emit()
563 },
564 );
c34b1796
AL
565 }
566 }
567}
568
f035d41b 569impl<'tcx> LateLintPass<'tcx> for MissingDoc {
94222f64 570 fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
dfeec247
XL
571 let doc_hidden = self.doc_hidden()
572 || attrs.iter().any(|attr| {
94222f64 573 attr.has_name(sym::doc)
dfeec247
XL
574 && match attr.meta_item_list() {
575 None => false,
576 Some(l) => attr::list_contains_name(&l, sym::hidden),
577 }
578 });
c34b1796
AL
579 self.doc_hidden_stack.push(doc_hidden);
580 }
581
f035d41b 582 fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
c34b1796
AL
583 self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
584 }
585
c295e0f8
XL
586 fn check_crate(&mut self, cx: &LateContext<'_>) {
587 self.check_missing_docs_attrs(
588 cx,
589 CRATE_DEF_ID,
590 cx.tcx.def_span(CRATE_DEF_ID),
591 "the",
592 "crate",
593 );
c34b1796
AL
594 }
595
f035d41b 596 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
ba9703b0 597 match it.kind {
dfeec247 598 hir::ItemKind::Trait(.., trait_item_refs) => {
dc9dc135 599 // Issue #11592: traits are always considered exported, even when private.
8faf50e0 600 if let hir::VisibilityKind::Inherited = it.vis.node {
6a06907d 601 self.private_traits.insert(it.hir_id());
32a655c1 602 for trait_item_ref in trait_item_refs {
6a06907d 603 self.private_traits.insert(trait_item_ref.id.hir_id());
c34b1796 604 }
c30ab7b3 605 return;
c34b1796 606 }
c30ab7b3 607 }
5869c6ff 608 hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref trait_ref), items, .. }) => {
dc9dc135 609 // If the trait is private, add the impl items to `private_traits` so they don't get
c34b1796 610 // reported for missing docs.
48663c56 611 let real_trait = trait_ref.path.res.def_id();
a2a8927a
XL
612 let Some(def_id) = real_trait.as_local() else { return };
613 let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id);
614 let Some(Node::Item(item)) = cx.tcx.hir().find(hir_id) else { return };
615 if let hir::VisibilityKind::Inherited = item.vis.node {
616 for impl_item_ref in items {
617 self.private_traits.insert(impl_item_ref.id.hir_id());
b039eaaf 618 }
c34b1796 619 }
c30ab7b3
SL
620 return;
621 }
ba9703b0
XL
622
623 hir::ItemKind::TyAlias(..)
624 | hir::ItemKind::Fn(..)
94222f64 625 | hir::ItemKind::Macro(..)
ba9703b0
XL
626 | hir::ItemKind::Mod(..)
627 | hir::ItemKind::Enum(..)
628 | hir::ItemKind::Struct(..)
629 | hir::ItemKind::Union(..)
630 | hir::ItemKind::Const(..)
631 | hir::ItemKind::Static(..) => {}
632
c30ab7b3 633 _ => return,
c34b1796
AL
634 };
635
6a06907d 636 let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
ba9703b0 637
94222f64 638 self.check_missing_docs_attrs(cx, it.def_id, it.span, article, desc);
c34b1796
AL
639 }
640
f035d41b 641 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
6a06907d 642 if self.private_traits.contains(&trait_item.hir_id()) {
c30ab7b3
SL
643 return;
644 }
c34b1796 645
6a06907d 646 let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
c34b1796 647
94222f64 648 self.check_missing_docs_attrs(cx, trait_item.def_id, trait_item.span, article, desc);
c34b1796
AL
649 }
650
f035d41b 651 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
c34b1796 652 // If the method is an impl for a trait, don't doc.
6a06907d 653 if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
c34b1796
AL
654 return;
655 }
656
3c0e092e
XL
657 // If the method is an impl for an item with docs_hidden, don't doc.
658 if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
659 let parent = cx.tcx.hir().get_parent_did(impl_item.hir_id());
660 let impl_ty = cx.tcx.type_of(parent);
661 let outerdef = match impl_ty.kind() {
662 ty::Adt(def, _) => Some(def.did),
663 ty::Foreign(def_id) => Some(*def_id),
664 _ => None,
665 };
666 let is_hidden = match outerdef {
667 Some(id) => cx.tcx.is_doc_hidden(id),
668 None => false,
669 };
670 if is_hidden {
671 return;
672 }
673 }
674
6a06907d 675 let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
94222f64 676 self.check_missing_docs_attrs(cx, impl_item.def_id, impl_item.span, article, desc);
c34b1796
AL
677 }
678
1b1a35ee 679 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
6a06907d 680 let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
94222f64 681 self.check_missing_docs_attrs(cx, foreign_item.def_id, foreign_item.span, article, desc);
1b1a35ee
XL
682 }
683
6a06907d 684 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
54a0048b 685 if !sf.is_positional() {
94222f64
XL
686 let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
687 self.check_missing_docs_attrs(cx, def_id, sf.span, "a", "struct field")
c34b1796
AL
688 }
689 }
690
f035d41b 691 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
94222f64 692 self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), v.span, "a", "variant");
c34b1796
AL
693 }
694}
695
696declare_lint! {
1b1a35ee
XL
697 /// The `missing_copy_implementations` lint detects potentially-forgotten
698 /// implementations of [`Copy`].
699 ///
700 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
701 ///
702 /// ### Example
703 ///
704 /// ```rust,compile_fail
705 /// #![deny(missing_copy_implementations)]
706 /// pub struct Foo {
707 /// pub field: i32
708 /// }
709 /// # fn main() {}
710 /// ```
711 ///
712 /// {{produces}}
713 ///
714 /// ### Explanation
715 ///
716 /// Historically (before 1.0), types were automatically marked as `Copy`
717 /// if possible. This was changed so that it required an explicit opt-in
718 /// by implementing the `Copy` trait. As part of this change, a lint was
719 /// added to alert if a copyable type was not marked `Copy`.
720 ///
721 /// This lint is "allow" by default because this code isn't bad; it is
722 /// common to write newtypes like this specifically so that a `Copy` type
723 /// is no longer `Copy`. `Copy` types can result in unintended copies of
724 /// large data which can impact performance.
c34b1796
AL
725 pub MISSING_COPY_IMPLEMENTATIONS,
726 Allow,
727 "detects potentially-forgotten implementations of `Copy`"
728}
729
532ac7d7 730declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
c34b1796 731
f035d41b
XL
732impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
733 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
94222f64 734 if !cx.access_levels.is_reachable(item.def_id) {
c34b1796
AL
735 return;
736 }
e74abb32 737 let (def, ty) = match item.kind {
8faf50e0 738 hir::ItemKind::Struct(_, ref ast_generics) => {
ff7c6d11 739 if !ast_generics.params.is_empty() {
c34b1796
AL
740 return;
741 }
6a06907d 742 let def = cx.tcx.adt_def(item.def_id);
c30ab7b3 743 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
9e0c209e 744 }
8faf50e0 745 hir::ItemKind::Union(_, ref ast_generics) => {
ff7c6d11 746 if !ast_generics.params.is_empty() {
9e0c209e
SL
747 return;
748 }
6a06907d 749 let def = cx.tcx.adt_def(item.def_id);
c30ab7b3 750 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
c34b1796 751 }
8faf50e0 752 hir::ItemKind::Enum(_, ref ast_generics) => {
ff7c6d11 753 if !ast_generics.params.is_empty() {
c34b1796
AL
754 return;
755 }
6a06907d 756 let def = cx.tcx.adt_def(item.def_id);
c30ab7b3 757 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
c34b1796
AL
758 }
759 _ => return,
760 };
8bb4bdeb 761 if def.has_dtor(cx.tcx) {
c30ab7b3
SL
762 return;
763 }
0531ce1d 764 let param_env = ty::ParamEnv::empty();
f035d41b 765 if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
c34b1796
AL
766 return;
767 }
dfeec247 768 if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() {
74b04a01
XL
769 cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
770 lint.build(
771 "type could implement `Copy`; consider adding `impl \
dfeec247 772 Copy`",
74b04a01
XL
773 )
774 .emit()
775 })
c34b1796
AL
776 }
777 }
778}
779
780declare_lint! {
1b1a35ee
XL
781 /// The `missing_debug_implementations` lint detects missing
782 /// implementations of [`fmt::Debug`].
783 ///
784 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
785 ///
786 /// ### Example
787 ///
788 /// ```rust,compile_fail
789 /// #![deny(missing_debug_implementations)]
790 /// pub struct Foo;
791 /// # fn main() {}
792 /// ```
793 ///
794 /// {{produces}}
795 ///
796 /// ### Explanation
797 ///
798 /// Having a `Debug` implementation on all types can assist with
799 /// debugging, as it provides a convenient way to format and display a
800 /// value. Using the `#[derive(Debug)]` attribute will automatically
801 /// generate a typical implementation, or a custom implementation can be
802 /// added by manually implementing the `Debug` trait.
803 ///
804 /// This lint is "allow" by default because adding `Debug` to all types can
805 /// have a negative impact on compile time and code size. It also requires
806 /// boilerplate to be added to every type, which can be an impediment.
c34b1796
AL
807 MISSING_DEBUG_IMPLEMENTATIONS,
808 Allow,
74b04a01 809 "detects missing implementations of Debug"
c34b1796
AL
810}
811
48663c56 812#[derive(Default)]
c34b1796 813pub struct MissingDebugImplementations {
6a06907d 814 impling_types: Option<LocalDefIdSet>,
c34b1796
AL
815}
816
532ac7d7
XL
817impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
818
f035d41b
XL
819impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
820 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
94222f64 821 if !cx.access_levels.is_reachable(item.def_id) {
c34b1796
AL
822 return;
823 }
824
e74abb32 825 match item.kind {
dfeec247 826 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
c34b1796
AL
827 _ => return,
828 }
829
a2a8927a
XL
830 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
831 return
c34b1796
AL
832 };
833
834 if self.impling_types.is_none() {
6a06907d 835 let mut impls = LocalDefIdSet::default();
041b39d2 836 cx.tcx.for_each_impl(debug, |d| {
8faf50e0 837 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
f9f354fc 838 if let Some(def_id) = ty_def.did.as_local() {
6a06907d 839 impls.insert(def_id);
d9579d0f 840 }
c34b1796 841 }
d9579d0f
AL
842 });
843
c34b1796
AL
844 self.impling_types = Some(impls);
845 debug!("{:?}", self.impling_types);
846 }
847
6a06907d 848 if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
74b04a01
XL
849 cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
850 lint.build(&format!(
851 "type does not implement `{}`; consider adding `#[derive(Debug)]` \
852 or a manual implementation",
853 cx.tcx.def_path_str(debug)
854 ))
855 .emit()
856 });
c34b1796
AL
857 }
858 }
859}
860
7cac9316 861declare_lint! {
1b1a35ee
XL
862 /// The `anonymous_parameters` lint detects anonymous parameters in trait
863 /// definitions.
864 ///
865 /// ### Example
866 ///
867 /// ```rust,edition2015,compile_fail
868 /// #![deny(anonymous_parameters)]
869 /// // edition 2015
870 /// pub trait Foo {
871 /// fn foo(usize);
872 /// }
873 /// fn main() {}
874 /// ```
875 ///
876 /// {{produces}}
877 ///
878 /// ### Explanation
879 ///
880 /// This syntax is mostly a historical accident, and can be worked around
881 /// quite easily by adding an `_` pattern or a descriptive identifier:
882 ///
883 /// ```rust
884 /// trait Foo {
885 /// fn foo(_: usize);
886 /// }
887 /// ```
888 ///
889 /// This syntax is now a hard error in the 2018 edition. In the 2015
cdc7bbd5 890 /// edition, this lint is "warn" by default. This lint
1b1a35ee
XL
891 /// enables the [`cargo fix`] tool with the `--edition` flag to
892 /// automatically transition old code from the 2015 edition to 2018. The
cdc7bbd5 893 /// tool will run this lint and automatically apply the
1b1a35ee
XL
894 /// suggested fix from the compiler (which is to add `_` to each
895 /// parameter). This provides a completely automated way to update old
896 /// code for a new edition. See [issue #41686] for more details.
