]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_lint/src/types.rs
New upstream version 1.63.0+dfsg1
[rustc.git] / compiler / rustc_lint / src / types.rs
CommitLineData
dfeec247 1use crate::{LateContext, LateLintPass, LintContext};
3dfed10e 2use rustc_ast as ast;
74b04a01 3use rustc_attr as attr;
dfeec247
XL
4use rustc_data_structures::fx::FxHashSet;
5use rustc_errors::Applicability;
6use rustc_hir as hir;
94222f64
XL
7use rustc_hir::def_id::DefId;
8use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
c295e0f8 9use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
ba9703b0 10use rustc_middle::ty::subst::SubstsRef;
923072b8 11use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeFoldable, TypeSuperFoldable};
dfeec247
XL
12use rustc_span::source_map;
13use rustc_span::symbol::sym;
94222f64 14use rustc_span::{Span, Symbol, DUMMY_SP};
04454e1e 15use rustc_target::abi::{Abi, WrappingRange};
c295e0f8 16use rustc_target::abi::{Integer, TagEncoding, Variants};
3dfed10e 17use rustc_target::spec::abi::Abi as SpecAbi;
9fa01778 18
dfeec247 19use std::cmp;
cdc7bbd5 20use std::iter;
29967ef6 21use std::ops::ControlFlow;
3dfed10e 22use tracing::debug;
9fa01778 23
b039eaaf 24declare_lint! {
1b1a35ee
XL
25 /// The `unused_comparisons` lint detects comparisons made useless by
26 /// limits of the types involved.
27 ///
28 /// ### Example
29 ///
30 /// ```rust
31 /// fn foo(x: u8) {
32 /// x >= 0;
33 /// }
34 /// ```
35 ///
36 /// {{produces}}
37 ///
38 /// ### Explanation
39 ///
40 /// A useless comparison may indicate a mistake, and should be fixed or
41 /// removed.
b039eaaf
SL
42 UNUSED_COMPARISONS,
43 Warn,
44 "comparisons made useless by limits of the types involved"
45}
46
47declare_lint! {
1b1a35ee
XL
48 /// The `overflowing_literals` lint detects literal out of range for its
49 /// type.
50 ///
51 /// ### Example
52 ///
53 /// ```rust,compile_fail
54 /// let x: u8 = 1000;
55 /// ```
56 ///
57 /// {{produces}}
58 ///
59 /// ### Explanation
60 ///
61 /// It is usually a mistake to use a literal that overflows the type where
62 /// it is used. Either use a literal that is within range, or change the
63 /// type to be within the range of the literal.
b039eaaf 64 OVERFLOWING_LITERALS,
9fa01778
XL
65 Deny,
66 "literal out of range for its type"
b039eaaf
SL
67}
68
5bcae85e 69declare_lint! {
1b1a35ee
XL
70 /// The `variant_size_differences` lint detects enums with widely varying
71 /// variant sizes.
72 ///
73 /// ### Example
74 ///
75 /// ```rust,compile_fail
76 /// #![deny(variant_size_differences)]
77 /// enum En {
78 /// V0(u8),
79 /// VBig([u8; 1024]),
80 /// }
81 /// ```
82 ///
83 /// {{produces}}
84 ///
85 /// ### Explanation
86 ///
87 /// It can be a mistake to add a variant to an enum that is much larger
88 /// than the other variants, bloating the overall size required for all
89 /// variants. This can impact performance and memory usage. This is
90 /// triggered if one variant is more than 3 times larger than the
91 /// second-largest variant.
92 ///
93 /// Consider placing the large variant's contents on the heap (for example
94 /// via [`Box`]) to keep the overall size of the enum itself down.
95 ///
96 /// This lint is "allow" by default because it can be noisy, and may not be
97 /// an actual problem. Decisions about this should be guided with
98 /// profiling and benchmarking.
99 ///
100 /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
5bcae85e
SL
101 VARIANT_SIZE_DIFFERENCES,
102 Allow,
103 "detects enums with widely varying variant sizes"
104}
105
b039eaaf
SL
106#[derive(Copy, Clone)]
107pub struct TypeLimits {
108 /// Id of the last visited negated expression
ba9703b0 109 negated_expr_id: Option<hir::HirId>,
b039eaaf
SL
110}
111
532ac7d7
XL
112impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
113
b039eaaf
SL
114impl TypeLimits {
115 pub fn new() -> TypeLimits {
ba9703b0 116 TypeLimits { negated_expr_id: None }
b039eaaf
SL
117 }
118}
119
48663c56
XL
120/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
121/// Returns `true` iff the lint was overridden.
f035d41b
XL
122fn lint_overflowing_range_endpoint<'tcx>(
123 cx: &LateContext<'tcx>,
48663c56
XL
124 lit: &hir::Lit,
125 lit_val: u128,
126 max: u128,
dfeec247
XL
127 expr: &'tcx hir::Expr<'tcx>,
128 parent_expr: &'tcx hir::Expr<'tcx>,
60c5eb7d 129 ty: &str,
48663c56
XL
130) -> bool {
131 // We only want to handle exclusive (`..`) ranges,
132 // which are represented as `ExprKind::Struct`.
74b04a01 133 let mut overwritten = false;
e74abb32 134 if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
416331ca
XL
135 if eps.len() != 2 {
136 return false;
137 }
48663c56
XL
138 // We can suggest using an inclusive range
139 // (`..=`) instead only if it is the `end` that is
140 // overflowing and only by 1.
141 if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
74b04a01
XL
142 cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
143 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
144 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
145 use ast::{LitIntType, LitKind};
146 // We need to preserve the literal's suffix,
147 // as it may determine typing information.
148 let suffix = match lit.node {
29967ef6
XL
149 LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
150 LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
151 LitKind::Int(_, LitIntType::Unsuffixed) => "",
74b04a01
XL
152 _ => bug!(),
153 };
154 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
155 err.span_suggestion(
156 parent_expr.span,
04454e1e 157 "use an inclusive range instead",
74b04a01
XL
158 suggestion,
159 Applicability::MachineApplicable,
160 );
161 err.emit();
162 overwritten = true;
163 }
164 });
48663c56
XL
165 }
166 }
74b04a01 167 overwritten
48663c56
XL
168}
169
170// For `isize` & `usize`, be conservative with the warnings, so that the
171// warnings are consistent between 32- and 64-bit platforms.
5869c6ff 172fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
48663c56 173 match int_ty {
5869c6ff
XL
174 ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
175 ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
176 ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
177 ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
178 ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
179 ty::IntTy::I128 => (i128::MIN, i128::MAX),
48663c56
XL
180 }
181}
182
5869c6ff 183fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
29967ef6 184 let max = match uint_ty {
5869c6ff
XL
185 ty::UintTy::Usize => u64::MAX.into(),
186 ty::UintTy::U8 => u8::MAX.into(),
187 ty::UintTy::U16 => u16::MAX.into(),
188 ty::UintTy::U32 => u32::MAX.into(),
189 ty::UintTy::U64 => u64::MAX.into(),
190 ty::UintTy::U128 => u128::MAX,
29967ef6
XL
191 };
192 (0, max)
48663c56
XL
193}
194
f035d41b 195fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
48663c56
XL
196 let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
197 let firstch = src.chars().next()?;
198
199 if firstch == '0' {
200 match src.chars().nth(1) {
ba9703b0 201 Some('x' | 'b') => return Some(src),
48663c56
XL
202 _ => return None,
203 }
204 }
205
206 None
207}
208
209fn report_bin_hex_error(
f035d41b 210 cx: &LateContext<'_>,
dfeec247 211 expr: &hir::Expr<'_>,
48663c56
XL
212 ty: attr::IntType,
213 repr_str: String,
214 val: u128,
215 negative: bool,
216) {
ba9703b0 217 let size = Integer::from_attr(&cx.tcx, ty).size();
74b04a01
XL
218 cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
219 let (t, actually) = match ty {
220 attr::IntType::SignedInt(t) => {
6a06907d
XL
221 let actually = if negative {
222 -(size.sign_extend(val) as i128)
223 } else {
224 size.sign_extend(val) as i128
225 };
74b04a01
XL
226 (t.name_str(), actually.to_string())
227 }
228 attr::IntType::UnsignedInt(t) => {
29967ef6 229 let actually = size.truncate(val);
74b04a01
XL
230 (t.name_str(), actually.to_string())
231 }
232 };
6a06907d
XL
233 let mut err = lint.build(&format!("literal out of range for `{}`", t));
234 if negative {
235 // If the value is negative,
236 // emits a note about the value itself, apart from the literal.
