]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_lint/src/types.rs
New upstream version 1.66.0+dfsg1
[rustc.git] / compiler / rustc_lint / src / types.rs
CommitLineData
dfeec247 1use crate::{LateContext, LateLintPass, LintContext};
3dfed10e 2use rustc_ast as ast;
74b04a01 3use rustc_attr as attr;
dfeec247 4use rustc_data_structures::fx::FxHashSet;
064997fb 5use rustc_errors::{fluent, Applicability, DiagnosticMessage};
dfeec247 6use rustc_hir as hir;
94222f64 7use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
064997fb 8use rustc_macros::LintDiagnostic;
c295e0f8 9use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
ba9703b0 10use rustc_middle::ty::subst::SubstsRef;
064997fb 11use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
dfeec247
XL
12use rustc_span::source_map;
13use rustc_span::symbol::sym;
2b03887a 14use rustc_span::{Span, Symbol};
04454e1e 15use rustc_target::abi::{Abi, WrappingRange};
c295e0f8 16use rustc_target::abi::{Integer, TagEncoding, Variants};
3dfed10e 17use rustc_target::spec::abi::Abi as SpecAbi;
9fa01778 18
dfeec247 19use std::cmp;
cdc7bbd5 20use std::iter;
29967ef6 21use std::ops::ControlFlow;
9fa01778 22
b039eaaf 23declare_lint! {
1b1a35ee
XL
24 /// The `unused_comparisons` lint detects comparisons made useless by
25 /// limits of the types involved.
26 ///
27 /// ### Example
28 ///
29 /// ```rust
30 /// fn foo(x: u8) {
31 /// x >= 0;
32 /// }
33 /// ```
34 ///
35 /// {{produces}}
36 ///
37 /// ### Explanation
38 ///
39 /// A useless comparison may indicate a mistake, and should be fixed or
40 /// removed.
b039eaaf
SL
41 UNUSED_COMPARISONS,
42 Warn,
43 "comparisons made useless by limits of the types involved"
44}
45
46declare_lint! {
1b1a35ee
XL
47 /// The `overflowing_literals` lint detects literal out of range for its
48 /// type.
49 ///
50 /// ### Example
51 ///
52 /// ```rust,compile_fail
53 /// let x: u8 = 1000;
54 /// ```
55 ///
56 /// {{produces}}
57 ///
58 /// ### Explanation
59 ///
60 /// It is usually a mistake to use a literal that overflows the type where
61 /// it is used. Either use a literal that is within range, or change the
62 /// type to be within the range of the literal.
b039eaaf 63 OVERFLOWING_LITERALS,
9fa01778
XL
64 Deny,
65 "literal out of range for its type"
b039eaaf
SL
66}
67
5bcae85e 68declare_lint! {
1b1a35ee
XL
69 /// The `variant_size_differences` lint detects enums with widely varying
70 /// variant sizes.
71 ///
72 /// ### Example
73 ///
74 /// ```rust,compile_fail
75 /// #![deny(variant_size_differences)]
76 /// enum En {
77 /// V0(u8),
78 /// VBig([u8; 1024]),
79 /// }
80 /// ```
81 ///
82 /// {{produces}}
83 ///
84 /// ### Explanation
85 ///
86 /// It can be a mistake to add a variant to an enum that is much larger
87 /// than the other variants, bloating the overall size required for all
88 /// variants. This can impact performance and memory usage. This is
89 /// triggered if one variant is more than 3 times larger than the
90 /// second-largest variant.
91 ///
92 /// Consider placing the large variant's contents on the heap (for example
93 /// via [`Box`]) to keep the overall size of the enum itself down.
94 ///
95 /// This lint is "allow" by default because it can be noisy, and may not be
96 /// an actual problem. Decisions about this should be guided with
97 /// profiling and benchmarking.
98 ///
99 /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
5bcae85e
SL
100 VARIANT_SIZE_DIFFERENCES,
101 Allow,
102 "detects enums with widely varying variant sizes"
103}
104
b039eaaf
SL
105#[derive(Copy, Clone)]
106pub struct TypeLimits {
107 /// Id of the last visited negated expression
ba9703b0 108 negated_expr_id: Option<hir::HirId>,
b039eaaf
SL
109}
110
532ac7d7
XL
111impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
112
b039eaaf
SL
113impl TypeLimits {
114 pub fn new() -> TypeLimits {
ba9703b0 115 TypeLimits { negated_expr_id: None }
b039eaaf
SL
116 }
117}
118
2b03887a
FG
119/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint (`expr..MAX+1`).
120/// Returns `true` iff the lint was emitted.
f035d41b
XL
121fn lint_overflowing_range_endpoint<'tcx>(
122 cx: &LateContext<'tcx>,
48663c56
XL
123 lit: &hir::Lit,
124 lit_val: u128,
125 max: u128,
dfeec247 126 expr: &'tcx hir::Expr<'tcx>,
60c5eb7d 127 ty: &str,
48663c56
XL
128) -> bool {
129 // We only want to handle exclusive (`..`) ranges,
130 // which are represented as `ExprKind::Struct`.
f2b60f7d
FG
131 let par_id = cx.tcx.hir().get_parent_node(expr.hir_id);
132 let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
133 let field_par_id = cx.tcx.hir().get_parent_node(field.hir_id);
134 let Node::Expr(struct_expr) = cx.tcx.hir().get(field_par_id) else { return false };
135 if !is_range_literal(struct_expr) {
136 return false;
137 };
138 let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
139 if eps.len() != 2 {
140 return false;
141 }
142
f2b60f7d
FG
143 // We can suggest using an inclusive range
144 // (`..=`) instead only if it is the `end` that is
145 // overflowing and only by 1.
2b03887a
FG
146 if !(eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max) {
147 return false;
148 };
149 let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) else { return false };
150
151 cx.struct_span_lint(
152 OVERFLOWING_LITERALS,
153 struct_expr.span,
154 fluent::lint_range_endpoint_out_of_range,
155 |lint| {
156 use ast::{LitIntType, LitKind};
157
158 lint.set_arg("ty", ty);
159
160 // We need to preserve the literal's suffix,
161 // as it may determine typing information.
162 let suffix = match lit.node {
163 LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
164 LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
165 LitKind::Int(_, LitIntType::Unsuffixed) => "",
166 _ => bug!(),
167 };
168 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
169 lint.span_suggestion(
170 struct_expr.span,
171 fluent::suggestion,
172 suggestion,
173 Applicability::MachineApplicable,
174 );
175
176 lint
177 },
178 );
179
180 // We've just emitted a lint, special cased for `(...)..MAX+1` ranges,
181 // return `true` so the callers don't also emit a lint
182 true
48663c56
XL
183}
184
185// For `isize` & `usize`, be conservative with the warnings, so that the
186// warnings are consistent between 32- and 64-bit platforms.