897 ///
898 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
899 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
7cac9316 900 pub ANONYMOUS_PARAMETERS,
cdc7bbd5 901 Warn,
e74abb32
XL
902 "detects anonymous parameters",
903 @future_incompatible = FutureIncompatibleInfo {
904 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
136023e0 905 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
e74abb32 906 };
7cac9316
XL
907}
908
532ac7d7
XL
909declare_lint_pass!(
910 /// Checks for use of anonymous parameters (RFC 1685).
911 AnonymousParameters => [ANONYMOUS_PARAMETERS]
912);
7cac9316
XL
913
914impl EarlyLintPass for AnonymousParameters {
dfeec247 915 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
cdc7bbd5
XL
916 if cx.sess.edition() != Edition::Edition2015 {
917 // This is a hard error in future editions; avoid linting and erroring
918 return;
919 }
3c0e092e 920 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
ba9703b0
XL
921 for arg in sig.decl.inputs.iter() {
922 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
5869c6ff 923 if ident.name == kw::Empty {
ba9703b0
XL
924 cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
925 let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span);
926
927 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
928 (snip.as_str(), Applicability::MachineApplicable)
929 } else {
930 ("<type>", Applicability::HasPlaceholders)
931 };
94b46f34 932
ba9703b0
XL
933 lint.build(
934 "anonymous parameters are deprecated and will be \
c295e0f8 935 removed in the next edition",
ba9703b0
XL
936 )
937 .span_suggestion(
938 arg.pat.span,
939 "try naming the parameter or explicitly \
74b04a01 940 ignoring it",
ba9703b0
XL
941 format!("_: {}", ty_snip),
942 appl,
943 )
944 .emit();
945 })
7cac9316
XL
946 }
947 }
dfeec247 948 }
7cac9316
XL
949 }
950 }
951}
952
9fa01778 953/// Check for use of attributes which have been deprecated.
c30ab7b3
SL
954#[derive(Clone)]
955pub struct DeprecatedAttr {
956 // This is not free to compute, so we want to keep it around, rather than
957 // compute it for every attribute.
3c0e092e 958 depr_attrs: Vec<&'static BuiltinAttribute>,
c30ab7b3
SL
959}
960
532ac7d7
XL
961impl_lint_pass!(DeprecatedAttr => []);
962
c30ab7b3
SL
963impl DeprecatedAttr {
964 pub fn new() -> DeprecatedAttr {
dfeec247 965 DeprecatedAttr { depr_attrs: deprecated_attributes() }
c30ab7b3
SL
966 }
967}
968
e1599b0c
XL
969fn lint_deprecated_attr(
970 cx: &EarlyContext<'_>,
971 attr: &ast::Attribute,
972 msg: &str,
973 suggestion: Option<&str>,
974) {
74b04a01
XL
975 cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
976 lint.build(msg)
977 .span_suggestion_short(
978 attr.span,
979 suggestion.unwrap_or("remove this attribute"),
980 String::new(),
981 Applicability::MachineApplicable,
982 )
983 .emit();
984 })
e1599b0c
XL
985}
986
c30ab7b3 987impl EarlyLintPass for DeprecatedAttr {
9fa01778 988 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
3c0e092e
XL
989 for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
990 if attr.ident().map(|ident| ident.name) == Some(*name) {
dfeec247
XL
991 if let &AttributeGate::Gated(
992 Stability::Deprecated(link, suggestion),
5869c6ff
XL
993 name,
994 reason,
dfeec247 995 _,
3c0e092e 996 ) = gate
dfeec247
XL
997 {
998 let msg =
999 format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
e1599b0c 1000 lint_deprecated_attr(cx, attr, &msg, suggestion);
c30ab7b3
SL
1001 }
1002 return;
1003 }
1004 }
94222f64 1005 if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
60c5eb7d 1006 let path_str = pprust::path_to_string(&attr.get_normal_item().path);
e74abb32 1007 let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
e1599b0c
XL
1008 lint_deprecated_attr(cx, attr, &msg, None);
1009 }
c30ab7b3
SL
1010 }
1011}
1012
74b04a01 1013fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
136023e0
XL
1014 use rustc_ast::token::CommentKind;
1015
74b04a01 1016 let mut attrs = attrs.iter().peekable();
3b2f2976 1017
74b04a01
XL
1018 // Accumulate a single span for sugared doc comments.
1019 let mut sugared_span: Option<Span> = None;
3b2f2976 1020
74b04a01 1021 while let Some(attr) = attrs.next() {
136023e0
XL
1022 let is_doc_comment = attr.is_doc_comment();
1023 if is_doc_comment {
74b04a01 1024 sugared_span =
29967ef6 1025 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
74b04a01 1026 }
3b2f2976 1027
cdc7bbd5 1028 if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
74b04a01
XL
1029 continue;
1030 }
532ac7d7 1031
1b1a35ee 1032 let span = sugared_span.take().unwrap_or(attr.span);
532ac7d7 1033
94222f64 1034 if is_doc_comment || attr.has_name(sym::doc) {
74b04a01
XL
1035 cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
1036 let mut err = lint.build("unused doc comment");
532ac7d7
XL
1037 err.span_label(
1038 node_span,
dfeec247 1039 format!("rustdoc does not generate documentation for {}", node_kind),
532ac7d7 1040 );
136023e0
XL
1041 match attr.kind {
1042 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
1043 err.help("use `//` for a plain comment");
1044 }
1045 AttrKind::DocComment(CommentKind::Block, _) => {
1046 err.help("use `/* */` for a plain comment");
1047 }
1048 }
532ac7d7 1049 err.emit();
74b04a01 1050 });
3b2f2976
XL
1051 }
1052 }
1053}
1054
1055impl EarlyLintPass for UnusedDocComment {
532ac7d7 1056 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
74b04a01
XL
1057 let kind = match stmt.kind {
1058 ast::StmtKind::Local(..) => "statements",
29967ef6
XL
1059 // Disabled pending discussion in #78306
1060 ast::StmtKind::Item(..) => return,
532ac7d7 1061 // expressions will be reported by `check_expr`.
74b04a01
XL
1062 ast::StmtKind::Empty
1063 | ast::StmtKind::Semi(_)
1064 | ast::StmtKind::Expr(_)
ba9703b0 1065 | ast::StmtKind::MacCall(_) => return,
532ac7d7
XL
1066 };
1067
74b04a01 1068 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
3b2f2976
XL
1069 }
1070
9fa01778 1071 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
e1599b0c 1072 let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
74b04a01 1073 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
3b2f2976
XL
1074 }
1075
9fa01778 1076 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
74b04a01 1077 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
3b2f2976 1078 }
a2a8927a
XL
1079
1080 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1081 warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1082 }
3b2f2976
XL
1083}
1084
c34b1796 1085declare_lint! {
1b1a35ee
XL
1086 /// The `no_mangle_const_items` lint detects any `const` items with the
1087 /// [`no_mangle` attribute].
1088 ///
1089 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1090 ///
1091 /// ### Example
1092 ///
1093 /// ```rust,compile_fail
1094 /// #[no_mangle]
1095 /// const FOO: i32 = 5;
1096 /// ```
1097 ///
1098 /// {{produces}}
1099 ///
1100 /// ### Explanation
1101 ///
1102 /// Constants do not have their symbols exported, and therefore, this
1103 /// probably means you meant to use a [`static`], not a [`const`].
1104 ///
1105 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1106 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
c34b1796
AL
1107 NO_MANGLE_CONST_ITEMS,
1108 Deny,
1109 "const items will not have their symbols exported"
1110}
1111
9cc50fc6 1112declare_lint! {
1b1a35ee
XL
1113 /// The `no_mangle_generic_items` lint detects generic items that must be
1114 /// mangled.
1115 ///
1116 /// ### Example
1117 ///
1118 /// ```rust
1119 /// #[no_mangle]
1120 /// fn foo<T>(t: T) {
1121 ///
1122 /// }
1123 /// ```
1124 ///
1125 /// {{produces}}
1126 ///
1127 /// ### Explanation
1128 ///
136023e0 1129 /// A function with generics must have its symbol mangled to accommodate
1b1a35ee
XL
1130 /// the generic parameter. The [`no_mangle` attribute] has no effect in
1131 /// this situation, and should be removed.
1132 ///
1133 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
9cc50fc6
SL
1134 NO_MANGLE_GENERIC_ITEMS,
1135 Warn,
1136 "generic items must be mangled"
1137}
1138
532ac7d7 1139declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
c34b1796 1140
f035d41b
XL
1141impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1142 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
6a06907d 1143 let attrs = cx.tcx.hir().attrs(it.hir_id());
94222f64
XL
1144 let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1145 impl_generics: Option<&hir::Generics<'_>>,
1146 generics: &hir::Generics<'_>,
1147 span| {
1148 for param in
1149 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1150 {
1151 match param.kind {
1152 GenericParamKind::Lifetime { .. } => {}
1153 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1154 cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| {
1155 lint.build("functions generic over types or consts must be mangled")
1156 .span_suggestion_short(
1157 no_mangle_attr.span,
1158 "remove this attribute",
1159 String::new(),
1160 // Use of `#[no_mangle]` suggests FFI intent; correct
1161 // fix may be to monomorphize source by hand
1162 Applicability::MaybeIncorrect,
1163 )
1164 .emit();
1165 });
1166 break;
1167 }
1168 }
1169 }
1170 };
e74abb32 1171 match it.kind {
8faf50e0 1172 hir::ItemKind::Fn(.., ref generics, _) => {
6a06907d 1173 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
94222f64 1174 check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
c34b1796 1175 }
c30ab7b3 1176 }
8faf50e0 1177 hir::ItemKind::Const(..) => {
6a06907d 1178 if cx.sess().contains_name(attrs, sym::no_mangle) {
c34b1796
AL
1179 // Const items do not refer to a particular location in memory, and therefore
1180 // don't have anything to attach a symbol to
74b04a01
XL
1181 cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
1182 let msg = "const items should never be `#[no_mangle]`";
1183 let mut err = lint.build(msg);
1184
1185 // account for "pub const" (#45562)
1186 let start = cx
1187 .tcx
1188 .sess
1189 .source_map()
1190 .span_to_snippet(it.span)
1191 .map(|snippet| snippet.find("const").unwrap_or(0))
1192 .unwrap_or(0) as u32;
1193 // `const` is 5 chars
1194 let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1195 err.span_suggestion(
1196 const_span,
1197 "try a static value",
1198 "pub static".to_owned(),
1199 Applicability::MachineApplicable,
1200 );
1201 err.emit();
1202 });
c34b1796
AL
1203 }
1204 }
94222f64
XL
1205 hir::ItemKind::Impl(hir::Impl { ref generics, items, .. }) => {
1206 for it in items {
1207 if let hir::AssocItemKind::Fn { .. } = it.kind {
1208 if let Some(no_mangle_attr) = cx
1209 .sess()
1210 .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1211 {
1212 check_no_mangle_on_generic_fn(
1213 no_mangle_attr,
1214 Some(generics),
1215 cx.tcx.hir().get_generics(it.id.def_id.to_def_id()).unwrap(),
1216 it.span,
1217 );
1218 }
1219 }
1220 }
1221 }
c30ab7b3 1222 _ => {}
c34b1796
AL
1223 }
1224 }
1225}
1226
bd371182 1227declare_lint! {
1b1a35ee
XL
1228 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1229 /// T` because it is [undefined behavior].
