]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_lint/src/types.rs
New upstream version 1.67.1+dfsg1
[rustc.git] / compiler / rustc_lint / src / types.rs
CommitLineData
dfeec247 1use crate::{LateContext, LateLintPass, LintContext};
3dfed10e 2use rustc_ast as ast;
74b04a01 3use rustc_attr as attr;
dfeec247 4use rustc_data_structures::fx::FxHashSet;
064997fb 5use rustc_errors::{fluent, Applicability, DiagnosticMessage};
dfeec247 6use rustc_hir as hir;
94222f64 7use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
064997fb 8use rustc_macros::LintDiagnostic;
c295e0f8 9use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
ba9703b0 10use rustc_middle::ty::subst::SubstsRef;
064997fb 11use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
dfeec247
XL
12use rustc_span::source_map;
13use rustc_span::symbol::sym;
2b03887a 14use rustc_span::{Span, Symbol};
487cf647 15use rustc_target::abi::{Abi, Size, WrappingRange};
c295e0f8 16use rustc_target::abi::{Integer, TagEncoding, Variants};
3dfed10e 17use rustc_target::spec::abi::Abi as SpecAbi;
9fa01778 18
dfeec247 19use std::cmp;
cdc7bbd5 20use std::iter;
29967ef6 21use std::ops::ControlFlow;
9fa01778 22
b039eaaf 23declare_lint! {
1b1a35ee
XL
24 /// The `unused_comparisons` lint detects comparisons made useless by
25 /// limits of the types involved.
26 ///
27 /// ### Example
28 ///
29 /// ```rust
30 /// fn foo(x: u8) {
31 /// x >= 0;
32 /// }
33 /// ```
34 ///
35 /// {{produces}}
36 ///
37 /// ### Explanation
38 ///
39 /// A useless comparison may indicate a mistake, and should be fixed or
40 /// removed.
b039eaaf
SL
41 UNUSED_COMPARISONS,
42 Warn,
43 "comparisons made useless by limits of the types involved"
44}
45
46declare_lint! {
1b1a35ee
XL
47 /// The `overflowing_literals` lint detects literal out of range for its
48 /// type.
49 ///
50 /// ### Example
51 ///
52 /// ```rust,compile_fail
53 /// let x: u8 = 1000;
54 /// ```
55 ///
56 /// {{produces}}
57 ///
58 /// ### Explanation
59 ///
60 /// It is usually a mistake to use a literal that overflows the type where
61 /// it is used. Either use a literal that is within range, or change the
62 /// type to be within the range of the literal.
b039eaaf 63 OVERFLOWING_LITERALS,
9fa01778
XL
64 Deny,
65 "literal out of range for its type"
b039eaaf
SL
66}
67
5bcae85e 68declare_lint! {
1b1a35ee
XL
69 /// The `variant_size_differences` lint detects enums with widely varying
70 /// variant sizes.
71 ///
72 /// ### Example
73 ///
74 /// ```rust,compile_fail
75 /// #![deny(variant_size_differences)]
76 /// enum En {
77 /// V0(u8),
78 /// VBig([u8; 1024]),
79 /// }
80 /// ```
81 ///
82 /// {{produces}}
83 ///
84 /// ### Explanation
85 ///
86 /// It can be a mistake to add a variant to an enum that is much larger
87 /// than the other variants, bloating the overall size required for all
88 /// variants. This can impact performance and memory usage. This is
89 /// triggered if one variant is more than 3 times larger than the
90 /// second-largest variant.
91 ///
92 /// Consider placing the large variant's contents on the heap (for example
93 /// via [`Box`]) to keep the overall size of the enum itself down.
94 ///
95 /// This lint is "allow" by default because it can be noisy, and may not be
96 /// an actual problem. Decisions about this should be guided with
97 /// profiling and benchmarking.
98 ///
99 /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
5bcae85e
SL
100 VARIANT_SIZE_DIFFERENCES,
101 Allow,
102 "detects enums with widely varying variant sizes"
103}
104
b039eaaf
SL
105#[derive(Copy, Clone)]
106pub struct TypeLimits {
107 /// Id of the last visited negated expression
ba9703b0 108 negated_expr_id: Option<hir::HirId>,
b039eaaf
SL
109}
110
532ac7d7
XL
111impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
112
b039eaaf
SL
113impl TypeLimits {
114 pub fn new() -> TypeLimits {
ba9703b0 115 TypeLimits { negated_expr_id: None }
b039eaaf
SL
116 }
117}
118
2b03887a
FG
119/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint (`expr..MAX+1`).
120/// Returns `true` iff the lint was emitted.
f035d41b
XL
121fn lint_overflowing_range_endpoint<'tcx>(
122 cx: &LateContext<'tcx>,
48663c56
XL
123 lit: &hir::Lit,
124 lit_val: u128,
125 max: u128,
dfeec247 126 expr: &'tcx hir::Expr<'tcx>,
60c5eb7d 127 ty: &str,
48663c56
XL
128) -> bool {
129 // We only want to handle exclusive (`..`) ranges,
130 // which are represented as `ExprKind::Struct`.
f2b60f7d
FG
131 let par_id = cx.tcx.hir().get_parent_node(expr.hir_id);
132 let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
133 let field_par_id = cx.tcx.hir().get_parent_node(field.hir_id);
134 let Node::Expr(struct_expr) = cx.tcx.hir().get(field_par_id) else { return false };
135 if !is_range_literal(struct_expr) {
136 return false;
137 };
138 let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
139 if eps.len() != 2 {
140 return false;
141 }
142
f2b60f7d
FG
143 // We can suggest using an inclusive range
144 // (`..=`) instead only if it is the `end` that is
145 // overflowing and only by 1.
2b03887a
FG
146 if !(eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max) {
147 return false;
148 };
149 let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) else { return false };
150
151 cx.struct_span_lint(
152 OVERFLOWING_LITERALS,
153 struct_expr.span,
154 fluent::lint_range_endpoint_out_of_range,
155 |lint| {
156 use ast::{LitIntType, LitKind};
157
158 lint.set_arg("ty", ty);
159
160 // We need to preserve the literal's suffix,
161 // as it may determine typing information.
162 let suffix = match lit.node {
163 LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
164 LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
165 LitKind::Int(_, LitIntType::Unsuffixed) => "",
166 _ => bug!(),
167 };
168 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
169 lint.span_suggestion(
170 struct_expr.span,
171 fluent::suggestion,
172 suggestion,
173 Applicability::MachineApplicable,
174 );
175
176 lint
177 },
178 );
179
180 // We've just emitted a lint, special cased for `(...)..MAX+1` ranges,
181 // return `true` so the callers don't also emit a lint
182 true
48663c56
XL
183}
184
185// For `isize` & `usize`, be conservative with the warnings, so that the
186// warnings are consistent between 32- and 64-bit platforms.