5869c6ff 187fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
48663c56 188 match int_ty {
5869c6ff
XL
189 ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
190 ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
191 ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
192 ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
193 ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
194 ty::IntTy::I128 => (i128::MIN, i128::MAX),
48663c56
XL
195 }
196}
197
5869c6ff 198fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
29967ef6 199 let max = match uint_ty {
5869c6ff
XL
200 ty::UintTy::Usize => u64::MAX.into(),
201 ty::UintTy::U8 => u8::MAX.into(),
202 ty::UintTy::U16 => u16::MAX.into(),
203 ty::UintTy::U32 => u32::MAX.into(),
204 ty::UintTy::U64 => u64::MAX.into(),
205 ty::UintTy::U128 => u128::MAX,
29967ef6
XL
206 };
207 (0, max)
48663c56
XL
208}
209
f035d41b 210fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
48663c56
XL
211 let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
212 let firstch = src.chars().next()?;
213
214 if firstch == '0' {
215 match src.chars().nth(1) {
ba9703b0 216 Some('x' | 'b') => return Some(src),
48663c56
XL
217 _ => return None,
218 }
219 }
220
221 None
222}
223
224fn report_bin_hex_error(
f035d41b 225 cx: &LateContext<'_>,
dfeec247 226 expr: &hir::Expr<'_>,
48663c56
XL
227 ty: attr::IntType,
228 repr_str: String,
229 val: u128,
230 negative: bool,
231) {
ba9703b0 232 let size = Integer::from_attr(&cx.tcx, ty).size();
2b03887a
FG
233 cx.struct_span_lint(
234 OVERFLOWING_LITERALS,
235 expr.span,
236 fluent::lint_overflowing_bin_hex,
237 |lint| {
238 let (t, actually) = match ty {
239 attr::IntType::SignedInt(t) => {
240 let actually = if negative {
241 -(size.sign_extend(val) as i128)
242 } else {
243 size.sign_extend(val) as i128
244 };
245 (t.name_str(), actually.to_string())
246 }
247 attr::IntType::UnsignedInt(t) => {
248 let actually = size.truncate(val);
249 (t.name_str(), actually.to_string())
250 }
251 };
252
253 if negative {
254 // If the value is negative,
255 // emits a note about the value itself, apart from the literal.
256 lint.note(fluent::negative_note);
257 lint.note(fluent::negative_becomes_note);
74b04a01 258 } else {
2b03887a 259 lint.note(fluent::positive_note);
74b04a01 260 }
2b03887a
FG
261 if let Some(sugg_ty) =
262 get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
263 {
264 lint.set_arg("suggestion_ty", sugg_ty);
265 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
266 let (sans_suffix, _) = repr_str.split_at(pos);
267 lint.span_suggestion(
268 expr.span,
269 fluent::suggestion,
270 format!("{}{}", sans_suffix, sugg_ty),
271 Applicability::MachineApplicable,
272 );
273 } else {
274 lint.help(fluent::help);
275 }
276 }
277 lint.set_arg("ty", t)
278 .set_arg("lit", repr_str)
279 .set_arg("dec", val)
280 .set_arg("actually", actually);
281
282 lint
283 },
284 );
48663c56
XL
285}
286
287// This function finds the next fitting type and generates a suggestion string.
288// It searches for fitting types in the following way (`X < Y`):
289// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
290// - `-iX` => `iY`
291// - `uX` => `uY`
292//
293// No suggestion for: `isize`, `usize`.
60c5eb7d 294fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
5869c6ff
XL
295 use ty::IntTy::*;
296 use ty::UintTy::*;
48663c56
XL
297 macro_rules! find_fit {
298 ($ty:expr, $val:expr, $negative:expr,
299 $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
300 {
301 let _neg = if negative { 1 } else { 0 };
302 match $ty {
303 $($type => {
304 $(if !negative && val <= uint_ty_range($utypes).1 {
60c5eb7d 305 return Some($utypes.name_str())
48663c56
XL
306 })*
307 $(if val <= int_ty_range($itypes).1 as u128 + _neg {
60c5eb7d 308 return Some($itypes.name_str())
48663c56
XL
309 })*
310 None
dc9dc135 311 },)+
48663c56
XL
312 _ => None
313 }
314 }
315 }
316 }
1b1a35ee 317 match t.kind() {
48663c56
XL
318 ty::Int(i) => find_fit!(i, val, negative,
319 I8 => [U8] => [I16, I32, I64, I128],
320 I16 => [U16] => [I32, I64, I128],
321 I32 => [U32] => [I64, I128],
322 I64 => [U64] => [I128],
323 I128 => [U128] => []),
324 ty::Uint(u) => find_fit!(u, val, negative,
325 U8 => [U8, U16, U32, U64, U128] => [],
326 U16 => [U16, U32, U64, U128] => [],
327 U32 => [U32, U64, U128] => [],
328 U64 => [U64, U128] => [],
329 U128 => [U128] => []),
330 _ => None,
331 }
332}
333
f035d41b
XL
334fn lint_int_literal<'tcx>(
335 cx: &LateContext<'tcx>,
48663c56 336 type_limits: &TypeLimits,
dfeec247 337 e: &'tcx hir::Expr<'tcx>,
48663c56 338 lit: &hir::Lit,
5869c6ff 339 t: ty::IntTy,
48663c56
XL
340 v: u128,
341) {
29967ef6 342 let int_type = t.normalize(cx.sess().target.pointer_width);
ba9703b0 343 let (min, max) = int_ty_range(int_type);
48663c56 344 let max = max as u128;
ba9703b0 345 let negative = type_limits.negated_expr_id == Some(e.hir_id);
48663c56
XL
346
347 // Detect literal value out of range [min, max] inclusive
348 // avoiding use of -min to prevent overflow/panic
349 if (negative && v > max + 1) || (!negative && v > max) {
350 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
351 report_bin_hex_error(
352 cx,
353 e,
354 attr::IntType::SignedInt(ty::ast_int_ty(t)),
355 repr_str,
356 v,
357 negative,
358 );
48663c56
XL
359 return;
360 }
361
f2b60f7d 362 if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
2b03887a 363 // The overflowing literal lint was emited by `lint_overflowing_range_endpoint`.
f2b60f7d 364 return;
48663c56
XL
365 }
366
2b03887a
FG
367 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_int, |lint| {
368 lint.set_arg("ty", t.name_str())
369 .set_arg(
370 "lit",
371 cx.sess()
372 .source_map()
373 .span_to_snippet(lit.span)
374 .expect("must get snippet from literal"),
375 )
376 .set_arg("min", min)
377 .set_arg("max", max)
378 .note(fluent::note);
379
6a06907d 380 if let Some(sugg_ty) =
5099ac24 381 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
6a06907d 382 {
2b03887a
FG
383 lint.set_arg("suggestion_ty", sugg_ty);
384 lint.help(fluent::help);
6a06907d 385 }
2b03887a
FG
386
387 lint
74b04a01 388 });
48663c56
XL
389 }
390}
391
f035d41b
XL
392fn lint_uint_literal<'tcx>(
393 cx: &LateContext<'tcx>,
dfeec247 394 e: &'tcx hir::Expr<'tcx>,
48663c56 395 lit: &hir::Lit,
5869c6ff 396 t: ty::UintTy,
48663c56 397) {
29967ef6 398 let uint_type = t.normalize(cx.sess().target.pointer_width);
48663c56
XL
399 let (min, max) = uint_ty_range(uint_type);
400 let lit_val: u128 = match lit.node {
401 // _v is u8, within range by definition
402 ast::LitKind::Byte(_v) => return,
403 ast::LitKind::Int(v, _) => v,
404 _ => bug!(),
405 };
406 if lit_val < min || lit_val > max {
dc9dc135
XL
407 let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
408 if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
e74abb32 409 match par_e.kind {
48663c56 410 hir::ExprKind::Cast(..) => {
1b1a35ee 411 if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
2b03887a
FG
412 cx.struct_span_lint(
413 OVERFLOWING_LITERALS,
414 par_e.span,
415 fluent::lint_only_cast_u8_to_char,
416 |lint| {
417 lint.span_suggestion(
74b04a01 418 par_e.span,
2b03887a 419 fluent::suggestion,
74b04a01
XL
420 format!("'\\u{{{:X}}}'", lit_val),
421 Applicability::MachineApplicable,
422 )
2b03887a
FG
423 },
424 );
48663c56
XL
425 return;
426 }
427 }
48663c56
XL
428 _ => {}
429 }
430 }
f2b60f7d 431 if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
2b03887a 432 // The overflowing literal lint was emited by `lint_overflowing_range_endpoint`.