1230 ///
1231 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1232 ///
1233 /// ### Example
1234 ///
1235 /// ```rust,compile_fail
1236 /// unsafe {
1237 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1238 /// }
1239 /// ```
1240 ///
1241 /// {{produces}}
1242 ///
1243 /// ### Explanation
1244 ///
1245 /// Certain assumptions are made about aliasing of data, and this transmute
1246 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1247 ///
1248 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
bd371182
AL
1249 MUTABLE_TRANSMUTES,
1250 Deny,
1251 "mutating transmuted &mut T from &T may cause undefined behavior"
1252}
1253
532ac7d7 1254declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
bd371182 1255
f035d41b
XL
1256impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1257 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
83c7162d 1258 use rustc_target::spec::abi::Abi::RustIntrinsic;
ba9703b0 1259 if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1b1a35ee 1260 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
ba9703b0
XL
1261 {
1262 if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
1263 let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
74b04a01 1264 consider instead using an UnsafeCell";
ba9703b0 1265 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| lint.build(msg).emit());
bd371182 1266 }
bd371182
AL
1267 }
1268
f035d41b
XL
1269 fn get_transmute_from_to<'tcx>(
1270 cx: &LateContext<'tcx>,
dfeec247
XL
1271 expr: &hir::Expr<'_>,
1272 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
e74abb32 1273 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
f035d41b 1274 cx.qpath_res(qpath, expr.hir_id)
476ff2be
SL
1275 } else {
1276 return None;
1277 };
48663c56 1278 if let Res::Def(DefKind::Fn, did) = def {
bd371182
AL
1279 if !def_id_is_transmute(cx, did) {
1280 return None;
1281 }
3dfed10e 1282 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
041b39d2 1283 let from = sig.inputs().skip_binder()[0];
f035d41b 1284 let to = sig.output().skip_binder();
532ac7d7 1285 return Some((from, to));
bd371182
AL
1286 }
1287 None
1288 }
1289
f035d41b 1290 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
dfeec247
XL
1291 cx.tcx.fn_sig(def_id).abi() == RustIntrinsic
1292 && cx.tcx.item_name(def_id) == sym::transmute
bd371182
AL
1293 }
1294 }
1295}
1296
c34b1796 1297declare_lint! {
1b1a35ee 1298 /// The `unstable_features` is deprecated and should no longer be used.
c34b1796
AL
1299 UNSTABLE_FEATURES,
1300 Allow,
62682a34 1301 "enabling unstable features (deprecated. do not use)"
c34b1796
AL
1302}
1303
532ac7d7
XL
1304declare_lint_pass!(
1305 /// Forbids using the `#[feature(...)]` attribute
1306 UnstableFeatures => [UNSTABLE_FEATURES]
1307);
b039eaaf 1308
f035d41b 1309impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
3dfed10e 1310 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
94222f64 1311 if attr.has_name(sym::feature) {
cc61c64b 1312 if let Some(items) = attr.meta_item_list() {
62682a34 1313 for item in items {
3dfed10e 1314 cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
74b04a01
XL
1315 lint.build("unstable feature").emit()
1316 });
62682a34
SL
1317 }
1318 }
c34b1796
AL
1319 }
1320 }
1321}
bd371182 1322
abe05a73 1323declare_lint! {
1b1a35ee
XL
1324 /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1325 /// the crate root.
1326 ///
1327 /// ### Example
1328 ///
1329 /// ```rust,compile_fail
1330 /// #![deny(unreachable_pub)]
1331 /// mod foo {
1332 /// pub mod bar {
1333 ///
1334 /// }
1335 /// }
1336 /// ```
1337 ///
1338 /// {{produces}}
1339 ///
1340 /// ### Explanation
1341 ///
1342 /// A bare `pub` visibility may be misleading if the item is not actually
1343 /// publicly exported from the crate. The `pub(crate)` visibility is
1344 /// recommended to be used instead, which more clearly expresses the intent
1345 /// that the item is only visible within its own crate.
1346 ///
1347 /// This lint is "allow" by default because it will trigger for a large
1348 /// amount existing Rust code, and has some false-positives. Eventually it
1349 /// is desired for this to become warn-by-default.
0531ce1d 1350 pub UNREACHABLE_PUB,
abe05a73
XL
1351 Allow,
1352 "`pub` items not reachable from crate root"
1353}
1354
532ac7d7
XL
1355declare_lint_pass!(
1356 /// Lint for items marked `pub` that aren't reachable from other crates.
1357 UnreachablePub => [UNREACHABLE_PUB]
1358);
abe05a73
XL
1359
1360impl UnreachablePub {
dfeec247
XL
1361 fn perform_lint(
1362 &self,
f035d41b 1363 cx: &LateContext<'_>,
dfeec247 1364 what: &str,
94222f64 1365 def_id: LocalDefId,
dfeec247
XL
1366 vis: &hir::Visibility<'_>,
1367 span: Span,
1368 exportable: bool,
1369 ) {
8faf50e0
XL
1370 let mut applicability = Applicability::MachineApplicable;
1371 match vis.node {
94222f64 1372 hir::VisibilityKind::Public if !cx.access_levels.is_reachable(def_id) => {
e1599b0c 1373 if span.from_expansion() {
8faf50e0
XL
1374 applicability = Applicability::MaybeIncorrect;
1375 }
ba9703b0 1376 let def_span = cx.tcx.sess.source_map().guess_head_span(span);
74b04a01
XL
1377 cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
1378 let mut err = lint.build(&format!("unreachable `pub` {}", what));
1379 let replacement = if cx.tcx.features().crate_visibility_modifier {
1380 "crate"
1381 } else {
1382 "pub(crate)"
1383 }
1384 .to_owned();
8faf50e0 1385
74b04a01
XL
1386 err.span_suggestion(
1387 vis.span,
1388 "consider restricting its visibility",
1389 replacement,
1390 applicability,
1391 );
1392 if exportable {
1393 err.help("or consider exporting it for use by other crates");
1394 }
1395 err.emit();
1396 });
dfeec247 1397 }
8faf50e0 1398 _ => {}
abe05a73
XL
1399 }
1400 }
1401}
1402
f035d41b
XL
1403impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1404 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
94222f64 1405 self.perform_lint(cx, "item", item.def_id, &item.vis, item.span, true);
abe05a73
XL
1406 }
1407
f035d41b 1408 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
dfeec247
XL
1409 self.perform_lint(
1410 cx,
1411 "item",
94222f64 1412 foreign_item.def_id,
dfeec247
XL
1413 &foreign_item.vis,
1414 foreign_item.span,
1415 true,
1416 );
abe05a73
XL
1417 }
1418
6a06907d 1419 fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
94222f64
XL
1420 let def_id = cx.tcx.hir().local_def_id(field.hir_id);
1421 self.perform_lint(cx, "field", def_id, &field.vis, field.span, false);
abe05a73
XL
1422 }
1423
f035d41b 1424 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
94222f64 1425 self.perform_lint(cx, "item", impl_item.def_id, &impl_item.vis, impl_item.span, false);
abe05a73
XL
1426 }
1427}
0531ce1d 1428
0531ce1d 1429declare_lint! {
1b1a35ee
XL
1430 /// The `type_alias_bounds` lint detects bounds in type aliases.
1431 ///
1432 /// ### Example
1433 ///
1434 /// ```rust
1435 /// type SendVec<T: Send> = Vec<T>;
1436 /// ```
1437 ///
1438 /// {{produces}}
1439 ///
1440 /// ### Explanation
1441 ///
1442 /// The trait bounds in a type alias are currently ignored, and should not
1443 /// be included to avoid confusion. This was previously allowed
1444 /// unintentionally; this may become a hard error in the future.
0531ce1d
XL
1445 TYPE_ALIAS_BOUNDS,
1446 Warn,
1447 "bounds in type aliases are not enforced"
1448}
1449
532ac7d7
XL
1450declare_lint_pass!(
1451 /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1452 /// They are relevant when using associated types, but otherwise neither checked
1453 /// at definition site nor enforced at use site.
1454 TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1455);
0531ce1d
XL
1456
1457impl TypeAliasBounds {
dfeec247 1458 fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
0531ce1d
XL
1459 match *qpath {
1460 hir::QPath::TypeRelative(ref ty, _) => {
1461 // If this is a type variable, we found a `T::Assoc`.
e74abb32 1462 match ty.kind {
29967ef6
XL
1463 hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1464 matches!(path.res, Res::Def(DefKind::TyParam, _))
1465 }
dfeec247 1466 _ => false,
0531ce1d
XL
1467 }
1468 }
3dfed10e 1469 hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
0531ce1d
XL
1470 }
1471 }
1472
dfeec247 1473 fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) {
0531ce1d
XL
1474 // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1475 // bound. Let's see if this type does that.
1476
1477 // We use a HIR visitor to walk the type.
dfeec247 1478 use rustc_hir::intravisit::{self, Visitor};
dc9dc135 1479 struct WalkAssocTypes<'a, 'db> {
dfeec247 1480 err: &'a mut DiagnosticBuilder<'db>,
0531ce1d
XL
1481 }
1482 impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
ba9703b0 1483 type Map = intravisit::ErasedMap<'v>;
dfeec247 1484
ba9703b0 1485 fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
0531ce1d
XL
1486 intravisit::NestedVisitorMap::None
1487 }
1488
dfeec247 1489 fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) {
0531ce1d 1490 if TypeAliasBounds::is_type_variable_assoc(qpath) {
dfeec247
XL
1491 self.err.span_help(
1492 span,
0531ce1d 1493 "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
dfeec247
XL
1494 associated types in type aliases",
1495 );
0531ce1d
XL
1496 }
1497 intravisit::walk_qpath(self, qpath, id, span)
1498 }
1499 }
1500
1501 // Let's go for a walk!
1502 let mut visitor = WalkAssocTypes { err };
1503 visitor.visit_ty(ty);
1504 }
1505}
1506
f035d41b
XL
1507impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1508 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
a2a8927a
XL
1509 let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1510 return
0531ce1d 1511 };
f035d41b
XL
1512 if let hir::TyKind::OpaqueDef(..) = ty.kind {
1513 // Bounds are respected for `type X = impl Trait`
1514 return;
1515 }
0531ce1d
XL
1516 let mut suggested_changing_assoc_types = false;
1517 // There must not be a where clause
1518 if !type_alias_generics.where_clause.predicates.is_empty() {
74b04a01 1519 cx.lint(
dfeec247 1520 TYPE_ALIAS_BOUNDS,
74b04a01
XL
1521 |lint| {
1522 let mut err = lint.build("where clauses are not enforced in type aliases");
1523 let spans: Vec<_> = type_alias_generics
1524 .where_clause
1525 .predicates
1526 .iter()
1527 .map(|pred| pred.span())
1528 .collect();
1529 err.set_span(spans);
1530 err.span_suggestion(
1531 type_alias_generics.where_clause.span_for_predicates_or_empty_place(),
1532 "the clause will not be checked when the type alias is used, and should be removed",
1533 String::new(),
1534 Applicability::MachineApplicable,
1535 );
1536 if !suggested_changing_assoc_types {
1537 TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1538 suggested_changing_assoc_types = true;
1539 }
1540 err.emit();
1541 },
e74abb32 1542 );
0531ce1d
XL
1543 }
1544 // The parameters must not have bounds
1545 for param in type_alias_generics.params.iter() {
8faf50e0 1546 let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
dfeec247
XL
1547 let suggestion = spans
1548 .iter()
1549 .map(|sp| {
1550 let start = param.span.between(*sp); // Include the `:` in `T: Bound`.
1551 (start.to(*sp), String::new())
1552 })
1553 .collect();
0531ce1d 1554 if !spans.is_empty() {
74b04a01
XL
1555 cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| {
1556 let mut err =
1557 lint.build("bounds on generic parameters are not enforced in type aliases");
1558 let msg = "the bound will not be checked when the type alias is used, \
1559 and should be removed";
1560 err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable);
1561 if !suggested_changing_assoc_types {
1562 TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1563 suggested_changing_assoc_types = true;
1564 }
1565 err.emit();
1566 });
0531ce1d
XL
1567 }
1568 }
1569 }
1570}
1571
532ac7d7
XL
1572declare_lint_pass!(
1573 /// Lint constants that are erroneous.
1574 /// Without this lint, we might not get any diagnostic if the constant is
1575 /// unused within this crate, even though downstream crates can't use it
1576 /// without producing an error.