237 err.note(&format!(
238 "the literal `{}` (decimal `{}`) does not fit into \
239 the type `{}`",
240 repr_str, val, t
241 ));
242 err.note(&format!("and the value `-{}` will become `{}{}`", repr_str, actually, t));
243 } else {
244 err.note(&format!(
245 "the literal `{}` (decimal `{}`) does not fit into \
246 the type `{}` and will become `{}{}`",
247 repr_str, val, t, actually, t
248 ));
249 }
f035d41b 250 if let Some(sugg_ty) =
5099ac24 251 get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
74b04a01
XL
252 {
253 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
254 let (sans_suffix, _) = repr_str.split_at(pos);
255 err.span_suggestion(
256 expr.span,
6a06907d 257 &format!("consider using the type `{}` instead", sugg_ty),
74b04a01
XL
258 format!("{}{}", sans_suffix, sugg_ty),
259 Applicability::MachineApplicable,
260 );
261 } else {
6a06907d 262 err.help(&format!("consider using the type `{}` instead", sugg_ty));
74b04a01 263 }
48663c56 264 }
74b04a01
XL
265 err.emit();
266 });
48663c56
XL
267}
268
269// This function finds the next fitting type and generates a suggestion string.
270// It searches for fitting types in the following way (`X < Y`):
271// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
272// - `-iX` => `iY`
273// - `uX` => `uY`
274//
275// No suggestion for: `isize`, `usize`.
60c5eb7d 276fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
5869c6ff
XL
277 use ty::IntTy::*;
278 use ty::UintTy::*;
48663c56
XL
279 macro_rules! find_fit {
280 ($ty:expr, $val:expr, $negative:expr,
281 $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
282 {
283 let _neg = if negative { 1 } else { 0 };
284 match $ty {
285 $($type => {
286 $(if !negative && val <= uint_ty_range($utypes).1 {
60c5eb7d 287 return Some($utypes.name_str())
48663c56
XL
288 })*
289 $(if val <= int_ty_range($itypes).1 as u128 + _neg {
60c5eb7d 290 return Some($itypes.name_str())
48663c56
XL
291 })*
292 None
dc9dc135 293 },)+
48663c56
XL
294 _ => None
295 }
296 }
297 }
298 }
1b1a35ee 299 match t.kind() {
48663c56
XL
300 ty::Int(i) => find_fit!(i, val, negative,
301 I8 => [U8] => [I16, I32, I64, I128],
302 I16 => [U16] => [I32, I64, I128],
303 I32 => [U32] => [I64, I128],
304 I64 => [U64] => [I128],
305 I128 => [U128] => []),
306 ty::Uint(u) => find_fit!(u, val, negative,
307 U8 => [U8, U16, U32, U64, U128] => [],
308 U16 => [U16, U32, U64, U128] => [],
309 U32 => [U32, U64, U128] => [],
310 U64 => [U64, U128] => [],
311 U128 => [U128] => []),
312 _ => None,
313 }
314}
315
f035d41b
XL
316fn lint_int_literal<'tcx>(
317 cx: &LateContext<'tcx>,
48663c56 318 type_limits: &TypeLimits,
dfeec247 319 e: &'tcx hir::Expr<'tcx>,
48663c56 320 lit: &hir::Lit,
5869c6ff 321 t: ty::IntTy,
48663c56
XL
322 v: u128,
323) {
29967ef6 324 let int_type = t.normalize(cx.sess().target.pointer_width);
ba9703b0 325 let (min, max) = int_ty_range(int_type);
48663c56 326 let max = max as u128;
ba9703b0 327 let negative = type_limits.negated_expr_id == Some(e.hir_id);
48663c56
XL
328
329 // Detect literal value out of range [min, max] inclusive
330 // avoiding use of -min to prevent overflow/panic
331 if (negative && v > max + 1) || (!negative && v > max) {
332 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
333 report_bin_hex_error(
334 cx,
335 e,
336 attr::IntType::SignedInt(ty::ast_int_ty(t)),
337 repr_str,
338 v,
339 negative,
340 );
48663c56
XL
341 return;
342 }
343
dc9dc135
XL
344 let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
345 if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
e74abb32 346 if let hir::ExprKind::Struct(..) = par_e.kind {
3dfed10e 347 if is_range_literal(par_e)
60c5eb7d 348 && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
48663c56
XL
349 {
350 // The overflowing literal lint was overridden.
351 return;
352 }
353 }
354 }
355
74b04a01 356 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
6a06907d
XL
357 let mut err = lint.build(&format!("literal out of range for `{}`", t.name_str()));
358 err.note(&format!(
359 "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
360 cx.sess()
361 .source_map()
362 .span_to_snippet(lit.span)
363 .expect("must get snippet from literal"),
364 t.name_str(),
365 min,
366 max,
367 ));
368 if let Some(sugg_ty) =
5099ac24 369 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
6a06907d
XL
370 {
371 err.help(&format!("consider using the type `{}` instead", sugg_ty));
372 }
373 err.emit();
74b04a01 374 });
48663c56
XL
375 }
376}
377
f035d41b
XL
378fn lint_uint_literal<'tcx>(
379 cx: &LateContext<'tcx>,
dfeec247 380 e: &'tcx hir::Expr<'tcx>,
48663c56 381 lit: &hir::Lit,
5869c6ff 382 t: ty::UintTy,
48663c56 383) {
29967ef6 384 let uint_type = t.normalize(cx.sess().target.pointer_width);
48663c56
XL
385 let (min, max) = uint_ty_range(uint_type);
386 let lit_val: u128 = match lit.node {
387 // _v is u8, within range by definition
388 ast::LitKind::Byte(_v) => return,
389 ast::LitKind::Int(v, _) => v,
390 _ => bug!(),
391 };
392 if lit_val < min || lit_val > max {
dc9dc135
XL
393 let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
394 if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
e74abb32 395 match par_e.kind {
48663c56 396 hir::ExprKind::Cast(..) => {
1b1a35ee 397 if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
74b04a01
XL
398 cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
399 lint.build("only `u8` can be cast into `char`")
400 .span_suggestion(
401 par_e.span,
04454e1e 402 "use a `char` literal instead",
74b04a01
XL
403 format!("'\\u{{{:X}}}'", lit_val),
404 Applicability::MachineApplicable,
405 )
406 .emit();
407 });
48663c56
XL
408 return;
409 }
410 }
3dfed10e 411 hir::ExprKind::Struct(..) if is_range_literal(par_e) => {
dfeec247
XL
412 let t = t.name_str();
413 if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
414 // The overflowing literal lint was overridden.