5869c6ff 187fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
48663c56 188 match int_ty {
5869c6ff
XL
189 ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
190 ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
191 ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
192 ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
193 ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
194 ty::IntTy::I128 => (i128::MIN, i128::MAX),
48663c56
XL
195 }
196}
197
5869c6ff 198fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
29967ef6 199 let max = match uint_ty {
5869c6ff
XL
200 ty::UintTy::Usize => u64::MAX.into(),
201 ty::UintTy::U8 => u8::MAX.into(),
202 ty::UintTy::U16 => u16::MAX.into(),
203 ty::UintTy::U32 => u32::MAX.into(),
204 ty::UintTy::U64 => u64::MAX.into(),
205 ty::UintTy::U128 => u128::MAX,
29967ef6
XL
206 };
207 (0, max)
48663c56
XL
208}
209
f035d41b 210fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
48663c56
XL
211 let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
212 let firstch = src.chars().next()?;
213
214 if firstch == '0' {
215 match src.chars().nth(1) {
ba9703b0 216 Some('x' | 'b') => return Some(src),
48663c56
XL
217 _ => return None,
218 }
219 }
220
221 None
222}
223
224fn report_bin_hex_error(
f035d41b 225 cx: &LateContext<'_>,
dfeec247 226 expr: &hir::Expr<'_>,
48663c56 227 ty: attr::IntType,
487cf647 228 size: Size,
48663c56
XL
229 repr_str: String,
230 val: u128,
231 negative: bool,
232) {
2b03887a
FG
233 cx.struct_span_lint(
234 OVERFLOWING_LITERALS,
235 expr.span,
236 fluent::lint_overflowing_bin_hex,
237 |lint| {
238 let (t, actually) = match ty {
239 attr::IntType::SignedInt(t) => {
240 let actually = if negative {
241 -(size.sign_extend(val) as i128)
242 } else {
243 size.sign_extend(val) as i128
244 };
245 (t.name_str(), actually.to_string())
246 }
247 attr::IntType::UnsignedInt(t) => {
248 let actually = size.truncate(val);
249 (t.name_str(), actually.to_string())
250 }
251 };
252
253 if negative {
254 // If the value is negative,
255 // emits a note about the value itself, apart from the literal.
256 lint.note(fluent::negative_note);
257 lint.note(fluent::negative_becomes_note);
74b04a01 258 } else {
2b03887a 259 lint.note(fluent::positive_note);
74b04a01 260 }
2b03887a
FG
261 if let Some(sugg_ty) =
262 get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
263 {
264 lint.set_arg("suggestion_ty", sugg_ty);
265 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
266 let (sans_suffix, _) = repr_str.split_at(pos);
267 lint.span_suggestion(
268 expr.span,
269 fluent::suggestion,
270 format!("{}{}", sans_suffix, sugg_ty),
271 Applicability::MachineApplicable,
272 );
273 } else {
274 lint.help(fluent::help);
275 }
276 }
277 lint.set_arg("ty", t)
278 .set_arg("lit", repr_str)
279 .set_arg("dec", val)
280 .set_arg("actually", actually);
281
282 lint
283 },
284 );
48663c56
XL
285}
286
287// This function finds the next fitting type and generates a suggestion string.
288// It searches for fitting types in the following way (`X < Y`):
289// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
290// - `-iX` => `iY`
291// - `uX` => `uY`
292//
293// No suggestion for: `isize`, `usize`.
60c5eb7d 294fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
5869c6ff
XL
295 use ty::IntTy::*;
296 use ty::UintTy::*;
48663c56
XL
297 macro_rules! find_fit {
298 ($ty:expr, $val:expr, $negative:expr,
299 $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
300 {
301 let _neg = if negative { 1 } else { 0 };
302 match $ty {
303 $($type => {
304 $(if !negative && val <= uint_ty_range($utypes).1 {
60c5eb7d 305 return Some($utypes.name_str())
48663c56
XL
306 })*
307 $(if val <= int_ty_range($itypes).1 as u128 + _neg {
60c5eb7d 308 return Some($itypes.name_str())
48663c56
XL
309 })*
310 None
dc9dc135 311 },)+
48663c56
XL
312 _ => None
313 }
314 }
315 }
316 }
1b1a35ee 317 match t.kind() {
48663c56
XL
318 ty::Int(i) => find_fit!(i, val, negative,
319 I8 => [U8] => [I16, I32, I64, I128],
320 I16 => [U16] => [I32, I64, I128],
321 I32 => [U32] => [I64, I128],
322 I64 => [U64] => [I128],
323 I128 => [U128] => []),
324 ty::Uint(u) => find_fit!(u, val, negative,
325 U8 => [U8, U16, U32, U64, U128] => [],
326 U16 => [U16, U32, U64, U128] => [],
327 U32 => [U32, U64, U128] => [],
328 U64 => [U64, U128] => [],
329 U128 => [U128] => []),
330 _ => None,
331 }
332}
333
f035d41b
XL
334fn lint_int_literal<'tcx>(
335 cx: &LateContext<'tcx>,
48663c56 336 type_limits: &TypeLimits,
dfeec247 337 e: &'tcx hir::Expr<'tcx>,
48663c56 338 lit: &hir::Lit,
5869c6ff 339 t: ty::IntTy,
48663c56
XL
340 v: u128,
341) {
29967ef6 342 let int_type = t.normalize(cx.sess().target.pointer_width);
ba9703b0 343 let (min, max) = int_ty_range(int_type);
48663c56 344 let max = max as u128;
ba9703b0 345 let negative = type_limits.negated_expr_id == Some(e.hir_id);
48663c56
XL
346
347 // Detect literal value out of range [min, max] inclusive
348 // avoiding use of -min to prevent overflow/panic
349 if (negative && v > max + 1) || (!negative && v > max) {
350 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
351 report_bin_hex_error(
352 cx,
353 e,
354 attr::IntType::SignedInt(ty::ast_int_ty(t)),
487cf647 355 Integer::from_int_ty(cx, t).size(),
5869c6ff
XL
356 repr_str,
357 v,
358 negative,
359 );
48663c56
XL
360 return;
361 }
362
f2b60f7d 363 if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
487cf647 364 // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
f2b60f7d 365 return;
48663c56
XL
366 }
367
2b03887a
FG
368 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_int, |lint| {
369 lint.set_arg("ty", t.name_str())
370 .set_arg(
371 "lit",
372 cx.sess()
373 .source_map()
374 .span_to_snippet(lit.span)
375 .expect("must get snippet from literal"),
376 )
377 .set_arg("min", min)
378 .set_arg("max", max)
379 .note(fluent::note);
380
6a06907d 381 if let Some(sugg_ty) =
5099ac24 382 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
6a06907d 383 {
2b03887a
FG
384 lint.set_arg("suggestion_ty", sugg_ty);
385 lint.help(fluent::help);
6a06907d 386 }
2b03887a
FG
387
388 lint
74b04a01 389 });
48663c56
XL
390 }
391}
392
f035d41b
XL
393fn lint_uint_literal<'tcx>(
394 cx: &LateContext<'tcx>,
dfeec247 395 e: &'tcx hir::Expr<'tcx>,
48663c56 396 lit: &hir::Lit,
5869c6ff 397 t: ty::UintTy,
48663c56 398) {
29967ef6 399 let uint_type = t.normalize(cx.sess().target.pointer_width);
48663c56
XL
400 let (min, max) = uint_ty_range(uint_type);
401 let lit_val: u128 = match lit.node {
402 // _v is u8, within range by definition