1577 UnusedBrokenConst => []
1578);
9fa01778 1579
f035d41b
XL
1580impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1581 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 1582 match it.kind {
8faf50e0 1583 hir::ItemKind::Const(_, body_id) => {
1b1a35ee
XL
1584 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1585 // trigger the query once for all constants since that will already report the errors
1586 // FIXME: Use ensure here
1587 let _ = cx.tcx.const_eval_poly(def_id);
dfeec247 1588 }
8faf50e0 1589 hir::ItemKind::Static(_, _, body_id) => {
1b1a35ee
XL
1590 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1591 // FIXME: Use ensure here
1592 let _ = cx.tcx.eval_static_initializer(def_id);
dfeec247
XL
1593 }
1594 _ => {}
0531ce1d
XL
1595 }
1596 }
1597}
94b46f34 1598
94b46f34 1599declare_lint! {
1b1a35ee
XL
1600 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1601 /// any type parameters.
1602 ///
1603 /// ### Example
1604 ///
1605 /// ```rust
1606 /// #![feature(trivial_bounds)]
1607 /// pub struct A where i32: Copy;
1608 /// ```
1609 ///
1610 /// {{produces}}
1611 ///
1612 /// ### Explanation
1613 ///
1614 /// Usually you would not write a trait bound that you know is always
1615 /// true, or never true. However, when using macros, the macro may not
1616 /// know whether or not the constraint would hold or not at the time when
1617 /// generating the code. Currently, the compiler does not alert you if the
1618 /// constraint is always true, and generates an error if it is never true.
1619 /// The `trivial_bounds` feature changes this to be a warning in both
1620 /// cases, giving macros more freedom and flexibility to generate code,
1621 /// while still providing a signal when writing non-macro code that
1622 /// something is amiss.
1623 ///
1624 /// See [RFC 2056] for more details. This feature is currently only
1625 /// available on the nightly channel, see [tracking issue #48214].
1626 ///
1627 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1628 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
94b46f34
XL
1629 TRIVIAL_BOUNDS,
1630 Warn,
1631 "these bounds don't depend on an type parameters"
1632}
1633
532ac7d7
XL
1634declare_lint_pass!(
1635 /// Lint for trait and lifetime bounds that don't depend on type parameters
1636 /// which either do nothing, or stop the item from being used.
1637 TrivialConstraints => [TRIVIAL_BOUNDS]
1638);
94b46f34 1639
f035d41b
XL
1640impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1641 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
ba9703b0 1642 use rustc_middle::ty::fold::TypeFoldable;
5869c6ff 1643 use rustc_middle::ty::PredicateKind::*;
94b46f34 1644
94b46f34 1645 if cx.tcx.features().trivial_bounds {
6a06907d 1646 let predicates = cx.tcx.predicates_of(item.def_id);
e74abb32 1647 for &(predicate, span) in predicates.predicates {
5869c6ff 1648 let predicate_kind_name = match predicate.kind().skip_binder() {
c295e0f8 1649 Trait(..) => "trait",
94b46f34 1650 TypeOutlives(..) |
c295e0f8 1651 RegionOutlives(..) => "lifetime",
94b46f34
XL
1652
1653 // Ignore projections, as they can only be global
1654 // if the trait bound is global
1655 Projection(..) |
1656 // Ignore bounds that a user can't type
1657 WellFormed(..) |
1658 ObjectSafe(..) |
1659 ClosureKind(..) |
1660 Subtype(..) |
94222f64 1661 Coerce(..) |
f9f354fc 1662 ConstEvaluatable(..) |
1b1a35ee
XL
1663 ConstEquate(..) |
1664 TypeWellFormedFromEnv(..) => continue,
94b46f34 1665 };
94222f64 1666 if predicate.is_global(cx.tcx) {
74b04a01
XL
1667 cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
1668 lint.build(&format!(
dfeec247
XL
1669 "{} bound {} does not depend on any type \
1670 or lifetime parameters",
1671 predicate_kind_name, predicate
74b04a01
XL
1672 ))
1673 .emit()
1674 });
94b46f34
XL
1675 }
1676 }
1677 }
1678 }
1679}
1680
532ac7d7
XL
1681declare_lint_pass!(
1682 /// Does nothing as a lint pass, but registers some `Lint`s
1683 /// which are used by other parts of the compiler.
1684 SoftLints => [
1685 WHILE_TRUE,
1686 BOX_POINTERS,
1687 NON_SHORTHAND_FIELD_PATTERNS,
1688 UNSAFE_CODE,
1689 MISSING_DOCS,
1690 MISSING_COPY_IMPLEMENTATIONS,
1691 MISSING_DEBUG_IMPLEMENTATIONS,
1692 ANONYMOUS_PARAMETERS,
1693 UNUSED_DOC_COMMENTS,
532ac7d7
XL
1694 NO_MANGLE_CONST_ITEMS,
1695 NO_MANGLE_GENERIC_ITEMS,
1696 MUTABLE_TRANSMUTES,
1697 UNSTABLE_FEATURES,
532ac7d7
XL
1698 UNREACHABLE_PUB,
1699 TYPE_ALIAS_BOUNDS,
1700 TRIVIAL_BOUNDS
1701 ]
1702);
8faf50e0
XL
1703
1704declare_lint! {
1b1a35ee
XL
1705 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1706 /// pattern], which is deprecated.
1707 ///
1708 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1709 ///
1710 /// ### Example
1711 ///
c295e0f8 1712 /// ```rust,edition2018
1b1a35ee
XL
1713 /// let x = 123;
1714 /// match x {
1715 /// 0...100 => {}
1716 /// _ => {}
1717 /// }
1718 /// ```
1719 ///
1720 /// {{produces}}
1721 ///
1722 /// ### Explanation
1723 ///
1724 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1725 /// confusion with the [`..` range expression]. Use the new form instead.
1726 ///
1727 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
8faf50e0 1728 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
dc9dc135 1729 Warn,
17df50a5
XL
1730 "`...` range patterns are deprecated",
1731 @future_incompatible = FutureIncompatibleInfo {
94222f64 1732 reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
136023e0 1733 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
17df50a5 1734 };
8faf50e0
XL
1735}
1736
48663c56
XL
1737#[derive(Default)]
1738pub struct EllipsisInclusiveRangePatterns {
1739 /// If `Some(_)`, suppress all subsequent pattern
1740 /// warnings for better diagnostics.
1741 node_id: Option<ast::NodeId>,
1742}
1743
1744impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
8faf50e0
XL
1745
1746impl EarlyLintPass for EllipsisInclusiveRangePatterns {
48663c56
XL
1747 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1748 if self.node_id.is_some() {
1749 // Don't recursively warn about patterns inside range endpoints.
dfeec247 1750 return;
48663c56
XL
1751 }
1752
3dfed10e 1753 use self::ast::{PatKind, RangeSyntax::DotDotDot};
13cf67c4
XL
1754
1755 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1756 /// corresponding to the ellipsis.
dfeec247 1757 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
e74abb32 1758 match &pat.kind {
dfeec247
XL
1759 PatKind::Range(
1760 a,
1761 Some(b),
1762 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1763 ) => Some((a.as_deref(), b, *span)),
13cf67c4
XL
1764 _ => None,
1765 }
1766 }
8faf50e0 1767
e74abb32 1768 let (parenthesise, endpoints) = match &pat.kind {
13cf67c4
XL
1769 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1770 _ => (false, matches_ellipsis_pat(pat)),
1771 };
1772
1773 if let Some((start, end, join)) = endpoints {
8faf50e0 1774 let msg = "`...` range patterns are deprecated";
13cf67c4
XL
1775 let suggestion = "use `..=` for an inclusive range";
1776 if parenthesise {
48663c56 1777 self.node_id = Some(pat.id);
17df50a5
XL
1778 let end = expr_to_string(&end);
1779 let replace = match start {
1780 Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1781 None => format!("&(..={})", end),
1782 };
1783 if join.edition() >= Edition::Edition2021 {
1784 let mut err =
1785 rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,);
1786 err.span_suggestion(
1787 pat.span,
1788 suggestion,
1789 replace,
1790 Applicability::MachineApplicable,
1791 )
1792 .emit();
1793 } else {
1794 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1795 lint.build(msg)
1796 .span_suggestion(
1797 pat.span,
1798 suggestion,
1799 replace,
1800 Applicability::MachineApplicable,
1801 )
1802 .emit();
1803 });
1804 }
13cf67c4 1805 } else {
17df50a5
XL
1806 let replace = "..=".to_owned();
1807 if join.edition() >= Edition::Edition2021 {
1808 let mut err =
1809 rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,);
1810 err.span_suggestion_short(
1811 join,
1812 suggestion,
1813 replace,
1814 Applicability::MachineApplicable,
1815 )
1816 .emit();
1817 } else {
1818 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1819 lint.build(msg)
1820 .span_suggestion_short(
1821 join,
1822 suggestion,
1823 replace,
1824 Applicability::MachineApplicable,
1825 )
1826 .emit();
1827 });
1828 }
13cf67c4 1829 };
8faf50e0
XL
1830 }
1831 }
48663c56
XL
1832
1833 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1834 if let Some(node_id) = self.node_id {
1835 if pat.id == node_id {
1836 self.node_id = None
1837 }
1838 }
1839 }
8faf50e0
XL
1840}
1841
1842declare_lint! {
1b1a35ee
XL
1843 /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1844 /// that are not able to be run by the test harness because they are in a
1845 /// position where they are not nameable.
1846 ///
1847 /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1848 ///
1849 /// ### Example
1850 ///
1851 /// ```rust,test
1852 /// fn main() {
1853 /// #[test]
1854 /// fn foo() {
1855 /// // This test will not fail because it does not run.
1856 /// assert_eq!(1, 2);
1857 /// }
1858 /// }
1859 /// ```
1860 ///
1861 /// {{produces}}
1862 ///
1863 /// ### Explanation
1864 ///
1865 /// In order for the test harness to run a test, the test function must be
1866 /// located in a position where it can be accessed from the crate root.
1867 /// This generally means it must be defined in a module, and not anywhere
1868 /// else such as inside another function. The compiler previously allowed
1869 /// this without an error, so a lint was added as an alert that a test is
1870 /// not being used. Whether or not this should be allowed has not yet been
1871 /// decided, see [RFC 2471] and [issue #36629].
1872 ///
1873 /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1874 /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
b7449926 1875 UNNAMEABLE_TEST_ITEMS,
8faf50e0 1876 Warn,
416331ca 1877 "detects an item that cannot be named being marked as `#[test_case]`",
e74abb32 1878 report_in_external_macro
8faf50e0
XL
1879}
1880
b7449926 1881pub struct UnnameableTestItems {
6a06907d 1882 boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
b7449926
XL
1883 items_nameable: bool,
1884}
8faf50e0 1885
532ac7d7
XL
1886impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1887
b7449926
XL
1888impl UnnameableTestItems {
1889 pub fn new() -> Self {
ba9703b0 1890 Self { boundary: None, items_nameable: true }
b7449926
XL
1891 }
1892}
1893
f035d41b
XL
1894impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1895 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
b7449926 1896 if self.items_nameable {
dfeec247
XL
1897 if let hir::ItemKind::Mod(..) = it.kind {
1898 } else {
b7449926 1899 self.items_nameable = false;
6a06907d 1900 self.boundary = Some(it.def_id);
8faf50e0 1901 }
b7449926
XL
1902 return;
1903 }
1904
6a06907d
XL
1905 let attrs = cx.tcx.hir().attrs(it.hir_id());
1906 if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
74b04a01
XL
1907 cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
1908 lint.build("cannot test inner items").emit()
1909 });
b7449926
XL
1910 }
1911 }
1912
f035d41b 1913 fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
6a06907d 1914 if !self.items_nameable && self.boundary == Some(it.def_id) {
b7449926
XL
1915 self.items_nameable = true;
1916 }
8faf50e0
XL
1917 }
1918}
1919
1920declare_lint! {
1b1a35ee
XL
1921 /// The `keyword_idents` lint detects edition keywords being used as an
1922 /// identifier.