415 return;
48663c56 416 }
dfeec247 417 }
48663c56
XL
418 _ => {}
419 }
420 }
421 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
422 report_bin_hex_error(
423 cx,
424 e,
425 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
426 repr_str,
427 lit_val,
428 false,
429 );
48663c56
XL
430 return;
431 }
74b04a01 432 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
ba9703b0
XL
433 lint.build(&format!("literal out of range for `{}`", t.name_str()))
434 .note(&format!(
435 "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
436 cx.sess()
437 .source_map()
438 .span_to_snippet(lit.span)
439 .expect("must get snippet from literal"),
440 t.name_str(),
441 min,
442 max,
443 ))
5e7ed085 444 .emit();
74b04a01 445 });
48663c56
XL
446 }
447}
448
f035d41b
XL
449fn lint_literal<'tcx>(
450 cx: &LateContext<'tcx>,
48663c56 451 type_limits: &TypeLimits,
dfeec247 452 e: &'tcx hir::Expr<'tcx>,
48663c56
XL
453 lit: &hir::Lit,
454) {
1b1a35ee 455 match *cx.typeck_results().node_type(e.hir_id).kind() {
48663c56
XL
456 ty::Int(t) => {
457 match lit.node {
ba9703b0 458 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
48663c56
XL
459 lint_int_literal(cx, type_limits, e, lit, t, v)
460 }
461 _ => bug!(),
462 };
463 }
dfeec247 464 ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
48663c56
XL
465 ty::Float(t) => {
466 let is_infinite = match lit.node {
dfeec247 467 ast::LitKind::Float(v, _) => match t {
5869c6ff
XL
468 ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
469 ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
dfeec247 470 },
48663c56
XL
471 _ => bug!(),
472 };
473 if is_infinite == Ok(true) {
74b04a01 474 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
ba9703b0
XL
475 lint.build(&format!("literal out of range for `{}`", t.name_str()))
476 .note(&format!(
29967ef6 477 "the literal `{}` does not fit into the type `{}` and will be converted to `{}::INFINITY`",
ba9703b0
XL
478 cx.sess()
479 .source_map()
480 .span_to_snippet(lit.span)
481 .expect("must get snippet from literal"),
482 t.name_str(),
483 t.name_str(),
484 ))
485 .emit();
74b04a01 486 });
48663c56
XL
487 }
488 }
489 _ => {}
490 }
491}
492
f035d41b
XL
493impl<'tcx> LateLintPass<'tcx> for TypeLimits {
494 fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
e74abb32 495 match e.kind {
6a06907d 496 hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
b039eaaf 497 // propagate negation, if the negation itself isn't negated
ba9703b0
XL
498 if self.negated_expr_id != Some(e.hir_id) {
499 self.negated_expr_id = Some(expr.hir_id);
b039eaaf 500 }
c30ab7b3 501 }
8faf50e0 502 hir::ExprKind::Binary(binop, ref l, ref r) => {
32a655c1 503 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
74b04a01 504 cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
5e7ed085 505 lint.build("comparison is useless due to type limits").emit();
74b04a01 506 });
b039eaaf 507 }
c30ab7b3 508 }
48663c56
XL
509 hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
510 _ => {}
b039eaaf
SL
511 };
512
c30ab7b3 513 fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
b039eaaf 514 match binop.node {
8faf50e0
XL
515 hir::BinOpKind::Lt => v > min && v <= max,
516 hir::BinOpKind::Le => v >= min && v < max,
517 hir::BinOpKind::Gt => v >= min && v < max,
518 hir::BinOpKind::Ge => v > min && v <= max,
519 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
c30ab7b3 520 _ => bug!(),
b039eaaf
SL
521 }
522 }
523
524 fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
dfeec247
XL
525 source_map::respan(
526 binop.span,
527 match binop.node {
528 hir::BinOpKind::Lt => hir::BinOpKind::Gt,
529 hir::BinOpKind::Le => hir::BinOpKind::Ge,
530 hir::BinOpKind::Gt => hir::BinOpKind::Lt,
531 hir::BinOpKind::Ge => hir::BinOpKind::Le,
532 _ => return binop,
533 },
534 )
b039eaaf
SL
535 }
536
dfeec247 537 fn check_limits(
f035d41b 538 cx: &LateContext<'_>,
dfeec247
XL
539 binop: hir::BinOp,
540 l: &hir::Expr<'_>,
541 r: &hir::Expr<'_>,
542 ) -> bool {
e74abb32 543 let (lit, expr, swap) = match (&l.kind, &r.kind) {
8faf50e0
XL
544 (&hir::ExprKind::Lit(_), _) => (l, r, true),
545 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
c30ab7b3 546 _ => return true,
b039eaaf
SL
547 };
548 // Normalize the binop so that the literal is always on the RHS in
549 // the comparison
c30ab7b3 550 let norm_binop = if swap { rev_binop(binop) } else { binop };
1b1a35ee 551 match *cx.typeck_results().node_type(expr.hir_id).kind() {
b7449926 552 ty::Int(int_ty) => {
b039eaaf 553 let (min, max) = int_ty_range(int_ty);
e74abb32 554 let lit_val: i128 = match lit.kind {
dfeec247 555 hir::ExprKind::Lit(ref li) => match li.node {
ba9703b0
XL
556 ast::LitKind::Int(
557 v,
558 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
559 ) => v as i128,
dfeec247 560 _ => return true,
32a655c1 561 },
dfeec247 562 _ => bug!(),
b039eaaf
SL
563 };
564 is_valid(norm_binop, lit_val, min, max)
565 }
b7449926 566 ty::Uint(uint_ty) => {
dfeec247 567 let (min, max): (u128, u128) = uint_ty_range(uint_ty);
e74abb32 568 let lit_val: u128 = match lit.kind {
dfeec247
XL
569 hir::ExprKind::Lit(ref li) => match li.node {
570 ast::LitKind::Int(v, _) => v,
571 _ => return true,
32a655c1 572 },
dfeec247 573 _ => bug!(),
b039eaaf
SL
574 };
575 is_valid(norm_binop, lit_val, min, max)
576 }
c30ab7b3 577 _ => true,
b039eaaf
SL
578 }
579 }
580
581 fn is_comparison(binop: hir::BinOp) -> bool {
29967ef6
XL
582 matches!(
583 binop.node,
dfeec247 584 hir::BinOpKind::Eq
29967ef6
XL
585 | hir::BinOpKind::Lt
586 | hir::BinOpKind::Le
587 | hir::BinOpKind::Ne
588 | hir::BinOpKind::Ge
589 | hir::BinOpKind::Gt
590 )
b039eaaf 591 }
b039eaaf
SL
592 }
593}
594
595declare_lint! {
1b1a35ee
XL
596 /// The `improper_ctypes` lint detects incorrect use of types in foreign
597 /// modules.
598 ///
599 /// ### Example
600 ///
601 /// ```rust
602 /// extern "C" {
603 /// static STATIC: String;
604 /// }
605 /// ```
606 ///
607 /// {{produces}}
608 ///
609 /// ### Explanation
610 ///
611 /// The compiler has several checks to verify that types used in `extern`
612 /// blocks are safe and follow certain rules to ensure proper
613 /// compatibility with the foreign interfaces. This lint is issued when it
614 /// detects a probable mistake in a definition. The lint usually should
615 /// provide a description of the issue, along with possibly a hint on how
616 /// to resolve it.
b039eaaf
SL
617 IMPROPER_CTYPES,
618 Warn,
619 "proper use of libc types in foreign modules"
620}
621
f035d41b
XL
622declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
623
624declare_lint! {
1b1a35ee
XL
625 /// The `improper_ctypes_definitions` lint detects incorrect use of
626 /// [`extern` function] definitions.