f2b60f7d
FG
433 return;
434 }
48663c56 435 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
436 report_bin_hex_error(
437 cx,
438 e,
439 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
440 repr_str,
441 lit_val,
442 false,
443 );
48663c56
XL
444 return;
445 }
2b03887a
FG
446 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_uint, |lint| {
447 lint.set_arg("ty", t.name_str())
064997fb
FG
448 .set_arg(
449 "lit",
ba9703b0
XL
450 cx.sess()
451 .source_map()
452 .span_to_snippet(lit.span)
453 .expect("must get snippet from literal"),
064997fb
FG
454 )
455 .set_arg("min", min)
456 .set_arg("max", max)
2b03887a 457 .note(fluent::note)
74b04a01 458 });
48663c56
XL
459 }
460}
461
f035d41b
XL
462fn lint_literal<'tcx>(
463 cx: &LateContext<'tcx>,
48663c56 464 type_limits: &TypeLimits,
dfeec247 465 e: &'tcx hir::Expr<'tcx>,
48663c56
XL
466 lit: &hir::Lit,
467) {
1b1a35ee 468 match *cx.typeck_results().node_type(e.hir_id).kind() {
48663c56
XL
469 ty::Int(t) => {
470 match lit.node {
ba9703b0 471 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
48663c56
XL
472 lint_int_literal(cx, type_limits, e, lit, t, v)
473 }
474 _ => bug!(),
475 };
476 }
dfeec247 477 ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
48663c56
XL
478 ty::Float(t) => {
479 let is_infinite = match lit.node {
dfeec247 480 ast::LitKind::Float(v, _) => match t {
5869c6ff
XL
481 ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
482 ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
dfeec247 483 },
48663c56
XL
484 _ => bug!(),
485 };
486 if is_infinite == Ok(true) {
2b03887a
FG
487 cx.struct_span_lint(
488 OVERFLOWING_LITERALS,
489 e.span,
490 fluent::lint_overflowing_literal,
491 |lint| {
492 lint.set_arg("ty", t.name_str())
493 .set_arg(
494 "lit",
495 cx.sess()
496 .source_map()
497 .span_to_snippet(lit.span)
498 .expect("must get snippet from literal"),
499 )
500 .note(fluent::note)
501 },
502 );
48663c56
XL
503 }
504 }
505 _ => {}
506 }
507}
508
f035d41b
XL
509impl<'tcx> LateLintPass<'tcx> for TypeLimits {
510 fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
e74abb32 511 match e.kind {
6a06907d 512 hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
b039eaaf 513 // propagate negation, if the negation itself isn't negated
ba9703b0
XL
514 if self.negated_expr_id != Some(e.hir_id) {
515 self.negated_expr_id = Some(expr.hir_id);
b039eaaf 516 }
c30ab7b3 517 }
8faf50e0 518 hir::ExprKind::Binary(binop, ref l, ref r) => {
32a655c1 519 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
2b03887a
FG
520 cx.struct_span_lint(
521 UNUSED_COMPARISONS,
522 e.span,
523 fluent::lint_unused_comparisons,
524 |lint| lint,
525 );
b039eaaf 526 }
c30ab7b3 527 }
48663c56
XL
528 hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
529 _ => {}
b039eaaf
SL
530 };
531
c30ab7b3 532 fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
b039eaaf 533 match binop.node {
8faf50e0
XL
534 hir::BinOpKind::Lt => v > min && v <= max,
535 hir::BinOpKind::Le => v >= min && v < max,
536 hir::BinOpKind::Gt => v >= min && v < max,
537 hir::BinOpKind::Ge => v > min && v <= max,
538 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
c30ab7b3 539 _ => bug!(),
b039eaaf
SL
540 }
541 }
542
543 fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
dfeec247
XL
544 source_map::respan(
545 binop.span,
546 match binop.node {
547 hir::BinOpKind::Lt => hir::BinOpKind::Gt,
548 hir::BinOpKind::Le => hir::BinOpKind::Ge,
549 hir::BinOpKind::Gt => hir::BinOpKind::Lt,
550 hir::BinOpKind::Ge => hir::BinOpKind::Le,
551 _ => return binop,
552 },
553 )
b039eaaf
SL
554 }
555
dfeec247 556 fn check_limits(
f035d41b 557 cx: &LateContext<'_>,
dfeec247
XL
558 binop: hir::BinOp,
559 l: &hir::Expr<'_>,
560 r: &hir::Expr<'_>,
561 ) -> bool {
e74abb32 562 let (lit, expr, swap) = match (&l.kind, &r.kind) {
8faf50e0
XL
563 (&hir::ExprKind::Lit(_), _) => (l, r, true),
564 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
c30ab7b3 565 _ => return true,
b039eaaf
SL
566 };
567 // Normalize the binop so that the literal is always on the RHS in
568 // the comparison
c30ab7b3 569 let norm_binop = if swap { rev_binop(binop) } else { binop };
1b1a35ee 570 match *cx.typeck_results().node_type(expr.hir_id).kind() {
b7449926 571 ty::Int(int_ty) => {
b039eaaf 572 let (min, max) = int_ty_range(int_ty);
e74abb32 573 let lit_val: i128 = match lit.kind {
dfeec247 574 hir::ExprKind::Lit(ref li) => match li.node {
ba9703b0
XL
575 ast::LitKind::Int(
576 v,
577 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
578 ) => v as i128,
dfeec247 579 _ => return true,
32a655c1 580 },
dfeec247 581 _ => bug!(),
b039eaaf
SL
582 };
583 is_valid(norm_binop, lit_val, min, max)
584 }
b7449926 585 ty::Uint(uint_ty) => {
dfeec247 586 let (min, max): (u128, u128) = uint_ty_range(uint_ty);
e74abb32 587 let lit_val: u128 = match lit.kind {
dfeec247
XL
588 hir::ExprKind::Lit(ref li) => match li.node {
589 ast::LitKind::Int(v, _) => v,
590 _ => return true,
32a655c1 591 },
dfeec247 592 _ => bug!(),
b039eaaf
SL
593 };
594 is_valid(norm_binop, lit_val, min, max)
595 }
c30ab7b3 596 _ => true,
b039eaaf
SL
597 }
598 }
599
600 fn is_comparison(binop: hir::BinOp) -> bool {
29967ef6
XL
601 matches!(
602 binop.node,
dfeec247 603 hir::BinOpKind::Eq
29967ef6
XL
604 | hir::BinOpKind::Lt
605 | hir::BinOpKind::Le
606 | hir::BinOpKind::Ne
607 | hir::BinOpKind::Ge
608 | hir::BinOpKind::Gt
609 )
b039eaaf 610 }
b039eaaf
SL
611 }
612}
613
614declare_lint! {
1b1a35ee
XL
615 /// The `improper_ctypes` lint detects incorrect use of types in foreign
616 /// modules.