1923 ///
1924 /// ### Example
1925 ///
1926 /// ```rust,edition2015,compile_fail
1927 /// #![deny(keyword_idents)]
1928 /// // edition 2015
1929 /// fn dyn() {}
1930 /// ```
1931 ///
1932 /// {{produces}}
1933 ///
1934 /// ### Explanation
1935 ///
1936 /// Rust [editions] allow the language to evolve without breaking
1937 /// backwards compatibility. This lint catches code that uses new keywords
1938 /// that are added to the language that are used as identifiers (such as a
1939 /// variable name, function name, etc.). If you switch the compiler to a
1940 /// new edition without updating the code, then it will fail to compile if
1941 /// you are using a new keyword as an identifier.
1942 ///
1943 /// You can manually change the identifiers to a non-keyword, or use a
1944 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1945 ///
1946 /// This lint solves the problem automatically. It is "allow" by default
1947 /// because the code is perfectly valid in older editions. The [`cargo
1948 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1949 /// and automatically apply the suggested fix from the compiler (which is
1950 /// to use a raw identifier). This provides a completely automated way to
1951 /// update old code for a new edition.
1952 ///
1953 /// [editions]: https://doc.rust-lang.org/edition-guide/
1954 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1955 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
b7449926 1956 pub KEYWORD_IDENTS,
8faf50e0 1957 Allow,
e74abb32
XL
1958 "detects edition keywords being used as an identifier",
1959 @future_incompatible = FutureIncompatibleInfo {
1960 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
136023e0 1961 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
e74abb32 1962 };
8faf50e0
XL
1963}
1964
532ac7d7
XL
1965declare_lint_pass!(
1966 /// Check for uses of edition keywords used as an identifier.
1967 KeywordIdents => [KEYWORD_IDENTS]
1968);
8faf50e0 1969
532ac7d7 1970struct UnderMacro(bool);
8faf50e0 1971
b7449926 1972impl KeywordIdents {
9fa01778 1973 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
8faf50e0
XL
1974 for tt in tokens.into_trees() {
1975 match tt {
dc9dc135 1976 // Only report non-raw idents.
dfeec247
XL
1977 TokenTree::Token(token) => {
1978 if let Some((ident, false)) = token.ident() {
1979 self.check_ident_token(cx, UnderMacro(true), ident);
1980 }
8faf50e0 1981 }
dfeec247 1982 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
8faf50e0
XL
1983 }
1984 }
1985 }
8faf50e0 1986
dfeec247
XL
1987 fn check_ident_token(
1988 &mut self,
1989 cx: &EarlyContext<'_>,
1990 UnderMacro(under_macro): UnderMacro,
f9f354fc 1991 ident: Ident,
dfeec247 1992 ) {
48663c56 1993 let next_edition = match cx.sess.edition() {
b7449926 1994 Edition::Edition2015 => {
dc9dc135
XL
1995 match ident.name {
1996 kw::Async | kw::Await | kw::Try => Edition::Edition2018,
532ac7d7
XL
1997
1998 // rust-lang/rust#56327: Conservatively do not
1999 // attempt to report occurrences of `dyn` within
2000 // macro definitions or invocations, because `dyn`
2001 // can legitimately occur as a contextual keyword
2002 // in 2015 code denoting its 2018 meaning, and we
2003 // do not want rustfix to inject bugs into working
2004 // code by rewriting such occurrences.
2005 //
2006 // But if we see `dyn` outside of a macro, we know
2007 // its precise role in the parsed AST and thus are
2008 // assured this is truly an attempt to use it as
2009 // an identifier.
dc9dc135 2010 kw::Dyn if !under_macro => Edition::Edition2018,
532ac7d7 2011
b7449926
XL
2012 _ => return,
2013 }
2014 }
2015
0731742a 2016 // There are no new keywords yet for the 2018 edition and beyond.
48663c56 2017 _ => return,
b7449926
XL
2018 };
2019
dc9dc135 2020 // Don't lint `r#foo`.
48663c56 2021 if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
b7449926 2022 return;
8faf50e0 2023 }
b7449926 2024
74b04a01
XL
2025 cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
2026 lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition))
2027 .span_suggestion(
2028 ident.span,
2029 "you can use a raw identifier to stay compatible",
2030 format!("r#{}", ident),
2031 Applicability::MachineApplicable,
2032 )
2033 .emit()
2034 });
8faf50e0
XL
2035 }
2036}
0bf4aa26 2037
532ac7d7
XL
2038impl EarlyLintPass for KeywordIdents {
2039 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
60c5eb7d 2040 self.check_tokens(cx, mac_def.body.inner_tokens());
9fa01778 2041 }
ba9703b0 2042 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
60c5eb7d 2043 self.check_tokens(cx, mac.args.inner_tokens());
532ac7d7 2044 }
f9f354fc 2045 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
532ac7d7 2046 self.check_ident_token(cx, UnderMacro(false), ident);
0bf4aa26
XL
2047 }
2048}
2049
532ac7d7
XL
2050declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
2051
0bf4aa26 2052impl ExplicitOutlivesRequirements {
dc9dc135 2053 fn lifetimes_outliving_lifetime<'tcx>(
e74abb32 2054 inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
dc9dc135
XL
2055 index: u32,
2056 ) -> Vec<ty::Region<'tcx>> {
dfeec247
XL
2057 inferred_outlives
2058 .iter()
5869c6ff
XL
2059 .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2060 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a {
3dfed10e
XL
2061 ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
2062 _ => None,
2063 },
dfeec247
XL
2064 _ => None,
2065 })
2066 .collect()
dc9dc135 2067 }
0bf4aa26 2068
dc9dc135 2069 fn lifetimes_outliving_type<'tcx>(
e74abb32 2070 inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
dc9dc135
XL
2071 index: u32,
2072 ) -> Vec<ty::Region<'tcx>> {
dfeec247
XL
2073 inferred_outlives
2074 .iter()
5869c6ff
XL
2075 .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2076 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
3dfed10e 2077 a.is_param(index).then_some(b)
0bf4aa26 2078 }
dfeec247
XL
2079 _ => None,
2080 })
2081 .collect()
dc9dc135
XL
2082 }
2083
2084 fn collect_outlived_lifetimes<'tcx>(
2085 &self,
dfeec247 2086 param: &'tcx hir::GenericParam<'tcx>,
dc9dc135 2087 tcx: TyCtxt<'tcx>,
e74abb32 2088 inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
dc9dc135
XL
2089 ty_generics: &'tcx ty::Generics,
2090 ) -> Vec<ty::Region<'tcx>> {
f9f354fc
XL
2091 let index =
2092 ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()];
dc9dc135
XL
2093
2094 match param.kind {
2095 hir::GenericParamKind::Lifetime { .. } => {
2096 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
2097 }
2098 hir::GenericParamKind::Type { .. } => {
2099 Self::lifetimes_outliving_type(inferred_outlives, index)
0bf4aa26 2100 }
dc9dc135 2101 hir::GenericParamKind::Const { .. } => Vec::new(),
0bf4aa26 2102 }
dc9dc135
XL
2103 }
2104
dc9dc135
XL
2105 fn collect_outlives_bound_spans<'tcx>(
2106 &self,
2107 tcx: TyCtxt<'tcx>,
dfeec247 2108 bounds: &hir::GenericBounds<'_>,
dc9dc135
XL
2109 inferred_outlives: &[ty::Region<'tcx>],
2110 infer_static: bool,
2111 ) -> Vec<(usize, Span)> {
ba9703b0 2112 use rustc_middle::middle::resolve_lifetime::Region;
dc9dc135
XL
2113
2114 bounds
2115 .iter()
2116 .enumerate()
2117 .filter_map(|(i, bound)| {
2118 if let hir::GenericBound::Outlives(lifetime) = bound {
2119 let is_inferred = match tcx.named_region(lifetime.hir_id) {
1b1a35ee
XL
2120 Some(Region::Static) if infer_static => {
2121 inferred_outlives.iter().any(|r| matches!(r, ty::ReStatic))
2122 }
dfeec247
XL
2123 Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
2124 if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false }
2125 }),
dc9dc135
XL
2126 _ => false,
2127 };
60c5eb7d 2128 is_inferred.then_some((i, bound.span()))
dc9dc135
XL
2129 } else {
2130 None
2131 }
2132 })
2133 .collect()
0bf4aa26
XL
2134 }
2135
2136 fn consolidate_outlives_bound_spans(
2137 &self,
2138 lo: Span,
dfeec247
XL
2139 bounds: &hir::GenericBounds<'_>,
2140 bound_spans: Vec<(usize, Span)>,
0bf4aa26
XL
2141 ) -> Vec<Span> {
2142 if bounds.is_empty() {
2143 return Vec::new();
2144 }
2145 if bound_spans.len() == bounds.len() {
dfeec247 2146 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
0bf4aa26
XL
2147 // If all bounds are inferable, we want to delete the colon, so
2148 // start from just after the parameter (span passed as argument)
2149 vec![lo.to(last_bound_span)]
2150 } else {
2151 let mut merged = Vec::new();
2152 let mut last_merged_i = None;
2153
2154 let mut from_start = true;
2155 for (i, bound_span) in bound_spans {
2156 match last_merged_i {
dc9dc135 2157 // If the first bound is inferable, our span should also eat the leading `+`.
0bf4aa26
XL
2158 None if i == 0 => {
2159 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2160 last_merged_i = Some(0);
dfeec247 2161 }
0bf4aa26 2162 // If consecutive bounds are inferable, merge their spans
dfeec247 2163 Some(h) if i == h + 1 => {
0bf4aa26
XL
2164 if let Some(tail) = merged.last_mut() {
2165 // Also eat the trailing `+` if the first
2166 // more-than-one bound is inferable
2167 let to_span = if from_start && i < bounds.len() {
dfeec247 2168 bounds[i + 1].span().shrink_to_lo()
0bf4aa26
XL
2169 } else {
2170 bound_span
2171 };
2172 *tail = tail.to(to_span);
2173 last_merged_i = Some(i);
2174 } else {
2175 bug!("another bound-span visited earlier");
2176 }
dfeec247 2177 }
0bf4aa26
XL
2178 _ => {
2179 // When we find a non-inferable bound, subsequent inferable bounds
2180 // won't be consecutive from the start (and we'll eat the leading
2181 // `+` rather than the trailing one)
2182 from_start = false;
dfeec247 2183 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
0bf4aa26
XL
2184 last_merged_i = Some(i);
2185 }
2186 }
2187 }
2188 merged
2189 }
2190 }
2191}
2192
f035d41b
XL
2193impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2194 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
ba9703b0 2195 use rustc_middle::middle::resolve_lifetime::Region;
dc9dc135 2196
0bf4aa26 2197 let infer_static = cx.tcx.features().infer_static_outlives_requirements;
6a06907d 2198 let def_id = item.def_id;
dc9dc135 2199 if let hir::ItemKind::Struct(_, ref hir_generics)
dfeec247
XL
2200 | hir::ItemKind::Enum(_, ref hir_generics)
2201 | hir::ItemKind::Union(_, ref hir_generics) = item.kind
dc9dc135
XL
2202 {
2203 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2204 if inferred_outlives.is_empty() {
2205 return;
2206 }
2207
2208 let ty_generics = cx.tcx.generics_of(def_id);
2209
0bf4aa26
XL
2210 let mut bound_count = 0;
2211 let mut lint_spans = Vec::new();
2212
dfeec247 2213 for param in hir_generics.params {
1b1a35ee
XL
2214 let has_lifetime_bounds = param
2215 .bounds
2216 .iter()
2217 .any(|bound| matches!(bound, hir::GenericBound::Outlives(_)));
dc9dc135
XL
2218 if !has_lifetime_bounds {
2219 continue;
2220 }
2221
dfeec247
XL
2222 let relevant_lifetimes =
2223 self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics);
dc9dc135
XL
2224 if relevant_lifetimes.is_empty() {
2225 continue;
2226 }
2227
0bf4aa26 2228 let bound_spans = self.collect_outlives_bound_spans(
dfeec247
XL
2229 cx.tcx,
2230 &param.bounds,
2231 &relevant_lifetimes,
2232 infer_static,
0bf4aa26
XL
2233 );
2234 bound_count += bound_spans.len();
dfeec247
XL
2235 lint_spans.extend(self.consolidate_outlives_bound_spans(
2236 param.span.shrink_to_hi(),
2237 &param.bounds,
2238 bound_spans,
2239 ));
0bf4aa26
XL
2240 }
2241
2242 let mut where_lint_spans = Vec::new();
2243 let mut dropped_predicate_count = 0;
dc9dc135
XL
2244 let num_predicates = hir_generics.where_clause.predicates.len();
2245 for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
2246 let (relevant_lifetimes, bounds, span) = match where_predicate {
2247 hir::WherePredicate::RegionPredicate(predicate) => {
dfeec247
XL
2248 if let Some(Region::EarlyBound(index, ..)) =
2249 cx.tcx.named_region(predicate.lifetime.hir_id)
dc9dc135
XL
2250 {
2251 (
2252 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
0bf4aa26 2253 &predicate.bounds,
dc9dc135 2254 predicate.span,
0bf4aa26 2255 )
dc9dc135
XL
2256 } else {
2257 continue;
2258 }
0bf4aa26 2259 }
dc9dc135
XL
2260 hir::WherePredicate::BoundPredicate(predicate) => {
2261 // FIXME we can also infer bounds on associated types,
2262 // and should check for them here.