627 ///
628 /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
629 ///
630 /// ### Example
631 ///
632 /// ```rust
633 /// # #![allow(unused)]
634 /// pub extern "C" fn str_type(p: &str) { }
635 /// ```
636 ///
637 /// {{produces}}
638 ///
639 /// ### Explanation
640 ///
641 /// There are many parameter and return types that may be specified in an
642 /// `extern` function that are not compatible with the given ABI. This
643 /// lint is an alert that these types should not be used. The lint usually
644 /// should provide a description of the issue, along with possibly a hint
645 /// on how to resolve it.
f035d41b
XL
646 IMPROPER_CTYPES_DEFINITIONS,
647 Warn,
648 "proper use of libc types in foreign item definitions"
649}
650
651declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
652
3dfed10e 653#[derive(Clone, Copy)]
923072b8 654pub(crate) enum CItemKind {
3dfed10e
XL
655 Declaration,
656 Definition,
f035d41b 657}
532ac7d7 658
dc9dc135 659struct ImproperCTypesVisitor<'a, 'tcx> {
f035d41b 660 cx: &'a LateContext<'tcx>,
3dfed10e 661 mode: CItemKind,
b039eaaf
SL
662}
663
0531ce1d 664enum FfiResult<'tcx> {
b039eaaf 665 FfiSafe,
0531ce1d 666 FfiPhantom(Ty<'tcx>),
f035d41b 667 FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
b039eaaf
SL
668}
669
923072b8
FG
670pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
671 tcx: TyCtxt<'tcx>,
672 def: ty::AdtDef<'tcx>,
673) -> bool {
04454e1e 674 tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
1b1a35ee
XL
675}
676
677/// `repr(transparent)` structs can have a single non-ZST field, this function returns that
678/// field.
679pub fn transparent_newtype_field<'a, 'tcx>(
680 tcx: TyCtxt<'tcx>,
681 variant: &'a ty::VariantDef,
682) -> Option<&'a ty::FieldDef> {
683 let param_env = tcx.param_env(variant.def_id);
17df50a5 684 variant.fields.iter().find(|field| {
1b1a35ee 685 let field_ty = tcx.type_of(field.did);
5869c6ff 686 let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
17df50a5
XL
687 !is_zst
688 })
1b1a35ee
XL
689}
690
3dfed10e 691/// Is type known to be non-null?
6a06907d 692fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
3dfed10e 693 let tcx = cx.tcx;
1b1a35ee 694 match ty.kind() {
3dfed10e
XL
695 ty::FnPtr(_) => true,
696 ty::Ref(..) => true,
697 ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
5e7ed085
FG
698 ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
699 let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
3dfed10e 700
1b1a35ee 701 if marked_non_null {
3dfed10e 702 return true;
f9652781 703 }
1b1a35ee 704
6a06907d
XL
705 // Types with a `#[repr(no_niche)]` attribute have their niche hidden.
706 // The attribute is used by the UnsafeCell for example (the only use so far).
5e7ed085 707 if def.repr().hide_niche() {
6a06907d
XL
708 return false;
709 }
710
5e7ed085 711 def.variants()
17df50a5
XL
712 .iter()
713 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
714 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
b039eaaf 715 }
3dfed10e 716 _ => false,
b039eaaf 717 }
3dfed10e 718}
dc9dc135 719
3dfed10e
XL
720/// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
721/// If the type passed in was not scalar, returns None.
722fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
723 let tcx = cx.tcx;
1b1a35ee 724 Some(match *ty.kind() {
3dfed10e
XL
725 ty::Adt(field_def, field_substs) => {
726 let inner_field_ty = {
5e7ed085
FG
727 let first_non_zst_ty = field_def
728 .variants()
729 .iter()
730 .filter_map(|v| transparent_newtype_field(cx.tcx, v));
3dfed10e
XL
731 debug_assert_eq!(
732 first_non_zst_ty.clone().count(),
733 1,
734 "Wrong number of fields for transparent type"
735 );
736 first_non_zst_ty
737 .last()
738 .expect("No non-zst fields in transparent type.")
739 .ty(tcx, field_substs)
740 };
741 return get_nullable_type(cx, inner_field_ty);
742 }
743 ty::Int(ty) => tcx.mk_mach_int(ty),
744 ty::Uint(ty) => tcx.mk_mach_uint(ty),
745 ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
746 // As these types are always non-null, the nullable equivalent of
747 // Option<T> of these types are their raw pointer counterparts.
748 ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
749 ty::FnPtr(..) => {
750 // There is no nullable equivalent for Rust's function pointers -- you
751 // must use an Option<fn(..) -> _> to represent it.
752 ty
753 }
754
755 // We should only ever reach this case if ty_is_known_nonnull is extended
756 // to other types.
757 ref unhandled => {
758 debug!(
759 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
760 unhandled, ty
761 );
762 return None;
763 }
764 })
765}
766
767/// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
1b1a35ee 768/// can, return the type that `ty` can be safely converted to, otherwise return `None`.
3dfed10e
XL
769/// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
770/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
771/// FIXME: This duplicates code in codegen.
923072b8 772pub(crate) fn repr_nullable_ptr<'tcx>(
3dfed10e
XL
773 cx: &LateContext<'tcx>,
774 ty: Ty<'tcx>,
775 ckind: CItemKind,
776) -> Option<Ty<'tcx>> {
777 debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
1b1a35ee 778 if let ty::Adt(ty_def, substs) = ty.kind() {
5e7ed085 779 let field_ty = match &ty_def.variants().raw[..] {
17df50a5
XL
780 [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
781 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
782 _ => return None,
783 },
784 _ => return None,
f035d41b 785 };
dc9dc135 786
3dfed10e
XL
787 if !ty_is_known_nonnull(cx, field_ty, ckind) {
788 return None;
f035d41b 789 }
dc9dc135 790
3dfed10e
XL
791 // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
792 // If the computed size for the field and the enum are different, the nonnull optimization isn't
793 // being applied (and we've got a problem somewhere).
794 let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
f035d41b
XL
795 if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
796 bug!("improper_ctypes: Option nonnull optimization not applied?");
797 }
dc9dc135 798
3dfed10e
XL
799 // Return the nullable type this Option-like enum can be safely represented with.
800 let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
801 if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
04454e1e
FG
802 match field_ty_scalar.valid_range(cx) {
803 WrappingRange { start: 0, end }
804 if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
805 {
5e7ed085
FG
806 return Some(get_nullable_type(cx, field_ty).unwrap());
807 }
04454e1e 808 WrappingRange { start: 1, .. } => {
3dfed10e
XL
809 return Some(get_nullable_type(cx, field_ty).unwrap());
810 }
04454e1e
FG
811 WrappingRange { start, end } => {
812 unreachable!("Unhandled start and end range: ({}, {})", start, end)
813 }
3dfed10e
XL
814 };
815 }
f035d41b 816 }
3dfed10e
XL
817 None
818}
b039eaaf 819
3dfed10e 820impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
60c5eb7d
XL
821 /// Check if the type is array and emit an unsafe type lint.
822 fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1b1a35ee 823 if let ty::Array(..) = ty.kind() {
60c5eb7d
XL
824 self.emit_ffi_unsafe_type_lint(
825 ty,
826 sp,
827 "passing raw arrays by value is not FFI-safe",
828 Some("consider passing a pointer to the array"),
829 );
830 true
831 } else {
832 false
833 }
834 }
835
f035d41b
XL
836 /// Checks if the given field's type is "ffi-safe".