617 ///
618 /// ### Example
619 ///
620 /// ```rust
621 /// extern "C" {
622 /// static STATIC: String;
623 /// }
624 /// ```
625 ///
626 /// {{produces}}
627 ///
628 /// ### Explanation
629 ///
630 /// The compiler has several checks to verify that types used in `extern`
631 /// blocks are safe and follow certain rules to ensure proper
632 /// compatibility with the foreign interfaces. This lint is issued when it
633 /// detects a probable mistake in a definition. The lint usually should
634 /// provide a description of the issue, along with possibly a hint on how
635 /// to resolve it.
b039eaaf
SL
636 IMPROPER_CTYPES,
637 Warn,
638 "proper use of libc types in foreign modules"
639}
640
f035d41b
XL
641declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
642
643declare_lint! {
1b1a35ee
XL
644 /// The `improper_ctypes_definitions` lint detects incorrect use of
645 /// [`extern` function] definitions.
646 ///
647 /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
648 ///
649 /// ### Example
650 ///
651 /// ```rust
652 /// # #![allow(unused)]
653 /// pub extern "C" fn str_type(p: &str) { }
654 /// ```
655 ///
656 /// {{produces}}
657 ///
658 /// ### Explanation
659 ///
660 /// There are many parameter and return types that may be specified in an
661 /// `extern` function that are not compatible with the given ABI. This
662 /// lint is an alert that these types should not be used. The lint usually
663 /// should provide a description of the issue, along with possibly a hint
664 /// on how to resolve it.
f035d41b
XL
665 IMPROPER_CTYPES_DEFINITIONS,
666 Warn,
667 "proper use of libc types in foreign item definitions"
668}
669
670declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
671
3dfed10e 672#[derive(Clone, Copy)]
923072b8 673pub(crate) enum CItemKind {
3dfed10e
XL
674 Declaration,
675 Definition,
f035d41b 676}
532ac7d7 677
dc9dc135 678struct ImproperCTypesVisitor<'a, 'tcx> {
f035d41b 679 cx: &'a LateContext<'tcx>,
3dfed10e 680 mode: CItemKind,
b039eaaf
SL
681}
682
0531ce1d 683enum FfiResult<'tcx> {
b039eaaf 684 FfiSafe,
0531ce1d 685 FfiPhantom(Ty<'tcx>),
064997fb 686 FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
b039eaaf
SL
687}
688
923072b8
FG
689pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
690 tcx: TyCtxt<'tcx>,
691 def: ty::AdtDef<'tcx>,
692) -> bool {
04454e1e 693 tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
1b1a35ee
XL
694}
695
696/// `repr(transparent)` structs can have a single non-ZST field, this function returns that
697/// field.
698pub fn transparent_newtype_field<'a, 'tcx>(
699 tcx: TyCtxt<'tcx>,
700 variant: &'a ty::VariantDef,
701) -> Option<&'a ty::FieldDef> {
702 let param_env = tcx.param_env(variant.def_id);
17df50a5 703 variant.fields.iter().find(|field| {
1b1a35ee 704 let field_ty = tcx.type_of(field.did);
5869c6ff 705 let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
17df50a5
XL
706 !is_zst
707 })
1b1a35ee
XL
708}
709
3dfed10e 710/// Is type known to be non-null?
6a06907d 711fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
3dfed10e 712 let tcx = cx.tcx;
1b1a35ee 713 match ty.kind() {
3dfed10e
XL
714 ty::FnPtr(_) => true,
715 ty::Ref(..) => true,
716 ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
5e7ed085
FG
717 ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
718 let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
3dfed10e 719
1b1a35ee 720 if marked_non_null {
3dfed10e 721 return true;
f9652781 722 }
1b1a35ee 723
064997fb
FG
724 // `UnsafeCell` has its niche hidden.
725 if def.is_unsafe_cell() {
6a06907d
XL
726 return false;
727 }
728
5e7ed085 729 def.variants()
17df50a5
XL
730 .iter()
731 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
732 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
b039eaaf 733 }
3dfed10e 734 _ => false,
b039eaaf 735 }
3dfed10e 736}
dc9dc135 737
3dfed10e
XL
738/// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
739/// If the type passed in was not scalar, returns None.
740fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
741 let tcx = cx.tcx;
1b1a35ee 742 Some(match *ty.kind() {
3dfed10e
XL
743 ty::Adt(field_def, field_substs) => {
744 let inner_field_ty = {
f2b60f7d 745 let mut first_non_zst_ty = field_def
5e7ed085
FG
746 .variants()
747 .iter()
748 .filter_map(|v| transparent_newtype_field(cx.tcx, v));
3dfed10e
XL
749 debug_assert_eq!(
750 first_non_zst_ty.clone().count(),
751 1,
752 "Wrong number of fields for transparent type"
753 );
754 first_non_zst_ty
f2b60f7d 755 .next_back()
3dfed10e
XL
756 .expect("No non-zst fields in transparent type.")
757 .ty(tcx, field_substs)
758 };
759 return get_nullable_type(cx, inner_field_ty);
760 }
761 ty::Int(ty) => tcx.mk_mach_int(ty),
762 ty::Uint(ty) => tcx.mk_mach_uint(ty),
763 ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
764 // As these types are always non-null, the nullable equivalent of
765 // Option<T> of these types are their raw pointer counterparts.
766 ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
767 ty::FnPtr(..) => {
768 // There is no nullable equivalent for Rust's function pointers -- you
769 // must use an Option<fn(..) -> _> to represent it.
770 ty
771 }
772
773 // We should only ever reach this case if ty_is_known_nonnull is extended
774 // to other types.
775 ref unhandled => {
776 debug!(
777 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
778 unhandled, ty
779 );
780 return None;
781 }
782 })
783}
784
785/// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
1b1a35ee 786/// can, return the type that `ty` can be safely converted to, otherwise return `None`.
3dfed10e
XL
787/// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
788/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
789/// FIXME: This duplicates code in codegen.
923072b8 790pub(crate) fn repr_nullable_ptr<'tcx>(
3dfed10e
XL
791 cx: &LateContext<'tcx>,
792 ty: Ty<'tcx>,
793 ckind: CItemKind,
794) -> Option<Ty<'tcx>> {
795 debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
1b1a35ee 796 if let ty::Adt(ty_def, substs) = ty.kind() {
5e7ed085 797 let field_ty = match &ty_def.variants().raw[..] {
17df50a5
XL
798 [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
799 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
800 _ => return None,
801 },
802 _ => return None,
f035d41b 803 };
dc9dc135 804
3dfed10e
XL
805 if !ty_is_known_nonnull(cx, field_ty, ckind) {
806 return None;
f035d41b 807 }
dc9dc135 808
3dfed10e
XL
809 // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
810 // If the computed size for the field and the enum are different, the nonnull optimization isn't
811 // being applied (and we've got a problem somewhere).
812 let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
f035d41b
XL
813 if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
814 bug!("improper_ctypes: Option nonnull optimization not applied?");
815 }
dc9dc135 816
3dfed10e
XL
817 // Return the nullable type this Option-like enum can be safely represented with.