403 ast::LitKind::Byte(_v) => return,
404 ast::LitKind::Int(v, _) => v,
405 _ => bug!(),
406 };
407 if lit_val < min || lit_val > max {
dc9dc135
XL
408 let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
409 if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
e74abb32 410 match par_e.kind {
48663c56 411 hir::ExprKind::Cast(..) => {
1b1a35ee 412 if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
2b03887a
FG
413 cx.struct_span_lint(
414 OVERFLOWING_LITERALS,
415 par_e.span,
416 fluent::lint_only_cast_u8_to_char,
417 |lint| {
418 lint.span_suggestion(
74b04a01 419 par_e.span,
2b03887a 420 fluent::suggestion,
74b04a01
XL
421 format!("'\\u{{{:X}}}'", lit_val),
422 Applicability::MachineApplicable,
423 )
2b03887a
FG
424 },
425 );
48663c56
XL
426 return;
427 }
428 }
48663c56
XL
429 _ => {}
430 }
431 }
f2b60f7d 432 if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
487cf647 433 // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
f2b60f7d
FG
434 return;
435 }
48663c56 436 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
437 report_bin_hex_error(
438 cx,
439 e,
440 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
487cf647 441 Integer::from_uint_ty(cx, t).size(),
5869c6ff
XL
442 repr_str,
443 lit_val,
444 false,
445 );
48663c56
XL
446 return;
447 }
2b03887a
FG
448 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_uint, |lint| {
449 lint.set_arg("ty", t.name_str())
064997fb
FG
450 .set_arg(
451 "lit",
ba9703b0
XL
452 cx.sess()
453 .source_map()
454 .span_to_snippet(lit.span)
455 .expect("must get snippet from literal"),
064997fb
FG
456 )
457 .set_arg("min", min)
458 .set_arg("max", max)
2b03887a 459 .note(fluent::note)
74b04a01 460 });
48663c56
XL
461 }
462}
463
f035d41b
XL
464fn lint_literal<'tcx>(
465 cx: &LateContext<'tcx>,
48663c56 466 type_limits: &TypeLimits,
dfeec247 467 e: &'tcx hir::Expr<'tcx>,
48663c56
XL
468 lit: &hir::Lit,
469) {
1b1a35ee 470 match *cx.typeck_results().node_type(e.hir_id).kind() {
48663c56
XL
471 ty::Int(t) => {
472 match lit.node {
ba9703b0 473 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
48663c56
XL
474 lint_int_literal(cx, type_limits, e, lit, t, v)
475 }
476 _ => bug!(),
477 };
478 }
dfeec247 479 ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
48663c56
XL
480 ty::Float(t) => {
481 let is_infinite = match lit.node {
dfeec247 482 ast::LitKind::Float(v, _) => match t {
5869c6ff
XL
483 ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
484 ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
dfeec247 485 },
48663c56
XL
486 _ => bug!(),
487 };
488 if is_infinite == Ok(true) {
2b03887a
FG
489 cx.struct_span_lint(
490 OVERFLOWING_LITERALS,
491 e.span,
492 fluent::lint_overflowing_literal,
493 |lint| {
494 lint.set_arg("ty", t.name_str())
495 .set_arg(
496 "lit",
497 cx.sess()
498 .source_map()
499 .span_to_snippet(lit.span)
500 .expect("must get snippet from literal"),
501 )
502 .note(fluent::note)
503 },
504 );
48663c56
XL
505 }
506 }
507 _ => {}
508 }
509}
510
f035d41b
XL
511impl<'tcx> LateLintPass<'tcx> for TypeLimits {
512 fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
e74abb32 513 match e.kind {
6a06907d 514 hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
b039eaaf 515 // propagate negation, if the negation itself isn't negated
ba9703b0
XL
516 if self.negated_expr_id != Some(e.hir_id) {
517 self.negated_expr_id = Some(expr.hir_id);
b039eaaf 518 }
c30ab7b3 519 }
8faf50e0 520 hir::ExprKind::Binary(binop, ref l, ref r) => {
32a655c1 521 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
2b03887a
FG
522 cx.struct_span_lint(
523 UNUSED_COMPARISONS,
524 e.span,
525 fluent::lint_unused_comparisons,
526 |lint| lint,
527 );
b039eaaf 528 }
c30ab7b3 529 }
48663c56
XL
530 hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
531 _ => {}
b039eaaf
SL
532 };
533
c30ab7b3 534 fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
b039eaaf 535 match binop.node {
8faf50e0
XL
536 hir::BinOpKind::Lt => v > min && v <= max,
537 hir::BinOpKind::Le => v >= min && v < max,
538 hir::BinOpKind::Gt => v >= min && v < max,
539 hir::BinOpKind::Ge => v > min && v <= max,
540 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
c30ab7b3 541 _ => bug!(),
b039eaaf
SL
542 }
543 }
544
545 fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
dfeec247
XL
546 source_map::respan(
547 binop.span,
548 match binop.node {
549 hir::BinOpKind::Lt => hir::BinOpKind::Gt,
550 hir::BinOpKind::Le => hir::BinOpKind::Ge,
551 hir::BinOpKind::Gt => hir::BinOpKind::Lt,
552 hir::BinOpKind::Ge => hir::BinOpKind::Le,
553 _ => return binop,
554 },
555 )
b039eaaf
SL
556 }
557
dfeec247 558 fn check_limits(
f035d41b 559 cx: &LateContext<'_>,
dfeec247
XL
560 binop: hir::BinOp,
561 l: &hir::Expr<'_>,
562 r: &hir::Expr<'_>,
563 ) -> bool {
e74abb32 564 let (lit, expr, swap) = match (&l.kind, &r.kind) {
8faf50e0
XL
565 (&hir::ExprKind::Lit(_), _) => (l, r, true),
566 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
c30ab7b3 567 _ => return true,
b039eaaf
SL
568 };
569 // Normalize the binop so that the literal is always on the RHS in
570 // the comparison
c30ab7b3 571 let norm_binop = if swap { rev_binop(binop) } else { binop };
1b1a35ee 572 match *cx.typeck_results().node_type(expr.hir_id).kind() {
b7449926 573 ty::Int(int_ty) => {
b039eaaf 574 let (min, max) = int_ty_range(int_ty);
e74abb32 575 let lit_val: i128 = match lit.kind {
dfeec247 576 hir::ExprKind::Lit(ref li) => match li.node {
ba9703b0
XL
577 ast::LitKind::Int(
578 v,
579 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
580 ) => v as i128,
dfeec247 581 _ => return true,
32a655c1 582 },
dfeec247 583 _ => bug!(),
b039eaaf
SL
584 };
585 is_valid(norm_binop, lit_val, min, max)
586 }
b7449926 587 ty::Uint(uint_ty) => {
dfeec247 588 let (min, max): (u128, u128) = uint_ty_range(uint_ty);
e74abb32 589 let lit_val: u128 = match lit.kind {
dfeec247
XL
590 hir::ExprKind::Lit(ref li) => match li.node {
591 ast::LitKind::Int(v, _) => v,
592 _ => return true,
32a655c1 593 },
dfeec247 594 _ => bug!(),
b039eaaf
SL
595 };
596 is_valid(norm_binop, lit_val, min, max)
597 }
c30ab7b3 598 _ => true,
b039eaaf
SL
599 }
600 }
601
602 fn is_comparison(binop: hir::BinOp) -> bool {
29967ef6
XL
603 matches!(
604 binop.node,
dfeec247 605 hir::BinOpKind::Eq
29967ef6
XL
606 | hir::BinOpKind::Lt
607 | hir::BinOpKind::Le
608 | hir::BinOpKind::Ne
609 | hir::BinOpKind::Ge
610 | hir::BinOpKind::Gt
611 )
b039eaaf 612 }
b039eaaf
SL
613 }
614}
615
616declare_lint! {
1b1a35ee
XL
617 /// The `improper_ctypes` lint detects incorrect use of types in foreign
618 /// modules.