837 fn check_field_type_for_ffi(
838 &self,
839 cache: &mut FxHashSet<Ty<'tcx>>,
840 field: &ty::FieldDef,
841 substs: SubstsRef<'tcx>,
842 ) -> FfiResult<'tcx> {
843 let field_ty = field.ty(self.cx.tcx, substs);
844 if field_ty.has_opaque_types() {
845 self.check_type_for_ffi(cache, field_ty)
846 } else {
847 let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
848 self.check_type_for_ffi(cache, field_ty)
849 }
850 }
851
852 /// Checks if the given `VariantDef`'s field types are "ffi-safe".
853 fn check_variant_for_ffi(
854 &self,
855 cache: &mut FxHashSet<Ty<'tcx>>,
856 ty: Ty<'tcx>,
5e7ed085 857 def: ty::AdtDef<'tcx>,
f035d41b
XL
858 variant: &ty::VariantDef,
859 substs: SubstsRef<'tcx>,
860 ) -> FfiResult<'tcx> {
861 use FfiResult::*;
862
5e7ed085 863 if def.repr().transparent() {
c295e0f8 864 // Can assume that at most one field is not a ZST, so only check
f035d41b 865 // that field's type for FFI-safety.
1b1a35ee 866 if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
f035d41b
XL
867 self.check_field_type_for_ffi(cache, field, substs)
868 } else {
c295e0f8
XL
869 // All fields are ZSTs; this means that the type should behave
870 // like (), which is FFI-unsafe
871 FfiUnsafe {
872 ty,
873 reason: "this struct contains only zero-sized fields".into(),
874 help: None,
875 }
f035d41b
XL
876 }
877 } else {
878 // We can't completely trust repr(C) markings; make sure the fields are
879 // actually safe.
880 let mut all_phantom = !variant.fields.is_empty();
881 for field in &variant.fields {
882 match self.check_field_type_for_ffi(cache, &field, substs) {
883 FfiSafe => {
884 all_phantom = false;
885 }
886 FfiPhantom(..) if def.is_enum() => {
887 return FfiUnsafe {
888 ty,
889 reason: "this enum contains a PhantomData field".into(),
890 help: None,
891 };
892 }
893 FfiPhantom(..) => {}
894 r => return r,
895 }
896 }
897
898 if all_phantom { FfiPhantom(ty) } else { FfiSafe }
899 }
900 }
901
9fa01778 902 /// Checks if the given type is "ffi-safe" (has a stable, well-defined
b039eaaf 903 /// representation which can be exported to C code).
dfeec247 904 fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
9fa01778 905 use FfiResult::*;
8bb4bdeb 906
3dfed10e 907 let tcx = self.cx.tcx;
b039eaaf
SL
908
909 // Protect against infinite recursion, for example
910 // `struct S(*mut S);`.
911 // FIXME: A recursion limit is necessary as well, for irregular
b7449926 912 // recursive types.
b039eaaf
SL
913 if !cache.insert(ty) {
914 return FfiSafe;
915 }
916
fc512014 917 match *ty.kind() {
b7449926 918 ty::Adt(def, substs) => {
17df50a5
XL
919 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
920 if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
921 return FfiSafe;
922 } else {
923 return FfiUnsafe {
924 ty,
94222f64 925 reason: "box cannot be represented as a single pointer".to_string(),
17df50a5
XL
926 help: None,
927 };
928 }
929 }
8bb4bdeb 930 if def.is_phantom_data() {
0531ce1d 931 return FfiPhantom(ty);
8bb4bdeb 932 }
c30ab7b3 933 match def.adt_kind() {
f035d41b
XL
934 AdtKind::Struct | AdtKind::Union => {
935 let kind = if def.is_struct() { "struct" } else { "union" };
936
5e7ed085 937 if !def.repr().c() && !def.repr().transparent() {
0531ce1d 938 return FfiUnsafe {
e1599b0c 939 ty,
f035d41b
XL
940 reason: format!("this {} has unspecified layout", kind),
941 help: Some(format!(
dfeec247 942 "consider adding a `#[repr(C)]` or \
f035d41b
XL
943 `#[repr(transparent)]` attribute to this {}",
944 kind
945 )),
0531ce1d 946 };
c30ab7b3 947 }
b039eaaf 948
e74abb32
XL
949 let is_non_exhaustive =
950 def.non_enum_variant().is_field_list_non_exhaustive();
5e7ed085 951 if is_non_exhaustive && !def.did().is_local() {
e74abb32
XL
952 return FfiUnsafe {
953 ty,
f035d41b 954 reason: format!("this {} is non-exhaustive", kind),
e74abb32
XL
955 help: None,
956 };
957 }
958
2c00a5a8 959 if def.non_enum_variant().fields.is_empty() {
0531ce1d 960 return FfiUnsafe {
e1599b0c 961 ty,
f035d41b
XL
962 reason: format!("this {} has no fields", kind),
963 help: Some(format!("consider adding a member to this {}", kind)),
0531ce1d 964 };
8bb4bdeb
XL
965 }
966
f035d41b 967 self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
b039eaaf 968 }
c30ab7b3 969 AdtKind::Enum => {
5e7ed085 970 if def.variants().is_empty() {
c30ab7b3
SL
971 // Empty enums are okay... although sort of useless.
972 return FfiSafe;
973 }
9e0c209e 974
c30ab7b3
SL
975 // Check for a repr() attribute to specify the size of the
976 // discriminant.
5e7ed085
FG
977 if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
978 {
8bb4bdeb 979 // Special-case types like `Option<extern fn()>`.
3dfed10e 980 if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
0531ce1d 981 return FfiUnsafe {
e1599b0c 982 ty,
f035d41b 983 reason: "enum has no representation hint".into(),
dfeec247
XL
984 help: Some(
985 "consider adding a `#[repr(C)]`, \
dc9dc135 986 `#[repr(transparent)]`, or integer `#[repr(...)]` \
f035d41b
XL
987 attribute to this enum"
988 .into(),
dfeec247 989 ),
0531ce1d 990 };
9e0c209e 991 }
8bb4bdeb 992 }
c30ab7b3 993
5e7ed085 994 if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
e74abb32
XL
995 return FfiUnsafe {
996 ty,
f035d41b 997 reason: "this enum is non-exhaustive".into(),
e74abb32
XL
998 help: None,
999 };
1000 }
1001
c30ab7b3 1002 // Check the contained variants.
5e7ed085 1003 for variant in def.variants() {
e74abb32
XL
1004 let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1005 if is_non_exhaustive && !variant.def_id.is_local() {
1006 return FfiUnsafe {
1007 ty,
f035d41b 1008 reason: "this enum has non-exhaustive variants".into(),
e74abb32
XL
1009 help: None,
1010 };
1011 }
1012
f035d41b
XL
1013 match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1014 FfiSafe => (),
1015 r => return r,
9e0c209e 1016 }
b039eaaf 1017 }
f035d41b 1018
c30ab7b3 1019 FfiSafe
b039eaaf
SL
1020 }
1021 }
c30ab7b3 1022 }
b039eaaf 1023
b7449926 1024 ty::Char => FfiUnsafe {
e1599b0c 1025 ty,
f035d41b
XL
1026 reason: "the `char` type has no C equivalent".into(),
1027 help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
0531ce1d 1028 },
b039eaaf 1029
5869c6ff 1030 ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => FfiUnsafe {
e1599b0c 1031 ty,
f035d41b 1032 reason: "128-bit integers don't currently have a known stable ABI".into(),
0531ce1d
XL
1033 help: None,
1034 },
ea8adc8c 1035
b039eaaf 1036 // Primitive types with a stable representation.