818 let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
819 if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
04454e1e
FG
820 match field_ty_scalar.valid_range(cx) {
821 WrappingRange { start: 0, end }
822 if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
823 {
5e7ed085
FG
824 return Some(get_nullable_type(cx, field_ty).unwrap());
825 }
04454e1e 826 WrappingRange { start: 1, .. } => {
3dfed10e
XL
827 return Some(get_nullable_type(cx, field_ty).unwrap());
828 }
04454e1e
FG
829 WrappingRange { start, end } => {
830 unreachable!("Unhandled start and end range: ({}, {})", start, end)
831 }
3dfed10e
XL
832 };
833 }
f035d41b 834 }
3dfed10e
XL
835 None
836}
b039eaaf 837
3dfed10e 838impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
60c5eb7d
XL
839 /// Check if the type is array and emit an unsafe type lint.
840 fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1b1a35ee 841 if let ty::Array(..) = ty.kind() {
60c5eb7d
XL
842 self.emit_ffi_unsafe_type_lint(
843 ty,
844 sp,
2b03887a
FG
845 fluent::lint_improper_ctypes_array_reason,
846 Some(fluent::lint_improper_ctypes_array_help),
60c5eb7d
XL
847 );
848 true
849 } else {
850 false
851 }
852 }
853
f035d41b
XL
854 /// Checks if the given field's type is "ffi-safe".
855 fn check_field_type_for_ffi(
856 &self,
857 cache: &mut FxHashSet<Ty<'tcx>>,
858 field: &ty::FieldDef,
859 substs: SubstsRef<'tcx>,
860 ) -> FfiResult<'tcx> {
861 let field_ty = field.ty(self.cx.tcx, substs);
862 if field_ty.has_opaque_types() {
863 self.check_type_for_ffi(cache, field_ty)
864 } else {
865 let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
866 self.check_type_for_ffi(cache, field_ty)
867 }
868 }
869
870 /// Checks if the given `VariantDef`'s field types are "ffi-safe".
871 fn check_variant_for_ffi(
872 &self,
873 cache: &mut FxHashSet<Ty<'tcx>>,
874 ty: Ty<'tcx>,
5e7ed085 875 def: ty::AdtDef<'tcx>,
f035d41b
XL
876 variant: &ty::VariantDef,
877 substs: SubstsRef<'tcx>,
878 ) -> FfiResult<'tcx> {
879 use FfiResult::*;
880
5e7ed085 881 if def.repr().transparent() {
c295e0f8 882 // Can assume that at most one field is not a ZST, so only check
f035d41b 883 // that field's type for FFI-safety.
1b1a35ee 884 if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
f035d41b
XL
885 self.check_field_type_for_ffi(cache, field, substs)
886 } else {
c295e0f8
XL
887 // All fields are ZSTs; this means that the type should behave
888 // like (), which is FFI-unsafe
2b03887a 889 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_struct_zst, help: None }
f035d41b
XL
890 }
891 } else {
892 // We can't completely trust repr(C) markings; make sure the fields are
893 // actually safe.
894 let mut all_phantom = !variant.fields.is_empty();
895 for field in &variant.fields {
896 match self.check_field_type_for_ffi(cache, &field, substs) {
897 FfiSafe => {
898 all_phantom = false;
899 }
900 FfiPhantom(..) if def.is_enum() => {
901 return FfiUnsafe {
902 ty,
2b03887a 903 reason: fluent::lint_improper_ctypes_enum_phantomdata,
f035d41b
XL
904 help: None,
905 };
906 }
907 FfiPhantom(..) => {}
908 r => return r,
909 }
910 }
911
912 if all_phantom { FfiPhantom(ty) } else { FfiSafe }
913 }
914 }
915
9fa01778 916 /// Checks if the given type is "ffi-safe" (has a stable, well-defined
b039eaaf 917 /// representation which can be exported to C code).
dfeec247 918 fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
9fa01778 919 use FfiResult::*;
8bb4bdeb 920
3dfed10e 921 let tcx = self.cx.tcx;
b039eaaf
SL
922
923 // Protect against infinite recursion, for example
924 // `struct S(*mut S);`.
925 // FIXME: A recursion limit is necessary as well, for irregular
b7449926 926 // recursive types.
b039eaaf
SL
927 if !cache.insert(ty) {
928 return FfiSafe;
929 }
930
fc512014 931 match *ty.kind() {
b7449926 932 ty::Adt(def, substs) => {
17df50a5 933 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
2b03887a 934 if ty.boxed_ty().is_sized(tcx, self.cx.param_env) {
17df50a5
XL
935 return FfiSafe;
936 } else {
937 return FfiUnsafe {
938 ty,
2b03887a 939 reason: fluent::lint_improper_ctypes_box,
17df50a5
XL
940 help: None,
941 };
942 }
943 }
8bb4bdeb 944 if def.is_phantom_data() {
0531ce1d 945 return FfiPhantom(ty);
8bb4bdeb 946 }
c30ab7b3 947 match def.adt_kind() {
f035d41b 948 AdtKind::Struct | AdtKind::Union => {
5e7ed085 949 if !def.repr().c() && !def.repr().transparent() {
0531ce1d 950 return FfiUnsafe {
e1599b0c 951 ty,
064997fb 952 reason: if def.is_struct() {
2b03887a 953 fluent::lint_improper_ctypes_struct_layout_reason
064997fb 954 } else {
2b03887a 955 fluent::lint_improper_ctypes_union_layout_reason
064997fb
FG
956 },
957 help: if def.is_struct() {
2b03887a 958 Some(fluent::lint_improper_ctypes_struct_layout_help)
064997fb 959 } else {
2b03887a 960 Some(fluent::lint_improper_ctypes_union_layout_help)
064997fb 961 },
0531ce1d 962 };
c30ab7b3 963 }
b039eaaf 964
e74abb32
XL
965 let is_non_exhaustive =
966 def.non_enum_variant().is_field_list_non_exhaustive();
5e7ed085 967 if is_non_exhaustive && !def.did().is_local() {
e74abb32
XL
968 return FfiUnsafe {
969 ty,
064997fb 970 reason: if def.is_struct() {
2b03887a 971 fluent::lint_improper_ctypes_struct_non_exhaustive
064997fb 972 } else {
2b03887a 973 fluent::lint_improper_ctypes_union_non_exhaustive
064997fb 974 },
e74abb32
XL
975 help: None,
976 };
977 }
978
2c00a5a8 979 if def.non_enum_variant().fields.is_empty() {
0531ce1d 980 return FfiUnsafe {
e1599b0c 981 ty,
064997fb 982 reason: if def.is_struct() {
2b03887a 983 fluent::lint_improper_ctypes_struct_fieldless_reason
064997fb 984 } else {
2b03887a 985 fluent::lint_improper_ctypes_union_fieldless_reason
064997fb
FG
986 },
987 help: if def.is_struct() {
2b03887a 988 Some(fluent::lint_improper_ctypes_struct_fieldless_help)
064997fb 989 } else {
2b03887a 990 Some(fluent::lint_improper_ctypes_union_fieldless_help)
064997fb 991 },
0531ce1d 992 };
8bb4bdeb
XL
993 }
994
f035d41b 995 self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
b039eaaf 996 }
c30ab7b3 997 AdtKind::Enum => {
5e7ed085 998 if def.variants().is_empty() {
c30ab7b3
SL
999 // Empty enums are okay... although sort of useless.