e74abb32 2263 match predicate.bounded_ty.kind {
dfeec247 2264 hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
a2a8927a
XL
2265 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2266 continue
2267 };
2268 let index = ty_generics.param_def_id_to_index[&def_id];
2269 (
2270 Self::lifetimes_outliving_type(inferred_outlives, index),
2271 &predicate.bounds,
2272 predicate.span,
2273 )
dfeec247
XL
2274 }
2275 _ => {
2276 continue;
2277 }
dc9dc135
XL
2278 }
2279 }
2280 _ => continue,
2281 };
2282 if relevant_lifetimes.is_empty() {
2283 continue;
2284 }
2285
2286 let bound_spans = self.collect_outlives_bound_spans(
dfeec247
XL
2287 cx.tcx,
2288 bounds,
2289 &relevant_lifetimes,
2290 infer_static,
dc9dc135
XL
2291 );
2292 bound_count += bound_spans.len();
2293
2294 let drop_predicate = bound_spans.len() == bounds.len();
2295 if drop_predicate {
2296 dropped_predicate_count += 1;
2297 }
2298
2299 // If all the bounds on a predicate were inferable and there are
2300 // further predicates, we want to eat the trailing comma.
2301 if drop_predicate && i + 1 < num_predicates {
2302 let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
dfeec247 2303 where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
dc9dc135 2304 } else {
dfeec247
XL
2305 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2306 span.shrink_to_lo(),
2307 bounds,
2308 bound_spans,
2309 ));
0bf4aa26
XL
2310 }
2311 }
2312
2313 // If all predicates are inferable, drop the entire clause
2314 // (including the `where`)
2315 if num_predicates > 0 && dropped_predicate_count == num_predicates {
dfeec247
XL
2316 let where_span = hir_generics
2317 .where_clause
2318 .span()
dc9dc135
XL
2319 .expect("span of (nonempty) where clause should exist");
2320 // Extend the where clause back to the closing `>` of the
2321 // generics, except for tuple struct, which have the `where`
2322 // after the fields of the struct.
dfeec247
XL
2323 let full_where_span =
2324 if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2325 where_span
2326 } else {
2327 hir_generics.span.shrink_to_hi().to(where_span)
2328 };
2329 lint_spans.push(full_where_span);
0bf4aa26
XL
2330 } else {
2331 lint_spans.extend(where_lint_spans);
2332 }
2333
2334 if !lint_spans.is_empty() {
74b04a01
XL
2335 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
2336 lint.build("outlives requirements can be inferred")
2337 .multipart_suggestion(
2338 if bound_count == 1 {
2339 "remove this bound"
2340 } else {
2341 "remove these bounds"
2342 },
2343 lint_spans
2344 .into_iter()
2345 .map(|span| (span, "".to_owned()))
2346 .collect::<Vec<_>>(),
2347 Applicability::MachineApplicable,
2348 )
2349 .emit();
2350 });
0bf4aa26 2351 }
0bf4aa26
XL
2352 }
2353 }
0bf4aa26 2354}
416331ca
XL
2355
2356declare_lint! {
1b1a35ee
XL
2357 /// The `incomplete_features` lint detects unstable features enabled with
2358 /// the [`feature` attribute] that may function improperly in some or all
2359 /// cases.
2360 ///
2361 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2362 ///
2363 /// ### Example
2364 ///
2365 /// ```rust
94222f64 2366 /// #![feature(generic_const_exprs)]
1b1a35ee
XL
2367 /// ```
2368 ///
2369 /// {{produces}}
2370 ///
2371 /// ### Explanation
2372 ///
2373 /// Although it is encouraged for people to experiment with unstable
2374 /// features, some of them are known to be incomplete or faulty. This lint
2375 /// is a signal that the feature has not yet been finished, and you may
2376 /// experience problems with it.
416331ca
XL
2377 pub INCOMPLETE_FEATURES,
2378 Warn,
2379 "incomplete features that may function improperly in some or all cases"
2380}
2381
2382declare_lint_pass!(
cdc7bbd5 2383 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
416331ca
XL
2384 IncompleteFeatures => [INCOMPLETE_FEATURES]
2385);
2386
2387impl EarlyLintPass for IncompleteFeatures {
2388 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2389 let features = cx.sess.features_untracked();
dfeec247
XL
2390 features
2391 .declared_lang_features
2392 .iter()
2393 .map(|(name, span, _)| (name, span))
416331ca 2394 .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
136023e0 2395 .filter(|(&name, _)| features.incomplete(name))
f9f354fc 2396 .for_each(|(&name, &span)| {
74b04a01 2397 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
f9f354fc
XL
2398 let mut builder = lint.build(&format!(
2399 "the feature `{}` is incomplete and may not be safe to use \
2400 and/or cause compiler crashes",
416331ca 2401 name,
f9f354fc
XL
2402 ));
2403 if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
2404 builder.note(&format!(
2405 "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
2406 for more information",
2407 n, n,
2408 ));
2409 }
29967ef6
XL
2410 if HAS_MIN_FEATURES.contains(&name) {
2411 builder.help(&format!(
2412 "consider using `min_{}` instead, which is more stable and complete",
2413 name,
2414 ));
2415 }
f9f354fc 2416 builder.emit();
74b04a01 2417 })
416331ca
XL
2418 });
2419 }
2420}
2421
5869c6ff 2422const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
29967ef6 2423
416331ca 2424declare_lint! {
1b1a35ee 2425 /// The `invalid_value` lint detects creating a value that is not valid,
17df50a5 2426 /// such as a null reference.
1b1a35ee
XL
2427 ///
2428 /// ### Example
2429 ///
2430 /// ```rust,no_run
2431 /// # #![allow(unused)]
2432 /// unsafe {
2433 /// let x: &'static i32 = std::mem::zeroed();
2434 /// }
2435 /// ```
2436 ///
2437 /// {{produces}}
2438 ///
2439 /// ### Explanation
2440 ///
2441 /// In some situations the compiler can detect that the code is creating
2442 /// an invalid value, which should be avoided.
2443 ///
2444 /// In particular, this lint will check for improper use of
2445 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2446 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2447 /// lint should provide extra information to indicate what the problem is
2448 /// and a possible solution.
2449 ///
2450 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2451 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2452 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2453 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2454 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
416331ca
XL
2455 pub INVALID_VALUE,
2456 Warn,
17df50a5 2457 "an invalid value is being created (such as a null reference)"
416331ca
XL
2458}
2459
2460declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2461
f035d41b
XL
2462impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2463 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
e1599b0c 2464 #[derive(Debug, Copy, Clone, PartialEq)]
dfeec247
XL
2465 enum InitKind {
2466 Zeroed,
2467 Uninit,
fc512014 2468 }
416331ca
XL
2469
2470 /// Information about why a type cannot be initialized this way.
2471 /// Contains an error message and optionally a span to point at.
2472 type InitError = (String, Option<Span>);
2473
e1599b0c 2474 /// Test if this constant is all-0.
dfeec247 2475 fn is_zero(expr: &hir::Expr<'_>) -> bool {
e1599b0c 2476 use hir::ExprKind::*;
3dfed10e 2477 use rustc_ast::LitKind::*;
e74abb32 2478 match &expr.kind {
dfeec247 2479 Lit(lit) => {
e1599b0c
XL
2480 if let Int(i, _) = lit.node {
2481 i == 0
2482 } else {
2483 false
dfeec247
XL
2484 }
2485 }
2486 Tup(tup) => tup.iter().all(is_zero),
2487 _ => false,
e1599b0c
XL
2488 }
2489 }
2490
2491 /// Determine if this expression is a "dangerous initialization".
f035d41b 2492 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
e74abb32 2493 if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
60c5eb7d 2494 // Find calls to `mem::{uninitialized,zeroed}` methods.
e74abb32 2495 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
f035d41b 2496 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
c295e0f8
XL
2497 match cx.tcx.get_diagnostic_name(def_id) {
2498 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2499 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2500 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2501 _ => {}
e1599b0c 2502 }
60c5eb7d 2503 }
f035d41b 2504 } else if let hir::ExprKind::MethodCall(_, _, ref args, _) = expr.kind {
60c5eb7d 2505 // Find problematic calls to `MaybeUninit::assume_init`.
3dfed10e 2506 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
60c5eb7d
XL
2507 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2508 // This is a call to *some* method named `assume_init`.
2509 // See if the `self` parameter is one of the dangerous constructors.
2510 if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
2511 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
f035d41b 2512 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
c295e0f8
XL
2513 match cx.tcx.get_diagnostic_name(def_id) {
2514 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2515 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2516 _ => {}
60c5eb7d
XL
2517 }
2518 }
2519 }
e1599b0c
XL
2520 }
2521 }
2522
2523 None
2524 }
2525
3dfed10e
XL
2526 /// Test if this enum has several actually "existing" variants.
2527 /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
2528 fn is_multi_variant(adt: &ty::AdtDef) -> bool {
2529 // As an approximation, we only count dataless variants. Those are definitely inhabited.
2530 let existing_variants = adt.variants.iter().filter(|v| v.fields.is_empty()).count();
2531 existing_variants > 1
2532 }
2533
416331ca
XL
2534 /// Return `Some` only if we are sure this type does *not*
2535 /// allow zero initialization.
e1599b0c
XL
2536 fn ty_find_init_error<'tcx>(
2537 tcx: TyCtxt<'tcx>,
2538 ty: Ty<'tcx>,
2539 init: InitKind,
2540 ) -> Option<InitError> {
ba9703b0 2541 use rustc_middle::ty::TyKind::*;
1b1a35ee 2542 match ty.kind() {
416331ca 2543 // Primitive types that don't like 0 as a value.
74b04a01
XL
2544 Ref(..) => Some(("references must be non-null".to_string(), None)),
2545 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2546 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2547 Never => Some(("the `!` type has no valid value".to_string(), None)),
1b1a35ee 2548 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
dfeec247
XL
2549 // raw ptr to dyn Trait
2550 {
74b04a01 2551 Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
dfeec247 2552 }
e1599b0c 2553 // Primitive types with other constraints.
dfeec247 2554 Bool if init == InitKind::Uninit => {
74b04a01 2555 Some(("booleans must be either `true` or `false`".to_string(), None))
dfeec247
XL
2556 }
2557 Char if init == InitKind::Uninit => {
74b04a01 2558 Some(("characters must be a valid Unicode codepoint".to_string(), None))
dfeec247 2559 }
e1599b0c 2560 // Recurse and checks for some compound types.