b7449926 1037 ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
b039eaaf 1038
b7449926 1039 ty::Slice(_) => FfiUnsafe {
e1599b0c 1040 ty,
f035d41b
XL
1041 reason: "slices have no C equivalent".into(),
1042 help: Some("consider using a raw pointer instead".into()),
0531ce1d
XL
1043 },
1044
dfeec247 1045 ty::Dynamic(..) => {
f035d41b 1046 FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
dfeec247 1047 }
0531ce1d 1048
b7449926 1049 ty::Str => FfiUnsafe {
e1599b0c 1050 ty,
f035d41b
XL
1051 reason: "string slices have no C equivalent".into(),
1052 help: Some("consider using `*const u8` and a length instead".into()),
0531ce1d
XL
1053 },
1054
b7449926 1055 ty::Tuple(..) => FfiUnsafe {
e1599b0c 1056 ty,
f035d41b
XL
1057 reason: "tuples have unspecified layout".into(),
1058 help: Some("consider using a struct instead".into()),
0531ce1d 1059 },
b039eaaf 1060
f035d41b
XL
1061 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1062 if {
3dfed10e 1063 matches!(self.mode, CItemKind::Definition)
f035d41b
XL
1064 && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
1065 } =>
1066 {
1067 FfiSafe
1068 }
1069
c295e0f8
XL
1070 ty::RawPtr(ty::TypeAndMut { ty, .. })
1071 if match ty.kind() {
1072 ty::Tuple(tuple) => tuple.is_empty(),
1073 _ => false,
1074 } =>
1075 {
1076 FfiSafe
1077 }
1078
dfeec247
XL
1079 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1080 self.check_type_for_ffi(cache, ty)
1081 }
b039eaaf 1082
60c5eb7d 1083 ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
b039eaaf 1084
b7449926 1085 ty::FnPtr(sig) => {
f035d41b
XL
1086 if self.is_internal_abi(sig.abi()) {
1087 return FfiUnsafe {
1088 ty,
1089 reason: "this function pointer has Rust-specific calling convention".into(),
1090 help: Some(
1091 "consider using an `extern fn(...) -> ...` \
1092 function pointer instead"
1093 .into(),
1094 ),
1095 };
b039eaaf
SL
1096 }
1097
fc512014 1098 let sig = tcx.erase_late_bound_regions(sig);
b7449926 1099 if !sig.output().is_unit() {
476ff2be 1100 let r = self.check_type_for_ffi(cache, sig.output());
5bcae85e
SL
1101 match r {
1102 FfiSafe => {}
c30ab7b3
SL
1103 _ => {
1104 return r;
1105 }
b039eaaf
SL
1106 }
1107 }
476ff2be 1108 for arg in sig.inputs() {
5099ac24 1109 let r = self.check_type_for_ffi(cache, *arg);
b039eaaf
SL
1110 match r {
1111 FfiSafe => {}
c30ab7b3
SL
1112 _ => {
1113 return r;
1114 }
b039eaaf
SL
1115 }
1116 }
1117 FfiSafe
1118 }
1119
b7449926
XL
1120 ty::Foreign(..) => FfiSafe,
1121
f035d41b
XL
1122 // While opaque types are checked for earlier, if a projection in a struct field
1123 // normalizes to an opaque type, then it will reach this branch.
1124 ty::Opaque(..) => {
1125 FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
1126 }
1127
1128 // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1129 // so they are currently ignored for the purposes of this lint.
3dfed10e 1130 ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
f035d41b
XL
1131 FfiSafe
1132 }
1133
dfeec247 1134 ty::Param(..)
f035d41b 1135 | ty::Projection(..)
dfeec247
XL
1136 | ty::Infer(..)
1137 | ty::Bound(..)
f035d41b 1138 | ty::Error(_)
dfeec247
XL
1139 | ty::Closure(..)
1140 | ty::Generator(..)
1141 | ty::GeneratorWitness(..)
1142 | ty::Placeholder(..)
dfeec247 1143 | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
e1599b0c
XL
1144 }
1145 }
1146
1147 fn emit_ffi_unsafe_type_lint(
1148 &mut self,
1149 ty: Ty<'tcx>,
1150 sp: Span,
1151 note: &str,
1152 help: Option<&str>,
1153 ) {
f035d41b 1154 let lint = match self.mode {
3dfed10e
XL
1155 CItemKind::Declaration => IMPROPER_CTYPES,
1156 CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
f035d41b
XL
1157 };
1158
1159 self.cx.struct_span_lint(lint, sp, |lint| {
1160 let item_description = match self.mode {
3dfed10e
XL
1161 CItemKind::Declaration => "block",
1162 CItemKind::Definition => "fn",
f035d41b
XL
1163 };
1164 let mut diag = lint.build(&format!(
1165 "`extern` {} uses type `{}`, which is not FFI-safe",
1166 item_description, ty
1167 ));
74b04a01
XL
1168 diag.span_label(sp, "not FFI-safe");
1169 if let Some(help) = help {
1170 diag.help(help);
e1599b0c 1171 }
74b04a01 1172 diag.note(note);
1b1a35ee 1173 if let ty::Adt(def, _) = ty.kind() {
5e7ed085 1174 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
74b04a01
XL
1175 diag.span_note(sp, "the type is defined here");
1176 }
1177 }
1178 diag.emit();
1179 });
e1599b0c
XL
1180 }
1181
1182 fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
f035d41b
XL
1183 struct ProhibitOpaqueTypes<'a, 'tcx> {
1184 cx: &'a LateContext<'tcx>,
fc512014 1185 }
e1599b0c 1186
f035d41b 1187 impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
fc512014
XL
1188 type BreakTy = Ty<'tcx>;
1189
1190 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1b1a35ee 1191 match ty.kind() {
fc512014 1192 ty::Opaque(..) => ControlFlow::Break(ty),
f035d41b
XL
1193 // Consider opaque types within projections FFI-safe if they do not normalize
1194 // to more opaque types.
1195 ty::Projection(..) => {
1196 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1197
94222f64 1198 // If `ty` is an opaque type directly then `super_visit_with` won't invoke
f035d41b 1199 // this function again.
29967ef6
XL
1200 if ty.has_opaque_types() {
1201 self.visit_ty(ty)
1202 } else {
1203 ControlFlow::CONTINUE
1204 }
f035d41b
XL
1205 }
1206 _ => ty.super_visit_with(self),
e1599b0c
XL
1207 }
1208 }
1209 }
1210
fc512014 1211 if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
dfeec247 1212 self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
e1599b0c
XL
1213 true
1214 } else {
1215 false
b039eaaf
SL
1216 }
1217 }
1218
f035d41b
XL
1219 fn check_type_for_ffi_and_report_errors(
1220 &mut self,
1221 sp: Span,
1222 ty: Ty<'tcx>,
1223 is_static: bool,
1224 is_return_type: bool,
1225 ) {
e1599b0c
XL
1226 // We have to check for opaque types before `normalize_erasing_regions`,
1227 // which will replace opaque types with their underlying concrete type.
1228 if self.check_for_opaque_ty(sp, ty) {
1229 // We've already emitted an error due to an opaque type.
1230 return;
1231 }
1232
54a0048b
SL
1233 // it is only OK to use this function because extern fns cannot have
1234 // any generic types right now:
f035d41b
XL
1235 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1236
1237 // C doesn't really support passing arrays by value - the only way to pass an array by value
1238 // is through a struct. So, first test that the top level isn't an array, and then
1239 // recursively check the types inside.
60c5eb7d
XL
1240 if !is_static && self.check_for_array_ty(sp, ty) {
1241 return;
1242 }
b039eaaf 1243
f035d41b
XL
1244 // Don't report FFI errors for unit return types. This check exists here, and not in
1245 // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1246 // happened.