619 ///
620 /// ### Example
621 ///
622 /// ```rust
623 /// extern "C" {
624 /// static STATIC: String;
625 /// }
626 /// ```
627 ///
628 /// {{produces}}
629 ///
630 /// ### Explanation
631 ///
632 /// The compiler has several checks to verify that types used in `extern`
633 /// blocks are safe and follow certain rules to ensure proper
634 /// compatibility with the foreign interfaces. This lint is issued when it
635 /// detects a probable mistake in a definition. The lint usually should
636 /// provide a description of the issue, along with possibly a hint on how
637 /// to resolve it.
b039eaaf
SL
638 IMPROPER_CTYPES,
639 Warn,
640 "proper use of libc types in foreign modules"
641}
642
f035d41b
XL
643declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
644
645declare_lint! {
1b1a35ee
XL
646 /// The `improper_ctypes_definitions` lint detects incorrect use of
647 /// [`extern` function] definitions.
648 ///
649 /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
650 ///
651 /// ### Example
652 ///
653 /// ```rust
654 /// # #![allow(unused)]
655 /// pub extern "C" fn str_type(p: &str) { }
656 /// ```
657 ///
658 /// {{produces}}
659 ///
660 /// ### Explanation
661 ///
662 /// There are many parameter and return types that may be specified in an
663 /// `extern` function that are not compatible with the given ABI. This
664 /// lint is an alert that these types should not be used. The lint usually
665 /// should provide a description of the issue, along with possibly a hint
666 /// on how to resolve it.
f035d41b
XL
667 IMPROPER_CTYPES_DEFINITIONS,
668 Warn,
669 "proper use of libc types in foreign item definitions"
670}
671
672declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
673
3dfed10e 674#[derive(Clone, Copy)]
923072b8 675pub(crate) enum CItemKind {
3dfed10e
XL
676 Declaration,
677 Definition,
f035d41b 678}
532ac7d7 679
dc9dc135 680struct ImproperCTypesVisitor<'a, 'tcx> {
f035d41b 681 cx: &'a LateContext<'tcx>,
3dfed10e 682 mode: CItemKind,
b039eaaf
SL
683}
684
0531ce1d 685enum FfiResult<'tcx> {
b039eaaf 686 FfiSafe,
0531ce1d 687 FfiPhantom(Ty<'tcx>),
064997fb 688 FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
b039eaaf
SL
689}
690
923072b8
FG
691pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
692 tcx: TyCtxt<'tcx>,
693 def: ty::AdtDef<'tcx>,
694) -> bool {
04454e1e 695 tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
1b1a35ee
XL
696}
697
698/// `repr(transparent)` structs can have a single non-ZST field, this function returns that
699/// field.
700pub fn transparent_newtype_field<'a, 'tcx>(
701 tcx: TyCtxt<'tcx>,
702 variant: &'a ty::VariantDef,
703) -> Option<&'a ty::FieldDef> {
704 let param_env = tcx.param_env(variant.def_id);
17df50a5 705 variant.fields.iter().find(|field| {
1b1a35ee 706 let field_ty = tcx.type_of(field.did);
5869c6ff 707 let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
17df50a5
XL
708 !is_zst
709 })
1b1a35ee
XL
710}
711
3dfed10e 712/// Is type known to be non-null?
6a06907d 713fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
3dfed10e 714 let tcx = cx.tcx;
1b1a35ee 715 match ty.kind() {
3dfed10e
XL
716 ty::FnPtr(_) => true,
717 ty::Ref(..) => true,
718 ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
5e7ed085
FG
719 ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
720 let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
3dfed10e 721
1b1a35ee 722 if marked_non_null {
3dfed10e 723 return true;
f9652781 724 }
1b1a35ee 725
064997fb
FG
726 // `UnsafeCell` has its niche hidden.
727 if def.is_unsafe_cell() {
6a06907d
XL
728 return false;
729 }
730
5e7ed085 731 def.variants()
17df50a5
XL
732 .iter()
733 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
734 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
b039eaaf 735 }
3dfed10e 736 _ => false,
b039eaaf 737 }
3dfed10e 738}
dc9dc135 739
3dfed10e
XL
740/// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
741/// If the type passed in was not scalar, returns None.
742fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
743 let tcx = cx.tcx;
1b1a35ee 744 Some(match *ty.kind() {
3dfed10e
XL
745 ty::Adt(field_def, field_substs) => {
746 let inner_field_ty = {
f2b60f7d 747 let mut first_non_zst_ty = field_def
5e7ed085
FG
748 .variants()
749 .iter()
750 .filter_map(|v| transparent_newtype_field(cx.tcx, v));
3dfed10e
XL
751 debug_assert_eq!(
752 first_non_zst_ty.clone().count(),
753 1,
754 "Wrong number of fields for transparent type"
755 );
756 first_non_zst_ty
f2b60f7d 757 .next_back()
3dfed10e
XL
758 .expect("No non-zst fields in transparent type.")
759 .ty(tcx, field_substs)
760 };
761 return get_nullable_type(cx, inner_field_ty);
762 }
763 ty::Int(ty) => tcx.mk_mach_int(ty),
764 ty::Uint(ty) => tcx.mk_mach_uint(ty),
765 ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
766 // As these types are always non-null, the nullable equivalent of
767 // Option<T> of these types are their raw pointer counterparts.
768 ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
769 ty::FnPtr(..) => {
770 // There is no nullable equivalent for Rust's function pointers -- you
771 // must use an Option<fn(..) -> _> to represent it.
772 ty
773 }
774
775 // We should only ever reach this case if ty_is_known_nonnull is extended
776 // to other types.
777 ref unhandled => {
778 debug!(
779 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
780 unhandled, ty
781 );
782 return None;
783 }
784 })
785}
786
787/// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
1b1a35ee 788/// can, return the type that `ty` can be safely converted to, otherwise return `None`.
3dfed10e
XL
789/// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
790/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
791/// FIXME: This duplicates code in codegen.
923072b8 792pub(crate) fn repr_nullable_ptr<'tcx>(
3dfed10e
XL
793 cx: &LateContext<'tcx>,
794 ty: Ty<'tcx>,
795 ckind: CItemKind,
796) -> Option<Ty<'tcx>> {
797 debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
1b1a35ee 798 if let ty::Adt(ty_def, substs) = ty.kind() {
5e7ed085 799 let field_ty = match &ty_def.variants().raw[..] {
17df50a5
XL
800 [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
801 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
802 _ => return None,
803 },
804 _ => return None,
f035d41b 805 };
dc9dc135 806
3dfed10e
XL
807 if !ty_is_known_nonnull(cx, field_ty, ckind) {
808 return None;
f035d41b 809 }
dc9dc135 810
3dfed10e
XL
811 // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
812 // If the computed size for the field and the enum are different, the nonnull optimization isn't
813 // being applied (and we've got a problem somewhere).