1000 return FfiSafe;
1001 }
9e0c209e 1002
c30ab7b3
SL
1003 // Check for a repr() attribute to specify the size of the
1004 // discriminant.
5e7ed085
FG
1005 if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
1006 {
8bb4bdeb 1007 // Special-case types like `Option<extern fn()>`.
3dfed10e 1008 if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
0531ce1d 1009 return FfiUnsafe {
e1599b0c 1010 ty,
2b03887a
FG
1011 reason: fluent::lint_improper_ctypes_enum_repr_reason,
1012 help: Some(fluent::lint_improper_ctypes_enum_repr_help),
0531ce1d 1013 };
9e0c209e 1014 }
8bb4bdeb 1015 }
c30ab7b3 1016
5e7ed085 1017 if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
e74abb32
XL
1018 return FfiUnsafe {
1019 ty,
2b03887a 1020 reason: fluent::lint_improper_ctypes_non_exhaustive,
e74abb32
XL
1021 help: None,
1022 };
1023 }
1024
c30ab7b3 1025 // Check the contained variants.
5e7ed085 1026 for variant in def.variants() {
e74abb32
XL
1027 let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1028 if is_non_exhaustive && !variant.def_id.is_local() {
1029 return FfiUnsafe {
1030 ty,
2b03887a 1031 reason: fluent::lint_improper_ctypes_non_exhaustive_variant,
e74abb32
XL
1032 help: None,
1033 };
1034 }
1035
f035d41b
XL
1036 match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1037 FfiSafe => (),
1038 r => return r,
9e0c209e 1039 }
b039eaaf 1040 }
f035d41b 1041
c30ab7b3 1042 FfiSafe
b039eaaf
SL
1043 }
1044 }
c30ab7b3 1045 }
b039eaaf 1046
b7449926 1047 ty::Char => FfiUnsafe {
e1599b0c 1048 ty,
2b03887a
FG
1049 reason: fluent::lint_improper_ctypes_char_reason,
1050 help: Some(fluent::lint_improper_ctypes_char_help),
0531ce1d 1051 },
b039eaaf 1052
064997fb 1053 ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
2b03887a 1054 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_128bit, help: None }
064997fb 1055 }
ea8adc8c 1056
b039eaaf 1057 // Primitive types with a stable representation.
b7449926 1058 ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
b039eaaf 1059
b7449926 1060 ty::Slice(_) => FfiUnsafe {
e1599b0c 1061 ty,
2b03887a
FG
1062 reason: fluent::lint_improper_ctypes_slice_reason,
1063 help: Some(fluent::lint_improper_ctypes_slice_help),
0531ce1d
XL
1064 },
1065
dfeec247 1066 ty::Dynamic(..) => {
2b03887a 1067 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_dyn, help: None }
dfeec247 1068 }
0531ce1d 1069
b7449926 1070 ty::Str => FfiUnsafe {
e1599b0c 1071 ty,
2b03887a
FG
1072 reason: fluent::lint_improper_ctypes_str_reason,
1073 help: Some(fluent::lint_improper_ctypes_str_help),
0531ce1d
XL
1074 },
1075
b7449926 1076 ty::Tuple(..) => FfiUnsafe {
e1599b0c 1077 ty,
2b03887a
FG
1078 reason: fluent::lint_improper_ctypes_tuple_reason,
1079 help: Some(fluent::lint_improper_ctypes_tuple_help),
0531ce1d 1080 },
b039eaaf 1081
f035d41b
XL
1082 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1083 if {
3dfed10e 1084 matches!(self.mode, CItemKind::Definition)
2b03887a 1085 && ty.is_sized(self.cx.tcx, self.cx.param_env)
f035d41b
XL
1086 } =>
1087 {
1088 FfiSafe
1089 }
1090
c295e0f8
XL
1091 ty::RawPtr(ty::TypeAndMut { ty, .. })
1092 if match ty.kind() {
1093 ty::Tuple(tuple) => tuple.is_empty(),
1094 _ => false,
1095 } =>
1096 {
1097 FfiSafe
1098 }
1099
dfeec247
XL
1100 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1101 self.check_type_for_ffi(cache, ty)
1102 }
b039eaaf 1103
60c5eb7d 1104 ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
b039eaaf 1105
b7449926 1106 ty::FnPtr(sig) => {
f035d41b
XL
1107 if self.is_internal_abi(sig.abi()) {
1108 return FfiUnsafe {
1109 ty,
2b03887a
FG
1110 reason: fluent::lint_improper_ctypes_fnptr_reason,
1111 help: Some(fluent::lint_improper_ctypes_fnptr_help),
f035d41b 1112 };
b039eaaf
SL
1113 }
1114
fc512014 1115 let sig = tcx.erase_late_bound_regions(sig);
b7449926 1116 if !sig.output().is_unit() {
476ff2be 1117 let r = self.check_type_for_ffi(cache, sig.output());
5bcae85e
SL
1118 match r {
1119 FfiSafe => {}
c30ab7b3
SL
1120 _ => {
1121 return r;
1122 }
b039eaaf
SL
1123 }
1124 }
476ff2be 1125 for arg in sig.inputs() {
5099ac24 1126 let r = self.check_type_for_ffi(cache, *arg);
b039eaaf
SL
1127 match r {
1128 FfiSafe => {}
c30ab7b3
SL
1129 _ => {
1130 return r;
1131 }
b039eaaf
SL
1132 }
1133 }
1134 FfiSafe
1135 }
1136
b7449926
XL
1137 ty::Foreign(..) => FfiSafe,
1138
f035d41b
XL
1139 // While opaque types are checked for earlier, if a projection in a struct field
1140 // normalizes to an opaque type, then it will reach this branch.
1141 ty::Opaque(..) => {
2b03887a 1142 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_opaque, help: None }
f035d41b
XL
1143 }
1144
1145 // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1146 // so they are currently ignored for the purposes of this lint.
3dfed10e 1147 ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
f035d41b
XL
1148 FfiSafe
1149 }
1150
dfeec247 1151 ty::Param(..)
f035d41b 1152 | ty::Projection(..)
dfeec247
XL
1153 | ty::Infer(..)
1154 | ty::Bound(..)
f035d41b 1155 | ty::Error(_)
dfeec247
XL
1156 | ty::Closure(..)
1157 | ty::Generator(..)
1158 | ty::GeneratorWitness(..)