1247 if is_return_type && ty.is_unit() {
1248 return;
1249 }
1250
0bf4aa26 1251 match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
b039eaaf 1252 FfiResult::FfiSafe => {}
0531ce1d 1253 FfiResult::FfiPhantom(ty) => {
e1599b0c 1254 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
9e0c209e 1255 }
f035d41b
XL
1256 // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1257 // argument, which after substitution, is `()`, then this branch can be hit.
3dfed10e 1258 FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
e1599b0c 1259 FfiResult::FfiUnsafe { ty, reason, help } => {
f035d41b 1260 self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
b039eaaf
SL
1261 }
1262 }
1263 }
b039eaaf 1264
dfeec247 1265 fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
416331ca 1266 let def_id = self.cx.tcx.hir().local_def_id(id);
041b39d2 1267 let sig = self.cx.tcx.fn_sig(def_id);
fc512014 1268 let sig = self.cx.tcx.erase_late_bound_regions(sig);
54a0048b 1269
cdc7bbd5 1270 for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
5099ac24 1271 self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
54a0048b
SL
1272 }
1273
74b04a01 1274 if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
476ff2be 1275 let ret_ty = sig.output();
f035d41b 1276 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
b039eaaf
SL
1277 }
1278 }
54a0048b 1279
532ac7d7 1280 fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
416331ca 1281 let def_id = self.cx.tcx.hir().local_def_id(id);
7cac9316 1282 let ty = self.cx.tcx.type_of(def_id);
f035d41b 1283 self.check_type_for_ffi_and_report_errors(span, ty, true, false);
54a0048b 1284 }
b039eaaf 1285
3dfed10e 1286 fn is_internal_abi(&self, abi: SpecAbi) -> bool {
29967ef6
XL
1287 matches!(
1288 abi,
1289 SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1290 )
f035d41b
XL
1291 }
1292}
1293
1294impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1295 fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
3dfed10e 1296 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
6a06907d 1297 let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
f035d41b
XL
1298
1299 if !vis.is_internal_abi(abi) {
e74abb32 1300 match it.kind {
b7449926 1301 hir::ForeignItemKind::Fn(ref decl, _, _) => {
6a06907d 1302 vis.check_foreign_fn(it.hir_id(), decl);
b7449926
XL
1303 }
1304 hir::ForeignItemKind::Static(ref ty, _) => {
6a06907d 1305 vis.check_foreign_static(it.hir_id(), ty.span);
b039eaaf 1306 }
dfeec247 1307 hir::ForeignItemKind::Type => (),
b039eaaf 1308 }
b039eaaf
SL
1309 }
1310 }
1311}
5bcae85e 1312
f035d41b
XL
1313impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1314 fn check_fn(
1315 &mut self,
1316 cx: &LateContext<'tcx>,
1317 kind: hir::intravisit::FnKind<'tcx>,
1318 decl: &'tcx hir::FnDecl<'_>,
1319 _: &'tcx hir::Body<'_>,
1320 _: Span,
1321 hir_id: hir::HirId,
1322 ) {
1323 use hir::intravisit::FnKind;
1324
1325 let abi = match kind {
1326 FnKind::ItemFn(_, _, header, ..) => header.abi,
1327 FnKind::Method(_, sig, ..) => sig.header.abi,
1328 _ => return,
1329 };
1330
3dfed10e 1331 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
f035d41b
XL
1332 if !vis.is_internal_abi(abi) {
1333 vis.check_foreign_fn(hir_id, decl);
1334 }
1335 }
1336}
1337
532ac7d7 1338declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
5bcae85e 1339
f035d41b
XL
1340impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1341 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 1342 if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
6a06907d 1343 let t = cx.tcx.type_of(it.def_id);
fc512014 1344 let ty = cx.tcx.erase_regions(t);
5e7ed085 1345 let Ok(layout) = cx.layout_of(ty) else { return };
a2a8927a 1346 let Variants::Multiple {
c295e0f8 1347 tag_encoding: TagEncoding::Direct, tag, ref variants, ..
a2a8927a
XL
1348 } = &layout.variants else {
1349 return
532ac7d7
XL
1350 };
1351
04454e1e 1352 let tag_size = tag.size(&cx.tcx).bytes();
532ac7d7 1353
dfeec247
XL
1354 debug!(
1355 "enum `{}` is {} bytes large with layout:\n{:#?}",
1356 t,
1357 layout.size.bytes(),
1358 layout
1359 );
532ac7d7 1360
cdc7bbd5 1361 let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
532ac7d7 1362 .map(|(variant, variant_layout)| {
f035d41b 1363 // Subtract the size of the enum tag.
5e7ed085 1364 let bytes = variant_layout.size().bytes().saturating_sub(tag_size);
532ac7d7 1365
dfeec247 1366 debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
532ac7d7
XL
1367 bytes
1368 })
1369 .enumerate()
dfeec247
XL
1370 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1371 if size > l {
1372 (size, l, idx)
1373 } else if size > s {
1374 (l, size, li)
1375 } else {
1376 (l, s, li)
1377 }
532ac7d7
XL
1378 });
1379
1380 // We only warn if the largest variant is at least thrice as large as
1381 // the second-largest.
1382 if largest > slargest * 3 && slargest > 0 {
74b04a01 1383 cx.struct_span_lint(
dfeec247
XL
1384 VARIANT_SIZE_DIFFERENCES,
1385 enum_definition.variants[largest_index].span,
74b04a01
XL
1386 |lint| {
1387 lint.build(&format!(
1388 "enum variant is more than three times \
532ac7d7 1389 larger ({} bytes) than the next largest",
74b04a01
XL
1390 largest
1391 ))
5e7ed085 1392 .emit();
74b04a01 1393 },
dfeec247 1394 );
5bcae85e
SL
1395 }
1396 }
1397 }
1398}
94222f64
XL
1399
1400declare_lint! {
1401 /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1402 /// to an atomic operation that does not support that ordering.
1403 ///
1404 /// ### Example
1405 ///
1406 /// ```rust,compile_fail
1407 /// # use core::sync::atomic::{AtomicU8, Ordering};
1408 /// let atom = AtomicU8::new(0);
1409 /// let value = atom.load(Ordering::Release);
1410 /// # let _ = value;
1411 /// ```
1412 ///
1413 /// {{produces}}
1414 ///
1415 /// ### Explanation
1416 ///
1417 /// Some atomic operations are only supported for a subset of the
1418 /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1419 /// an unconditional panic at runtime, which is detected by this lint.
1420 ///
1421 /// This lint will trigger in the following cases: (where `AtomicType` is an
1422 /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1423 /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1424 ///
1425 /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1426 /// `AtomicType::store`.
1427 ///
1428 /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1429 /// `AtomicType::load`.
1430 ///
1431 /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1432 /// `core::sync::atomic::compiler_fence`.
1433 ///
1434 /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1435 /// ordering for any of `AtomicType::compare_exchange`,
1436 /// `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1437 ///
1438 /// - Passing in a pair of orderings to `AtomicType::compare_exchange`,
1439 /// `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`
1440 /// where the failure ordering is stronger than the success ordering.