814 let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
f035d41b
XL
815 if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
816 bug!("improper_ctypes: Option nonnull optimization not applied?");
817 }
dc9dc135 818
3dfed10e
XL
819 // Return the nullable type this Option-like enum can be safely represented with.
820 let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
821 if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
04454e1e
FG
822 match field_ty_scalar.valid_range(cx) {
823 WrappingRange { start: 0, end }
824 if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
825 {
5e7ed085
FG
826 return Some(get_nullable_type(cx, field_ty).unwrap());
827 }
04454e1e 828 WrappingRange { start: 1, .. } => {
3dfed10e
XL
829 return Some(get_nullable_type(cx, field_ty).unwrap());
830 }
04454e1e
FG
831 WrappingRange { start, end } => {
832 unreachable!("Unhandled start and end range: ({}, {})", start, end)
833 }
3dfed10e
XL
834 };
835 }
f035d41b 836 }
3dfed10e
XL
837 None
838}
b039eaaf 839
3dfed10e 840impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
60c5eb7d
XL
841 /// Check if the type is array and emit an unsafe type lint.
842 fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1b1a35ee 843 if let ty::Array(..) = ty.kind() {
60c5eb7d
XL
844 self.emit_ffi_unsafe_type_lint(
845 ty,
846 sp,
2b03887a
FG
847 fluent::lint_improper_ctypes_array_reason,
848 Some(fluent::lint_improper_ctypes_array_help),
60c5eb7d
XL
849 );
850 true
851 } else {
852 false
853 }
854 }
855
f035d41b
XL
856 /// Checks if the given field's type is "ffi-safe".
857 fn check_field_type_for_ffi(
858 &self,
859 cache: &mut FxHashSet<Ty<'tcx>>,
860 field: &ty::FieldDef,
861 substs: SubstsRef<'tcx>,
862 ) -> FfiResult<'tcx> {
863 let field_ty = field.ty(self.cx.tcx, substs);
864 if field_ty.has_opaque_types() {
865 self.check_type_for_ffi(cache, field_ty)
866 } else {
867 let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
868 self.check_type_for_ffi(cache, field_ty)
869 }
870 }
871
872 /// Checks if the given `VariantDef`'s field types are "ffi-safe".
873 fn check_variant_for_ffi(
874 &self,
875 cache: &mut FxHashSet<Ty<'tcx>>,
876 ty: Ty<'tcx>,
5e7ed085 877 def: ty::AdtDef<'tcx>,
f035d41b
XL
878 variant: &ty::VariantDef,
879 substs: SubstsRef<'tcx>,
880 ) -> FfiResult<'tcx> {
881 use FfiResult::*;
882
5e7ed085 883 if def.repr().transparent() {
c295e0f8 884 // Can assume that at most one field is not a ZST, so only check
f035d41b 885 // that field's type for FFI-safety.
1b1a35ee 886 if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
f035d41b
XL
887 self.check_field_type_for_ffi(cache, field, substs)
888 } else {
c295e0f8
XL
889 // All fields are ZSTs; this means that the type should behave
890 // like (), which is FFI-unsafe
2b03887a 891 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_struct_zst, help: None }
f035d41b
XL
892 }
893 } else {
894 // We can't completely trust repr(C) markings; make sure the fields are
895 // actually safe.
896 let mut all_phantom = !variant.fields.is_empty();
897 for field in &variant.fields {
898 match self.check_field_type_for_ffi(cache, &field, substs) {
899 FfiSafe => {
900 all_phantom = false;
901 }
902 FfiPhantom(..) if def.is_enum() => {
903 return FfiUnsafe {
904 ty,
2b03887a 905 reason: fluent::lint_improper_ctypes_enum_phantomdata,
f035d41b
XL
906 help: None,
907 };
908 }
909 FfiPhantom(..) => {}
910 r => return r,
911 }
912 }
913
914 if all_phantom { FfiPhantom(ty) } else { FfiSafe }
915 }
916 }
917
9fa01778 918 /// Checks if the given type is "ffi-safe" (has a stable, well-defined
b039eaaf 919 /// representation which can be exported to C code).
dfeec247 920 fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
9fa01778 921 use FfiResult::*;
8bb4bdeb 922
3dfed10e 923 let tcx = self.cx.tcx;
b039eaaf
SL
924
925 // Protect against infinite recursion, for example
926 // `struct S(*mut S);`.
927 // FIXME: A recursion limit is necessary as well, for irregular
b7449926 928 // recursive types.
b039eaaf
SL
929 if !cache.insert(ty) {
930 return FfiSafe;
931 }
932
fc512014 933 match *ty.kind() {
b7449926 934 ty::Adt(def, substs) => {
17df50a5 935 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
2b03887a 936 if ty.boxed_ty().is_sized(tcx, self.cx.param_env) {
17df50a5
XL
937 return FfiSafe;
938 } else {
939 return FfiUnsafe {
940 ty,
2b03887a 941 reason: fluent::lint_improper_ctypes_box,
17df50a5
XL
942 help: None,
943 };
944 }
945 }
8bb4bdeb 946 if def.is_phantom_data() {
0531ce1d 947 return FfiPhantom(ty);
8bb4bdeb 948 }
c30ab7b3 949 match def.adt_kind() {
f035d41b 950 AdtKind::Struct | AdtKind::Union => {
5e7ed085 951 if !def.repr().c() && !def.repr().transparent() {
0531ce1d 952 return FfiUnsafe {
e1599b0c 953 ty,
064997fb 954 reason: if def.is_struct() {
2b03887a 955 fluent::lint_improper_ctypes_struct_layout_reason
064997fb 956 } else {
2b03887a 957 fluent::lint_improper_ctypes_union_layout_reason
064997fb
FG
958 },
959 help: if def.is_struct() {
2b03887a 960 Some(fluent::lint_improper_ctypes_struct_layout_help)
064997fb 961 } else {
2b03887a 962 Some(fluent::lint_improper_ctypes_union_layout_help)
064997fb 963 },
0531ce1d 964 };
c30ab7b3 965 }
b039eaaf 966
e74abb32
XL
967 let is_non_exhaustive =
968 def.non_enum_variant().is_field_list_non_exhaustive();
5e7ed085 969 if is_non_exhaustive && !def.did().is_local() {
e74abb32
XL
970 return FfiUnsafe {
971 ty,
064997fb 972 reason: if def.is_struct() {
2b03887a 973 fluent::lint_improper_ctypes_struct_non_exhaustive
064997fb 974 } else {
2b03887a 975 fluent::lint_improper_ctypes_union_non_exhaustive
064997fb 976 },
e74abb32
XL
977 help: None,
978 };
979 }
980
2c00a5a8 981 if def.non_enum_variant().fields.is_empty() {
0531ce1d 982 return FfiUnsafe {
e1599b0c 983 ty,
064997fb 984 reason: if def.is_struct() {
2b03887a 985 fluent::lint_improper_ctypes_struct_fieldless_reason
064997fb 986 } else {
2b03887a 987 fluent::lint_improper_ctypes_union_fieldless_reason
064997fb
FG
988 },
989 help: if def.is_struct() {
2b03887a 990 Some(fluent::lint_improper_ctypes_struct_fieldless_help)
064997fb 991 } else {
2b03887a 992 Some(fluent::lint_improper_ctypes_union_fieldless_help)
064997fb 993 },
0531ce1d 994 };
8bb4bdeb
XL
995 }
996
f035d41b 997 self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
b039eaaf 998 }
c30ab7b3 999 AdtKind::Enum => {
5e7ed085 1000 if def.variants().is_empty() {
c30ab7b3
SL
1001 // Empty enums are okay... although sort of useless.