416331ca 2561 Adt(adt_def, substs) if !adt_def.is_union() => {
3dfed10e 2562 // First check if this ADT has a layout attribute (like `NonNull` and friends).
e1599b0c
XL
2563 use std::ops::Bound;
2564 match tcx.layout_scalar_valid_range(adt_def.did) {
2565 // We exploit here that `layout_scalar_valid_range` will never
2566 // return `Bound::Excluded`. (And we have tests checking that we
2567 // handle the attribute correctly.)
dfeec247
XL
2568 (Bound::Included(lo), _) if lo > 0 => {
2569 return Some((format!("`{}` must be non-null", ty), None));
2570 }
e1599b0c 2571 (Bound::Included(_), _) | (_, Bound::Included(_))
dfeec247
XL
2572 if init == InitKind::Uninit =>
2573 {
e1599b0c 2574 return Some((
dfeec247
XL
2575 format!(
2576 "`{}` must be initialized inside its custom valid range",
2577 ty,
2578 ),
e1599b0c 2579 None,
dfeec247
XL
2580 ));
2581 }
e1599b0c
XL
2582 _ => {}
2583 }
2584 // Now, recurse.
416331ca 2585 match adt_def.variants.len() {
74b04a01 2586 0 => Some(("enums with no variants have no valid value".to_string(), None)),
416331ca
XL
2587 1 => {
2588 // Struct, or enum with exactly one variant.
2589 // Proceed recursively, check all fields.
2590 let variant = &adt_def.variants[VariantIdx::from_u32(0)];
2591 variant.fields.iter().find_map(|field| {
dfeec247
XL
2592 ty_find_init_error(tcx, field.ty(tcx, substs), init).map(
2593 |(mut msg, span)| {
2594 if span.is_none() {
2595 // Point to this field, should be helpful for figuring
2596 // out where the source of the error is.
2597 let span = tcx.def_span(field.did);
2598 write!(
2599 &mut msg,
2600 " (in this {} field)",
2601 adt_def.descr()
2602 )
2603 .unwrap();
2604 (msg, Some(span))
2605 } else {
2606 // Just forward.
2607 (msg, span)
2608 }
2609 },
2610 )
416331ca
XL
2611 })
2612 }
3dfed10e
XL
2613 // Multi-variant enum.
2614 _ => {
2615 if init == InitKind::Uninit && is_multi_variant(adt_def) {
2616 let span = tcx.def_span(adt_def.did);
2617 Some((
2618 "enums have to be initialized to a variant".to_string(),
2619 Some(span),
2620 ))
2621 } else {
2622 // In principle, for zero-initialization we could figure out which variant corresponds
2623 // to tag 0, and check that... but for now we just accept all zero-initializations.
2624 None
2625 }
2626 }
416331ca
XL
2627 }
2628 }
2629 Tuple(..) => {
2630 // Proceed recursively, check all fields.
e1599b0c 2631 ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init))
416331ca 2632 }
416331ca
XL
2633 // Conservative fallback.
2634 _ => None,
2635 }
2636 }
2637
e1599b0c
XL
2638 if let Some(init) = is_dangerous_init(cx, expr) {
2639 // This conjures an instance of a type out of nothing,
2640 // using zeroed or uninitialized memory.
2641 // We are extremely conservative with what we warn about.
3dfed10e 2642 let conjured_ty = cx.typeck_results().expr_ty(expr);
1b1a35ee
XL
2643 if let Some((msg, span)) =
2644 with_no_trimmed_paths(|| ty_find_init_error(cx.tcx, conjured_ty, init))
2645 {
74b04a01
XL
2646 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2647 let mut err = lint.build(&format!(
e1599b0c
XL
2648 "the type `{}` does not permit {}",
2649 conjured_ty,
2650 match init {
2651 InitKind::Zeroed => "zero-initialization",
2652 InitKind::Uninit => "being left uninitialized",
2653 },
74b04a01
XL
2654 ));
2655 err.span_label(expr.span, "this code causes undefined behavior when executed");
2656 err.span_label(
2657 expr.span,
2658 "help: use `MaybeUninit<T>` instead, \
2659 and only call `assume_init` after initialization is done",
2660 );
2661 if let Some(span) = span {
2662 err.span_note(span, &msg);
2663 } else {
2664 err.note(&msg);
2665 }
2666 err.emit();
2667 });
416331ca
XL
2668 }
2669 }
2670 }
2671}
f035d41b
XL
2672
2673declare_lint! {
1b1a35ee
XL
2674 /// The `clashing_extern_declarations` lint detects when an `extern fn`
2675 /// has been declared with the same name but different types.
2676 ///
2677 /// ### Example
2678 ///
2679 /// ```rust
2680 /// mod m {
2681 /// extern "C" {
2682 /// fn foo();
2683 /// }
2684 /// }
2685 ///
2686 /// extern "C" {
2687 /// fn foo(_: u32);
2688 /// }
2689 /// ```
2690 ///
2691 /// {{produces}}
2692 ///
2693 /// ### Explanation
2694 ///
2695 /// Because two symbols of the same name cannot be resolved to two
2696 /// different functions at link time, and one function cannot possibly
2697 /// have two types, a clashing extern declaration is almost certainly a
2698 /// mistake. Check to make sure that the `extern` definitions are correct
2699 /// and equivalent, and possibly consider unifying them in one location.
2700 ///
2701 /// This lint does not run between crates because a project may have
2702 /// dependencies which both rely on the same extern function, but declare
2703 /// it in a different (but valid) way. For example, they may both declare
2704 /// an opaque type for one or more of the arguments (which would end up
2705 /// distinct types), or use types that are valid conversions in the
2706 /// language the `extern fn` is defined in. In these cases, the compiler
2707 /// can't say that the clashing declaration is incorrect.
f035d41b 2708 pub CLASHING_EXTERN_DECLARATIONS,
3dfed10e 2709 Warn,
f035d41b
XL
2710 "detects when an extern fn has been declared with the same name but different types"
2711}
2712
2713pub struct ClashingExternDeclarations {
5869c6ff
XL
2714 /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2715 /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2716 /// the symbol should be reported as a clashing declaration.
2717 // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2718 // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
f035d41b
XL
2719 seen_decls: FxHashMap<Symbol, HirId>,
2720}
2721
2722/// Differentiate between whether the name for an extern decl came from the link_name attribute or
2723/// just from declaration itself. This is important because we don't want to report clashes on
2724/// symbol name if they don't actually clash because one or the other links against a symbol with a
2725/// different name.
2726enum SymbolName {
2727 /// The name of the symbol + the span of the annotation which introduced the link name.
2728 Link(Symbol, Span),
2729 /// No link name, so just the name of the symbol.
2730 Normal(Symbol),
2731}
2732
2733impl SymbolName {
2734 fn get_name(&self) -> Symbol {
2735 match self {
2736 SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2737 }
2738 }
2739}
2740
2741impl ClashingExternDeclarations {
2742 crate fn new() -> Self {
2743 ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2744 }
2745 /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2746 /// for the item, return its HirId without updating the set.
2747 fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
6a06907d 2748 let did = fi.def_id.to_def_id();
5869c6ff
XL
2749 let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2750 let name = Symbol::intern(tcx.symbol_name(instance).name);
2751 if let Some(&hir_id) = self.seen_decls.get(&name) {
f035d41b
XL
2752 // Avoid updating the map with the new entry when we do find a collision. We want to
2753 // make sure we're always pointing to the first definition as the previous declaration.
2754 // This lets us avoid emitting "knock-on" diagnostics.
5869c6ff 2755 Some(hir_id)
f035d41b 2756 } else {
6a06907d 2757 self.seen_decls.insert(name, fi.hir_id())
f035d41b
XL
2758 }
2759 }
2760
2761 /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2762 /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2763 /// symbol's name.
2764 fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
f035d41b 2765 if let Some((overridden_link_name, overridden_link_name_span)) =
6a06907d 2766 tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
f035d41b
XL
2767 // FIXME: Instead of searching through the attributes again to get span
2768 // information, we could have codegen_fn_attrs also give span information back for
2769 // where the attribute was defined. However, until this is found to be a
2770 // bottleneck, this does just fine.
2771 (
2772 overridden_link_name,
6a06907d 2773 tcx.get_attrs(fi.def_id.to_def_id())
f035d41b 2774 .iter()
94222f64 2775 .find(|at| at.has_name(sym::link_name))
f035d41b
XL
2776 .unwrap()
2777 .span,
2778 )
2779 })
2780 {
2781 SymbolName::Link(overridden_link_name, overridden_link_name_span)
2782 } else {
2783 SymbolName::Normal(fi.ident.name)
2784 }
2785 }
2786
2787 /// Checks whether two types are structurally the same enough that the declarations shouldn't
2788 /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2789 /// with the same members (as the declarations shouldn't clash).
3dfed10e
XL
2790 fn structurally_same_type<'tcx>(
2791 cx: &LateContext<'tcx>,
2792 a: Ty<'tcx>,
2793 b: Ty<'tcx>,
2794 ckind: CItemKind,
2795 ) -> bool {
2796 fn structurally_same_type_impl<'tcx>(
2797 seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2798 cx: &LateContext<'tcx>,
2799 a: Ty<'tcx>,
2800 b: Ty<'tcx>,
2801 ckind: CItemKind,
2802 ) -> bool {
2803 debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
1b1a35ee
XL
2804 let tcx = cx.tcx;
2805
2806 // Given a transparent newtype, reach through and grab the inner
2807 // type unless the newtype makes the type non-null.
2808 let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2809 let mut ty = ty;
2810 loop {
2811 if let ty::Adt(def, substs) = *ty.kind() {
2812 let is_transparent = def.subst(tcx, substs).repr.transparent();
2813 let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, &def);
2814 debug!(
2815 "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2816 ty, is_transparent, is_non_null
2817 );
2818 if is_transparent && !is_non_null {
2819 debug_assert!(def.variants.len() == 1);
2820 let v = &def.variants[VariantIdx::new(0)];
2821 ty = transparent_newtype_field(tcx, v)
2822 .expect(
2823 "single-variant transparent structure with zero-sized field",
2824 )
2825 .ty(tcx, substs);
2826 continue;
2827 }
2828 }
2829 debug!("non_transparent_ty -> {:?}", ty);
2830 return ty;
2831 }
2832 };
2833
2834 let a = non_transparent_ty(a);
2835 let b = non_transparent_ty(b);
2836
3dfed10e
XL
2837 if !seen_types.insert((a, b)) {
2838 // We've encountered a cycle. There's no point going any further -- the types are
2839 // structurally the same.
2840 return true;
2841 }
2842 let tcx = cx.tcx;
2843 if a == b || rustc_middle::ty::TyS::same_type(a, b) {
2844 // All nominally-same types are structurally same, too.
2845 true
2846 } else {
2847 // Do a full, depth-first comparison between the two.
2848 use rustc_middle::ty::TyKind::*;
1b1a35ee
XL
2849 let a_kind = a.kind();
2850 let b_kind = b.kind();
2851
2852 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2853 debug!("compare_layouts({:?}, {:?})", a, b);
2854 let a_layout = &cx.layout_of(a)?.layout.abi;
2855 let b_layout = &cx.layout_of(b)?.layout.abi;
2856 debug!(
2857 "comparing layouts: {:?} == {:?} = {}",
2858 a_layout,
2859 b_layout,
2860 a_layout == b_layout
2861 );
2862 Ok(a_layout == b_layout)
3dfed10e
XL
2863 };
2864
2865 #[allow(rustc::usage_of_ty_tykind)]
2866 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2867 kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2868 };
2869
2870 ensure_sufficient_stack(|| {
2871 match (a_kind, b_kind) {
2872 (Adt(a_def, a_substs), Adt(b_def, b_substs)) => {
2873 let a = a.subst(cx.tcx, a_substs);
2874 let b = b.subst(cx.tcx, b_substs);
2875 debug!("Comparing {:?} and {:?}", a, b);
2876
1b1a35ee
XL
2877 // We can immediately rule out these types as structurally same if
2878 // their layouts differ.
2879 match compare_layouts(a, b) {
2880 Ok(false) => return false,
2881 _ => (), // otherwise, continue onto the full, fields comparison
2882 }
2883
3dfed10e
XL
2884 // Grab a flattened representation of all fields.