1159 | ty::Placeholder(..)
dfeec247 1160 | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
e1599b0c
XL
1161 }
1162 }
1163
1164 fn emit_ffi_unsafe_type_lint(
1165 &mut self,
1166 ty: Ty<'tcx>,
1167 sp: Span,
064997fb
FG
1168 note: DiagnosticMessage,
1169 help: Option<DiagnosticMessage>,
e1599b0c 1170 ) {
f035d41b 1171 let lint = match self.mode {
3dfed10e
XL
1172 CItemKind::Declaration => IMPROPER_CTYPES,
1173 CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
f035d41b
XL
1174 };
1175
2b03887a 1176 self.cx.struct_span_lint(lint, sp, fluent::lint_improper_ctypes, |lint| {
f035d41b 1177 let item_description = match self.mode {
3dfed10e
XL
1178 CItemKind::Declaration => "block",
1179 CItemKind::Definition => "fn",
f035d41b 1180 };
2b03887a
FG
1181 lint.set_arg("ty", ty);
1182 lint.set_arg("desc", item_description);
1183 lint.span_label(sp, fluent::label);
74b04a01 1184 if let Some(help) = help {
2b03887a 1185 lint.help(help);
e1599b0c 1186 }
2b03887a 1187 lint.note(note);
1b1a35ee 1188 if let ty::Adt(def, _) = ty.kind() {
5e7ed085 1189 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
2b03887a 1190 lint.span_note(sp, fluent::note);
74b04a01
XL
1191 }
1192 }
2b03887a 1193 lint
74b04a01 1194 });
e1599b0c
XL
1195 }
1196
1197 fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
f035d41b
XL
1198 struct ProhibitOpaqueTypes<'a, 'tcx> {
1199 cx: &'a LateContext<'tcx>,
fc512014 1200 }
e1599b0c 1201
064997fb 1202 impl<'a, 'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
fc512014
XL
1203 type BreakTy = Ty<'tcx>;
1204
1205 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1b1a35ee 1206 match ty.kind() {
fc512014 1207 ty::Opaque(..) => ControlFlow::Break(ty),
f035d41b
XL
1208 // Consider opaque types within projections FFI-safe if they do not normalize
1209 // to more opaque types.
1210 ty::Projection(..) => {
1211 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1212
94222f64 1213 // If `ty` is an opaque type directly then `super_visit_with` won't invoke
f035d41b 1214 // this function again.
29967ef6
XL
1215 if ty.has_opaque_types() {
1216 self.visit_ty(ty)
1217 } else {
1218 ControlFlow::CONTINUE
1219 }
f035d41b
XL
1220 }
1221 _ => ty.super_visit_with(self),
e1599b0c
XL
1222 }
1223 }
1224 }
1225
fc512014 1226 if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
2b03887a 1227 self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint_improper_ctypes_opaque, None);
e1599b0c
XL
1228 true
1229 } else {
1230 false
b039eaaf
SL
1231 }
1232 }
1233
f035d41b
XL
1234 fn check_type_for_ffi_and_report_errors(
1235 &mut self,
1236 sp: Span,
1237 ty: Ty<'tcx>,
1238 is_static: bool,
1239 is_return_type: bool,
1240 ) {
e1599b0c
XL
1241 // We have to check for opaque types before `normalize_erasing_regions`,
1242 // which will replace opaque types with their underlying concrete type.
1243 if self.check_for_opaque_ty(sp, ty) {
1244 // We've already emitted an error due to an opaque type.
1245 return;
1246 }
1247
54a0048b
SL
1248 // it is only OK to use this function because extern fns cannot have
1249 // any generic types right now:
f035d41b
XL
1250 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1251
1252 // C doesn't really support passing arrays by value - the only way to pass an array by value
1253 // is through a struct. So, first test that the top level isn't an array, and then
1254 // recursively check the types inside.
60c5eb7d
XL
1255 if !is_static && self.check_for_array_ty(sp, ty) {
1256 return;
1257 }
b039eaaf 1258
f035d41b
XL
1259 // Don't report FFI errors for unit return types. This check exists here, and not in
1260 // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1261 // happened.
1262 if is_return_type && ty.is_unit() {
1263 return;
1264 }
1265
0bf4aa26 1266 match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
b039eaaf 1267 FfiResult::FfiSafe => {}
0531ce1d 1268 FfiResult::FfiPhantom(ty) => {
064997fb
FG
1269 self.emit_ffi_unsafe_type_lint(
1270 ty,
1271 sp,
2b03887a 1272 fluent::lint_improper_ctypes_only_phantomdata,
064997fb
FG
1273 None,
1274 );
9e0c209e 1275 }
f035d41b
XL
1276 // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1277 // argument, which after substitution, is `()`, then this branch can be hit.
3dfed10e 1278 FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
e1599b0c 1279 FfiResult::FfiUnsafe { ty, reason, help } => {
064997fb 1280 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
b039eaaf
SL
1281 }
1282 }
1283 }
b039eaaf 1284
dfeec247 1285 fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
416331ca 1286 let def_id = self.cx.tcx.hir().local_def_id(id);
041b39d2 1287 let sig = self.cx.tcx.fn_sig(def_id);
fc512014 1288 let sig = self.cx.tcx.erase_late_bound_regions(sig);
54a0048b 1289
cdc7bbd5 1290 for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
5099ac24 1291 self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
54a0048b
SL
1292 }
1293
74b04a01 1294 if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
476ff2be 1295 let ret_ty = sig.output();
f035d41b 1296 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
b039eaaf
SL
1297 }
1298 }
54a0048b 1299
532ac7d7 1300 fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
416331ca 1301 let def_id = self.cx.tcx.hir().local_def_id(id);
7cac9316 1302 let ty = self.cx.tcx.type_of(def_id);
f035d41b 1303 self.check_type_for_ffi_and_report_errors(span, ty, true, false);
54a0048b 1304 }
b039eaaf 1305
3dfed10e 1306 fn is_internal_abi(&self, abi: SpecAbi) -> bool {
29967ef6
XL
1307 matches!(
1308 abi,
1309 SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1310 )
f035d41b
XL
1311 }
1312}
1313
1314impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1315 fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
3dfed10e 1316 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
6a06907d 1317 let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
f035d41b
XL
1318
1319 if !vis.is_internal_abi(abi) {
e74abb32 1320 match it.kind {
b7449926 1321 hir::ForeignItemKind::Fn(ref decl, _, _) => {
6a06907d 1322 vis.check_foreign_fn(it.hir_id(), decl);
b7449926
XL
1323 }
1324 hir::ForeignItemKind::Static(ref ty, _) => {
6a06907d 1325 vis.check_foreign_static(it.hir_id(), ty.span);
b039eaaf 1326 }
dfeec247 1327 hir::ForeignItemKind::Type => (),
b039eaaf 1328 }
b039eaaf
SL
1329 }
1330 }
1331}
5bcae85e 1332
f035d41b
XL
1333impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1334 fn check_fn(
1335 &mut self,
1336 cx: &LateContext<'tcx>,
1337 kind: hir::intravisit::FnKind<'tcx>,
1338 decl: &'tcx hir::FnDecl<'_>,
1339 _: &'tcx hir::Body<'_>,
1340 _: Span,
1341 hir_id: hir::HirId,
1342 ) {
1343 use hir::intravisit::FnKind;
1344
1345 let abi = match kind {
1346 FnKind::ItemFn(_, _, header, ..) => header.abi,
1347 FnKind::Method(_, sig, ..) => sig.header.abi,
1348 _ => return,
1349 };
1350
3dfed10e 1351 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
f035d41b
XL
1352 if !vis.is_internal_abi(abi) {
1353 vis.check_foreign_fn(hir_id, decl);
1354 }
1355 }
1356}
1357
532ac7d7 1358declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
5bcae85e 1359
f035d41b
XL
1360impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1361 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 1362 if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
2b03887a 1363 let t = cx.tcx.type_of(it.owner_id);
fc512014 1364 let ty = cx.tcx.erase_regions(t);
5e7ed085 1365 let Ok(layout) = cx.layout_of(ty) else { return };
a2a8927a 1366 let Variants::Multiple {
c295e0f8 1367 tag_encoding: TagEncoding::Direct, tag, ref variants, ..
a2a8927a
XL
1368 } = &layout.variants else {
1369 return
532ac7d7
XL
1370 };
1371
04454e1e 1372 let tag_size = tag.size(&cx.tcx).bytes();
532ac7d7 1373
dfeec247
XL
1374 debug!(
1375 "enum `{}` is {} bytes large with layout:\n{:#?}",
1376 t,
1377 layout.size.bytes(),
1378 layout
1379 );
532ac7d7 1380
cdc7bbd5 1381 let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
532ac7d7 1382 .map(|(variant, variant_layout)| {
f035d41b 1383 // Subtract the size of the enum tag.