1002 return FfiSafe;
1003 }
9e0c209e 1004
c30ab7b3
SL
1005 // Check for a repr() attribute to specify the size of the
1006 // discriminant.
5e7ed085
FG
1007 if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
1008 {
8bb4bdeb 1009 // Special-case types like `Option<extern fn()>`.
3dfed10e 1010 if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
0531ce1d 1011 return FfiUnsafe {
e1599b0c 1012 ty,
2b03887a
FG
1013 reason: fluent::lint_improper_ctypes_enum_repr_reason,
1014 help: Some(fluent::lint_improper_ctypes_enum_repr_help),
0531ce1d 1015 };
9e0c209e 1016 }
8bb4bdeb 1017 }
c30ab7b3 1018
5e7ed085 1019 if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
e74abb32
XL
1020 return FfiUnsafe {
1021 ty,
2b03887a 1022 reason: fluent::lint_improper_ctypes_non_exhaustive,
e74abb32
XL
1023 help: None,
1024 };
1025 }
1026
c30ab7b3 1027 // Check the contained variants.
5e7ed085 1028 for variant in def.variants() {
e74abb32
XL
1029 let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1030 if is_non_exhaustive && !variant.def_id.is_local() {
1031 return FfiUnsafe {
1032 ty,
2b03887a 1033 reason: fluent::lint_improper_ctypes_non_exhaustive_variant,
e74abb32
XL
1034 help: None,
1035 };
1036 }
1037
f035d41b
XL
1038 match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1039 FfiSafe => (),
1040 r => return r,
9e0c209e 1041 }
b039eaaf 1042 }
f035d41b 1043
c30ab7b3 1044 FfiSafe
b039eaaf
SL
1045 }
1046 }
c30ab7b3 1047 }
b039eaaf 1048
b7449926 1049 ty::Char => FfiUnsafe {
e1599b0c 1050 ty,
2b03887a
FG
1051 reason: fluent::lint_improper_ctypes_char_reason,
1052 help: Some(fluent::lint_improper_ctypes_char_help),
0531ce1d 1053 },
b039eaaf 1054
064997fb 1055 ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
2b03887a 1056 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_128bit, help: None }
064997fb 1057 }
ea8adc8c 1058
b039eaaf 1059 // Primitive types with a stable representation.
b7449926 1060 ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
b039eaaf 1061
b7449926 1062 ty::Slice(_) => FfiUnsafe {
e1599b0c 1063 ty,
2b03887a
FG
1064 reason: fluent::lint_improper_ctypes_slice_reason,
1065 help: Some(fluent::lint_improper_ctypes_slice_help),
0531ce1d
XL
1066 },
1067
dfeec247 1068 ty::Dynamic(..) => {
2b03887a 1069 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_dyn, help: None }
dfeec247 1070 }
0531ce1d 1071
b7449926 1072 ty::Str => FfiUnsafe {
e1599b0c 1073 ty,
2b03887a
FG
1074 reason: fluent::lint_improper_ctypes_str_reason,
1075 help: Some(fluent::lint_improper_ctypes_str_help),
0531ce1d
XL
1076 },
1077
b7449926 1078 ty::Tuple(..) => FfiUnsafe {
e1599b0c 1079 ty,
2b03887a
FG
1080 reason: fluent::lint_improper_ctypes_tuple_reason,
1081 help: Some(fluent::lint_improper_ctypes_tuple_help),
0531ce1d 1082 },
b039eaaf 1083
f035d41b
XL
1084 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1085 if {
3dfed10e 1086 matches!(self.mode, CItemKind::Definition)
2b03887a 1087 && ty.is_sized(self.cx.tcx, self.cx.param_env)
f035d41b
XL
1088 } =>
1089 {
1090 FfiSafe
1091 }
1092
c295e0f8
XL
1093 ty::RawPtr(ty::TypeAndMut { ty, .. })
1094 if match ty.kind() {
1095 ty::Tuple(tuple) => tuple.is_empty(),
1096 _ => false,
1097 } =>
1098 {
1099 FfiSafe
1100 }
1101
dfeec247
XL
1102 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1103 self.check_type_for_ffi(cache, ty)
1104 }
b039eaaf 1105
60c5eb7d 1106 ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
b039eaaf 1107
b7449926 1108 ty::FnPtr(sig) => {
f035d41b
XL
1109 if self.is_internal_abi(sig.abi()) {
1110 return FfiUnsafe {
1111 ty,
2b03887a
FG
1112 reason: fluent::lint_improper_ctypes_fnptr_reason,
1113 help: Some(fluent::lint_improper_ctypes_fnptr_help),
f035d41b 1114 };
b039eaaf
SL
1115 }
1116
fc512014 1117 let sig = tcx.erase_late_bound_regions(sig);
b7449926 1118 if !sig.output().is_unit() {
476ff2be 1119 let r = self.check_type_for_ffi(cache, sig.output());
5bcae85e
SL
1120 match r {
1121 FfiSafe => {}
c30ab7b3
SL
1122 _ => {
1123 return r;
1124 }
b039eaaf
SL
1125 }
1126 }
476ff2be 1127 for arg in sig.inputs() {
5099ac24 1128 let r = self.check_type_for_ffi(cache, *arg);
b039eaaf
SL
1129 match r {
1130 FfiSafe => {}
c30ab7b3
SL
1131 _ => {
1132 return r;
1133 }
b039eaaf
SL
1134 }
1135 }
1136 FfiSafe
1137 }
1138
b7449926
XL
1139 ty::Foreign(..) => FfiSafe,
1140
f035d41b
XL
1141 // While opaque types are checked for earlier, if a projection in a struct field
1142 // normalizes to an opaque type, then it will reach this branch.
1143 ty::Opaque(..) => {
2b03887a 1144 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_opaque, help: None }
f035d41b
XL
1145 }
1146
1147 // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1148 // so they are currently ignored for the purposes of this lint.
3dfed10e 1149 ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
f035d41b
XL
1150 FfiSafe
1151 }
1152
dfeec247 1153 ty::Param(..)
f035d41b 1154 | ty::Projection(..)
dfeec247
XL
1155 | ty::Infer(..)
1156 | ty::Bound(..)
f035d41b 1157 | ty::Error(_)
dfeec247
XL
1158 | ty::Closure(..)
1159 | ty::Generator(..)
1160 | ty::GeneratorWitness(..)