1441 INVALID_ATOMIC_ORDERING,
1442 Deny,
1443 "usage of invalid atomic ordering in atomic operations and memory fences"
1444}
1445
1446declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1447
1448impl InvalidAtomicOrdering {
1449 fn inherent_atomic_method_call<'hir>(
1450 cx: &LateContext<'_>,
1451 expr: &Expr<'hir>,
1452 recognized_names: &[Symbol], // used for fast path calculation
1453 ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1454 const ATOMIC_TYPES: &[Symbol] = &[
1455 sym::AtomicBool,
1456 sym::AtomicPtr,
1457 sym::AtomicUsize,
1458 sym::AtomicU8,
1459 sym::AtomicU16,
1460 sym::AtomicU32,
1461 sym::AtomicU64,
1462 sym::AtomicU128,
1463 sym::AtomicIsize,
1464 sym::AtomicI8,
1465 sym::AtomicI16,
1466 sym::AtomicI32,
1467 sym::AtomicI64,
1468 sym::AtomicI128,
1469 ];
5e7ed085
FG
1470 if let ExprKind::MethodCall(ref method_path, args, _) = &expr.kind
1471 && recognized_names.contains(&method_path.ident.name)
1472 && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1473 && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1474 && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
94222f64 1475 // skip extension traits, only lint functions from the standard library
5e7ed085 1476 && cx.tcx.trait_id_of_impl(impl_did).is_none()
04454e1e 1477 && let parent = cx.tcx.parent(adt.did())
5e7ed085
FG
1478 && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1479 && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1480 {
1481 return Some((method_path.ident.name, args));
94222f64
XL
1482 }
1483 None
1484 }
1485
1486 fn matches_ordering(cx: &LateContext<'_>, did: DefId, orderings: &[Symbol]) -> bool {
1487 let tcx = cx.tcx;
1488 let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1489 orderings.iter().any(|ordering| {
1490 tcx.item_name(did) == *ordering && {
1491 let parent = tcx.parent(did);
04454e1e 1492 Some(parent) == atomic_ordering
94222f64 1493 // needed in case this is a ctor, not a variant
04454e1e 1494 || tcx.opt_parent(parent) == atomic_ordering
94222f64
XL
1495 }
1496 })
1497 }
1498
1499 fn opt_ordering_defid(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<DefId> {
1500 if let ExprKind::Path(ref ord_qpath) = ord_arg.kind {
1501 cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()
1502 } else {
1503 None
1504 }
1505 }
1506
1507 fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1508 use rustc_hir::def::{DefKind, Res};
1509 use rustc_hir::QPath;
5e7ed085
FG
1510 if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1511 && let Some((ordering_arg, invalid_ordering)) = match method {
94222f64
XL
1512 sym::load => Some((&args[1], sym::Release)),
1513 sym::store => Some((&args[2], sym::Acquire)),
1514 _ => None,
94222f64 1515 }
5e7ed085
FG
1516 && let ExprKind::Path(QPath::Resolved(_, path)) = ordering_arg.kind
1517 && let Res::Def(DefKind::Ctor(..), ctor_id) = path.res
1518 && Self::matches_ordering(cx, ctor_id, &[invalid_ordering, sym::AcqRel])
1519 {
1520 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
1521 if method == sym::load {
1522 diag.build("atomic loads cannot have `Release` or `AcqRel` ordering")
1523 .help("consider using ordering modes `Acquire`, `SeqCst` or `Relaxed`")
1524 .emit()
1525 } else {
1526 debug_assert_eq!(method, sym::store);
1527 diag.build("atomic stores cannot have `Acquire` or `AcqRel` ordering")
1528 .help("consider using ordering modes `Release`, `SeqCst` or `Relaxed`")
1529 .emit();
1530 }
1531 });
94222f64
XL
1532 }
1533 }
1534
1535 fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085
FG
1536 if let ExprKind::Call(ref func, ref args) = expr.kind
1537 && let ExprKind::Path(ref func_qpath) = func.kind
1538 && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1539 && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1540 && let ExprKind::Path(ref ordering_qpath) = &args[0].kind
1541 && let Some(ordering_def_id) = cx.qpath_res(ordering_qpath, args[0].hir_id).opt_def_id()
1542 && Self::matches_ordering(cx, ordering_def_id, &[sym::Relaxed])
1543 {
1544 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
1545 diag.build("memory fences cannot have `Relaxed` ordering")
1546 .help("consider using ordering modes `Acquire`, `Release`, `AcqRel` or `SeqCst`")
1547 .emit();
1548 });
94222f64
XL
1549 }
1550 }
1551
1552 fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085
FG
1553 if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1554 && let Some((success_order_arg, failure_order_arg)) = match method {
94222f64
XL
1555 sym::fetch_update => Some((&args[1], &args[2])),
1556 sym::compare_exchange | sym::compare_exchange_weak => Some((&args[3], &args[4])),
1557 _ => None,
5e7ed085
FG
1558 }
1559 && let Some(fail_ordering_def_id) = Self::opt_ordering_defid(cx, failure_order_arg)
1560 {
1561 // Helper type holding on to some checking and error reporting data. Has
1562 // - (success ordering,
1563 // - list of failure orderings forbidden by the success order,
1564 // - suggestion message)
1565 type OrdLintInfo = (Symbol, &'static [Symbol], &'static str);
1566 const RELAXED: OrdLintInfo = (sym::Relaxed, &[sym::SeqCst, sym::Acquire], "ordering mode `Relaxed`");
1567 const ACQUIRE: OrdLintInfo = (sym::Acquire, &[sym::SeqCst], "ordering modes `Acquire` or `Relaxed`");
1568 const SEQ_CST: OrdLintInfo = (sym::SeqCst, &[], "ordering modes `Acquire`, `SeqCst` or `Relaxed`");
1569 const RELEASE: OrdLintInfo = (sym::Release, RELAXED.1, RELAXED.2);
1570 const ACQREL: OrdLintInfo = (sym::AcqRel, ACQUIRE.1, ACQUIRE.2);
1571 const SEARCH: [OrdLintInfo; 5] = [RELAXED, ACQUIRE, SEQ_CST, RELEASE, ACQREL];
1572
1573 let success_lint_info = Self::opt_ordering_defid(cx, success_order_arg)
1574 .and_then(|success_ord_def_id| -> Option<OrdLintInfo> {
1575 SEARCH
1576 .iter()
1577 .copied()
1578 .find(|(ordering, ..)| {
1579 Self::matches_ordering(cx, success_ord_def_id, &[*ordering])
1580 })
1581 });
1582 if Self::matches_ordering(cx, fail_ordering_def_id, &[sym::Release, sym::AcqRel]) {
1583 // If we don't know the success order is, use what we'd suggest
1584 // if it were maximally permissive.
1585 let suggested = success_lint_info.unwrap_or(SEQ_CST).2;
1586 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
1587 let msg = format!(
1588 "{}'s failure ordering may not be `Release` or `AcqRel`",
1589 method,
1590 );
1591 diag.build(&msg)
1592 .help(&format!("consider using {} instead", suggested))
1593 .emit();
1594 });
1595 } else if let Some((success_ord, bad_ords_given_success, suggested)) = success_lint_info {
1596 if Self::matches_ordering(cx, fail_ordering_def_id, bad_ords_given_success) {
94222f64
XL
1597 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
1598 let msg = format!(
5e7ed085 1599 "{}'s failure ordering may not be stronger than the success ordering of `{}`",
94222f64 1600 method,
5e7ed085 1601 success_ord,
94222f64
XL
1602 );
1603 diag.build(&msg)
1604 .help(&format!("consider using {} instead", suggested))
1605 .emit();
1606 });
94222f64
XL
1607 }
1608 }
1609 }
1610 }
1611}
1612
1613impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1614 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1615 Self::check_atomic_load_store(cx, expr);
1616 Self::check_memory_fence(cx, expr);
1617 Self::check_atomic_compare_exchange(cx, expr);
1618 }
1619}