5e7ed085 1384 let bytes = variant_layout.size().bytes().saturating_sub(tag_size);
532ac7d7 1385
dfeec247 1386 debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
532ac7d7
XL
1387 bytes
1388 })
1389 .enumerate()
dfeec247
XL
1390 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1391 if size > l {
1392 (size, l, idx)
1393 } else if size > s {
1394 (l, size, li)
1395 } else {
1396 (l, s, li)
1397 }
532ac7d7
XL
1398 });
1399
1400 // We only warn if the largest variant is at least thrice as large as
1401 // the second-largest.
1402 if largest > slargest * 3 && slargest > 0 {
74b04a01 1403 cx.struct_span_lint(
dfeec247
XL
1404 VARIANT_SIZE_DIFFERENCES,
1405 enum_definition.variants[largest_index].span,
2b03887a
FG
1406 fluent::lint_variant_size_differences,
1407 |lint| lint.set_arg("largest", largest),
dfeec247 1408 );
5bcae85e
SL
1409 }
1410 }
1411 }
1412}
94222f64
XL
1413
1414declare_lint! {
1415 /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1416 /// to an atomic operation that does not support that ordering.
1417 ///
1418 /// ### Example
1419 ///
1420 /// ```rust,compile_fail
1421 /// # use core::sync::atomic::{AtomicU8, Ordering};
1422 /// let atom = AtomicU8::new(0);
1423 /// let value = atom.load(Ordering::Release);
1424 /// # let _ = value;
1425 /// ```
1426 ///
1427 /// {{produces}}
1428 ///
1429 /// ### Explanation
1430 ///
1431 /// Some atomic operations are only supported for a subset of the
1432 /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1433 /// an unconditional panic at runtime, which is detected by this lint.
1434 ///
1435 /// This lint will trigger in the following cases: (where `AtomicType` is an
1436 /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1437 /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1438 ///
1439 /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1440 /// `AtomicType::store`.
1441 ///
1442 /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1443 /// `AtomicType::load`.
1444 ///
1445 /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1446 /// `core::sync::atomic::compiler_fence`.
1447 ///
1448 /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1449 /// ordering for any of `AtomicType::compare_exchange`,
1450 /// `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
94222f64
XL
1451 INVALID_ATOMIC_ORDERING,
1452 Deny,
1453 "usage of invalid atomic ordering in atomic operations and memory fences"
1454}
1455
1456declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1457
1458impl InvalidAtomicOrdering {
1459 fn inherent_atomic_method_call<'hir>(
1460 cx: &LateContext<'_>,
1461 expr: &Expr<'hir>,
1462 recognized_names: &[Symbol], // used for fast path calculation
1463 ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1464 const ATOMIC_TYPES: &[Symbol] = &[
1465 sym::AtomicBool,
1466 sym::AtomicPtr,
1467 sym::AtomicUsize,
1468 sym::AtomicU8,
1469 sym::AtomicU16,
1470 sym::AtomicU32,
1471 sym::AtomicU64,
1472 sym::AtomicU128,
1473 sym::AtomicIsize,
1474 sym::AtomicI8,
1475 sym::AtomicI16,
1476 sym::AtomicI32,
1477 sym::AtomicI64,
1478 sym::AtomicI128,
1479 ];
f2b60f7d 1480 if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
5e7ed085
FG
1481 && recognized_names.contains(&method_path.ident.name)
1482 && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1483 && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1484 && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
94222f64 1485 // skip extension traits, only lint functions from the standard library
5e7ed085 1486 && cx.tcx.trait_id_of_impl(impl_did).is_none()
04454e1e 1487 && let parent = cx.tcx.parent(adt.did())
5e7ed085
FG
1488 && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1489 && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1490 {
1491 return Some((method_path.ident.name, args));
94222f64
XL
1492 }
1493 None
1494 }
1495
064997fb
FG
1496 fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1497 let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1498 let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
94222f64
XL
1499 let tcx = cx.tcx;
1500 let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
064997fb
FG
1501 let name = tcx.item_name(did);
1502 let parent = tcx.parent(did);
1503 [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1504 |&ordering| {
1505 name == ordering
1506 && (Some(parent) == atomic_ordering
1507 // needed in case this is a ctor, not a variant
1508 || tcx.opt_parent(parent) == atomic_ordering)
1509 },
1510 )
94222f64
XL
1511 }
1512
1513 fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085 1514 if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
2b03887a
FG
1515 && let Some((ordering_arg, invalid_ordering, msg)) = match method {
1516 sym::load => Some((&args[0], sym::Release, fluent::lint_atomic_ordering_load)),
1517 sym::store => Some((&args[1], sym::Acquire, fluent::lint_atomic_ordering_store)),
94222f64 1518 _ => None,
94222f64 1519 }
064997fb
FG
1520 && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1521 && (ordering == invalid_ordering || ordering == sym::AcqRel)
5e7ed085 1522 {
2b03887a
FG
1523 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, msg, |lint| {
1524 lint.help(fluent::help)
5e7ed085 1525 });
94222f64
XL
1526 }
1527 }
1528
1529 fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085
FG
1530 if let ExprKind::Call(ref func, ref args) = expr.kind
1531 && let ExprKind::Path(ref func_qpath) = func.kind
1532 && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1533 && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
064997fb 1534 && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
5e7ed085 1535 {
2b03887a
FG
1536 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, fluent::lint_atomic_ordering_fence, |lint| {
1537 lint
1538 .help(fluent::help)
5e7ed085 1539 });
94222f64
XL
1540 }
1541 }
1542
1543 fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
064997fb
FG
1544 let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1545 else {return };
1546
1547 let fail_order_arg = match method {
f2b60f7d
FG
1548 sym::fetch_update => &args[1],
1549 sym::compare_exchange | sym::compare_exchange_weak => &args[3],
064997fb
FG
1550 _ => return,
1551 };
1552
1553 let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1554
1555 if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1556 #[derive(LintDiagnostic)]
2b03887a 1557 #[diag(lint_atomic_ordering_invalid)]
064997fb
FG
1558 #[help]
1559 struct InvalidAtomicOrderingDiag {
1560 method: Symbol,
1561 #[label]
1562 fail_order_arg_span: Span,
94222f64 1563 }
064997fb
FG
1564
1565 cx.emit_spanned_lint(
1566 INVALID_ATOMIC_ORDERING,
1567 fail_order_arg.span,
1568 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1569 );
94222f64
XL
1570 }
1571 }
1572}
1573
1574impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1575 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1576 Self::check_atomic_load_store(cx, expr);
1577 Self::check_memory_fence(cx, expr);
1578 Self::check_atomic_compare_exchange(cx, expr);
1579 }
1580}