1161 | ty::Placeholder(..)
dfeec247 1162 | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
e1599b0c
XL
1163 }
1164 }
1165
1166 fn emit_ffi_unsafe_type_lint(
1167 &mut self,
1168 ty: Ty<'tcx>,
1169 sp: Span,
064997fb
FG
1170 note: DiagnosticMessage,
1171 help: Option<DiagnosticMessage>,
e1599b0c 1172 ) {
f035d41b 1173 let lint = match self.mode {
3dfed10e
XL
1174 CItemKind::Declaration => IMPROPER_CTYPES,
1175 CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
f035d41b
XL
1176 };
1177
2b03887a 1178 self.cx.struct_span_lint(lint, sp, fluent::lint_improper_ctypes, |lint| {
f035d41b 1179 let item_description = match self.mode {
3dfed10e
XL
1180 CItemKind::Declaration => "block",
1181 CItemKind::Definition => "fn",
f035d41b 1182 };
2b03887a
FG
1183 lint.set_arg("ty", ty);
1184 lint.set_arg("desc", item_description);
1185 lint.span_label(sp, fluent::label);
74b04a01 1186 if let Some(help) = help {
2b03887a 1187 lint.help(help);
e1599b0c 1188 }
2b03887a 1189 lint.note(note);
1b1a35ee 1190 if let ty::Adt(def, _) = ty.kind() {
5e7ed085 1191 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
2b03887a 1192 lint.span_note(sp, fluent::note);
74b04a01
XL
1193 }
1194 }
2b03887a 1195 lint
74b04a01 1196 });
e1599b0c
XL
1197 }
1198
1199 fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
487cf647
FG
1200 struct ProhibitOpaqueTypes;
1201 impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes {
fc512014
XL
1202 type BreakTy = Ty<'tcx>;
1203
1204 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
487cf647
FG
1205 if !ty.has_opaque_types() {
1206 return ControlFlow::CONTINUE;
1207 }
1208
1209 if let ty::Opaque(..) = ty.kind() {
1210 ControlFlow::Break(ty)
1211 } else {
1212 ty.super_visit_with(self)
e1599b0c
XL
1213 }
1214 }
1215 }
1216
487cf647
FG
1217 if let Some(ty) = self
1218 .cx
1219 .tcx
1220 .normalize_erasing_regions(self.cx.param_env, ty)
1221 .visit_with(&mut ProhibitOpaqueTypes)
1222 .break_value()
1223 {
2b03887a 1224 self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint_improper_ctypes_opaque, None);
e1599b0c
XL
1225 true
1226 } else {
1227 false
b039eaaf
SL
1228 }
1229 }
1230
f035d41b
XL
1231 fn check_type_for_ffi_and_report_errors(
1232 &mut self,
1233 sp: Span,
1234 ty: Ty<'tcx>,
1235 is_static: bool,
1236 is_return_type: bool,
1237 ) {
e1599b0c
XL
1238 // We have to check for opaque types before `normalize_erasing_regions`,
1239 // which will replace opaque types with their underlying concrete type.
1240 if self.check_for_opaque_ty(sp, ty) {
1241 // We've already emitted an error due to an opaque type.
1242 return;
1243 }
1244
54a0048b
SL
1245 // it is only OK to use this function because extern fns cannot have
1246 // any generic types right now:
f035d41b
XL
1247 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1248
1249 // C doesn't really support passing arrays by value - the only way to pass an array by value
1250 // is through a struct. So, first test that the top level isn't an array, and then
1251 // recursively check the types inside.
60c5eb7d
XL
1252 if !is_static && self.check_for_array_ty(sp, ty) {
1253 return;
1254 }
b039eaaf 1255
f035d41b
XL
1256 // Don't report FFI errors for unit return types. This check exists here, and not in
1257 // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1258 // happened.
1259 if is_return_type && ty.is_unit() {
1260 return;
1261 }
1262
0bf4aa26 1263 match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
b039eaaf 1264 FfiResult::FfiSafe => {}
0531ce1d 1265 FfiResult::FfiPhantom(ty) => {
064997fb
FG
1266 self.emit_ffi_unsafe_type_lint(
1267 ty,
1268 sp,
2b03887a 1269 fluent::lint_improper_ctypes_only_phantomdata,
064997fb
FG
1270 None,
1271 );
9e0c209e 1272 }
f035d41b
XL
1273 // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1274 // argument, which after substitution, is `()`, then this branch can be hit.
3dfed10e 1275 FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
e1599b0c 1276 FfiResult::FfiUnsafe { ty, reason, help } => {
064997fb 1277 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
b039eaaf
SL
1278 }
1279 }
1280 }
b039eaaf 1281
dfeec247 1282 fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
416331ca 1283 let def_id = self.cx.tcx.hir().local_def_id(id);
041b39d2 1284 let sig = self.cx.tcx.fn_sig(def_id);
fc512014 1285 let sig = self.cx.tcx.erase_late_bound_regions(sig);
54a0048b 1286
cdc7bbd5 1287 for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
5099ac24 1288 self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
54a0048b
SL
1289 }
1290
74b04a01 1291 if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
476ff2be 1292 let ret_ty = sig.output();
f035d41b 1293 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
b039eaaf
SL
1294 }
1295 }
54a0048b 1296
532ac7d7 1297 fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
416331ca 1298 let def_id = self.cx.tcx.hir().local_def_id(id);
7cac9316 1299 let ty = self.cx.tcx.type_of(def_id);
f035d41b 1300 self.check_type_for_ffi_and_report_errors(span, ty, true, false);
54a0048b 1301 }
b039eaaf 1302
3dfed10e 1303 fn is_internal_abi(&self, abi: SpecAbi) -> bool {
29967ef6
XL
1304 matches!(
1305 abi,
1306 SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1307 )
f035d41b
XL
1308 }
1309}
1310
1311impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1312 fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
3dfed10e 1313 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
6a06907d 1314 let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
f035d41b
XL
1315
1316 if !vis.is_internal_abi(abi) {
e74abb32 1317 match it.kind {
b7449926 1318 hir::ForeignItemKind::Fn(ref decl, _, _) => {
6a06907d 1319 vis.check_foreign_fn(it.hir_id(), decl);
b7449926
XL
1320 }
1321 hir::ForeignItemKind::Static(ref ty, _) => {
6a06907d 1322 vis.check_foreign_static(it.hir_id(), ty.span);
b039eaaf 1323 }
dfeec247 1324 hir::ForeignItemKind::Type => (),
b039eaaf 1325 }
b039eaaf
SL
1326 }
1327 }
1328}
5bcae85e 1329
f035d41b
XL
1330impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1331 fn check_fn(
1332 &mut self,
1333 cx: &LateContext<'tcx>,
1334 kind: hir::intravisit::FnKind<'tcx>,
1335 decl: &'tcx hir::FnDecl<'_>,
1336 _: &'tcx hir::Body<'_>,
1337 _: Span,
1338 hir_id: hir::HirId,
1339 ) {
1340 use hir::intravisit::FnKind;
1341
1342 let abi = match kind {
1343 FnKind::ItemFn(_, _, header, ..) => header.abi,
1344 FnKind::Method(_, sig, ..) => sig.header.abi,
1345 _ => return,
1346 };
1347
3dfed10e 1348 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
f035d41b
XL
1349 if !vis.is_internal_abi(abi) {
1350 vis.check_foreign_fn(hir_id, decl);
1351 }
1352 }
1353}
1354
532ac7d7 1355declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
5bcae85e 1356
f035d41b
XL
1357impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1358 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 1359 if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
2b03887a 1360 let t = cx.tcx.type_of(it.owner_id);
fc512014 1361 let ty = cx.tcx.erase_regions(t);
5e7ed085 1362 let Ok(layout) = cx.layout_of(ty) else { return };
a2a8927a 1363 let Variants::Multiple {
c295e0f8 1364 tag_encoding: TagEncoding::Direct, tag, ref variants, ..
a2a8927a
XL
1365 } = &layout.variants else {
1366 return
532ac7d7
XL
1367 };
1368
04454e1e 1369 let tag_size = tag.size(&cx.tcx).bytes();
532ac7d7 1370
dfeec247
XL
1371 debug!(
1372 "enum `{}` is {} bytes large with layout:\n{:#?}",
1373 t,
1374 layout.size.bytes(),
1375 layout
1376 );
532ac7d7 1377
cdc7bbd5 1378 let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
532ac7d7 1379 .map(|(variant, variant_layout)| {
f035d41b 1380 // Subtract the size of the enum tag.