2885 let a_fields = a_def.variants.iter().flat_map(|v| v.fields.iter());
2886 let b_fields = b_def.variants.iter().flat_map(|v| v.fields.iter());
1b1a35ee
XL
2887
2888 // Perform a structural comparison for each field.
2889 a_fields.eq_by(
3dfed10e
XL
2890 b_fields,
2891 |&ty::FieldDef { did: a_did, .. },
2892 &ty::FieldDef { did: b_did, .. }| {
2893 structurally_same_type_impl(
2894 seen_types,
2895 cx,
2896 tcx.type_of(a_did),
2897 tcx.type_of(b_did),
2898 ckind,
2899 )
2900 },
2901 )
2902 }
2903 (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2904 // For arrays, we also check the constness of the type.
2905 a_const.val == b_const.val
2906 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2907 }
2908 (Slice(a_ty), Slice(b_ty)) => {
2909 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2910 }
2911 (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2912 a_tymut.mutbl == b_tymut.mutbl
2913 && structurally_same_type_impl(
2914 seen_types,
2915 cx,
2916 &a_tymut.ty,
2917 &b_tymut.ty,
2918 ckind,
2919 )
2920 }
2921 (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2922 // For structural sameness, we don't need the region to be same.
2923 a_mut == b_mut
2924 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2925 }
2926 (FnDef(..), FnDef(..)) => {
2927 let a_poly_sig = a.fn_sig(tcx);
2928 let b_poly_sig = b.fn_sig(tcx);
2929
2930 // As we don't compare regions, skip_binder is fine.
2931 let a_sig = a_poly_sig.skip_binder();
2932 let b_sig = b_poly_sig.skip_binder();
2933
2934 (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2935 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2936 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2937 structurally_same_type_impl(seen_types, cx, a, b, ckind)
2938 })
2939 && structurally_same_type_impl(
2940 seen_types,
2941 cx,
2942 a_sig.output(),
2943 b_sig.output(),
2944 ckind,
2945 )
2946 }
2947 (Tuple(a_substs), Tuple(b_substs)) => {
2948 a_substs.types().eq_by(b_substs.types(), |a_ty, b_ty| {
2949 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2950 })
2951 }
2952 // For these, it's not quite as easy to define structural-sameness quite so easily.
2953 // For the purposes of this lint, take the conservative approach and mark them as
2954 // not structurally same.
2955 (Dynamic(..), Dynamic(..))
2956 | (Error(..), Error(..))
2957 | (Closure(..), Closure(..))
2958 | (Generator(..), Generator(..))
2959 | (GeneratorWitness(..), GeneratorWitness(..))
2960 | (Projection(..), Projection(..))
2961 | (Opaque(..), Opaque(..)) => false,
2962
2963 // These definitely should have been caught above.
2964 (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2965
2966 // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2967 // enum layout optimisation is being applied.
2968 (Adt(..), other_kind) | (other_kind, Adt(..))
2969 if is_primitive_or_pointer(other_kind) =>
2970 {
2971 let (primitive, adt) =
1b1a35ee 2972 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
3dfed10e
XL
2973 if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2974 ty == primitive
2975 } else {
1b1a35ee 2976 compare_layouts(a, b).unwrap_or(false)
3dfed10e
XL
2977 }
2978 }
2979 // Otherwise, just compare the layouts. This may fail to lint for some
2980 // incompatible types, but at the very least, will stop reads into
2981 // uninitialised memory.
1b1a35ee 2982 _ => compare_layouts(a, b).unwrap_or(false),
3dfed10e
XL
2983 }
2984 })
f035d41b
XL
2985 }
2986 }
3dfed10e
XL
2987 let mut seen_types = FxHashSet::default();
2988 structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
f035d41b
XL
2989 }
2990}
2991
2992impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2993
2994impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2995 fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2996 trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2997 if let ForeignItemKind::Fn(..) = this_fi.kind {
29967ef6 2998 let tcx = cx.tcx;
f035d41b
XL
2999 if let Some(existing_hid) = self.insert(tcx, this_fi) {
3000 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
6a06907d 3001 let this_decl_ty = tcx.type_of(this_fi.def_id);
f035d41b
XL
3002 debug!(
3003 "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
6a06907d 3004 existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
f035d41b
XL
3005 );
3006 // Check that the declarations match.
3dfed10e
XL
3007 if !Self::structurally_same_type(
3008 cx,
3009 existing_decl_ty,
3010 this_decl_ty,
3011 CItemKind::Declaration,
3012 ) {
a2a8927a 3013 let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
f035d41b
XL
3014 let orig = Self::name_of_extern_decl(tcx, orig_fi);
3015
3016 // We want to ensure that we use spans for both decls that include where the
3017 // name was defined, whether that was from the link_name attribute or not.
3018 let get_relevant_span =
3019 |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
3020 SymbolName::Normal(_) => fi.span,
3021 SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
3022 };
3023 // Finally, emit the diagnostic.
3024 tcx.struct_span_lint_hir(
3025 CLASHING_EXTERN_DECLARATIONS,
6a06907d 3026 this_fi.hir_id(),
f035d41b
XL
3027 get_relevant_span(this_fi),
3028 |lint| {
3029 let mut expected_str = DiagnosticStyledString::new();
3030 expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
3031 let mut found_str = DiagnosticStyledString::new();
3032 found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
3033
3034 lint.build(&format!(
3035 "`{}` redeclare{} with a different signature",
3036 this_fi.ident.name,
3037 if orig.get_name() == this_fi.ident.name {
3038 "d".to_string()
3039 } else {
3040 format!("s `{}`", orig.get_name())
3041 }
3042 ))
3043 .span_label(
3044 get_relevant_span(orig_fi),
3045 &format!("`{}` previously declared here", orig.get_name()),
3046 )
3047 .span_label(
3048 get_relevant_span(this_fi),
3049 "this signature doesn't match the previous declaration",
3050 )
3051 .note_expected_found(&"", expected_str, &"", found_str)
3052 .emit()
3053 },
3054 );
3055 }
3056 }
3057 }
3058 }
3059}
cdc7bbd5
XL
3060
3061declare_lint! {
3062 /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3063 /// which causes [undefined behavior].
3064 ///
3065 /// ### Example
3066 ///
3067 /// ```rust,no_run
3068 /// # #![allow(unused)]
3069 /// use std::ptr;
3070 /// unsafe {
3071 /// let x = &*ptr::null::<i32>();
3072 /// let x = ptr::addr_of!(*ptr::null::<i32>());
3073 /// let x = *(0 as *const i32);
3074 /// }
3075 /// ```
3076 ///
3077 /// {{produces}}
3078 ///
3079 /// ### Explanation
3080 ///
3081 /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3082 /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3083 ///
3084 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3085 pub DEREF_NULLPTR,
3086 Warn,
3087 "detects when an null pointer is dereferenced"
3088}
3089
3090declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3091
3092impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3093 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3094 /// test if expression is a null ptr
3095 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3096 match &expr.kind {
3097 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3098 if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3099 return is_zero(expr) || is_null_ptr(cx, expr);
3100 }
3101 }
3102 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3103 rustc_hir::ExprKind::Call(ref path, _) => {
3104 if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3105 if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
c295e0f8
XL
3106 return matches!(
3107 cx.tcx.get_diagnostic_name(def_id),
3108 Some(sym::ptr_null | sym::ptr_null_mut)
3109 );
cdc7bbd5
XL
3110 }
3111 }
3112 }
3113 _ => {}
3114 }
3115 false
3116 }
3117
3118 /// test if expression is the literal `0`
3119 fn is_zero(expr: &hir::Expr<'_>) -> bool {
3120 match &expr.kind {
3121 rustc_hir::ExprKind::Lit(ref lit) => {
3122 if let LitKind::Int(a, _) = lit.node {
3123 return a == 0;
3124 }
3125 }
3126 _ => {}
3127 }
3128 false
3129 }
3130
3c0e092e
XL
3131 if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3132 if is_null_ptr(cx, expr_deref) {
3133 cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
3134 let mut err = lint.build("dereferencing a null pointer");
3135 err.span_label(expr.span, "this code causes undefined behavior when executed");
3136 err.emit();
3137 });
cdc7bbd5
XL
3138 }
3139 }
3140 }
3141}
94222f64
XL
3142
3143declare_lint! {
3144 /// The `named_asm_labels` lint detects the use of named labels in the
3145 /// inline `asm!` macro.
3146 ///
3147 /// ### Example
3148 ///
3149 /// ```rust,compile_fail
a2a8927a
XL
3150 /// use std::arch::asm;
3151 ///
94222f64
XL
3152 /// fn main() {
3153 /// unsafe {
3154 /// asm!("foo: bar");
3155 /// }
3156 /// }
3157 /// ```
3158 ///
3159 /// {{produces}}
3160 ///
3161 /// ### Explanation
3162 ///
3163 /// LLVM is allowed to duplicate inline assembly blocks for any
3164 /// reason, for example when it is in a function that gets inlined. Because
3165 /// of this, GNU assembler [local labels] *must* be used instead of labels
3166 /// with a name. Using named labels might cause assembler or linker errors.
3167 ///
a2a8927a 3168 /// See the explanation in [Rust By Example] for more details.
94222f64
XL
3169 ///
3170 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
a2a8927a 3171 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
94222f64
XL
3172 pub NAMED_ASM_LABELS,
3173 Deny,
3174 "named labels in inline assembly",
3175}
3176
3177declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3178
3179impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3180 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3181 if let hir::Expr {
3182 kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3183 ..
3184 } = expr
3185 {
3186 for (template_sym, template_snippet, template_span) in template_strs.iter() {
a2a8927a 3187 let template_str = template_sym.as_str();
94222f64
XL
3188 let find_label_span = |needle: &str| -> Option<Span> {
3189 if let Some(template_snippet) = template_snippet {
3190 let snippet = template_snippet.as_str();
3191 if let Some(pos) = snippet.find(needle) {
3192 let end = pos
3c0e092e 3193 + snippet[pos..]
94222f64
XL
3194 .find(|c| c == ':')
3195 .unwrap_or(snippet[pos..].len() - 1);
3196 let inner = InnerSpan::new(pos, end);
3197 return Some(template_span.from_inner(inner));
3198 }
3199 }
3200
3201 None
3202 };
3203
3204 let mut found_labels = Vec::new();
3205
3206 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3207 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3208 for statement in statements {
3209 // If there's a comment, trim it from the statement
3210 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3211 let mut start_idx = 0;
3212 for (idx, _) in statement.match_indices(':') {
3213 let possible_label = statement[start_idx..idx].trim();
3214 let mut chars = possible_label.chars();
a2a8927a 3215 let Some(c) = chars.next() else {
94222f64 3216 // Empty string means a leading ':' in this section, which is not a label
a2a8927a
XL
3217 break
3218 };
3219 // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3220 if (c.is_alphabetic() || matches!(c, '.' | '_'))
3221 && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3222 {
3223 found_labels.push(possible_label);
3224 } else {
3225 // If we encounter a non-label, there cannot be any further labels, so stop checking
94222f64
XL
3226 break;
3227 }
3228
3229 start_idx = idx + 1;
3230 }
3231 }
3232
3233 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3234
3235 if found_labels.len() > 0 {
3236 let spans = found_labels
3237 .into_iter()
3238 .filter_map(|label| find_label_span(label))
3239 .collect::<Vec<Span>>();
3240 // If there were labels but we couldn't find a span, combine the warnings and use the template span
3241 let target_spans: MultiSpan =
3242 if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3243
3244 cx.lookup_with_diagnostics(
3245 NAMED_ASM_LABELS,
3246 Some(target_spans),
3247 |diag| {
3248 let mut err =
3249 diag.build("avoid using named labels in inline assembly");
3250 err.emit();
3251 },
3252 BuiltinLintDiagnostics::NamedAsmLabel(
3253 "only local labels of the form `<number>:` should be used in inline asm"
3254 .to_string(),
3255 ),
3256 );
3257 }
3258 }
3259 }
3260 }
3261}