487cf647 1381 let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
532ac7d7 1382
dfeec247 1383 debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
532ac7d7
XL
1384 bytes
1385 })
1386 .enumerate()
dfeec247
XL
1387 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1388 if size > l {
1389 (size, l, idx)
1390 } else if size > s {
1391 (l, size, li)
1392 } else {
1393 (l, s, li)
1394 }
532ac7d7
XL
1395 });
1396
1397 // We only warn if the largest variant is at least thrice as large as
1398 // the second-largest.
1399 if largest > slargest * 3 && slargest > 0 {
74b04a01 1400 cx.struct_span_lint(
dfeec247
XL
1401 VARIANT_SIZE_DIFFERENCES,
1402 enum_definition.variants[largest_index].span,
2b03887a
FG
1403 fluent::lint_variant_size_differences,
1404 |lint| lint.set_arg("largest", largest),
dfeec247 1405 );
5bcae85e
SL
1406 }
1407 }
1408 }
1409}
94222f64
XL
1410
1411declare_lint! {
1412 /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1413 /// to an atomic operation that does not support that ordering.
1414 ///
1415 /// ### Example
1416 ///
1417 /// ```rust,compile_fail
1418 /// # use core::sync::atomic::{AtomicU8, Ordering};
1419 /// let atom = AtomicU8::new(0);
1420 /// let value = atom.load(Ordering::Release);
1421 /// # let _ = value;
1422 /// ```
1423 ///
1424 /// {{produces}}
1425 ///
1426 /// ### Explanation
1427 ///
1428 /// Some atomic operations are only supported for a subset of the
1429 /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1430 /// an unconditional panic at runtime, which is detected by this lint.
1431 ///
1432 /// This lint will trigger in the following cases: (where `AtomicType` is an
1433 /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1434 /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1435 ///
1436 /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1437 /// `AtomicType::store`.
1438 ///
1439 /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1440 /// `AtomicType::load`.
1441 ///
1442 /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1443 /// `core::sync::atomic::compiler_fence`.
1444 ///
1445 /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1446 /// ordering for any of `AtomicType::compare_exchange`,
1447 /// `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
94222f64
XL
1448 INVALID_ATOMIC_ORDERING,
1449 Deny,
1450 "usage of invalid atomic ordering in atomic operations and memory fences"
1451}
1452
1453declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1454
1455impl InvalidAtomicOrdering {
1456 fn inherent_atomic_method_call<'hir>(
1457 cx: &LateContext<'_>,
1458 expr: &Expr<'hir>,
1459 recognized_names: &[Symbol], // used for fast path calculation
1460 ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1461 const ATOMIC_TYPES: &[Symbol] = &[
1462 sym::AtomicBool,
1463 sym::AtomicPtr,
1464 sym::AtomicUsize,
1465 sym::AtomicU8,
1466 sym::AtomicU16,
1467 sym::AtomicU32,
1468 sym::AtomicU64,
1469 sym::AtomicU128,
1470 sym::AtomicIsize,
1471 sym::AtomicI8,
1472 sym::AtomicI16,
1473 sym::AtomicI32,
1474 sym::AtomicI64,
1475 sym::AtomicI128,
1476 ];
f2b60f7d 1477 if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
5e7ed085
FG
1478 && recognized_names.contains(&method_path.ident.name)
1479 && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1480 && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1481 && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
94222f64 1482 // skip extension traits, only lint functions from the standard library
5e7ed085 1483 && cx.tcx.trait_id_of_impl(impl_did).is_none()
04454e1e 1484 && let parent = cx.tcx.parent(adt.did())
5e7ed085
FG
1485 && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1486 && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1487 {
1488 return Some((method_path.ident.name, args));
94222f64
XL
1489 }
1490 None
1491 }
1492
064997fb
FG
1493 fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1494 let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1495 let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
94222f64
XL
1496 let tcx = cx.tcx;
1497 let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
064997fb
FG
1498 let name = tcx.item_name(did);
1499 let parent = tcx.parent(did);
1500 [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1501 |&ordering| {
1502 name == ordering
1503 && (Some(parent) == atomic_ordering
1504 // needed in case this is a ctor, not a variant
1505 || tcx.opt_parent(parent) == atomic_ordering)
1506 },
1507 )
94222f64
XL
1508 }
1509
1510 fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085 1511 if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
2b03887a
FG
1512 && let Some((ordering_arg, invalid_ordering, msg)) = match method {
1513 sym::load => Some((&args[0], sym::Release, fluent::lint_atomic_ordering_load)),
1514 sym::store => Some((&args[1], sym::Acquire, fluent::lint_atomic_ordering_store)),
94222f64 1515 _ => None,
94222f64 1516 }
064997fb
FG
1517 && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1518 && (ordering == invalid_ordering || ordering == sym::AcqRel)
5e7ed085 1519 {
2b03887a
FG
1520 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, msg, |lint| {
1521 lint.help(fluent::help)
5e7ed085 1522 });
94222f64
XL
1523 }
1524 }
1525
1526 fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085
FG
1527 if let ExprKind::Call(ref func, ref args) = expr.kind
1528 && let ExprKind::Path(ref func_qpath) = func.kind
1529 && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1530 && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
064997fb 1531 && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
5e7ed085 1532 {
2b03887a
FG
1533 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, fluent::lint_atomic_ordering_fence, |lint| {
1534 lint
1535 .help(fluent::help)
5e7ed085 1536 });
94222f64
XL
1537 }
1538 }
1539
1540 fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
064997fb
FG
1541 let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1542 else {return };
1543
1544 let fail_order_arg = match method {
f2b60f7d
FG
1545 sym::fetch_update => &args[1],
1546 sym::compare_exchange | sym::compare_exchange_weak => &args[3],
064997fb
FG
1547 _ => return,
1548 };
1549
1550 let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1551
1552 if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1553 #[derive(LintDiagnostic)]
2b03887a 1554 #[diag(lint_atomic_ordering_invalid)]
064997fb
FG
1555 #[help]
1556 struct InvalidAtomicOrderingDiag {
1557 method: Symbol,
1558 #[label]
1559 fail_order_arg_span: Span,
94222f64 1560 }
064997fb
FG
1561
1562 cx.emit_spanned_lint(
1563 INVALID_ATOMIC_ORDERING,
1564 fail_order_arg.span,
1565 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1566 );
94222f64
XL
1567 }
1568 }
1569}
1570
1571impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1572 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1573 Self::check_atomic_load_store(cx, expr);
1574 Self::check_memory_fence(cx, expr);
1575 Self::check_atomic_compare_exchange(cx, expr);
1576 }
1577}